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Abstract

This thesis discusses the possibility to apply network coding to a Bluetooth piconet.
A protocol is proposed. This protocol is based on using deterministic linear network
coding. The proposed alphabet size is binary, and the encoding equation is a trivial
parity check code. The encoding scales easily by the number of source nodes in the
network, and does not require exchange of coding equations. Encoding and decoding
are performed using bitwise XOR of the packets, and do not require any pre-computed
look-up table, nor a great amount of dedicated memory to store intermediate packets.
Finally, the encoding and decoding processes are not computational hard.

Network coding applied as the proposed protocol is only beneficial to the master
node and the communication from the master node to the slave nodes. Furthermore, it
does not give any protection against errors, and information exchanged in the network
will be available to all the slave nodes in the network.

A theoretical study of the proposed algorithm shows a gain in throughput, and
reduced power consumption. These features are appreciated by computational and power
challenged nodes. This efficiency is maximized when there are few source nodes in the
network, and large frame sizes (DH5). The theoretical study is verified by a simulator
designed to this purpose.
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Chapter 1

Introduction

Recent improvements have enabled wireless communication at a much greater extent
than what was imaginable few years ago. 150 years ago, nobody knew about the good
old wired telephone. At the beginning of the eighties, huge and heavy cell phones were
a curiosity. And at the beginning of the nineties, only a handful people knew about the
Internet. Today ’everybody’ owns a small cell phone, and surf the web and check their
e-mail from wherever place in the house or the world.

The improvements in technology have enabled what we know as the information age.
Increased demand for communication (speech and data) is pushing the boundary every
day.

As a majority of the communication up to the seventies was tied to fixed lines, an
increasingly part of the communication networks nowadays are connecting to a cell based
communication network. This is e.g. cell phones, satellite communication and wireless
networks (WLANs). These types of network require a centralized and fixed installation,
connected to an infrastructure.

Based on the demand for communication, even in geographical areas with less devel-
oped communication infrastructure, the need for ’something else’ has risen. A solution
that seems to solve some of these problems is ad hoc network. Ad hoc network, is as
the name indicate, a network created when needed. (In fact, ad hoc is Latin for: for
this purpose.) Ad hoc network is decentralized, and all nodes in the network are peers.
Different protocols to enable routing in such networks have been proposed. Selecting
routing protocol is based on properties of the network regarding, among other things,
the number of nodes, mobility, timeliness, throughput, and power consumption.

Although the development of the technology has increased the available bandwidth,
the demand increases as well. Systems to utilize the available bandwidth efficiently are
of great importance. Network coding is one such approach to utilize the network more
efficiently. Network coding was first introduced in 2000, and extensive research has been
done in this area since then.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem

Bluetooth is a widely spread technology, and a number of different devices are shipped
with this support. This makes Bluetooth a candidate to be used in ad hoc networks.
This thesis will explore the possibilities to apply network coding in Bluetooth networks,
and proposes a protocol on how this can be done. This thesis will perform a theoretical
study on application of network coding in Bluetooth piconets.

1.2 Organization of the report

Chapters 2 to 4 give a theoretical framework for the discussion later in the thesis. Chap-
ter 2 discusses ad hoc networks in general terms, and gives an overview of differences and
problems in an ad hoc network as opposed to a centralized network. An introduction to
Bluetooth is given in Chapter 3. And finally, network coding is explained in Chapter 4.

A discussion on how to possibly apply network coding in a Bluetooth network is given
in Chapter 5. The protocol proposed in this chapter is simulated, and the description
of the simulator and the results are given in Chapter 6. The thesis is concluded, and
future work is outlined, in Chapter 7.

Detailed results from the simulation and the source code of the simulator are available
in the appendix.



Chapter 2

Ad Hoc Networks

Ad hoc mobile networks are usually temporary networks [6, Chapter 2.6]. I.e. the net-
works are established when the communication nodes are within radio range and there
exists a demand for communication. As a consequence of this, there is no centralized
component initiating the session. Typically all nodes are peers. The networks are usu-
ally temporary as the nodes may be added or removed, either because they have moved
out of radio range or the need for communication has vanished.

Furthermore ad hoc networks may operate stand alone or be connected to another
network such as the Internet. In this case, this is done through a gateway. That is,
one or several nodes of the ad hoc network acting as gateways between the networks.
As opposed to cabled and wireless cell networks there is no central router in ad hoc
networks. Instead traffic is routed between nodes, as the nodes agree to relay traffic
on behalf of the source node. Due to this fact, ad hoc networks pose new challenges
such as routing and medium access. The routing protocol plays a fundamental role in
an ad hoc network, as it will be difficult to offer services to the other nodes without it.
Additionally, without a proper medium access control protocol (MAC), ad hoc networks
will suffer from degradation of services due to collision and interference between nodes.
Several protocols have been proposed to address these issues.

Two types of ad hoc network are defined: mobile ad hoc networks (MANET) and
wireless sensor networks (WSNs)[6]. MANETs and WSNs have different applications
and characterizations, and are treated individually.

2.0.1 Mobile Ad Hoc Networks

Mobile ad hoc networks (MANET) are mobile hosts communicating with each other
using wireless links based on the peer-to-peer paradigm [6, Chapter 2.6.1]. As a mobile
host acts as a router and at the same time is free to move independently, it is likely that
the network topology changes unpredictably. Thus a MANET has to be self-configuring
and autonomous for any two or more nodes forming the network. This ideology applies
to all layers in the communication stack from data link layers up the application layer.
As a consequence, use of distributed applications is preferred.

3



4 CHAPTER 2. AD HOC NETWORKS

Typical mobile nodes could be Laptops, PDAs, cell phones and other electronic
devices containing a radio device. However, efforts have been made in the military to
apply this technology to establish communication within vehicles, vessels, airplanes and
even soldiers. (E.g the Norwegian Modular Arctic Network Soldier (NORMANS) [14],
Subnet Relay [65] and UIDM [12]). Image a scenario where soldiers carrying a mobile
node are able to establish communication to the headquarter using a network of nodes
relaying traffic through other soldiers, vehicles and aircrafts. This network could enable
a communications system providing IP connectivity (to be used to send voice, images,
movies and tactical situation report) back to the HQ. Figure 2.1 illustrates an example
of such a network. The line indicates the communication lines. The figure illustrates
how traffic relays between nodes in the network, and that there may exist several paths
through the network. The frigate hosts a gateway between the ad hoc network and the
fixed satellite communication network, enabling communication between the two nets.

Figure 2.1: An example of an ad hoc network

A similar use of MANET could be applied to scenes where there are no established
communications structures, or the communication structure has been destroyed as a
consequence of a natural disaster.

Common to both of these scenarios, is a MANET operating in an environment where
there is no established or available cell network like GSM with 3G capacity, WLAN hot
spot, WiMax, or any satellite systems. MANETs are able to extend the geographical
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coverage of the network beyond the radio range of the devices or even line-of-sight (LOS).

2.0.2 Wireless Sensor Networks

A wireless sensor network is a network consisting of low-cost sensors able to communi-
cate wirelessly with each other. Typically, they have limited computing capability and
memory, and operate with limited battery power [6]. Distributed sensing tasks are the
main purpose of such networks, e.g. temperature, magnetic field, or gases. Furthermore,
often all nodes are involved in the same sensing task. Thus, wireless sensor networks
differ in characteristics from MANET. To provide high sensing resolution, wireless sen-
sor networks are potentially formed by hundreds and thousands of sensors. To conserve
power, sensors may enter a dormant state during periods of low activity. Even though
the sensors are stationary, the networks still have a dynamic topology as a result of
this behavior. Replacement or recharging of batteries after deployment is often difficult.
Energy conservative design is therefore important in these networks.

2.1 MAC protocols

The performance of a network is directly dependent of the medium access control (MAC)
protocol [6]. As ad hoc networks are wireless, they share the same medium. MAC
controls the sharing of the medium, and therefore the performance of the network.
Ad hoc networks (both MANETs and WSNs) are distributed, and also the MAC is
distributed. As opposed to fixed network like cellular system (GSM) and satellite system
which have a centralized MAC. I.e. a central node controls the fair access, quality of
service (QoS) and other decision made by the MAC.

Common MAC techniques are frequency division multiple access FDMA, time divi-
sion multiple access TDMA, spread spectrum multiple access, and carrier sense multiple
access CSMA.

FDMA assigns individual channels to each user. This is like the well known FM
radio broadcasting, where each radio channel has assigned a channel.

TDMA uses a channel divided in time slots. TDMA assign time slots to each user.
The time slots are grouped into frames, and repeated cyclically. Thus, a user channel is
repeated in every frame. To obtain duplex communication half of the time slots are used
in each direction. This is called time division duplex TDD. Alternatively, the forward
and return traffic are transmitted on different frequency. This is called frequency division
duplex FDD. E.g. the GSM mobiletelephone system uses a combination of TDMA and
FDD. Different channels are used for both sending and receiving, and different channels
are used for traffic and control signal [57].

There are two common form of spread spectrum multiple accesses techniques, fre-
quency hopped multiple access (FHMA) and direct sequence multiple accesses. The last
method is also called code division multiple access CDMA. In FHMA data are transmit-
ted in burst, each burst is transmitted on different channel.In CDMA the data is coded
onto a large bandwidth signal. To decode the data the receiver needs to know the code
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used to encode the signal. The global positioning system GPS uses CDMA [55].
CSMA is a protocol to avoid collisions of packets by first listening to the channel

for another nodes carrier. There is no central coordination of who is transmitting. If
the channel is unavailable, the node will back off for a random period. After the back
off period, the node then listens to the channel again. CSMA is usually combined with
either collision detect CD or collision avoidance CA. CSMA/CD implies a protocol how
to act upon detection of a collision, and are used in the Ethernet (IEEE 802.3). CA is
primarily used in half duplex systems which are not able to detect collision (listen) when
transmitting. Instead small handshake packets are sent prior to the data and establish
a ’channel’ before the data is transmitted. CSMA/CA is used in wireless LANs (IEEE
802.11).

2.2 Routing

The key problem in an ad hoc network is to know which nodes are available and possible
to communicate with, and how to route the traffic between the two nodes through the
network. Due to the dynamic nature of ad hoc networks, they are facing different
routing problems than traditional cabled networks. That is, nodes appear/disappear
from the network, and nodes move around changing the topology frequently. To challenge
the router problems there have been established two major approaches: Proactive and
reactive routing algorithms. The proactive routing algorithms try to keep an updated
routing table to all nodes at all time. The reactive routing algorithms try to establish a
route from the source to the destination at the time the need for communication appears,
i.e. at the time the data are generated. The proactive routing algorithms are able to
pass the traffic instantly, whereas the reactive routing algorithms have to find the route
before the traffic can be routed. On the other hand the proactive routing algorithms
are power consuming even when there is no traffic, as the routing protocol traffic will be
running all the time.

The different routing protocols are classified into three different classes in [6], unicast
routing, broadcast routing and multicast routing, as shown in Figure 2.2.

2.2.1 Unicast routing

Unicast routing (Figure 2.2(a)) is routing between to single nodes in a network, one-to-
one. These protocols make it possible for any two nodes in the network to communicate.
Different routing protocols address the issue of finding the shortest path through the
network differently. The unicast routing protocols can be further classified by two differ-
ent approaches, flat and hierarchical routing protocols. The flat routing protocols give
each node the same function and responsibilities in the network. Hierarchical routing
protocols, on the other hand, organize the nodes as a tree of clusters. Example of flat
routing protocols are Dynamic Source Routing (DSR) [32], Ad hoc On-demand Distance
Vector (AODV) [51], Temporary Ordered Routing Algorithm (TORA) [48] [49]. Thus
examples of hierarchical routing protocols are Zone Routing Protocol (ZRP) [25] and
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(a) Unicast

  

S

(b) Multicast

  

S

(c) Broacast

Figure 2.2: Routing in ac hoc network. Red node is source, green nodes are sink and
blue nodes other nodes
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Hierarchical State Routing (HSR) [50].

2.2.2 Multicast routing

Multicast routing (Figure 2.2(b)) is routing from one source to multiple nodes, one-to-
many. Multicast routing is important for application communicating to a group of nodes
based on geographically or functional criteria. E.g. conferences, multi player games, in-
formation to users within a specific area, or communication dedicated to a group of
users like doctors, nurses and patients. [6] divide multicast protocols into five types:
tree-based, mesh-based, backbone-based, stateless multicast and application layer mul-
ticast. Examples of multicast routing protocols are: Core-Assisted Mesh Protocol [20],
and a Maximum-Residual Multicast Protocol for Large-Scale Mobile Ad Hoc Networks
(MRMP) [30].

2.2.3 Broadcast routing

Broadcast routing (Figure 2.2(c)) is routing from one source to all nodes in a network,
one-to-all. Broadcast routing is often a key part of unicast and multicast protocols [6].
The simplest form of routing is flooding. I.e. all nodes relay received traffic to all its
connected neighbors. Such flooding could cause what is called a broadcast storm [43].
This is a situation where each node receives the same broadcast multiple times, because
a node who received the broadcast decides to rebroadcast it to all its neighbor nodes
even though they have received it before. In a wireless network this could cause collision
and degradation of the network. In addition valuable battery power could be wasted on
unnecessary broadcasts. Examples of broadcast routing protocols are: scalable broadcast
algorithm (SBA) and ad hoc broadcast protocol (AHBP). A comparison of some of the
different broadcast routing protocols have been done by Williams and Camp [70].

2.3 Security

Basic principles of information security are defined as confidentiality, integrity and avail-
ability [61].

Confidentiality is preventing disclosure of information to unauthorized system entities.

Integrity is preventing modification or destruction of information without authoriza-
tion.

Availability for a system to serve its purpose it has to be available as designed (acces-
sible and usable) whenever users request it.

A key to establish the security principles is ability to authenticate nodes in the network,
and encrypt the information transferred.
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2.3.1 Security threats to ad hoc networks

Nodes in an ad hoc network relay data on behalf of other nodes in order to establish a
route from the source to the sink. A consequence of this kind of routing, as opposed to
a cabled fixed network, is the revealing of information to nodes along the path. Thus
ad hoc networks need to maintain confidentiality differently. Furthermore, intermediate
nodes are able to modify the data before passing it to the next node. Finally, if an
intermediate node stops passing traffic, the route is broken. And the availability of the
network lost. Traditional cabled network often include a public key infrastructure (PKI)
to verify legitimacy of components (e.g. hosts, servers, printers and routers) [67], [1]. The
lack of a server infrastructure is a challenge to impose a system preventing spoofing. It is
possible to use signed certificates and public key to identify nodes, however this require
either distribution and storage of certificates or a distributed certification authority (CA).
A ’bad’ node can easily perform passive and active attacks against an ad hoc network
unless security countermeasure is made. RFC4593 gives a description of generic threats
to routing protocols [8].

2.3.2 Security countermeasures in ad hoc networks

Recent research on security in ad hoc networks has proposed countermeasures in three
different categories: secure routing, trust and key management and service availability
protection [6].

Secure routing

Several protocols for secure routing in ad hoc networks have been proposed. As opposed
to previously mentioned routing protocols these protocols does not assume all nodes
behave properly according to the routing protocols, and that no malicious nodes exist
in the network. Both symmetric and asymmetric schemes have been proposed.

Trust and key management

As an ad hoc network is distributed, an implementation of a PKI is not feasible. Both
partially and fully distributed certificate authorities have been proposed. In principle,
the proposed schemes involve a distribution of the certification authority between the
nodes. A user is trusted if k different neighbor nodes verify the authenticity of that user.

Service availability protection

A problem in ad hoc network is nodes behaving selfish. That is, they use services pro-
vided by other nodes, but do not provide any services to the community. [6] discuss
two approaches to solve this problem, reputation-based and monitoring. The reputation
based approach is based on some sort of reputation, like credit, for incentive to cooper-
ation. The monitoring approach is based on neighbors watching misbehaving nodes and
isolates them by sharing this information with other nodes.
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2.4 Challenges and direction in ad hoc networks

According to [6, Chapter 3] the research direction of ad hoc network challenges is to
implement quality of service (QoS) support, fairness, power management, and smart
antennas. As ad hoc networks have limited shared bandwidth, ability to prioritize some
nodes or application over other is important. Fairness is another functionality required
to balance the shared wireless channel. The lifetime of battery operated nodes in an
ad hoc network is improved using power management algorithms. One approach is to
shut down the receiver, during idle periods. The challenge is to decide where to buffer
packets to idle nodes, and when or how to turn a node on. Particularly wireless sensor
networks are depending on power management, as it is sometimes is not feasible to
replace batteries.



Chapter 3

Bluetooth

3.1 Introduction to Bluetooth

Bluetooth is a short range wireless technology intended to replace cables connecting
portable and/or fixed devices [23]. The Bluetooth specification is maintained by the
Bluetooth Special Interest Group (SIG). The Bluetooth SIG is a privately held not-
for-profit trade association and has more than 10.000 members, among them Ericsson,
IBM, Intel, Microsoft, Motorola and Nokia. Bluetooth has become a global standard
for short-range wireless personal connectivity, and is included in a number of electronic
devices like cell phones, PDA’s, Laptops, game consoles, cars, headsets, and even toys.
As of May 2008 there were between 1.5 and 2 billion Bluetooth devices, and every week
13 million new units are shipped out [23]. This makes Bluetooth a interesting technology
to be used in mobile ad hoc networks.

3.2 Bluetooth architecture

The Bluetooth system is divided into four layers, Radio-, Baseband-, Link Manager-
and L2CAP layer. The three lowest layers are often grouped together and referred to as
the Bluetooth controller. Host Controller Interface (HCI) is the interface between the
Bluetooth host and the Bluetooth controller, see Figure 3.1.

3.2.1 Radio layer

The radio layer is responsible for transmitting and receiving packet of information on the
physical channel. Bluetooth operates in the Industrial Scientific Medical (ISM) band
(2.4GHz), and uses 79 channels spaced 1MHz apart from each other [60]. To avoid
interference and fading a frequency hopping scheme is used. Two types of modulation
are defined, frequency shift keying (FSK) and phase shift keying (PSK). FSK is used by
the mandatory basic data rate (BDR) mode (1Mbps), whereas the PSK modulation is
used by enhanced data rate (EDR) (2 and 3Mbps). The EDR is available from Bluetooth
version 2.0. Bluetooth uses a fixed symbol rate of 1Ms/s for all modulation schemes. For

11
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Figure 3.1: Bluetooth Architecture

full duplex transmission support, a time division duplex (TDD) is used in both modes.
In a TDD scheme data are transmitted in one direction at a time, and transmission
alternating between the two directions. There are 1600 time slots per second, giving
each time slot a 625µS duration. The Bluetooth specification defines three classes of
transmitters based on output power as listed in table 3.1.

Class Power [mW] max range [m]
1 100 100
2 2.5 10
3 1 1

Table 3.1: Bluetooth classes

3.2.2 Baseband layer

The baseband layer is responsible for medium access control and physical layer proce-
dures between Bluetooth devices. A physical channel is defined by a pseudo-random
frequency hopping sequence, slot timing and an access code. The hop rate is 1600 hops
per seconds, i.e. one hop per time slot. The hopping sequence is determined by the
Bluetooth device address (BT ADDR, se Chapter 3.2.2) of the master device. Differ-
ent modes use different hopping sequence. Furthermore, the phase of the sequence is
determined by the Bluetooth clock. A transmission of data is called a packet. Each
data packet may be 1, 3 or 5 slots. During multi slot packets, the radio remains on the
same frequency until the entire packet has been transmitted. The Bluetooth standard
support coded and uncoded transmission, called DM and DH accordingly. Table 3.2 list
the maximum packet size for the different modes.
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Type Max Payload FEC
DM1 17 2/3
DM3 121 2/3
DM5 224 2/3
DH1 27 No
DH3 183 No
DH5 339 No

Table 3.2: Bluetooth ACL packet sizes

Bluetooth addressing

All Bluetooth devices have a unique 48 bit address called BT ADDR. Addressing in a
piconet is done using a 3 bit address assigned by the master in the range of 1-7. This
address is called LT ADDR. The LT ADDR is used by the master node polling the
slaves. In the reply from the slave, the sender adds the LT ADDR in the header field.
The special LT ADDR=0 is used by the master in an active slave broadcast. According
to the Bluetooth specification [22] a slave node only process packet addressed with its
own LT ADDR or address 0.

Bluetooth packets

Figure 3.2 shows the structure of a Bluetooth packet. Some packet types used during
the pairing process does not include a header, and in such cases the trailer in the access
code is removed. The access code is in these cases 68 bit long. This is not the case for
master - slave communication, where the access code is 72 bits and a header is included.
I.e. packet overhead is 126 bit. The header field contains 18 bit of information. However,
the header is encoded using 1/3 FEC. The FEC is a simple three times repetition code,
thus each bit is repeated three times. A short description of the different field:

• Acces Code Every packets start with an access code containing preamble, sync
word and trailer

• Header contains the link control information and consist of LT ADDR, Type, Flow,
ARQN, SEQN and HEC

• Payload is the data carried by the link. The size range from 0-2754 bits

• Preamble is a fixed zero-one pattern

• Sync Word is constructed on the basis of packet type and data to encode

• Trailer is a fixed zero-one pattern

• LT ADDR is a three bit logical transport address

• Type is a 4 bit type code
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Figure 3.2: Bluetooth packets

• Flow is used for flow controll

• ARQN is acknowledge indication

• SEQN is sequence numbering

• HEC is header error check

Link Controller

The link controller is encoding and decoding Bluetooth packets. The Bluetooth packets
consist of three fields access code, header and payload. There are three types of access
codes, channel access code (CAC), device access code (DAC) and inquiry access codes
(IAC).

Baseband Resource Manager

The baseband resource manager is responsible for all access to the radio medium.

3.2.3 Link Manager Layer

The link layer is responsible of establishing, modifying and tear-down of logical links
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3.2.4 Logical Link and Adaption Protocol (L2CAP) layer

The L2CAP layer is responsible for managing the order and submission of PDU fragments
to the baseband. Furthermore, it performs some relative scheduling between channels
to ensure that L2CAP channels with QoS requirements are not denied access to the
physical channel as a result of an exhausted Bluetooth controller.

3.3 Bluetooth protocols

Figure 3.3 shows a block diagram of the Bluetooth protocol stack. Only protocols
essential for this thesis will be explained here.

  Bluetooth radio

Baseband and link control

LMP

HCI

L2CAP

RFCOMM BNEP

IP

TCP/UDP

OBEX SDP TCS binary

Figure 3.3: Bluetooth protocol stack

3.3.1 Bluetooth protocols overview

Link manager protocol

The Link Manager Protocol (LMP) is responsible for link setup and link configuration
between the Bluetooth devices. The LMP is also responsible for managing and nego-
tiating the baseband packet size. Finally the LMP manages the security aspects, like
authentication and encryption.
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L2CAP

The main task of the Logical Link Control and Adaption Protocol (L2CAP) is multiplex-
ing the different logical connections made by higher levels. L2CAP also perform packet
segmentation and reassembly.

RFCOMM

The RFCOMM protocol provides emulation of serial ports over L2CAP. Higher level
protocols that uses a serial interface are supported by the RFCOMM.

BNEP

The Bluetooth Network Encapsulation Protocol (BNEP) provides transport services for
network protocols over Bluetooth such as IPv4 and IPv6.

OBEX

Object exchange(OBEX) is a transfer protocol that defines data objects and a commu-
nication protocol two devices can use to exchange those objects.

SDP

The Service Discovery Protocol SDP provides a protocol for application to query ser-
vices of connected Bluetooth devices. A Bluetooth device query available services after
discovered a new device.

3.4 Bluetooth profiles

A Bluetooth profile defines standard ways of combining selected protocols and protocol
features. These profiles enable a particular usage between different implementations of
Bluetooth. Each implementation may choose to support one ore more profiles. There
are however four ”‘basic”’ profiles [66], Generic Access Profile (GAP), Serial Port Profile
(SPP), Service Discovery Profile (SDAP) and Generic Object Exchange Profile (GOEP).

Generic Access Profile

The GAP provides the basis of all other profiles. Generic procedures to establish con-
nection between two devices are defined.

Serial Port Profile

The SPP used the RFCOMM protocol and defines how to set up virtual serial port
communications.
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Service Discovery Application Profile

The SDAP describes how a Bluetooth device should use SDP to discover services on a
remote Bluetooth device.

Generic Object Exchange Profile

The GOEP defines how to use OBEX to exchange objects between two Bluetooth devices.

3.5 Intra unit administration

A connection has to be made before two Bluetooth devices are able to communicate. The
process of connecting two devices happens in two step, device discovering and paging.
Figure 3.4 illustrate the process of establishing connection.

3.5.1 Establishing a Bluetooth connection

Disconnected

Inquiry
(Discovering)

Paging
(Connecting)

Connected

Figure 3.4: Bluetooth connection procedure

Inquiry - Device discovering

The device discovering procedure is asymmetrical. Bluetooth devices searching for other
Bluetooth devices are in an inquiring mode. The Bluetooth devices accepting connection
are in a discoverable mode. During the inquiry scan all discoverable devices will reply
to a special inquiry request with an inquiry response. If a device trying to connect
to another devices knows the address of the device, this step may be skipped. Such
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devices will always respond to connecting requests. These devices are known as cached
or pre-known devices.

Paging - Connecting

After a successful device discovering the Bluetooth devices may perform paging as the
final stage of connecting the devices. Also the paging procedure is asymmetrical. One of
the devices perform the paging (connection) and the other devices enables page scanning
(connectable). When the paging procedure is completed, the Bluetooth devices are
connected. During the connection process two channels are crated ACL-C and ACL-L.
The ACL-C connects the LMP control protocol, and the ACL-U connects the L2CAP
channel, see Figure 3.5. Devices are free to establish other channels. Either of the devices
can delete the channel, and disconnect the connection. The devices then return back to
disconnected mode.
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OBEX SDP TCS binary
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OBEX SDP TCS binary
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Figure 3.5: Bluetooth nodes connected

3.6 Bluetooth Security

3.6.1 Bluetooth security mechanism

Bluetooth employs three modes of security for Bluetooth access between two devices.
These are:

Security mode 1 Non-secure

Security mode 2 Service level enforced security
This is two devices may establish a non-secure ACL link. Security procedure, like
authentication, authorization and optional encryption, is enforced when a L2CAP
channel is established.

Security mode 3 Link level enforced security
This implies establishing of security mechanism before a connection is established.
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Pairing

Bluetooth devices may depending on the security setting establish a relationship before
link is established, this is known as pairing. After a successful pairing of two devices,
they devices are said to be bonded. During the pairing process an initialization key is
established. A passkey (PIN) is used to calculate the initialization. This initialisation is
used to calculate the link key and other keys used to authenticate other devices or encrypt
the communication. Devices that have performed the pairing process, are bonded. Either
of the bonded devices can delete the link key, and implicitly remove the bonding.

A main threat against Bluetooth security is the pairing phase. An eavesdropper
recording the pairing phase could record the challenge and reply between the devices.
By calculating the initial key of all potentially passkeys, and then calculate the link
key the eavesdropper can match the possible values with the response, and such find
the link key. Consequently all further communication can be decrypted by the eaves-
dropper. A Bluetooth Security White Paper [21] recommends using long passkey and
only pair devices in a secure environment. The computing complexity of generating the
initialization key based on the passkey is not large. Using long passkey will increase
the work load for an eavesdropper of finding the matching link key. Avoiding pairing of
Bluetooth devices in public spaces eliminate the possibility of an eavesdropper to find
the link key. The white paper gives recommendations on how to implement security in
different application over Bluetooth.

3.7 Bluetooth and Java

There are three Java platforms: Java Enterprise Edition (EE), Standard Edition (SE)
and Micro Edition (ME). The Java EE is aimed at servers and enterprise computers,
SE is aimed at desktop computer and finally ME is aimed at consumer and embedded
devices such as PDAs, mobile phones, entertainment devices, and navigation systems.
Support for Bluetooth was first added in the Java Micro Edition because it was thougth
that the initial set of devices using Java language capabilities over Bluetooth would be
in this space [66]. The Java APIs for Bluetooth Application (JABWT) is defined in the
JSR-821.

Support of Bluetooth in Java SE is defined in JSR-197. JSR-197 defines API for
Bluetooth Application based on the JSR-82. Java Standard Edition that includes JSR-
197 may support the Java API for developing Bluetooth applications. However, this
support is not common today. There are both commercial and open source Java SE
implementations of JSR-82. An open source implementation is BlueCove [59].

1JAVA API are defined through the Java Community Process (JCP), and each new API is developed
as a Java Specification Request (JSR)
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3.8 Piconet

Two or more Bluetooth devices sharing the same physical channel form a piconet. The
unit initiating the connection becomes the master, and the other node(s) becomes the
slave(s). In a piconet there can be up to 7 active and 255 parked slaves. A parked slave
is not able to communicate. If a piconet is holding 7 active slaves, it must park one of
the active slaves before one of the parked slaves can become active. In a piconet the
Bluetooth device address and clock of the master node is used to determine the physical
channel. As different piconets will have different masters, each piconet will use different
(and unique) hopping sequences. This makes it possible for different piconets to co-
exist within radio range without interfering each other. However, occasionally multiple
piconets may use the same frequency during the same time slot; collision will occur and
cause packet loss. As this is happening infrequently, possible consequences are prevented
by using FEC.
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Figure 3.6: Left: Single Master/Slave, Right: Piconet

3.9 Scatternet

As described in chapter 3.1 the purpose of the Bluetooth technology is to replace cable in
a point-to-point communication. However, the Bluetooth technology offers a method to
interconnect multiple devices using a piconet. As a piconet has maximum one master and
up to seven slaves, a network of more than 8 participants is formed by interconnecting
multiple piconets. This is called a scatternet. Each piconet has a master and multiple
slaves. Interconnection is done by gateway nodes. A gateway node is either a node acting
as slave in two piconets, or a master node acting as master in one piconet and a slave(s)
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in the other one(s). A Bluetooth device is only able to act as master in one piconet at
the same time. The gateway nodes are not able to listen to several piconets at the same
time. Time sharing is used to receive and transmit in the different networks. During
the time a gateway node is sending or receiving in a network, it is not able to listen to
traffic in the other ones. The load balance of the gateway nodes is of importance to the
design of scatternet.
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Figure 3.7: A Scatternet M=Master, S=Slave, S/S= Slave bridge, M/S=Master bridge

A scatternet formation algorithm is responsible of establishing the scatternet. Addi-
tion to the scatternet formation algorithm a routing algorithm has to be implemented
in the network. The different routing algorithms are designed to work in a specific envi-
ronment incorporating techniques to emphasis design goals as discussed in Chapter 2.2.

3.10 Scatternet formation algorithms

Several algorithms for scatternet have been proposed. Some algorithms are limited to
a situation where all nodes are within radio range (single hop), whereas other do not
have this constraint (multi hop). A comparison of the different formation algorithms is
basically based on following criteria [6]:

• Duration until the scatternet is formed is low

• Average number of piconet is low

• Average piconet size is small
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• The scatternet is fully connected

• The algorithm has a low message and time complexity

• The delay for topology maintenance is small

• A high aggregate throughput and a small average packet transfer delay between
any pair of nodes

None of the proposed scatternet formation algorithms is fulfilling all of the above re-
quirements. [4] compare some of the proposed algorithms, and evaluate the performance
of three of the protocols (Blutrees [74], BlueStars [52] and New Formation protocol [38])
using simulation. Slightly different criteria than the ones above have been emphasized
in the comparison. Recent papers propose other algorithms like the Overlaid Bluetooth
Piconet and Temporary Scatternet [34] and Enhanced AODV [3]. The first one pro-
poses an interconnection method without scatternet formation, instead interconnecting
stand alone piconet. A performance comparison of OBP and Bluetooth Scatternet [9] is
made in [33], and conclude a resiliency to mobility and higher throughput. Low power
consumption is emphasized as an important feature in the latter one (EAODV).

A classification based on the formation algorithms limitations to be within radio
range of all nodes or not, can be done as in table 3.3. In practical MANETs and WSNs

Single hop Multi hop
Bluetooth Topology Construction Pro-
tocol (BTCP)

Bluetrees [74]

Scatternet Formation Algorithm [9] Bluenet [69]
Overlaid Bluetooth Piconets [34] Tree Scatternet Formation Algorithm

(TSF) [63]
Temporary Scatternets [34] BlueStars [52]

New Formation protocol [38]
Enhanced AODV [3]

Table 3.3: Classification of Scatternet Formation Algorithms

the geographical prevalence is likely to be bigger than the radio range of each single node,
i.e. 10m radius. Thus scatternet formation algorithms in the left column of table 3.3 are
primarily of theoretical interest.

3.11 Scatternet security

A scatternet challenges the same security issues as a Bluetooth piconet. Liong and
Barnaghi propose in a paper [41] an approach to use asymmetric encryption to exchange
session key. The session keys are used to symmetrical encrypt data. This approach
eliminates eavesdropping and man-in-the-middle attack. However, the paper does not
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address how to block ’bad’ node joining the scatternet. After successfully joining the
scatternet, it is possible to perform denial of service attack from inside the network.



Chapter 4

Network Coding

A model where a network is presented as a directed graph is adopted from [7], where
the communication links are edges and the network components (e.g. routers, switches,
data sources and sinks) are nodes or vertices, as shown in Figure 4.1.

Figure 4.1: Network presented as a graph

4.1 The Max-Flow-Min-Cut Theorem

The max-flow-min-cut theorem is defined as [10]:

The maximal flow value from s to t is equal to the minimum of the
capacities of cuts separating s from t.

Where s is the source, and t is the sink in a directed graph.
A cut in the graph is a set of edges such that, when removed, will disconnect the

source from the sink. The sum of the capacities of the edges in the cut is called the
value of a cut. A minimum cut is a cut with minimum value. There could be several
different minimum cuts in the same graph. Figure 4.2 shows example of different cut for

24
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the same graph. The number next to the edges is the capacity of the edge. The values
of the cut for 4.2(a), 4.2(b), 4.2(c), 4.2(d) are 5, 11, 18 and 15 accordingly. The cut
4.2(a) is therefore the minimum cut. And based on the max-flow-min-cut theorem, the
maximum flow from s to t in the graph is 5.
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Figure 4.2: Cuts for a graph

The Ford-Fulkerson algorithm [16] can be used to find the maximum flow path. Note
that the maximum flow assumes a single source. The max-flow-min-cut theorem will be
applied in the following as a reference for the discussion.

4.2 Introduction to network coding

Intermediate network components, like routers, have traditionally not performed any
processing of packets. Rather routers stored and forwarded essentially unmodified pack-
ets. Network coding, on the other hand, allows intermediate nodes to perform coding
in the network [73]. In network coding, an intermediate node is typically forwarding a
(linear) combination of the received incoming packets [7]. Network coding is considered
to be discussed the first time in a seminal paper in 2000 by Ahlswede et al [2]. The bene-
fits of network coding are to be able to improve throughput, robustness, complexity and
security [26]. The benefits are further discussed in Chapter 4.4. Web pages dedicated to
network coding containing useful information about this field can be found at [37] and
[46].
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Consider a network with one source node and two receiving nodes, as outlined in
Figure 4.3(a). This network is commonly referred to as the butterfly network. The
source transmits two packets (a and b) per time unit on the outgoing links. All links
have a capacity of transmitting one message per time unit. According to the max-flow-
min-cut theorem, the capacity from the source to the sink nodes e.g. node R1 and
R2 is two packets per time unit. However, the max-flow-min-cut theorem is under the
condition of single unicast, not multicast. Using traditional multicast and store-and-
forwarding routing, it is not possible to achieve the max-flow for both nodes at the same
time. Instead, one node is able to receive one packet and the other two packets. E.g.
node R1 only receives message a, and R2 receives both message a and b.

If we instead apply network coding, and the nodes are allowed to combine the network
traffic, both nodes can receive both messages as shown in Figure 4.3(b) and the max-
flow-min-cut rate is achieved for both of the receiving nodes at the same time. Node
R1 calculates b by combining the two messages a and a+b. Node R2 calculates a by
combining the two messages b and a+b.

a b

a b

S

R1 R2

a b

a

a a

(a) Without network coding

a b

a b

S

R1 R2

a b

a+b

a+b a+b

(b) With network coding

Figure 4.3: A butterfly network

A wireless network is another application of network coding that increases through-
put. Figure 4.4(a) illustrate how traffic between two wireless nodes A and C are routed
through node B. Node A send packet a to node B, and node C send packet b to node
B. Then node B send packet a to node C, and finally packet b to node A. This could
be done using network coding as illustrated in Figure 4.4(b). Node B receives packet a
and b from node A and B respectively, combines them in one packet a+b and sends one
single packet to both node A and B. Node A and B are able to solve the equation and
get the other message. This example is also discussed by Shannon in 1961 [58] in what
he called a two-way channel.
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Figure 4.4: Network coding in a wireless network

4.3 How encoding is performed

Intermediate nodes receiving more than one packet combine the packets and forward
this combination to the next node. The combination of the packets is performed over
some finite field Fq [19]. The coefficients used to perform this operation constitute of
what is called a local encoding vector c`(e) for edge e see Section 4.3.1. Throughout a
network this operation may be performed several times.

By tracking the local encoding vectors recursively, the global encoding vector is found
[73]. The global encoding vector is necessary for the sink to decode the received packets.

Given a sufficient field size q, use of linear network coding is sufficient. Furthermore,
when the local encoding equations are linear, the global encoding equations also become
linear.

The process of determining the encoding equations can be approached in two different
ways. These are known as deterministic linear encoding (Section 4.3.4) and random
linear encoding (Section 4.3.5). For all known efficient algorithms for deterministic
network coding it is necessary to know the network topology before assigning local
encoding equations [7]. As the knowledge of the network is centrally available, this
approach is considered a centralized algorithm. The random encoding approach, on the
other hand is considered a distributed algorithm as no central knowledge of the topology
of the network is required.

An overview of how network coding is performed is given in [17]. Assume that an
original packets consists of L bits. In case of different length packet, the shorter ones
are padded with trailing 0s such that all packets are of equal length. s consecutive bits
of a packet is treated as a symbol over the field F2s . The original packet is therefore
considered consisting of L/s symbols.

4.3.1 Encoding

Given n original packets M1, ........,Mn generated in the network by one or multiple
sources. The encoding is performed by combining the original packets and the coefficients
g1, ......, gn. The vector of coefficients is called an encoding vector. The combined packet
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X is equal to

X =
n∑
i=1

giM
i

This is known as the local encoding equation. The summation is performed for every
symbol position. The kth symbol is therefor Xk =

∑n
i=1 giM

i
k, where M i

k is the kth
symbol of M i. If the symbol length is 1, i.e. the field F2, the combination is simple
bitwise xor.

A node that has received and stored a set of encoded packet may generate a new
encoded packetX ′ by combining the stored packets and its local encoding vector hj , X ′ =∑m

j=1 hjX
j , where Xj is a stored encoded packet. This operation may be performed at

several nodes in the network. Thus encoding can be performed recursively to already
encoded packets.

4.3.2 Decoding

Received packets are decoded by solving the system Xj =
∑n

i=1 g
j
iM

i, where Xj and
gj are the set of the m received encoded packets and its corresponding coefficients,
recursively. The receiver needs m ≤ n packets to be able to recover all data. The
equations can be solved using Gaussian elimination. The received packets are stored
in a decoding matrix, and by using Gaussian elimination the matrix is transformed to
triangular matrix. If the received packet is not innovative, i.e. the packet is a linear
combination of previously stored packets; it is reduced to a row of 0s by the Gaussian
elimination. An innovative packet increases the rank of the matrix. A solution is found
at latest when n linear independently packets have been received.

Practical implementation of network coding operates on a limited size decoding ma-
trix. It is possible to balance this during design of a deterministic network code, but is
more difficult for random network coding. A possible solution is to group packets into
generations, so that only packets of the same generation are combined.

Network coding does not require decoding to be performed throughout the network,
only at the receiving nodes.

4.3.3 Global encoding equation

It is possible to determine the global encoding equation, when all the local linear encoding
equations are defined. The global encoding equation is found by combining all the local
encoding equations influenced to the packets on the path from the source to the sink.

4.3.4 Deterministic linear coding

Deterministic linear encoding requires knowledge of the entire network to determine
and design the encoding equations. Thus this approach requires preprocessing before
encoding can be performed. However, as long as the topology is stable it is not necessary
to re-design the encoding. There are several approaches on how to assign encoding
equations [19], and special considerations have to be made if the network contains cycles
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[5]. All known approaches includes a centralized algorithm, however it is not proven
non-existence of distributed approaches.

After succesfully design of the encoding equations, these are distributed and assigned
in the network. Once assigned, the encoding equations are used during all successive
transmissions. As all local and global equations are known beforehand, overhead is
not necessary. The centralized requirement of the deterministic linear encoding and
requirement for re-design of encoding equations whenever changes in the network occurs,
makes this approach poorly suited for ad hoc networks that change topology frequently.

It is previously stated that the field Fq has to be of sufficient size. It has not been
determined up till now what is sufficient. A basic upper bound on the requirement
for q is that q ≥ r [56] always works, where r is the number of sinks. Also if r∗(e) is
the number of sinks that uses the edge e, then q ≥ max r∗(e), e ∈ ε [5]. Later work
[18] proved existence of a particular network of two unit rate sources h, and gave an
accurate maximum bound of q ≥ b

√
2r − 7/4+1/2c. In [7] an opportunistic approach is

proposed, where one start in F2 until no more edges can be encoded over that field while
maintaining the full rank invariant, i.e. the encoding equations are linear independent
and it is possible to decode the combination. At that point the encoding is shifted to an
extensive field. The work proves the possibilities to work under a smaller field size than
the previous mentioned bound.

4.3.5 Random linear network coding

When the network topology is known, it is possibly to use a deterministic algorithm
to find network encoding equations. However, when the topology is not known, use of
random linear network coding is required [7]. The algorithm is called random because
each encoding node chooses its own encoding coefficients randomly. The coefficients are
chosen uniformly distributed from a sufficiently large field. The process of constructing
and finding network encoding coefficients is more flexible using random coding; however
a much larger base field is usually needed [73].

As opposed to deterministic network coding, where the local and global encoding
equations are distributed from a central node, each node in a random network coding
network choose its own encoding equations. The global encoding equations are added to
the header of the packet. Each node performing combinations of packets, also calculate
the new global encoding equation g′i by adding its local encoding equation h with the
previous global encoding equation gi. This is done by using straightforward algebra [17]

g′i =
m∑
j=1

hjg
j
i

The new global encoding equation forwarded along with the combined packet. This
operation is repeated at each node that combines packets.

A receiver is able to restore the original K packets after receiving K linear inde-
pendent packet forming a set of K linear equations. Ho et al. [28] showed that with
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uniformly distributed network coding coefficient in a finite field FQ, all the sinks can de-
code the source with a probability at least (1− d/Q)η for Q > d, where d is the number
of sinks and η is the number of links with randomized coefficients.

4.4 Network coding benefits and challenges

4.4.1 Benefits of network coding

Throughput

It is shown previously in this chapter different application of network coding increasing
throughput in a network. In fact there are cases where network coding give a solution
to a problem not solved using traditional routing. One of them is achieving the max-
flow-min-cut boundary to each of the nodes simultaneously in the butterfly network. A
paper by Chekuri et.al. [11] describes the benefits over routing using network coding.
[64] propose a routing algorithms of network coding on multicast.

Robustness

When (random) network coding is applied to wireless networks, the network becomes
more robust against packet losses. Such packet losses can arise from link failure, buffer
overflow and collisions of packet on the medium in a shared medium topology. Tradi-
tional, erasure coding is applied at the sender side and decoding at the receiver side.
If instead erasure coding was applied on all links, the robustness would increase at the
cost of the delay in the network. However, network coding gives this benefit without
requiring decoding on every link, and hence without adding further delay in the network.
This example is described in [17].

Complexity

Finding optimal routing is, in some cases, a complex task. Finding optimum routing
using network coding is linear optimization [26]. In fact network coding can enable
communication that is not achievable using traditional routing. The work by Ho et al.
discusses network coding versus routing in paper [27].

Security

Network coding is able to add some security to the network. However, it raises some se-
curity concerns as well (see Chapter 4.4.2). Due to the nature of the linear combination
of packets, tampering can be discovered [17]. This can be illustrated by an example:
Consider a network of four nodes as shown in Figure 4.5. The source node A transmits
two messages to node D through the intermediate node B and C. All links have unit
capacity. The traditional routing way of doing this is shown in Figure 4.5(a). An eaves-
dropper listening to one of the paths AB-BD or AC-CD is able to get this information.
If instead network coding is applied, it is possible to transfer the same amount of data
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Figure 4.5: Security benefit using network coding

from A to D 4.5(b). An eavesdropper listening to either of the paths is not able to deduct
either of the messages a or b. The receiver D is able to combine the two packets (a+b
and a+2b) to get both messages a and b. A requirement for this to hold is redundancy
in the information transmitted. If not, network coding enables an eavesdropper to re-
cover both data streams at a single location. [19] outlines a protocol to protect against
Byzantine attacks using network coding.

4.4.2 Challenges using network coding

Even though network coding will give benefits, it also raises some challenges. Some of
them are discussed in [19], and these are:

Complexity

The nodes in a network deploying network coding are required to store their own in-
formation and received packets. Thus network coding requires additional memory. In
addition, the nodes need to perform operations over finite fields, and solve a system of
linear equations to decode data. This requires additional computations. Both memory
and computational power may be a challenge in ad hoc networks of small battery op-
erated mobile nodes. [19] discusses a trade off between complexity and performance,
where complexity refers to number of coding points as well as the size of the coding
alphabet. Challenged node with limited resources may consider these trade-offs.

Security

From a security point of view, intermediate nodes should not modify data. In network
coding intermediate nodes performs operations on the data. It is therefore necessary to
deploy systems to maintain authenticity of the data transferred, despite use of network
coding.
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Integration of existing infrastructure

An open question is how to integrate network coding in existing network architecture. It
is interesting, from an integrator’s point of view, to benefit from network coding without
major replacements of components. A Microsoft research project called Avalanche [53]
applies network coding to perform fast file distribution over P2P in a system called MS
Content distribution. The basic idea of the content distribution is to use network coding
as opposed to swarming. In a swarming system peers download different pieces of infor-
mation from multiple nodes. A problem in such a system is optimal scheduling of pieces
to nodes, and problem distributing rare packets. Nodes in the network coding content
distribution system receiving a piece of information, will produce a linear combination
of the received piece and the block it already holds and pass this block to its peer. In-
cluded in the block is also the encoding equation. This encoding ensure that any piece
of uploaded by any peer can be of use to any other peer. As soon as a peer has sufficient
linear independent combinations, it is able to decode that part of the information and
rebuild the original file. An analysis of the Avalanche application is made by Yeung [72].

4.5 Network coding applications

After the first initial paper discussing network coding [2] a number of papers have been
produced. The published papers both discuss network coding framework and how to ap-
ply network coding in practical contexts. In addition to the previous mentioned (Chap-
ter 4.4.2) Avalanche project by Microsoft Research [53] a simulation study on network
coding parameters in P2P content distribution system is done Zeng et al. [75] and a
P2P file sharing based on network coding by Yang and Yang [71]. Sundarajan et.al.
discusses in a paper [62] how to incorporate network coding into TCP. Park et al. [47]
discuss the performance of network coding in ad hoc networks. The paper confirms the
established analytic results that network coding achieves higher throughput and lower
power consumptions than conventional multicast.

In a paper by Li and Kong[40], use of network coding in WiMAX is explored. They
observe an improved throughput using network coding on MAC layer compared to tradi-
tional Hybrid Automatic Repeat reQuest (HARQ). In a paper by Katti et al. [35] studies
use of network coding in wireless mesh networks. Simulation and practical implementa-
tion shows an increased network throughput using a proposed architecture called COPE.
A mesh network is an ad hoc network, where the nodes relay traffic on behalf of other
nodes, extending the range of the network (Figure 4.6).

The COPE architecture adds a coding shim between the IP and MAC layer, and
identifies coding opportunities. As opposed to traditional mesh network, the COPE
nodes use broadcast extensively and record all overheard packets for a time period T
(default T = 0.5s). In addition, all nodes broadcast a reception report periodically
containing information about which packets each node know about. This enables COPE
to opportunistic decide the optimal combination of packets in the next transmission.
See the example in Figure 4.7 from [35]. The output queue of node B contains the
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Figure 4.6: A mesh network extending the range by relaying

packets P1, P2, P3 and P4, and node B has to decide the best optimal combination of
these packets such that most number of nodes is able to decode. As the example shows,
the best combination would be to send P1+P3+P4, as this option enables all nodes to
decode and increase their packet pool with one packet. The paper shows theoretical
coding gains from 1.33 up to 2 depending on the network topology.

Figure 4.7: An example of the COPE coding

A framework for network coding in challenged wireless network (FRANC) [15] is a
framework to deploy network coding in ad hoc networks. FRANC is implemented in
Java, and applies random network coding.



Chapter 5

Network coding in a Bluetooth
network

The author of this work is not aware of any effort made on applying network coding in
Bluetooth networks. However, Bluetooth is widely used today [23] and the devices are
cheap and have a low power consumption. Use of Bluetooth in a MANET as well as
WSNs is therefore interesting.

The overall aggregated bandwidth in a piconet is limited to 768kbps (Basic Data
Rate). Using TDD, this bandwidth is shared between the nodes in a piconet based on
the fairness algorithm applied [6]. Thus the average bandwidth per node is reduced by
the number of nodes transmitting in a piconet. If applying network coding to the piconet
makes the communication more efficient, the required number of transmitted packets will
decrease. A reduced number of transmitted packets will reduce the radiated power from
the node. Furthermore, reduced radiated power will reduce the energy requirement, and
increase the lifetime of the battery while maintaining the same bandwidth available.
As Bluetooth is primarily used by small battery operated devices, an improved energy
budget is welcome.

5.1 Theoretical analysis

Assume a piconet consisting of a master node and two slave nodes as shown in fig-
ure 5.1. The two slave nodes communicate with each other full duplex at equal data
rate (symmetrical).

According to the TDD scheme of Bluetooth, the master polls the first slave. The
slave responds and sends its packet destined for node 2. The master polls the next node,
and passes data from the first node to the second node. The second node responds,
and passes its data to the master. This cycle repeats itself until the communication
terminates, this protocol is illustrated in Figure 5.2(a). Assume again the same network
topology as previously. Instead of following the previous protocol, the first two polls
from the master does not transfer any data but rather send simple poll packets with no
payload. The master stores the received data from node 1 and node 2 in a buffer. It

34



5.1. THEORETICAL ANALYSIS 35

M

S1 S2

Figure 5.1: A simple piconet

then performs combination of the two packets, and sends the encoded packet to both
nodes as illustrated in Figure 5.2(b). This is possible either by using the reserved Active
Slave Broadcast address (as carried out in an Emergency Data Delivery System [39])
or forcing the receivers to operate in promiscuous mode. If possible in the hardware
implementation, the latter is preferred due to polling scheme issues. If broadcast address
is used, a separate poll packet has to be transmitted. Recall from Chapter 3.2.2, that a
poll packet is 126 bit long, and the power budget will be increased accordingly.
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(a) Without network coding
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S1 transfer data to S2
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and data S1 XOR S2

(b) With network coding

Figure 5.2: A two slave and one master Bluetooth network

5.1.1 Throughout improvement in a piconet by using network coding

Is it possible to improve the throughput in a piconet using network coding? This section
will discuss how this could possible be done, and a protocol for deterministic network
coding in Bluetooth piconet (DNCBP) is proposed. The reason for choosing deterministic
network coding over random network coding will be addressed in Chapter 5.2. Given



36 CHAPTER 5. NETWORK CODING IN A BLUETOOTH NETWORK

a network of a master node and four slave nodes. Between the four nodes traffic flows
bi-directional and symmetric in pair as shown in Figure 5.3. Recall from Chapter 3 the

M

S1

S2 S4

S3

Figure 5.3: A piconet with four nodes and two bi-directional symmetric communication
streams

Bluetooth frame structure, at every even numbered time slot the master polls a slave.
The next time slot data from the polled slave node is transmitted. To explain how to
apply network coding, a Bluetooth piconet could be viewed as a directed graph as in
Figure 5.4. On the right hand side of the figure is the transmitting part of the slave
nodes (the sources), and the receiving part of the slave nodes (the sinks) is on the left
hand side. The master node is in the middle. Figure 5.5 indicates a possible distribution
and use of time slot in a TDD system. The overall capacity C is divided by the users.
Transmission of one packet from one slave to another slave, forwarded by the master is
requiring two time slots; one from the source slave to the master, and another time slot
from the master to the sink slave. Thus, with n slaves the average capacity per node
Cn, is given by

Cn = C/2n

By applying broadcasted network coding on the communication from the master node
to all the slave nodes, the master is able to communicate to all slaves in each of its time
slots at the same time. A representation of this mode of operation is illustrated as a
directed graph in Figure 5.6. On the right hand side the transmitting part of the slave
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Figure 5.4: A piconet as a directed graph
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Figure 5.5: TDMA frame structure

nodes (sources), and the receiving part of the slave nodes are combined in a sink to the
left. The edge between the master node and the sink on the left hand side, represent
the broadcast from the master node to the slave nodes.

This will reduce the required bandwidth from the master; ergo it is possible to allocate
more bandwidth to the slaves. In a Bluetooth network this is done by using DH3/ DH5
or DM3/DM5 in an asynchronous mode. In this mode the nodes are allowed to use three
or five consecutive time slots as opposed to one. The receiving node requires m−d linear
independent packets to decode the message. Where m is the number of receivers and d
is the number of known messages. (In the previous described butterfly network m is 2,
and d is 1. The number of packets required is therefore 1.) The Bluetooth nodes know
only its own information. Thus d is 1, and the required number of packets is m − 1.
Having four receiving nodes, the receivers require three linear independent packets to
decode. Therefore, in this case the master is required to broadcasts three packets with
the same length as the incoming packets.

Due to the TDD scheme the master nodes have four periods available. By using a
synchronous mode, all frames are one time slot long, equally shared among all slaves and
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Figure 5.6: A piconet applying network coding illustrated as a directed graph

the master. Therefore, there will be no throughput improvement using network coding
in synchronous mode as the master is required by the TDD protocol to transmit in all
four time slots, even though the network coding only requires three.

By increasing the size of the packets a message can consist of three or five time
slots. The empty frame from the master is set to a length of one time slot, and contains
only the poll packet. It is possible to, if required, add network coding overhead (e.g.
administration such as number of nodes, mapping of nodes to BD ADDR and advertizing
a new generation) in this packet. A possible distribution of the TDD scheme could be as
shown in Figure 5.7. The master node saves transmission of 2 or 4 time slots depending
on using DH3 or DH5 accordingly.

M S M S S S

S1-S4 S2-S3 S4-S1M M M

k K+1  k+2 k+3 k+7   k+8    k+9 K+13 k+14 k+15 K+19 k+20 k+21K+4    k+5   k+6
M

K+10 k+11 k+12
M

K+16 k+17  k+18

S3-S2

Figure 5.7: TDMA frame structure in a piconet with network coding

In the given example, each unidirectional communication link requires three time
slots to transmit the date from slaves to master, and three times three time slots to
transmit from the master to the receiving slaves. In total 22 time slots including one
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poll packet. In general the required number of time slots to transmit a DH3 packet from
all source nodes are 3n+ 3(n− 1) + 1 = 6n− 2.

Theorem 1. The average throughput gain, G, using DNCBP-DH3 is G = 3n
3n−1 , where

n is number of transmitting nodes.

Proof. The aggregated throughput in a Bluetooth network is found by

throughput =
bytes transfered

time used in seconds

throughput =
bytes transfered

number of timeslots used · time per timeslot

If the throughput in two different scenarios is to be compared, and the amount of data
transferred is equal in the two scenarios. I.e. bytes transferredA = bytes transferredB.
The aggregated throughput gain is found by

gain =
bytes transferredA

number of timeslots usedA·time per timeslot

bytes transferredB
number of timeslots usedB·time per timeslot

gain =
number of timeslots usedB

number of timeslots usedA

Based on this it is possible to find the aggregated throughput gain by counting the
number of time slots used in the two scenarios to transfer a given amount of data.

The aggregated throughput gain G node using DNCBP-DH3 is:

G =
2 · 3n
6n− 2

=
3n

3n− 1

Theorem 2. The average throughput gain, G, using DNCBP-DH5 is G = 5n
5n−2 , where

n is number of transmitting nodes.

Proof. By following the same argument as in theorem 1 the number of time slots required
to transmit a DH5 packet from all source nodes are 5n + 5(n − 1) + 1 = 10n − 4. And
the number of time slots required to transfer the same amount of data is 2 · 5n. The
gain G in average capacity per node using network coding and DH5 packet is:

G =
2 · 5n

10n− 4
=

5n
5n− 2

Figure 5.8, 5.8(a), and 5.8(b) shows the gain in a piconet using network coding with
DH3 and DH5 accordingly. The result is also presented in Table 5.1.

In a piconet with 6 slave nodes transmitting data, the gain using DNCBP-DH3 is
5.9% and 7.1% using DNCBP-DH5. Thus the throughput in a Bluetooth piconet is
improved by using network coding.
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Figure 5.8: Gain by using network coding Bluetooth

Number of transmitting slave nodes
2 3 4 5 6 7

DH3 1,200 1,125 1,091 1,071 1,059 1,050
DH5 1,250 1,154 1,111 1,087 1,071 1,061

Table 5.1: The gain using deterministic network coding in a Bluetooth piconet

5.1.2 Reduced energy consumption using network coding

Previously it has been shown how the amount of data transferred from the master node
is reduced, still maintaining the same amount of information. The time a Bluetooth
device is transmitting is dependent of the amount of data. Consequently, a reduced
amount of data will reduce the time a master is transmitting. Reduced transmitting
time will reduce the energy consumption of a Bluetooth node. As shown in Figure 5.7
the slave nodes do not reduce their amount of data, and therefore will not reduce their
power consumption.

Theorem 3. The master node reduces its energy consumption by a factor of n−1
n + 126

p2·625
,

where p = 1, 3, 5 using DNCBP.

Proof. From Figure 5.5 it is easily seen that the master node transmits n packets, with
a length of three time slots (asume 3DH). Thus, the time the master transmitts in each
cycle is 3n · 1

1600 , where 1
1600 is the time of one timeslot. When using DNCBP-3DH it is

seen from Figure 5.7 that the master transmits 3(n− 1) + poll packets. The poll packet
is 126 bit long. One time slot is 625 bit long, thus the poll packet is about 1/5 of a time
slot. When operating 3DH and 5DH the poll packet is much smaller (1/15 and 1/25
of a packet accordingly), and could be neglected. The power required by the master to
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transmit the same information using DNCBP as opposed to without network coding is

p(n− 1) + 126
p·625

pn
=
n− 1
n

+
126

p2 · 625

By neglecting the poll packet, the power reduction is not a function of the packet length.
I.e. it is not dependent to which of DH3 or DH5 packet to use. However, the effect of
neglecting the poll packet increases by choosing a smaller packet size.

5.1.3 Throughput improvement in a scatternet using network coding

Is it possible to improve the throughput in a scatternet using network coding? This
section will discuss this question, based on the discussion on piconet.

Assume four bidirectional unicast in a scatternet as shown in Figure 5.9. In this
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Figure 5.9: A scatternet with four bidirectional unicast

situation the gateway node between piconet 1 and piconet 2 is a slave-slave node. As a
slave is not able to communicate directly to any other slave node, the gateway has to
forward all the traffic between the piconets through the master nodes on both piconets.
Thus, it is possible to benefit from applying network coding on the link to a slave-slave
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node. The Figure 5.9 includes also a situation of a master-slave gateway. The links
between the master-slave gateway and the M2 node transfer traffic to and from both S6
and S7. In piconet 2 the M3 is a slave, and it is possible to apply network coding on
the traffic from M2 to the slave (and M3) in the piconet. The traffic from the M3 node
to S6 and S7 yields the same argument as Chapter 5.1.1. Recall from Chapter 3.9 that
a gateway node is not able listen to both piconets at the same time. If it is possible
to make the communication from the master to the gateway node more efficient, the
throughput between the piconets is increased. However, a protocol on how the gateway
node balancing between the piconets ensuring reception of all packets necessary has to
be established.

5.2 Implementation of network coding in a Bluetooth net-
work

Based on the discussion above network coding could be implemented in a Bluetooth
network under the following conditions:

• From the master node to the slaves in a piconet

• From the master node to the slave gateway node in a scatternet

Additionally, a possible use of network coding is from one or multiple nodes in a scatter-
net broadcast or multicasting messages. As the scatternet is highly mobile, it is likely
that random coding is the preferred choice.

5.2.1 Network coding approach

As described previously there are two different approaches for network coding, namely
deterministic and random linear encoding. Deterministic linear encoding is preferred
when the network topology is known [73]. The random linear encoding is preferred when
the network topology is not known or the network is frequently changing. That is, nodes
may join or leave the network or the routing is changed over time. The latter situation
is the case in an ad hoc network. By its nature a mobile ad hoc network changes the
topology frequently. Thus, it would be inefficient using a deterministic code. A central
node would have to generate the coding coefficient every time the topology changes. In
addition, the node responsible for generation of the coefficient could be detached from
whole or major parts of the network. This encourages the use of random network coding.

Despite a Bluetooth piconet is ad hoc by nature, the proposed use of network coding
is applied on link level. The master is the central node knowing the topology in the net-
work, in this case the piconet. This encourages the use of deterministic linear encoding.
Furthermore it is possible to determine and use static coding coefficient, because the
topology is always a star with a maximum of seven slaves.

A drawback of using deterministic network coding is the lack of erroneous protection
of the data. If an error occurs, the receiver is not able to receive all packets in a gener-
ation. As a result, it is not able to decode all or some of the packets. Random network
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coding would add complexity, and require more computational power and memory the
nodes. This encourages the use of deterministic codes if possible.

However, applying network coding on broadcast traffic from one or multiple sources
in a scatternet will require random linear encoding as:

1. There is no central node holding information about the topology

2. Nodes leave and join the network

3. Routing is changed as the nodes moves

The rest of this work will focus on the piconet situation.

As slave nodes in a piconet are not able to receive traffic directly from other slave
nodes, there will be no gain using network coding on communication from the slaves
to the master as this is a unidirectional link. Furthermore, a two way communication
between the master and each of the slaves, does not give any gain using network cod-
ing due to the Bluetooth design limitation. See Figure 5.10. However, when a slave is
source and another slave is a sink, network coding will give better performance. Assum-
ing a configuration as Figure 5.3 consisting of eight unidirectional or four bidirectional
communication streams. The maximum number of bidirectional communication links
between any two slaves in a piconet is

∑n−1
i=1 i, where n is the number of slaves. If n = 7

i.e. the piconet is full, the maximum number of bidirectional communications between
any two slave is 21.
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Figure 5.10: Two ways Master-slave communication

Cycles

The piconet can not contain cycles as the proposed protocol include only network coding
on a single link.

Alphabet size

Using a binary alphabet is preferred due to a simpler implementation. A ⊕ B in the
binary field, is simple bitwise XOR.
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Theorem 4. A binary field is sufficient to perform encoding by the DNCBP protocol.

Proof. To be able to decode the received set of packets, and get the original information,
require linear independent equations. In coding theory, this is equal to a Hamming
distance of minimum 1. The master node sends n − 1 combination of packets from n
nodes. One of the packets is the packet transmitted by the nodes itself, thus one of the
packets does not add any new information to the decoder. This is equal to removing one
of the columns in the generator matrix. To ensure the possibility to decode the received
set of packets, even when part of the information is known. The distance has to be
increased by at least one. A minimum distance of 2 is therefore required, i.e. d ≥ 2.

We would like to find a [n, k, d] code, where n is code length, k is number of codeword
and d is the distance of the code. The nature of the proposed algorithm gives k = n− 1,
for all n and k. A maximum distance separable code (MDS) is defined as [36] as a code
where

d = n− k + 1

Substituting k = n− 1 in the definition, gives

d = n− k + 1 = n− (n− 1) + 1 = n− n+ 2 = 2

Vermani [68] states that the only binary MDS code is the trivial codes. These are the
[n, 1, n], [n, n− 1, 2] and [n, n, 1] codes. We are therefore looking for a [n, n− 1, 2] code,
which is a parity-check code with one parity check bit. And in the example of n = 4,
the code is a [4, 3, 2] code. Such code exists in the finite field F2, and one such code is
the parity check code, shown here by its transposed generator matrix:
1 0 0
0 1 0
0 0 1
1 1 1

The encoding is possible to realize in the binary field using a trivial MDS code - the
parity check code, and still keep full rank. Thus GF (2) is sufficient alphabet size.

Encoding

The encoding required in the proposed DNCBP protocol can be performed as listed
below. Where the left most matrix is the situation with to slave nodes communicating
bidirectional. This situation is a simple XOR of the two packets. The next matrix is
used to encode in the situation where three nodes are communicating. Obviously it is
not possible to communicate in pair with three nodes. Thus this situation requires one
of the nodes to broadcast the same message to both of the other nodes. The third matrix
is the situation where four nodes are communicating bidirectional pair wise.

m1

a 1
b 1

m1 m2

a 1 0
b 0 1
c 1 1

m1 m2 m3

a 1 0 0
b 0 1 0
c 0 0 1
d 1 1 1
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The matrix can be extended up to the general form

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
1 1 . . . 1

where the rows are the original messages, and the columns are the combined packets

Packet lengths

Based on the discussion previously the length of the packets should be either 3 or 5
time slots to increase the throughput gain. The Bluetooth asynchronous modes support
forward error correction (FEQ). If FEQ is used, the packets are called DM. The proposed
protocol DNCBP does not add any erroneous correction. If required, DM could be used.
Use of DM would decrease the efficiency, as the payload size decreases.

Choosing DH5 packets will increase the gain slightly over DH3 as shown in Figure 5.8.
However, this will give a packet size of 339 bytes. For some applications this could be
to long, and shorter messages like DH3 with a packet size of 183 is preferred. For the
following the DH5 mode of operation will be used.

When encoding data, the combined data have to be of equal length. The shorter
packets are padded with 0s to become as long as the longest packets. The padding is
proposed done by the master during the encoding and not by the slave before transmit-
ting. E.g. a slave transmitting a packet of 100 bytes, would only transmit the header
and the 100 bytes. If the slave did pad the data up to 339 bytes, the power consumption
would triple for that packet. Therefore the proposed protocol is to have the master pad
data as necessary. This is illustrated in Figure 5.11.
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Figure 5.11: Padding of packets at master node
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Security considerations

The proposed application of network coding in a Bluetooth network will enable all nodes
to read all traffic in the piconet. In a piconet without network coding a slave is only
receiving traffic destined by it self. However, there are recent presentation e.g. at the
Shmoocon 2009 [24] and interview at the Revision3 Internet Television [54], showing
that sniffing of Bluetooth network is not only reserved for expensive commercial sniffing
tools. An article by Max Moser [42] gives an overview on how to turn a Bluetooth dongle
into a sniffer.

Based on this security measures should be in place to maintain confidentiality be-
tween nodes in a piconet both when using network coding and not if confidentiality is
important. There are applications (e.g. P2P file sharing and information board) where
the information is supposed to be shared between the nodes in the network. However,
in this case integrity of the messages could be an issue.

5.3 Possible application

The proposed protocol could be used to improve performance in respect of throughput
and power reduction for a pair of nodes communicating. However, as all nodes are able
to read information destined to the other nodes it is possible to use the same protocols
in other application as well. This could be e.g. message board, and P2P file sharing.



Chapter 6

Simulations

There are several tools to simulate Mobile Ad Hoc Network, both commercial available
and as open source. Some of them are compared in a paper by Hogie and Bouvry [29].
As the paper points out the simulations of MANET addresses other problems than wired
network simulator. A popular network simulator is the NS2 [45]. NS2 is an open source
network simulator. By default NS2 does not support the Bluetooth protocol. However,
there has been developed an add on to NS2 at the University of Cincinnati called UCBT
[44]. The simulator implements the Bluetooth stack, and different routing and scatternet
formation algorithms. However, the NS2 simulator does not copy the payload between
entities, but rather describe the size and type of the payload content in the header [31].
UCBT is not supported, and works only with an older version of NS2 (version 2.29).
The benefit of adding network coding support to UCBT/NS2 is to take advantage of
the propagation model, mobility model, scatternet formation algorithms and routing
protocols included by NS2. However, these features are not critical for this project. NS2
could be used to simulate the benefits of using network coding instead of routing and/or
scatternet formation algorithms.

SlimSim [13] is a simulator for network coding. However, this implementation does
not add the MAC layer. It is not found trivial to extend SlimSim to support Bluetooth.

The proposed application of network coding in Bluetooth network is based on com-
munication in an established piconet. Thus the time to establish the piconet (i.e. the
joining procedure) will not impact the performance of the network coding. Furthermore,
the scatternet and routing feature is not of consideration in this work. A nice feature of
UCBT is the possibility to log the power consumption. However, after carefully reading
the source code the power consumption is calculated by aggregating the transmit time.
A similar approach to calculate power consumption will be done in this work as well.
Based on this, a simulator has been created to compare a piconet running the proposed
network coding against a traditional piconet. The simulator will assume an established
piconet.

47
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6.1 Description of the simulator

The simulator is written in Java. The rational for using Java as language as opposed to
e.g. C++ is the possibility to reuse the code in other similar projects. A graphical user
interface has not been developed to this simulator.

Every node (master and slave) in the network are running as a thread initiated by
the main program. The nodes share the same channel, and read/write data to and from
the channel in a TDD as in Bluetooth networks. The master node is responsible of
manage the TDD scheme. At the initial phase of simulator each slave node instantiates
a transmit buffer, and fills it with data. When all nodes have transmitted their data
and the master node is done transmitting the encoded data, the simulator terminates.
Figure 6.1 give an overview of the simulator. The work flow of the master is shown in

......

Main

Node 0
Master

Node 1
Slave

Node 2
Slave

Node n
Slave

Thread

Th
re

ad Thread

Thread

Channel

Figure 6.1: Overview of the simulator

Figure 6.2. The master node will initiate the TDD scheme by polling the first node.
After receiving reply from the slave, the master will add the packet to the encoder. At
the same time as the master poll the next node in TDD scheme, it will transmit the next
encoded packet. The encoder buffers the packet from the n slaves, and whenever all n
packets are received. The encoder produces n-1 packets. One cycle of the TDD scheme
is called a generation. Note there will be a delay of one generation between the slave
nodes sending packets, and the master node sending the encoded packets. No packets
are transmitted by the master during the first generation.

The slaves, on the other hand, have a work flow as shown in Figure 6.3. The slave
continuously receives packets from the master until it is polled. The decoder is updated
with new packets as they are received. When the slave node is polled, the slave sends
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Listen

Send/
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Encoder

Receive new packet
From slave

Transmit one packet,
if encoded and ready

Counter
Update
counter

Figure 6.2: The work flow of the master node

one packet from the transmit buffer. At the same time a slave transmits its packet; the
slave updates the decoder with its own packet.

The nodes, channel, and routing table are defined in the main part of the program.
A reference to the channel and routing is passed to the node when instantiated. During
the instantiation, the node creates encoder, decoder, txBuffer and RxBuffer objects.
Only the master node creates the encoder object, and only the slave nodes create the
decoder objects. Figure 6.4 shows the dependencies of the objects. The dotted line is
the reference to the object created by the main method and passed to the node object
as a part of the instantiation.

6.1.1 Encoding and decoding

The coding coefficient proposed in section 5.2.1 is used in the simulator. The implemen-
tation of the encoding and decoding give the possibility to change the number of nodes
without modifying the code with a new encoding or decoding matrix. In fact the encoder
and decoder scale automatically to the number of nodes. However, it should be noted
that the simulator does not support adding or removing nodes during run time. Once
the configuration is done, the network configuration is fixed throughout the simulation.
The pseudocode for the encoder:

* n = number of transmitting nodes
* p = packet length
* buffer is a n x p array containing the n received packets
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Figure 6.3: The work flow of the slave nodes
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Figure 6.4: Object oriented view of the simulator
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* (Assumes vector[0] is the first array element, as in java)
*
for(i=0; i < n-1; i++){

encoded[i]=buffer[i] xor buffer[n-1] //XOR the i’th and the last packet
}

As the pseudocode shows, the encoding is very simple and does not require much com-
putational power. Simple XOR of packets is supported by the majority of programming
languages including machine code. This is a major advantage of the proposed code; it
runs easily on challenged nodes. As the nodes in MANET and WSN may be challenged
regarding computational power and battery lifetime.

The pseudocode for the corresponding decoder:

* n = number of transmitting nodes
* p = packet length
* id=own node id number
* buffer is a n x p array containing the n received packets
* decoded is a n x p array containing the n decoded packets
* (Assumes vector[0] is the first element, as in java)

copy own packet to position id in decoded array
if(not last node)
decoded[n]=decoded[id] XOR buffer[id]

for(i=n-1; i>0; i--){
decoded[i]=decoded[n] XOR buffer[i]

}

Also the decoding of the packets does not require much computational power, as shown in
the pseudocode. However, this is at cost of error correcting feature provided by random
linear coding.

6.1.2 Simulator implementation issues

Designing a simulator raises several issues not seen in real implementation. These have
to be solved in a matter such that the simulation is as close up to the real world as
possible, while overcoming the problems. The simulator made to prove the work of
this report is designed to isolate the problem discussed. There is therefore some design
choices made to not deal with real time problems.

The simulator is using threads to create the different nodes. This makes the nodes
running independently of each other. Still they are reading and writing to the same
channel. Having several objects running as thread and accessing the same channel object
is a challenge. Java has a built in synchronization feature, preventing different objects
accessing the same time. The synchronization method uses a queue to give access to
the object, and let the objects access the same object by turn. However, every node
listening to the channel for a new packet is accesing the channel in a loop until a new
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packet arrives. To reduce the stress on the synchronization, the node is delayed for a
while if there is not a new packet. This improved the run time of the simulator a lot.

The simulator is not running in real time. Instead the time slots are counted to
calculate the time. A time slot counter keeps track of the current time slot.

The network coding does not add any error correcting feature, and of such the piconet
applying network coding is assumed to have equal behavior regarding lost packets as a
Bluetooth piconet not applying network coding. A noiseless channel is therefore assumed,
and the simulator does not perform any bit error check nor count the number of bit errors.

To prove possibilities of using network coding in piconet the Bluetooth specific header
information such as synchronization and packet type is not of interest to this work. In
the simulator the header is not implemented completely. Only header information of
interest to this work is available. However, the full header length is used when calculating
throughput and power consumption.

The simulator is using int to store a byte. In Java an int is 32 bit signed data type.
Thus the simulator is consuming more memory than what would be required using a
language supporting byte.

Time slot counter

During the transmission the given time slot of all activity is printed. The duration of
each Bluetooth time slot is 625µS (se Chapter 3). It is therefore possible to calculate
the time to run a simulation by multiplying the number of time slots required for all
nodes to transmit all data in the buffer by 625µS.

Estimated achievable throughput

Based on the time required to exchange all the data in the buffers, it is possible to
estimate the average throughput per node. This is done by summarize the amount of
data in the buffers, and divide it by number of time slots used. This number is estimated
for the three different packet sizes with and without network coding using the formula

Average throughput =
n · (tb · 8)
ts · 1

1600

where n is the number of transmitting nodes, tb is the transmit buffer in bytes, and ts
is the number of timeslot required.

Each packet transmitted between two slave nodes is transmitted twice; First from the
source slave to the master, and then from the master to the sink slave. The aggregated
throughput of the network is therefore found by multiplying the average throughput by
2.

Counting transmitted bits

Every time a node (master and slaves) transmits, it updates the counter with the number
of bits transmitted. This is done by multiplying number of bytes by 8, and adding the
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overhead (126 bits per transmission). The empty poll and reply packets from the master
and slave nodes accordingly, are added as a single 126 bit transmission.

Estimating power consumption

Based on the number of bits transmitted, the power consumption is estimated. The
estimation assumes power class 2 Bluetooth devices, with a maximum transmitting power
off 2.5mW. The [22] specifies the power level at the antenna connector. The efficiency of
the implemented transmitter will affect the true power consumption. This is dependent
on the transmitter of the Bluetooth device, and is of such not possible to take into
account. The efficiency of the transmitter is equal for both with and without network
coding, and is linear. The error of the estimated power is equal for both cases, and is
therefore not considered in the estimation.

Given a basic data rate (BDR) mode, the gross data rate at the air is 1Mps [22]. The
gross data rate includes both header and payload. The power consumption per bit is

2.5 · 10−3W
1 · 106bps

= 2.5 · 10−9 = 2.5pW/bit

The total number of bits transmitted is multiplied by 2.5pW, and the result is pre-
sented by the end of the simulation.

6.2 Results

Three different network scenarios have been simulated, two slave nodes and a master
node, four slave nodes and a master node, and six slave nodes and a master node. The
networks have been simulated with and without network coding using DH1, DH3, and
DH5 mode. All simulations have been run with 10, 100 and 62037 byte transmit buffers
at each slave node. The two smaller buffer sizes is to identify effects when there are
not much data, less than a frame size and padding occurs. The biggest transmit buffer
is a size in which there are no padding necessary for DH1, DH3 or DH5 frames. The
size of the larger buffer is modest, and the effect of overhead and empty poll packets in
the beginning of the simulations is minimized. Finally, a buffer size of {27, 183, 339}
is initiated, when using DH1, DH3, and DH5 accordingly to find the break point where
padding does not affect the results. If the size of the transmit buffer results in a bad
utilized timeslot (i.e. not fully loaded), the calculated throughput will be reduced. To
avoid of this effect, the size of the transmit buffer is carefully chosen. Finally, selected
simulation using DM packets have been performed to compare throughput between the
two modes of operations (DM and DH). The findings are represented in this section.
Appendix A list all relevant results collected during simulation.

6.2.1 Achievable

The proposed protocol for deploying network coding in a piconet is achievable. It is only
proven in a simulator, and should be tested in a real world testing as well. However,
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this work proves possibility of adopting the proposed protocol in a Bluetooth network.
Furthermore, the implementation in a simulator also verifies the possibility of using non-
complex code to apply deterministic network coding. This major finding is particular of
interest to challenged nodes.

6.2.2 Throughput

For each simulation scenarios, the average throughput is calculated using the formula
presented previously in this chapter. The throughput gain is calculated as

gain =
throughput with network coding

throughput without network coding

The average throughputs numbers used to calculate the gain are from the simulations
with the largest transmit buffer (62.037 bytes). The result is presented in Fgure 6.5.
As shown in the figure, the best result is achieved in a small network (few transmitting
nodes) with large packets (DH5 or DM5 packets). However, there are about 6 and 7%
gain using DH3/DM3 and DH5/DM5 packets accordingly, in a network of six transmit-
ting nodes. This is according to the theory presented in Chapter 5
Using DH1/DM1 packets will not affect the throughput in a Bluetooth network at all.
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Figure 6.5: Throughput gain using network coding - master node

The throughput is only achieved on the link from the master node to the slaves.
Network coding does not affect the throughput on the link from the slave nodes to the
master.
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6.2.3 Power consumption

The power consumption is calculated, using the method described earlier in this chapter,
for all simulation scenarios. The power requirement reduction is calculated as

power requirement reduction =
power requirement with network coding

power requirement without network coding

There are no differences in power consumption between slave nodes applying network
coding and those who do not apply network coding. The reduction in power consumption
is only considered for master nodes in the following.

Figure 6.6 shows the master node’s power requirement reduction using network cod-
ing. As shown in the figure, the most reduction is achieved in a small network (two trans-
mitting nodes) and large packet size (DH5 or DM5 packets). As opposed to throughput
benefits, there is a reduction in power requirement using network coding also for small
packets (DH1/DM1). Even in a network with six nodes using DH1/DM1 packet, the re-
duction is 0.89 for the master node. I.e. the power requirement is 89% of the requirement
without using network coding. Or the power requirement is 12% higher when network
coding is not applied. However, when the packet transmitted is smaller than the frame
size, there is an increase in power requirement using network coding. Increased power
consumption for packet smaller than the frame size is a consequence of the padding of
the data.
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Figure 6.6: Power requirement reduction using network coding
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6.2.4 DM versus DH packets

The DM packets offer a protection against noise by applying FEC. This is done at the
cost of smaller packets, and therefore reduced bandwith in the network. Table 6.1 shows
the average throughput per node in the different configurations for a piconet with 6 slave
nodes communicating bi-directional and symmetrical. As Figure 6.5 shows, the gain in
throughput is equal for DM and DH packets using network coding.

DH1 DM1 DH3 DM3 DH5 DM5
DNCBP 28786 18128 68840 45519 77478 50984
Non-DNCBP 28786 18128 65019 42992 72313 47588

Table 6.1: Average throughput per node in a piconet with 6 slave nodes
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Conclusions

This thesis is discussing a possible application of network coding in Bluetooth network.
Due to the time division duplex (TDD) used in Bluetooth network there are several con-
strains to take into account, compared to other wireless network protocols like wireless
LAN (WLAN). One of them is that the slave node is not able to communicate directly
with other slave nodes, but rather is required to communicate through a master node.

A protocol for applying network coding in Bluetooth piconet has been proposed.
The proposed protocol is using deterministic network coding to combine packets from
the slaves at the master node. The master node forwards the combined packets to all
slaves. It is required to transmit n− 1 packets, where n is the number of source nodes.
An encoding equation using a MDS code in the binary field is proposed. Encoding in
the binary field makes the operation computationally easy. Furthermore, the proposed
equation scales easily to the maximum number of nodes in a piconet. The encoding and
decoding is performed using simple bitwise XOR of the packets, without need to store
neither encoding matrices, nor look-up tables. This is an advantage particular for nodes
with limited computational power and memory.

The proposed protocol does not give any benefits to the slave nodes, and the com-
munication link between the slave nodes and the master node. It does only affect the
power consumption of the master node, and the communication link from the master
node to the slave nodes. Furthermore, the proposed protocol does not give any secu-
rity benefits in respect to a Bluetooth network not applying network coding. As in
Bluetooth network without network coding, countermeasures to ensure confidentiality
should be applied if confidentiality is an issue. The Bluetooth network applying the pro-
posed network coding protocol does not benefit from any noise protection of the data.
The proposed network coding does not add any redundancy to the data, and a packet
loss due e.g. interference causes the receiver to not be able to decode the original message.

A theoretical study proves a gain in throughput in a Bluetooth network (using DH3)
equal to G = 3n

3n−1 , where n is the number of source nodes in the piconet. As a master in

57



58 CHAPTER 7. CONCLUSIONS

a Bluetooth piconet applying network coding does transmits for a short time, compared
to a Bluetooth network without network coding. The power consumption of the master
node is reduced. Because the slave does not benefit from using network coding, the
theoretical study emphasis the behavior and benefits for the master node.

A simulator has been created to study the behavior of a Bluetooth piconet, both
when using network coding and in ”‘normal”’ operation. The simulation has been per-
formed using different modes of operation (DH1, DM1, DH3, DM3, DH5, and DM5),
different number of source nodes, and with different sizes of the transmit buffer.

The simulation has proven the possibility to improve performance of a Bluetooth
piconet using network coding. There is an improvement in the throughput and power
consumption of the master node. The slave nodes will transmit the same amount of
data, and require the same amount of power. However, packing the data on the air
increases the available bandwidth. This increase is shared between the nodes (master
and slaves) in the piconet. As such, the slave nodes will benefit from the effects on the
master nodes using network coding.

7.1 Future work

The proposed protocol has not been tested in a real implementation. There are some
challenges regarding how a slave node reads all packets from the master node. Depending
on the Bluetooth controller, this could be approached differently. However, an alterna-
tive approach using active slave broadcast should be investigated. The framework of the
simulator should be extended to study the impact of a noisy channel. Is it a possibility
to utilize the throughput gain to improve the networks resilience against packet losses?
E.g. using DH5 packets and network coding which is robust against packet losses, as op-
posed to DM5. This could potentially improve the throughput more than the proposed
DNCBP protocol.

A possible use of network coding on multicast traffic in a scatternet is also proposed
(but not in detail) in this thesis. A theoretical study on how this can be done, and a
simulation to verify the protocol is of interest. As opposed to use deterministic network
coding, it is most likely necessary to use random network coding because of the possibility
to maintain knowledge of the entire network could be difficult, unless it is possible to
find a distributed algorithm, which assigns the encoding coefficient e.g. at the piconet
level. A possible implementation in a network is to use the FRANC [15] implementation
on devices with a built in Bluetooth device e.g. a Lego mindstorm robot. A scatternet
formation algorithm is required. However, due to limitation in the Bluetooth protocol
and the implementation of Bluetooth in the Lego mindstorm robot, the OBP [34] is an
interesting protocol to use in this application.
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Appendix A

Results

This appendix list simulation results.

Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 538 332 1345 830 5 25600
27 810 468 2025 1170 5 69120

100 2734 1430 6835 3575 17 75294
62037 1571814 785970 3929535 1964925 9193 86378

Table A.1: Results DH1 and 2 transmitting slaves without network coding

Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 594 332 1485 830 5 25600
27 594 468 1485 1170 5 69120

100 1998 1430 4995 3575 17 75294
62037 1075158 785970 2687895 1964925 9193 86378

Table A.2: Results DH1 and 2 transmitting slaves with network coding
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Transmit Throughput Power
buffer gain reduction

10 1 1,1
27 1 0,73

100 1 0,73
62037 1 0,68

Table A.3: Gain using network coding, DH1 and 2 transmitting slaves

Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 664 332 1660 830 13 9846
100 1978 1052 4945 2630 13 98462
183 3306 1716 8265 4290 13 180185

62037 1078146 539136 2695365 1347840 4069 195152

Table A.4: Results DH3 and 2 transmitting slaves without network coding

Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 1842 332 4605 830 11 11636
100 1842 1052 4605 2630 11 116364
183 1842 1716 4605 4290 11 212945

62037 581850 539136 1454625 1347840 3391 234171

Table A.5: Results DH3 and 2 transmitting slaves with network coding

Transmit Throughput Power
buffer gain reduction

10 1,18 2,77
100 1,18 0,93
183 1,18 0,56

62037 1,2 0,54

Table A.6: Gain using network coding, DH3 and 2 transmitting slaves
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Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 1 978 458 4 945 1 145 21 6095
100 1 978 1 052 4 945 2 630 21 60952
339 5 802 2 964 14 505 7 410 21 206629

62 037 1 038 834 519 480 2 597 085 1 298 700 3 661 216901

Table A.7: Results DH5 and 2 transmitting slaves without network coding

Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 3 090 332 7 725 830 17 7529
100 3 090 1 052 7 725 2 630 17 75294
339 3 090 2 964 7 725 7 410 17 255247

62 037 542 538 519 480 1 356 345 1 298 700 2 929 271107

Table A.8: Results DH5 and 2 transmitting slaves with network coding

Transmit Throughput Power
buffer gain reduction

10 1,24 1,56
100 1,24 1,56
339 1,24 0,53

62 037 1,25 0,52

Table A.9: Gain using network coding, DH5 and 2 transmitting slaves

Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 1 202 332 3 005 830 45 2844
100 4 082 1 052 10 205 2 630 45 28444
339 11 730 2 964 29 325 7 410 45 96427

62 037 2 077 794 519 480 5 194 485 1 298 700 7 325 108406

Table A.10: Results DH5 and 4 transmitting slaves without network coding
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Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 9 018 332 22 545 830 41 3122
100 9 018 1 052 2 2545 2 630 41 31220
339 9 018 2 964 2 2545 7 410 41 105834

62 037 1 581 498 519 480 3 953 745 1 298 700 6 593 120442

Table A.11: Results DH5 and 4 transmitting slaves with network coding

Transmit Throughput Power
buffer gain reduction

10 1,24 1,56
100 1,24 1,56
339 1,24 0,53

62 037 1,25 0,52

Table A.12: Gain using network coding, DH5 and 4 transmitting slaves

Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 1 866 332 4 665 830 69 1855
100 6 186 1 052 15 465 2 630 69 18551
339 17 658 2 964 44 145 7 410 69 62887

62 037 3 116 754 519 480 7 791 885 1 298 700 10 989 72261
558 333 28 045 746 4 674 312 70 114 365 11 685 780 98 829 72313

1 000 000 50 230 830 8 371 826 125 577 075 20 929 565 177 009 72313

Table A.13: Results DH5 and 6 transmitting slaves without network coding

Transmit Transmitted bits Power consumption Number of Average
buffer Master Slave Master Slave timeslots Throughput

10 14 946 332 37 365 830 65 1969
100 14 946 1 052 37 365 2 630 65 19692
339 14 946 2 964 37 365 7 410 65 66757

62 037 2 620 458 519 480 6 551 145 1 298 700 10 257 77418
558 333 23 579 082 4 674 312 58 947 705 11 685 780 92 241 77478

1 000 000 42 232 830 8 371 826 105 582 075 20 929 565 165 209 77478

Table A.14: Results DH5 and 6 transmitting slaves with network coding
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Transmit Throughput Power
buffer gain reduction

10 1,06 8,01
100 1,06 2,42
339 1,06 0,85

62 037 1,07 0,84
558 333 1,07 0,84

1 000 000 1,07 0,84

Table A.15: Gain using network coding, DH5 and 6 transmitting slaves
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main.java

package ncbts imulator ;

/∗∗
∗ This package i s used to s imulate a Bluetooth p i conet .
∗ I t s imulate a r e f e r e n c e p i cone t with a master node and up to

seven s l a v e
∗ nodes .
∗ The s l a v e nodes communicate bi−d i r e c t i o n a l pa i rw i s e . Tha

master node only
∗ route t r a f f i c between the s l a v e nodes .
∗
∗ @author Roger S t e n v o l l
∗/

pub l i c c l a s s Main {

pub l i c boolean NC=f a l s e ;

/∗∗
∗ The main method i s used to s e t up the s imu la t i on
∗ Defau l t values , n=2, network coding = true , DH5,

b u f f S i z e=
∗ @param args n { true , f a l s e } {DH1, DH3, DH5, DM1, DM3.

DM5} b u f f S i z e
∗
∗/

pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {
i n t n=3;
boolean nc=f a l s e ;
i n t packetS i z e =339;
i n t b u f f S i z e =62389;
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i f ( args . l ength==0){
System . out . p r i n t l n (” Usage : ncbts imulator n nc

packetType b u f f e r S i z e ”) ;
System . out . p r i n t l n (” Example : ncbts iumal tor 3 t rue

DH3 1000”) ;
System . out . p r i n t l n (” Defau l t va lue s : ” ) ;
System . out . p r i n t l n (”n=2”) ;
System . out . p r i n t l n (” nc=true ”) ;
System . out . p r i n t l n (” packetType=DH5”) ;
System . out . p r i n t l n (” b u f f e r S i z e =62389”) ;

}

i f ( a rgs . length>=1){
n=I n t e g e r . pa r s e In t ( args [ 0 ] ) ;
System . out . p r i n t (”\ tNumber o f nodes ” + n) ;

}
i f ( a rgs . length>=2){

i f ( a rgs [ 1 ] . compareToIgnoreCase (” t rue ”)==0){
nc=true ;

}
e l s e {

nc=f a l s e ;
}
System . out . p r i n t (”\ tNetwork coding ” + nc ) ;

}
i f ( a rgs . l ength >= 3) {

i f ( a rgs [ 2 ] . compareToIgnoreCase (”DH1”)==0){
packetS i z e =27;

}
e l s e i f ( args [ 2 ] . compareToIgnoreCase (”DH3”)==0){

packetS i z e =183;
}
e l s e i f ( args [ 2 ] . compareToIgnoreCase (”DH5”)==0){

packetS i z e =339;
}
e l s e i f ( args [ 2 ] . compareToIgnoreCase (”DM1”)==0){

packetS i z e =17;
}
e l s e i f ( args [ 2 ] . compareToIgnoreCase (”DM3”)==0){

packetS i z e =121;
}
e l s e i f ( args [ 2 ] . compareToIgnoreCase (”DM5”)==0){
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packetS i z e =224;
}
e l s e {

packetS i z e =339;
}
System . out . p r i n t (”\ tPacket S i z e ” + packetS i z e ) ;

}
i f ( a rgs . length>=4){

b u f f S i z e=I n t e g e r . pa r s e In t ( args [ 3 ] ) ;
System . out . p r i n t (”\ tBu f f e r S i z e ” + b u f f S i z e ) ;

}

Thread [ ] nodes = new Thread [ n ] ;

// Create channel
channel ch = new channel ( ) ;
counter count = new counter (n) ;

// Create the route r ob j e c t
rout ing route = new rout ing (n) ;

// Es tab l i sh nodes as threads
f o r ( i n t i =0; i<n ; i++){

nodes [ i ]= new Thread (new node ( i , n , nc , packetS ize ,
bu f fS i z e , ch , route , count ) ) ;

}

// Se t t i ng up the rout ing
//When us ing network coding the rout ing d e s c r i b e which

s l a v e nodes communicat in pa i r .
f o r ( i n t i =1; i<n ; i++){

route . addRoute ( i , n−i ) ;
}

// I n i t i a t e s imu la t i on s
f o r ( i n t i=n−1; i>−1; i−−){

nodes [ i ] . s t a r t ( ) ;
}
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}
}
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node.java

package ncbts imulator ;

/∗∗
∗ Publ ic c l a s s node
∗ A s imu la t i on o f a Bluetooth node . Depending upon the

cons t ruc t i on , the node
∗ become s l a v e or master node .
∗
∗ @author Roger S t e n v o l l
∗/

pub l i c c l a s s node implements Runnable{
boolean run=true ;
boolean stop=f a l s e ;
boolean MASTER;
boolean NC;
boolean DEBUG=f a l s e ; // i f true , g ive more debugging

in fo rmat ion
i n t MAXTS = 200000;
i n t tsRec =0;
i n t id ;
i n t frameLength ; //Change the s i z e o f the payload
i n t t s ; // Timeslot #
i n t s l a v e s ; //Number o f s l a v e nodes in the network
i n t lastNode ;
i n t buf fLength ;
i n t [ ] [ ] rxBuf ;
i n t [ ] msg ;
i n t currentGen ;
i n t genPol led ;
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i n t [ ] doneMx ;
txBuf f e r tx ;
rxBuf f e r rx ;
channel ch ;
rout ing route ;
encoder enc ;
decoder dec ;
counter cnt ;

/∗∗
∗ Constructor f o r a node . The master nodeID have to be 0 .
∗ The rout ing r t paramater i s a rout ing object , conta in ing

the rout ing
∗ i n fo rmat ion . I . e . how the master node should route

t r a f f i c between the
∗ s l a v e s . I t i s a l s o used by the s l a v e s to determin which

pa i r o f s l a v e s
∗ communicat .
∗ @param nodeId The node id
∗ @param nodes Number o f nodes in the network
∗ @param nc Running network coding i f t rue
∗ @param packetS i z e The s i z e o f each packet
∗ @param b u f f S i z e The l enght o f the t ransmi t t b u f f e r
∗ @param ch the channel ob j e c t to read / wr i t e data
∗ @param r t the route r ob j e c t to get rout ing in fo rmat ion
∗ @param count the counter ob j e c t to s t o r e the b i t s

t ransmit ted
∗/

pub l i c node ( i n t nodeId , i n t nodes , boolean nc , i n t
packetS ize ,

i n t bu f fS i z e , channel ch , rout ing rt , counter
count ) {

t h i s . id=nodeId ;
t h i s . s l a v e s=nodes−1;
t h i s .NC=nc ;
t h i s . frameLength=packetS i z e ;
t h i s . buf fLength=b u f f S i z e ;
t h i s . ch=ch ;
t h i s . t s =0;
t h i s . route=r t ;
t h i s . cnt=count ;
rx= new rxBuf f e r ( t h i s . buf fLength ) ;
doneMx = new i n t [ nodes ] ;
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f o r ( i n t i =0; i < doneMx . l ength ; i++){
doneMx [ i ]=1;

}
i f ( nodeId==0){

t h i s .MASTER=true ;
rxBuf = new i n t [ s l a v e s +1] [ t h i s . frameLength ] ;
enc = new encoder ( t h i s . s l ave s , t h i s . frameLength ) ;

}
e l s e {

t h i s .MASTER=f a l s e ;
tx= new txBuf f e r ( t h i s . buf fLength ) ;
tx . i n i t i a t e B u f f e r ( t h i s . id ) ;
dec = new decoder ( t h i s . id , t h i s . s l ave s , t h i s .

frameLength ) ;
}

}

/∗∗
∗ This method i s used to wr i t e data to the channel .
∗ Before c a l l i n g t h i s method the msg array i s assumed to

be i n i t i a l i z e d
∗ with proper header and payload .
∗/

p r i v a t e void send ( ) {

ch . wr i t e (msg) ;
t h i s . cnt . add ( t h i s . id , msg [ 4 ] ) ;
i f ( t h i s .DEBUG) {

System . out . p r i n t l n (”Tx t s ”+ msg [0 ]+ ” , Node ” +
msg [ 1 ] +” transmit ” +

msg [ 4 ] + ” bytes to ” + msg [ 2 ] + ” p o l l gen ” +
msg [ 3 ] ) ;

}

}
/∗∗
∗ A method to r e c e i v e data from the channe l s . The r e c e i v e

method w r i t e s
∗ data to the msg [ ] array .
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∗ The method w r i t e s data to a two dimens iona l array i f the
node i s the

∗ master .
∗/

p r i v a t e void r e c e i v e ( ) {
/∗ i f ( !MASTER)

System . out . p r i n t l n ( t h i s . t s + t h i s . tsRec ) ; // used
during debug∗/

whi l e ( ( t h i s . ts>=t h i s . tsRec ) ) {
msg = ch . read ( ) ; //Read from the channel
i f (msg[0]==−1){

t h i s . run=f a l s e ;
i f ( t h i s .DEBUG) {

System . out . p r i n t l n (”Node ” + t h i s . id + ”
breaks ”) ;

}
break ;

}
t ry
{
Thread . s l e e p (1 ) ; // Otherwise a l l threads t ry to

a c c e s s the same
// channel con t inous l y caus ing

run time problem
}
catch ( Exception e ) {

System . out . p r i n t (” Exception caught : ”) ;
System . out . p r i n t l n ( e ) ;

}
tsRec=msg [ 0 ] ; //Update r e c e i v e d t i m e s l o t to the

cur rent r e c e i v e d .
}

//The s l a v e nodes copy the r e c e i v e d frame in to t h e i r
b u f f e r .

i f ( ( ( msg[2]== id ) | | (NC&&msg[1]==0) )&&!MASTER) {
i n t [ ] tmp=new i n t [ msg [ 4 ] ] ;
f o r ( i n t i =0; i<tmp . l ength ; i++){

tmp [ i ]=msg [ i +5] ;
}

t h i s . genPol led=msg [ 3 ] ;
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i f (NC&&(msg [4 ]>0) ) { // running s imula tor with
network coding

dec . addPacket (tmp , ( t h i s . genPol led −1) ) ;
}
e l s e { // Simulator whitout network

coding
rx . writeNext (tmp) ;
i f ( t h i s .DEBUG) {

System . out . p r i n t l n (”Rx t s ” + msg [ 0 ] +”, Node ”
+ id +

” r e c e i v e from node : ” + msg [ 1 ] + ” to
node : ”+ msg [ 2 ] ) ;

}
//System . out . p r i n t l n (” s l a v e r e c e i v e node ”+ id ) ;
}

}
//But the master node should keep an two−dimens iona l

array
//
i f ( ( msg[2]==0) && MASTER&&(msg [4 ]>0) ) {

// i n t [ ] tmp=new i n t [ msg . l ength − 5 ] ; TODO remove
l i n e

i f ( t h i s .DEBUG) {
System . out . p r i n t l n (”Rx t s ” + msg [ 0 ] +”, Node ”

+ id +
” r e c e i v e from node : ” + msg [ 1 ] + ” to node

: ”+ msg [ 2 ] ) ;
}

i f ( !NC) {
f o r ( i n t i =0; i<msg [ 4 ] ; i++){

rxBuf [ ( msg [ 1 ] ) ] [ i ]=msg [ i +5] ;
}
rxBuf [ 0 ] [ msg [ 1 ] ] = msg [ 4 ] ;

}
e l s e {
i n t [ ] pkt=new i n t [ msg [ 4 ] ] ;
System . arraycopy (msg , 5 , pkt , 0 , pkt . l ength ) ;
enc . addPacket ( pkt , msg [ 1 ] , msg [ 3 ] ) ;
}

}
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i f (msg[2]==0 && MASTER && (msg[4]==0) ) {
doneMx [ msg [ 1 ] ] = 0 ;
i f ( isAllEmpty (doneMx) ) {

t h i s . stop=true ;
}

}
t s=tsRec ; // Set the cur rent t i m e s l o t counter to the

r e c e i v e d time s l o t
// counter . Such that the r e c e i v e r i s ready

}
/∗∗
∗Method to i n i t i a t e the s imu la t i on s .
∗
∗/

pub l i c void run ( ) {
i f (MASTER) {

lastNode=s l a v e s ; // I n i t i a t e the counter o f the l a s t
p o l l e d node

currentGen=−1; // I n i t i a t e the counter f o r the
gene ra t i on

whi l e ( ( ts<MAXTS)&& run ) {
i f ( t s !=0){ // Skip i n i t i a l t i m e s l o t

t s=inc rea seTs (msg [ 4 ] ) ; // Ca l cu la te next t s
based on prev iuos message l ength

}
e l s e {

t s++;
}
msg=new i n t [5+ t h i s . frameLength ] ;
msg [0 ]= t s ;
msg [1 ]= id ;
msg [2 ]= nextNode ( ) ;
i f (msg[2]==1){

currentGen++;
}
i n t s r c=route . ge tSrc (msg [ 2 ] ) ;
msg [3 ]= currentGen ;
msg [4 ]= t h i s . rxBuf [ 0 ] . l ength ;
// i n t [ ] payload= new i n t [ msg [ 4 ] ] ;
// payload = tx . getNext ( frameLength ) ;
i f ( ! t h i s .NC) {
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msg [4 ]= t h i s . rxBuf [ 0 ] [ s r c ] ;
f o r ( i n t i =0; i<msg [ 4 ] ; i++){

msg [ i +5]= t h i s . rxBuf [ s r c ] [ i ] ;
}
i f (msg[4]==0 && t h i s . stop ) {

msg[0]=−1;
t h i s . run=f a l s e ;

}
}
e l s e {

i n t [ ] temp= n u l l ;
t ry {
temp = enc . getNext ( currentGen−1) ;
}
catch ( Exception e ) { // F i r s t gen

t h i s f a i l s !
// System . out . p r i n t l n (” Exception ” + e ) ;

}
i f ( temp==n u l l ) {

msg [ 4 ] = 0 ;
i f ( t h i s . stop ) {

msg[0]=−1;
t h i s . run=f a l s e ;

}
}

e l s e {
System . arraycopy ( temp , 0 , msg , 5 , temp .

l ength ) ;
msg [4 ]= temp . l ength ;

}
}
t h i s . rxBuf [ 0 ] [ s r c ]=0; // r e s e t the b u f f e r 6
send ( ) ;

t ry
{
Thread . s l e e p (5 ) ; // Otherwise a l l threads t ry to

a c c e s s the same
// channel con t inous l y caus ing

run time problem
}
catch ( Exception e ) {
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System . out . p r i n t (” Exception caught : ”) ;
System . out . p r i n t l n ( e ) ;

}

r e c e i v e ( ) ;
}

t ry
{
Thread . s l e e p (500) ; //Make sure a l l threads are

done

}
catch ( Exception e ) {

System . out . p r i n t (” Exception caught : ”) ;
System . out . p r i n t l n ( e ) ;

}

System . out . p r i n t l n (”Number o f t i m e s l o t s : ” + t h i s .
t s ) ;

f o r ( i n t i =0; i <= t h i s . s l a v e s ; i++){
System . out . p r i n t l n (”The node ” + i + ” has

t ransmit ted ” +
cnt . p r i n t B i t s ( i ) + ” b i t s . Using ” +
t h i s . cnt . printPower ( i ) + ” pW”) ;

}

}
e l s e {

runSlave ( ) ;
}

}
/∗∗
∗ Method to run the s imu la t i on by s l a v e node . The run ( )

method c a l l s t h i s
∗ i f the node i s a s l a v e .
∗/

p r i v a t e void runSlave ( ) {
//System . out . p r i n t l n ( t s + ” ” + id ) ; //Used during debug

whi l e ( ( ts<MAXTS)&& run ) {
r e c e i v e ( ) ;
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i f (msg[0]>= t s && msg[2]== id ) {
i n t r e c e i p e n t=msg [ 1 ] ; // This should a l lways be

the master node !
t s=inc rea seTs (msg [ 4 ] ) ; // Ca l cu la te next t s

based on prev iuos message l ength
msg [0 ]= t s ;
msg [1 ]= id ;
msg [2 ]= r e c e i p e n t ;
msg [3 ]= t h i s . genPol led ;

i f ( tx . isEmpty ( ) ) {
msg [ 4 ] = 0 ;

}
e l s e {

i f ( tx . i s L e f t ( )<t h i s . frameLength ) {
msg [4 ]= tx . i s L e f t ( ) ;

}
e l s e {

msg [4 ]= t h i s . frameLength ;
}
i n t [ ] payload= tx . getNext (msg [ 4 ] ) ;
f o r ( i n t i =0; i<msg [ 4 ] ; i++){

msg [ i +5]=payload [ i ] ;
}
i f ( t h i s .NC) {

dec . addOwnPacket ( payload , t h i s .
genPol led ) ;

}
}
send ( ) ;

}

}
i f ( t h i s .NC&&t h i s .DEBUG) {

dec . pr intRece ived ( t h i s . id ) ; // p r i n t s out the
r e c e i v e d message

}
}
/∗∗
∗ The master node c a l l t h i s method to get the id o f the

next node to be
∗ p o l l e d .
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∗ @return next node to be p o l l e d
∗/
p r i v a t e i n t nextNode ( ) {

i n t next=lastNode%s l a v e s +1;
lastNode=next ;
r e turn next ;

}
/∗∗
∗ I n c r e s e the number o f t i m e s l o t s used based on the

payload s i z e .
∗ Take in to account both DH and DM packets .
∗ @param prevMsg Messages s i z e o f the prev ious r e c e i v e d

message
∗ @return The next t i m e s l o t to be used
∗/

p r i v a t e i n t inc r ea seTs ( i n t prevMsg ) {
i n t tmp ;
i f ( t h i s . frameLength > 200) {

tmp=5;
}
e l s e i f ( t h i s . frameLength > 50) {

tmp =3;
}
e l s e {

tmp=1;
}

i f ( prevMsg > 0) {
re turn t h i s . t s +tmp ;

}
e l s e {

re turn ( t h i s . t s +1) ;
}

}

p r i v a t e boolean isAllEmpty ( i n t [ ] mx) {
i n t tmp=0;
f o r ( i n t i =1; i<mx. l ength ; i++){

tmp = tmp + mx[ i ] ;
}
i f ( tmp == 0) {

re turn true ;
}
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e l s e {
re turn f a l s e ;

}
}

}



Appendix D

encoder.java

package ncbts imulator ;

/∗∗
∗ This c l a s s i s to network encode packets in the Bluetooth

s imula tor .
∗ @author Roger S t e n v o l l
∗/

pub l i c c l a s s encoder {
i n t MEM=4; //Number o f g e ne r e t a i o n s the encoder w i l l keep

in a memory
i n t nodes ; //Nubmber o f nodes in the network
i n t packetLength ;
i n t [ ] [ ] [ ] b u f f e r ; //Keeps the packets to be encoded .
i n t [ ] b u f f e r S t a t u s ; //Keeps t rack on number o f packet in

the b u f f e r
i n t [ ] [ ] [ ] encoded ; // Resu l t ing b u f f e r with MEM number o f

g ene ra t i on s
i n t [ ] next =new i n t [MEM] ; //Keep track o f next packet to

be sent .

/∗∗
∗ Constructor f o r the encoder ob j e c t .
∗ Based upon the parameters given , the con s t ruc to r w i l l

c r e a t e a b u f f e r .
∗ The b u f f e r w i l l keep a memory o f 3 gene ra t i on s . One

gene ra t i on i s de f i ned
∗ by one packet from each s l a v e in the same superfram TDD

c y c l e .
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∗
∗ @param nrNodes Number o f nodes to be encoded . I f the

master only r e l a y
∗ t r a f f i c from the s l ave s , number o f a c t i v e s l a v e s should

be used
∗ @param pl The length o f the packets to be encoded .
∗/

pub l i c encoder ( i n t nrNodes , i n t p l ) {
t h i s . nodes=nrNodes ;
t h i s . packetLength = pl ;
t h i s . b u f f e r= new i n t [MEM] [ nodes ] [ t h i s . packetLength ] ;
t h i s . b u f f e r S t a t u s = new i n t [MEM] ;
f o r ( i n t i =0; i<t h i s . b u f f e r S t a t u s . l ength ; i++){

t h i s . b u f f e r S t a t u s [ i ]=0;
}
encoded = new i n t [MEM] [ t h i s . nodes −1] [ t h i s . packetLength

] ;

}

/∗∗
∗ Method used by master to add r e c e i v e d packet from the

s l a v e s
∗ to the encoder .
∗ @param packet The packet to be added
∗ @param fromNode The node packet was r e c e i v e d from
∗ @param genera t i on Generation r e c e i v e d .
∗ the packet should be added to .
∗/

pub l i c void addPacket ( i n t [ ] packet , i n t fromNode , i n t
gene ra t i on ) {

i n t gen=genera t i on%MEM;
i f ( packet . l ength < t h i s . packetLength ) {

i n t [ ] tmp = new i n t [ t h i s . packetLength ] ;
System . arraycopy ( packet , 0 , tmp , 0 , packet . l ength ) ;
f o r ( i n t i=packet . length −1; i < t h i s . packetLength ; i

++){
tmp [ i ]=0; //add 0 ’ s add

the end to f i l l up
}
t h i s . b u f f e r [ gen ] [ fromNode−1]=tmp ;

}
e l s e {
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t h i s . b u f f e r [ gen ] [ fromNode−1]=packet ;
}
t h i s . b u f f e r S t a t u s [ gen ]= t h i s . b u f f e r S t a t u s [ gen ]+1;
i f ( t h i s . i s F u l l ( gen ) ) {

t h i s . encode ( gen ) ;
}

}

/∗∗
∗ Method used by encoder to determin i f a l l packet o f a

g iven gene ra t i on
∗ i s r e c e i v e d .
∗ @param gen The gene ra t i on
∗ @return Return true or f a l s e
∗/

p r i v a t e boolean i s F u l l ( i n t gen ) {
i f ( t h i s . b u f f e r S t a t u s [ gen]< t h i s . nodes ) {

re turn f a l s e ;
}
e l s e {

re turn true ;
}

}
/∗∗
∗ Method to perform the network encoding .
∗ @param gen The gene ra t i on which the encoder should

encode
∗/

p r i v a t e void encode ( i n t gen ) {
f o r ( i n t i =0; i < ( t h i s . nodes−1) ; i++){

i n t [ ] tmp = new i n t [ t h i s . packetLength ] ;
f o r ( i n t j =0; j < t h i s . b u f f e r [ gen ] [ 0 ] . l ength ; j++){

tmp [ j ]= t h i s . b u f f e r [ gen ] [ i ] [ j ] ˆ t h i s . b u f f e r [ gen ] [
nodes −1] [ j ] ;

}
t h i s . encoded [ gen ] [ i ]=tmp ;

}
}

/∗∗
∗ Method to r e t r i v e the next packet to be transmit ted from

the master
∗ to the s l a v e s
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∗ @param genera t i on The gene ra t i on o f the next
t ransmi s s i on

∗ @return Returns an array o f the packet to be t r an sm i t t e t
∗/

pub l i c i n t [ ] getNext ( i n t gene ra t i on ) {
i n t gen=genera t i on%MEM;
i f ( i s F u l l ( gen ) ) {

i n t n=next [ gen ] ;
next [ gen ]=(n+1)%( t h i s . nodes−1) ;
i f (n==t h i s . nodes−2){ // Al l packets sent

t h i s . b u f f e r S t a t u s [ gen ]=0; // Reset b u f f e r
rcounter

}
re turn t h i s . encoded [ gen ] [ n ] ;

}
e l s e {

re turn n u l l ;
}

}
}
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decoder.java

package ncbts imulator ;

/∗∗
∗ Class to perform decoding .
∗ This c l a s s i s i n s t a n t i a t e t from the s l a v e nodes .
∗ The decoder s t o r e s r e c e i v e d packets u n t i l f u l l rank i s

ach ieved .
∗ Then the decoding i s performed .
∗ @author Roger S t e n v o l l
∗/

pub l i c c l a s s decoder {
i n t MEM=4; //Number o f g e ne r e t a i o n s the encoder w i l l keep

in a memory
i n t nodes ; //Nubmber o f nodes in the network
i n t packetLength ;
i n t [ ] [ ] [ ] decBuf f e r ; // b u f f e r used to decode
i n t [ ] [ ] r e s u l t ; //The r e s u l t i n g array
i n t pos ;
i n t s e l f I D ;
i n t [ ] count ;

/∗∗
∗ Constructor f o r the decoder ob j e c t
∗ @param id The id o f the node ”owning” the ob j e c t
∗ @param nrNodes Number o f t r ansmi t t ing nodes in the

network
∗ @param pl The packet l ength
∗/

89



90 APPENDIX E. DECODER.JAVA

pub l i c decoder ( i n t id , i n t nrNodes , i n t p l ) {
t h i s . s e l f I D=id ;
t h i s . nodes = nrNodes ;
t h i s . packetLength = pl ;
t h i s . decBuf f e r = new i n t [ t h i s .MEM] [ nrNodes ] [ t h i s .

packetLength ] ;
t h i s . count= new i n t [MEM] ;
f o r ( i n t i =0; i < t h i s . count . l ength ; i++){

t h i s . count [ i ]=0;
}
t h i s . r e s u l t = new i n t [ nodes ] [ t h i s . packetLength ] ;

}
/∗∗
∗ A method to add own packet to the decoder
∗ @param packet own packet
∗ @param genera t i on the gene ra t i on o f the packet added
∗/

pub l i c void addOwnPacket ( i n t [ ] packet , i n t gene ra t i on ) {
i n t gen=genera t i on%MEM;
i f ( packet . length<t h i s . packetLength ) {

i n t [ ] tmp = new i n t [ t h i s . packetLength ] ;
System . arraycopy ( packet , 0 , tmp , 0 , packet . l ength ) ;
f o r ( i n t i=packet . length −1; i < t h i s . packetLength ; i

++){
tmp [ i ]=0; //add 0 ’ s add the end

to f i l l up
}
t h i s . decBuf f e r [ gen ] [ 0 ] = tmp ;

}
e l s e {

t h i s . decBuf f e r [ gen ] [ 0 ] = packet ; //Alwasy add own
packet in the f i r s t pos .

}
}

/∗∗
∗ A method to add a r e c e i v e d packet to the decoder
∗ @param packet The r e c e i v e d packet
∗ @param genera t i on The gene ra t i on o f the r e c e i v e d packet
∗/

pub l i c void addPacket ( i n t [ ] packet , i n t gene ra t i on ) {
i n t gen=genera t i on%MEM;
t h i s . count [ gen ]++;
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t h i s . decBuf f e r [ gen ] [ t h i s . count [ gen ] ]= packet ;
i f ( i sFul lRank ( gen ) ) {

decode ( gen ) ;
}

}

/∗∗
∗ A method to i n i t i a t e the decoding
∗ @param gen
∗/

p r i v a t e void decode ( i n t gen ) {
t h i s . count [ gen ]=0;

t h i s . r e s u l t [ t h i s . s e l f ID −1]=decBuf f e r [ gen ] [ 0 ] ; //
Copy own data to pos

i f ( t h i s . s e l f I D != nodes ) { // I f t h i s i s not the
l a s t node , f i n d the l a s t nodes message

f o r ( i n t i =0; i< t h i s . packetLength ; i++){
t h i s . r e s u l t [ t h i s . nodes −1] [ i ]=

( t h i s . decBuf f e r [ gen ] [ 0 ] [ i ] ) ˆ
( t h i s . decBuf f e r [ gen ] [ t h i s . s e l f I D ] [ i ] ) ;

}
}
f o r ( i n t i =( t h i s . nodes−1) ; i >0; i−−){ // loop through

a l l messages
i f ( i != t h i s . s e l f I D ) { // Skip own

pos i t i on , known
f o r ( i n t j =0; j< ( t h i s . decBuf f e r [ gen ] [ nodes −1]) .

l ength ; j++){
t h i s . r e s u l t [ i −1] [ j ]=( t h i s . decBuf f e r [ gen ] [ i

] [ j ] ) ˆ
t h i s . r e s u l t [ nodes −1] [ j ] ;

}
}

}

}

/∗∗
∗ A p r i v a t e method to f i n d i f a l l packets are r e c e i v e d
∗ @param gen The gene ra t i on to be checked
∗ @return true or f a l s e i s returned
∗/

p r i v a t e boolean isFul lRank ( i n t gen ) {



92 APPENDIX E. DECODER.JAVA

i f ( t h i s . count [ gen]==( t h i s . nodes−1) ) {
re turn true ;

}
e l s e {

re turn f a l s e ;
}

}

/∗∗
∗ A method to p r in t the decoded packet
∗ @param node the id o f the source node . I . e . the

o r i g i n a t o r o f the message
∗ pr in ted
∗/

pub l i c void pr intRece ived ( i n t node ) {
t ry
{
Thread . s l e e p (100∗ node ) ; // Otherwise p r i n t s out at

the same time
// caus ing mixed pr in tout

. . . .
}
catch ( Exception e ) {

System . out . p r i n t (” Exception caught : ”) ;
System . out . p r i n t l n ( e ) ;

}

System . out . p r i n t (”\nNode ” + t h i s . s e l f I D +
” r e c e i v e d from node : ” + node + ” : ”) ;

f o r ( i n t i =0; i < ( t h i s . r e s u l t [ node−1]) . l ength ; i++){
System . out . p r i n t ( t h i s . r e s u l t [ node−1] [ i ] ) ;

}
}

}
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channel.java

package ncbts imulator ;

/∗∗
∗ Simulat ion o f the channel .
∗ The f i r s t element o f the array i s the header .
∗ TS Timeslot number , to avvoid the r e c e i v e r to ” r e c e i v e ” the

same message
∗ s e v e r a l t imes
∗ TO 3 b i t s
∗ FROM 3 b i t s
∗ GEN The genera t i on o f the packets
∗ PAYLOAD LENGTH va lues are {1 ,3 ,5} t i m e s l o t s
∗ @author Roger S t e n v o l l
∗/

pub l i c c l a s s channel {
p r i v a t e i n t [ ] msg = new i n t [ 3 5 0 ] ;
//The channel synchron ized to make sure to multi−thread ing read

/ wr i t e problems
// to the same ob j e c t .
pub l i c synchron ized void channel ( ) {

msg [ 0 ] = 0 ;
}

/∗∗
∗ A method to read from the channel
∗ @return i n t [ ] conta in ing the next message
∗/

pub l i c i n t [ ] read ( ) {
re turn msg ;
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}
/∗∗
∗ A method to wr i t e a message to the channel
∗ @param m ( i n t [ ] ) the next message
∗/

pub l i c void wr i t e ( i n t [ ] m) {
t h i s . msg=m;

}
}
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txBuffer.java

package ncbts imulator ;

/∗∗
∗
∗ @author Roger
∗/

pub l i c c l a s s txBuf f e r {
i n t [ ] txBuf ;
i n t j ;
pub l i c txBuf f e r ( i n t l en ) {

txBuf = new i n t [ l en ] ;
j =0;

}
/∗
∗ Method to i n i t i a t e the transmit b u f f e r with some data
∗
∗/

pub l i c void i n i t i a t e B u f f e r ( i n t id ) {
f o r ( i n t i =0; i< txBuf . l ength ; i++){

t h i s . txBuf [ i ]= id ; //TODO Change to a random number
l a t e r ??

}
}
pub l i c i n t [ ] getNext ( i n t nr ) {

i n t [ ] r e t = new i n t [ nr ] ;
f o r ( i n t i =0; i < r e t . l ength ; i++){

r e t [ i ]=txBuf [ i ] ;
}
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j=j+nr ;
r e turn r e t ;

}
pub l i c boolean isEmpty ( ) {

i f ( j>=txBuf . l ength ) {
re turn true ;

}
e l s e {

re turn f a l s e ;
}

}
pub l i c i n t i s L e f t ( ) {

re turn txBuf . l ength − j ;
}

}
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rxBuffer.java

package ncbts imulator ;

/∗∗
∗ A ob j e c t ho ld ing the r e c e i v e b u f f e r o f the nodes in the

s imu la tor
∗
∗ @author Roger S t e n v o l l
∗/

pub l i c c l a s s rxBuf f e r {
i n t [ ] rxBuf ;
i n t j ;
pub l i c rxBuf f e r ( i n t l en ) {

rxBuf= new i n t [ l en ] ;
j =0;

}
/∗∗
∗ Method to add a r e c e v e i d packet to the r e c e i v e b u f f e r
∗ @param next the next packet
∗/

pub l i c void writeNext ( i n t [ ] next ) {
// I f the rx b u f f e r i s to short , i n c r e a s e i t !
i f ( ( j+next . l ength )>rxBuf . l ength ) {

i n t [ ] tmp = new i n t [ j+next . l ength ] ;
f o r ( i n t i =0; i< rxBuf . l ength ; i++){

tmp [ i ]=rxBuf [ i ] ;
}
rxBuf=tmp ;
}
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f o r ( i n t i =0; i<next . l ength ; i++){
rxBuf [ i+j ]= next [ i ] ;

}
j=j+next . l ength ;

}

}



Appendix I

routing.java

package ncbts imulator ;

/∗∗
∗ An ob j e c t ho ld ing the rout ing t a b l e .
∗ I f a pa i r o f nodes are communication bi−d i r e c t i o n a l , two
∗ e n t r i e s in the rout ing t a b l e are i n s e r t e d .
∗ @author Roger S t e n v o l l
∗/

pub l i c c l a s s rout ing {
i n t [ ] route ;
pub l i c rout ing ( i n t nr ) {

route = new i n t [ nr ] ;
}
/∗∗
∗ A method to add an entry to the rout ing t a b l e
∗ @param s r c The source node
∗ @param dst The d e s t i n a t i o n node
∗/

pub l i c void addRoute ( i n t src , i n t dst ) {
route [ dst ]= s r c ;

}
/∗∗
∗ A method f o r read ing from the rout ing t a b l e
∗ @param dst the d e s t i n a t i o n
∗ @return the source
∗/

pub l i c i n t getSrc ( i n t dst ) {
re turn route [ dst ] ;

}
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}



Appendix J

counter.java

package ncbts imulator ;

/∗∗
∗ Class to s t o r e the number o f b i t s t ransmit ted from the

d i f f e r e n t nodes
∗ Based on t h i s c a l c u l a t e power consumption
∗ @author Roger S t e n v o l l
∗/

pub l i c c l a s s counter {
i n t [ ] c t r ;

/∗∗
∗ Constructor o f the counter c l a s s . Creates an array

s t o r i n g
∗ the in fo rmat ion about number o f b i t s t ransmit ted per

node .
∗ @param nodes Number o f nodes ( master + s l a v e s ) in the

network
∗/

pub l i c counter ( i n t nodes ) {
c t r = new i n t [ nodes ] ;

}

/∗∗
∗ Method to add b i t s to the counter
∗ @param node The node id
∗ @param payloadSize The s i z e o f the payload transmit ted
∗/

pub l i c void add ( i n t node , i n t pay loadS ize ) {
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i n t tmp ;
i f ( pay loadS ize == 0) { // p o l l packet

tmp=126;
}
e l s e { //Data packet

tmp=payloadSize ∗8 + 126 ;
}
t h i s . c t r [ node ]= t h i s . c t r [ node ]+tmp ; // increment the

counter o f the node
}

/∗∗
∗ Node to get the number o f b i t s s to r ed in the array
∗ @param node The node id
∗ @return r e tu rn s the number o f b i t s t ransmit ted by the

@node
∗/

pub l i c i n t p r i n t B i t s ( i n t node ) {
re turn t h i s . c t r [ node ] ;

}

/∗∗
∗ Method to get the accumulated power consumption o f the

@node
∗ @param node The node id
∗ @return The power consumption
∗/

pub l i c i n t printPower ( i n t node ) {
double tmp ;
i n t temp ;
tmp=t h i s . c t r [ node ] ∗ 2 . 5 ;
temp = ( i n t ) tmp ;
re turn temp ;

}

}


