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Abstract

Background: A high intake of omega-3 (n-3) long-chain polyunsaturated fatty acids
(LCPUFAs), which are potential peroxisome proliferator-activated receptor (PPAR)
agonists, has been associated with proposed favourable effects related to prevention
and treatment of coronary heart disease. The n-3 LCPUFAs eicosapentaenoic (EPA)
and docosahexaenoic (DHA) acids are poorly oxidizable and resemble the effects of
the modified fatty acid and pan-PPAR agonist tetradecylthioacetic acid (TTA) mainly
through PPAR activation.

Aims: Aims were to investigate the dietary intake of n-3 LCPUFAs and risk of future
coronary events in patients with coronary artery disease (CAD) and also to try and

elucidate the mechanistic effects of PPAR activation using a rodent model.

Subjects and Methods: The human studies were sub-studies of participants from the
Western Norway B-Vitamin Intervention Trial, who completed a food frequency
questionnaire at baseline, from which daily intake of n-3 LCPUFAs [EPA,
docosapentaenoic acid (DPA), and DHA] was estimated based on diet and
supplements. A variety of blood markers were also measured. The association
between intake of n-3 LCPUFAs and subsequent risk of coronary events was
investigated in two papers. In Paper 1 including 2412 patients, the main endpoint was
a composite of coronary events. Acute myocardial infarction (AMI) was the outcome
in Paper 2 including 2378 patients, who were sub-grouped as having no diabetes
[glycosylated haemoglobin (HbAlc) <5.7%], pre-diabetes (HbAlc >5.7%), or
diabetes (previous diabetes, fasting baseline serum glucose >7.0, or non-fasting
glucose >11.1 mmol/L). An animal study was used to investigate the long-term effects
of the pan-PPAR agonist TTA and/or high-dose fish oil (FO) on cardiac fatty acid
(FA) composition and lipid metabolism (Paper 3). Male Wistar rats were given
different diets containing 25% (w/v) fat: control diet; TTA diet; FO diet; or diet
containing both TTA and FO.



Results: Risk of experiencing an endpoint was evaluated by Cox regression over
quartiles (Paper 1) or tertiles (Paper 2). Mean £+ SD n-3 LCPUFA intake was 0.58 +
0.29, 0.83 £0.30, 1.36 + 0.44, and 2.64 £ 1.18 g/day in quartiles 1-4, and 0.43 + 0.24,
1.08 £ 0.37, and 2.38 + 1.15 g/day in tertiles 1-3, respectively. There was no overall
association between dietary n-3 LCPUFA intake and coronary events in the total
human cohort (Paper 1). However, a post hoc additive proportional hazards model
demonstrated a slightly increased risk of coronary events in participants having an
intake of n-3 LCPUFAs <~300 mg/day. Among patients diagnosed with diabetes there
was a significantly reduced risk of AMI in those with a high n-3 LCPUFA intake, and
there was also a dose-response relation across n-3 LCPUFA tertiles (Paper 2). In
contrast, among non-diabetic patients with HbAlc <5.7%, a high n-3 LCPUFA intake
tended to be associated with an increased risk of AMI, which was significant for fatal
AMI and associated with lower HbAlc. The main limitations of the human studies
were their observational design and a limited event rate, particularly in the non-
diabetic group. In the rat model (Paper 3), a long-term diet containing TTA or FO
induced an increase in cardiac n-3 LCPUFA composition. Several other cardiac FAs,
enzymes, and genes were also changed following TTA and/or FO treatment,

indicating increased cardiac FA oxidation.

Conclusions: No risk reduction of coronary events or mortality was observed with
high intakes of n-3 LCPUFAs in the total population of patients with CAD. However,
a high intake of n-3 LCPUFAs was associated with a reduced risk of AMI in diabetic
patients, but with an increased risk of fatal AMI in those without diabetes who had
HbAlc <5.7%. Long-term treatment with the pan-PPAR agonist TTA, which has its
main effect on PPARa, or high-dose FO, having effects on both PPARa and PPARy,

induced marked changes on cardiac FA metabolism.

Consequences: Further studies should investigate whether patients with diabetes may
benefit from having a high intake of n-3 LCPUFAs and whether certain patients with
normal glucose tolerance may be careful with a very high intake of these FAs.

Because excess PPAR stimulation by FAs other than n-3 LCPUFAs may affect the



cardiac n-3 LCPUFA composition, the underlying mechanisms should be further

evaluated.
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1. Introduction

1.1 Coronary heart disease

Coronary heart disease (CHD) remains a major death cause based on reports from the
American Heart Association [1]. Although mortality rates for CHD and acute
myocardial infarction (AMI) have declined during the past three decades, as reported
through “The Compressed Mortality database” containing mortality and population

counts for all U.S. counties (http://wonder.cdc.gov/mortSQL.html), the overweight

and obesity epidemic is increasing [2]. Obesity is one of the components of the
metabolic syndrome [3] which is defined by having a minimum of three out of the
following risk factors: abdominal obesity; impaired fasting glucose; elevated fasting
triglycerides (TGs); decreased high density lipoprotein (HDL) cholesterol; or
hypertension [4].

Established CHD therapy includes 3-hydroxy-3-methylglutaryl coenzyme A (CoA)
reductase inhibitors (statins), acetylsalicylic acid, B-blockers, and angiotensin
converting enzyme (ACE) inhibitors [5]. Statins are established as first-line treatment
of hyperlipidemia [6], and this medication reduces cholesterol biosynthesis by
inhibiting its rate-limiting enzyme, which subsequently leads to an increase in number
of hepatic low density lipoprotein (LDL) receptors and thereby reduces the circulating
levels of LDL and very low density lipoprotein (VLDL) through increased catabolism
[7]. Effects are not only on plasma LDL cholesterol, but plasma TGs are also reduced,
while plasma HDL cholesterol is increased. Several pleiotropic properties have been
reported following statin treatment, including anti-inflammatory, vasodilatory, and
anti-platelet effects [7]. Clinically, statin therapy leads to a moderate decrease in
cardiovascular mortality, but a significant and more pronounced decrease in
cardiovascular morbidity, with the largest benefit being suggested among

intermediate/high-risk patients [5]. Dietary intakes of omega-3 (n-3) long-chain
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polyunsaturated fatty acids (LCPUFAs) have been associated with a reduced risk of
CHD mortality and are currently recommended by the American Heart Association in
secondary prevention among CHD patients [8]. However, the 2012 European Society
of Cardiology guidelines do not implement n-3 LCPUFA supplements as routine
treatment among AMI patients with ST-segment elevation [9]. There is a continuous
search for new drugs or dietary factors for improvement of lipid metabolism and most
importantly for prevention of clinical events. Lifestyle habits like smoking, physical
inactivity, and poor nutritional status are important factors to be considered in this
context. These general risk factors can further culminate into conditions like
dyslipidemia, overweight/obesity, metabolic syndrome, and diabetes mellitus that are

major risk factors for development of cardiovascular diseases (CVD), including CHD.

1.2 Diabetes mellitus

Diabetes mellitus is a high-prevalent disease worldwide, where 90-95% of total cases
are classified as type 2 diabetes [10]. This metabolic disorder develops as a result of
an interaction between several factors [11], some based on genetic predisposition and
some environmentally dependent. Altogether, poor nutrition and decreased physical
activity increase the prevalence of lifestyle disorders, which might result in
development of type 2 diabetes mellitus. Under healthy conditions, there is a feedback
mechanism which signals the pancreatic -cells for insulin secretion whenever needed
[12]. During insulin resistance this mechanism might be disturbed and lead to -cell
dysfunction, which could result in diabetes development. A disturbed balance in
adipose tissue, as seen in obese patients and in those with impaired glucose tolerance,

increases the amount of plasma non-esterified fatty acids (FAs).

In addition to this increase in levels of non-esterified FAs, several metabolic pathways
are affected in patients with diabetes, leading to hyperglycemia and sustained insulin
resistance [10]. These conditions further affect molecular mechanisms which lead to

vascular dysfunction, including increased oxidative stress and imbalance in



17

intracellular signaling. Common macrovascular consequences include atherosclerosis
and medial calcification, while retinopathy and nephropathy are among microvascular

manifestations.

Present recommendations on management of type 2 diabetes include the following
[13]: individual guidance in terms of dietary advice and plasma glucose monitoring;
regular monitoring of blood pressure and, when appropriate, treatment of
hypertension; control and management of glycosylated haemoglobin (HbAlc) levels;
assessment and management of cardiovascular risk factors; monitoring parameters
relevant for kidney function; regular screening of eyes and the nervous system; and

management of foot problems.

The disease primarily affects cardiovascular health [13], and chance of experiencing
an AMI and also of a more severe outcome is increased in these patients compared to
non-diabetic patients [14]. Thus, treatment and prevention of diabetes should be a

priority, being a major risk factor for CVD and mortality [15].

1.3 Pathways affected by dietary fatty acids

Several molecular pathways are involved in dietary FA signaling, and regulation
occurs at multiple levels, including cell surface receptor signaling (e.g. FA derived
prostaglandins bind to G-protein coupled receptors), receptor-mediated pathways
requiring FA acylation (e.g. G-protein, Ras, and Src kinase), intermediate signaling
(e.g. through phospholipase C and protein kinase C), and nuclear receptor signaling

[e.g. through peroxisome proliferator-activated receptors (PPARs)] [16].

The biological effects of polyunsaturated FAs (PUFAs) are exerted through several
mechanisms including their release by cytosolic phospholipase A2 (cPLA,), further
being metabolized into eicosanoids (prostaglandins, thromboxanes, and leucotrienes)
by the action of cyclooxygenases (COX) and lipoxygenases (LOX). While

arachidonic acid (ARA) is the precursor of the 2-series prostanoids [e.g. prostacyclin
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(PGI;) and thromboxane A2 (TXA,;)] and leukotriene A4 (LTA,;), EPA is the
precursor of the 3-series prostanoids [e.g. prostaglandin I3 (PGI;) and thromboxane
A3 (TXAj3)] and leukotriene A5 (LTAs). n-3 PUFAs can also affect the production of
the anti-inflammatory resolvins through separate pathways involving COX, LOX, and
cytochrome P450 (CYP) [17]. Furthermore, free FAs can exert direct effects on ion
channels and alter the Na* current and Ca®" fluctuation. Membrane phospholipid
composition affects both membrane fluidity and membrane-associated protein
signalling. Effects on important pathways through nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) and extracellular signal-regulated kinases

(ERK, activated through Ras) regulate gene transcription.

ARA 3 PUFA
COX/LOX/CY!

Na* currenty

TXA:
COoXILOX Ca?* fluctuationyy LTA. I)Tif\\a
________ \5
o //ﬁucleus NF-KB Membrane

Inflammation 9] i / ERKA1/2 phospholipid
resolution: @ 0 (ﬂ l “‘ ' l‘ | composition affects:
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Figure 1. Pathways affected by dietary polyunsaturated fatty acids. Abbreviations: ARA,
Arachidonic acid; COX, Cyclooxygenase; cPLA,, Cytosolic phospholipase A2; CYP, Cytochrome
P450; ERK, Extracellular signal-regulated kinases; FABP, Fatty acid binding protein; HNF-4,
Hepatocyte nuclear factor 4; LOX, Lipoxygenase; LTA,, Leukotriene A4; LTA;, Leukotriene AS5;
LXR, Liver X receptor; n-3 PUFA, n-3 polyunsaturated fatty acids; NF-kB, Nuclear factor kappa-
light-chain-enhancer of activated B cells; PGI,, Prostacyclin; PGI;, Prostaglandin 13; PPARs,
Peroxisome proliferator-activated receptors; RXR, 9-cis retinoic acid receptor; SREBP-1c¢, Sterol

regulatory element binding protein 1c; TXA,, Thromboxane A2; TXA;, Thromboxane A3.
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Release of FAs into the cell and their association with fatty acid binding protein
(FABP) can regulate important transcription factors like PPARs, hepatocyte nuclear
factor 4 (HNF-4), 9-cis retinoic acid receptor (RXR), liver X receptor (LXR), and
sterol regulatory element binding protein 1¢ (SREBP-1c¢) (Figure 1) [18].

In the following sections, focus will be on the PPAR mediated pathways, which are

considered to be most relevant for this thesis.

1.3.1 Peroxisome proliferator activated receptors

PPARs are members of the nuclear hormone receptor family consisting of three
subtypes (o, y, and B/d) with distinct and overlapping expression patterns [19]. These
receptors are ligand-activated transcription factors which heterodimerize with RXR
before targeting peroxisome proliferator-response elements (PPREs) on DNA, and
thereby regulate transcription of several target genes which finally affect lipid
metabolism, glucose homeostasis, and cell differentiation [20]. The result of
activation depends on PPAR tissue distribution, ligands, and presence of co-activators
and -repressors. Natural ligands of PPAR include both saturated and unsaturated non-
esterified FAs [21]. PPARs have been designated with the role as central regulators of
interactions between genes and diet [22], and have become pharmaceutical targets for

treatment of conditions related to dyslipidemia.

PPARa activation targets several genes connected to glucose and lipid metabolism,
including FA uptake, -transport, and -oxidation, and its expression is especially high
in liver, heart, and kidney [23]. It is also involved in embryonic development [24] and
amino acid metabolism [25]. Rodents, such as mice and rats, belong to the
proliferating species, meaning that PPARa activation causes peroxisome proliferation
in liver [26]. The so-called non-proliferating species, like guinea pigs, pigs, monkeys,
as well as humans, have a lower PPARa expression in liver [27]. In the heart PPARa
seems to be the primary transcription regulator of enzymes involved in FA oxidation
and is thus important for cardiac metabolism [28]. PPARa operates together with

PPARy co-activator (PGC-1a) [29]. In addition to being expressed in vascular
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endothelial cells, monocytes/macrophages, and smooth muscle cells, PPARa is also
expressed in inflammatory cells related to atherosclerosis [30]. The healthy heart
generates most of its energy as ATP through FA catabolism [31]. Thus, a continuous
FA supply to the heart is important to sustain the contractile activity as this tissue can
store and synthesize FAs only to a limited extent [32]. Excess PPARa stimulation
may, however, have detrimental effects [33] including substrate overload of FAs in
the tissues, which is also associated with conditions like obesity and insulin resistance
[34]. Myocardial dysfunction could hereby be the result of an obesity-associated
reduced glucose and increased FA utilization in heart [35,36]. Whereas hepatic
PPARa activity is mainly regulated by endogenous FAs, cardiac PPARa activity is
regulated by exogenous fatty acids. Lipolysis from cellular TGs is necessary to enable
exogenous FAs as potent cardiac PPAR ligands through adipose TG lipase (ATGL).
If ATGL function is impaired, FAs will be stored in the form of TGs instead of being
oxidized and lead to increased levels of cardiac neutral lipids [37]. This might further
affect mitochondrial function through altered protein phosphorylation and increased
levels of cytotoxic intermediate products of B-oxidation, which could lead to

mitophagy (controlled degradation of mitochondria) or apoptosis [38].

PPARy is highly expressed in adipose tissue and is involved in adipocyte
differentiation and lipid storage [39]. Activation also contributes to improved insulin
sensitivity [20] and anti-inflammatory properties [40]. This subtype has been detected
in cardiomyocytes in several species [41], but probably holds an indirect modulatory
role on cardiac FA metabolism [42]. PUFAs do more preferentially bind to PPARy
than to PPARo. Despite this, they are not very potent PPARy activators [21]. Other
endogenous PPARYy agonists are eicosanoids and components of oxidized LDL [30].
Synthetic PPARYy agonists, like thiazolidinediones and glitazones, are used in

treatment of patients with type 2 diabetes [43].

Compared to PPARa and PPARy, PPARPB/S is more ubiquitously expressed [20].
Expression is particularly pronounced in the intestine, compared to other tissues. In

rodents, this PPAR subtype is expressed predominantly in cardiomyocytes [44].
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Stimulated p-oxidation and reverse cholesterol transport are among the processes
affected by activating this receptor [24]. Among PPARP/S natural ligands are 6-18 C
saturated FAs (SFAs), some PUFAs, prostacyclins, and FAs derived from VLDLs
[30]. There are also several synthetic ligands with preference to PPARP/3 [45], but

none are at present in clinical use [20].

PPAR agonists relevant for this thesis, which are mainly associated with PPARa

activation, will be discussed in the sections to follow.

1.3.2 PPAR agonists

Polyunsaturated fatty acids
Linoleic acid (LA, 18:2n-6) and a-linolenic acid (ALA, 18:3n-3) are essential FAs in

the mammalian diet, unable to be endogenously synthesized [46]. Dietary sources
which are rich in LA are corn oil, sunflower oil, and safflower oil, while ALA is
abundant in flaxseeds and flaxseed oil as well as some other oils and nuts [47]. Fish
and fish oil (FO) is rich in the n-3 LCPUFAs eicosapentaenoic acid (EPA, 20:5n-3)
and docosahexaenoic acid (DHA, 22:6n-3), which are poorly oxidizable [48]. Current
dietary recommendations are to increase intake of n-3 PUFAs and reduce intake of n-
6 PUFAs, since CHD mortality has been shown to be proportional to tissue n-6 PUFA
composition [49]. The adverse effects resulting from a high intake of n-6 PUFAs are
related to an increase in n-6 eicosanoid action, involved in developing vascular

inflammation, thrombosis, and arrhythmia.

PUFAs are natural ligands for all PPARs [46], and they also affect additional nuclear
receptors that modulate TG levels, including HNF-4a, [21]. As for PPARYy, PUFAs are
not very strong PPARa activators, but eicosanoids and oxidized FAs which are
metabolites of PUFAs are more potent activators [50,51]. The TG lowering effects of
PUFAs (especially n-3 PUFAs) are attributed to PPAR activation and increased FA
oxidation, downregulated HNF-40 and induced glycogen synthesis, and suppression

of hepatic lipogenesis by inhibition of SREBP-1c [21]. Altogether, these effects
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reduce TG storage and increase oxidation of FAs. In addition, n-3 PUFAs have been
shown to reduce VLDL secretion through degradation of apolipoprotein B (Apo B)

[52], as well as improving chylomicron clearance [53].

Fibrates
Fibrates are a group of specific PPARa targeted drugs being utilized in treating

dyslipidemia during the past four decades due to their TG reducing effects [54]. TG
lowering is probably obtained through a PPARa activated increase in VLDL and
chylomicron TG hydrolysis. Fibrates also lower circulating non-esterified FAs,
increase HDL cholesterol, and modestly lower LDL cholesterol levels. They induce
transcription of genes necessary for FA cellular uptake and have also been suggested
to reduce vascular inflammation [54]. Their clinical gain, however, still remains to be
demonstrated [55,56], and their routine use in combined hyperlipidemia has recently
been questioned [57]. Even though overall use of fibrates in treatment of CVD has
failed to demonstrate additional benefits compared to conventional statin treatment,
some effects have been shown in sub-groups like diabetes patients. Benefits of
treatment using the fibrate gemfibrozil were more pronounced in insulin resistant
patients with a larger reduction in cardiovascular events compared to those without
insulin resistance [58]. In a study on patients with type 2 diabetes, fenofibrate

treatment lead to reduced angiographic progression of atherosclerosis [59].

Notably, treatment with fibrates has never been associated with reduced incidence of
CVD death. Thus, excess PPARa activation may be associated with unfavorable
metabolic effects that may counteract its apparent beneficial effects on lipid
metabolism and inflammation. In the Fenofibrate Intervention and Event Lowering in
Diabetes (FIELD) trial, fenofibrate treatment was associated with reduced risk of
non-fatal AMI and coronary revascularization [60]. However, plasma homocysteine
was increased following fenofibrate treatment. Elevated homocysteine has been
considered as a biomarker of increased CVD risk [61], and a post hoc sub-study based
on the FIELD trial investigating this effect demonstrated that increased homocysteine

levels were directly associated with levels of apolipoprotein A-II (Apo A-II) in
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fenofibrate allocated patients [62]. The role of Apo A-II is not completely
characterized, but it seems to be involved in TG metabolism and has recently been

associated with apolipoprotein E (Apo E)-linked risk for incident CVD [63].

Tetradecylthioacetic acid

Tetradecylthioacetic acid (TTA) is an SFA analogue with 16 carbon atoms and one
sulphur atom at position three from the carboxyl end (Figure 2), belonging to a group
of sulphur-substituted FAs (3-thia FAs) with pan-PPAR activation properties [64].
This modified FA is a mitochondrial targeted compound with properties similar to n-3
PUFAs and an especially pronounced affinity to PPARa, similar to fibrates. In
addition, TTA has a moderate affinity to PPARPB/6 and a weak affinity to PPARy
[65,66,67]. Due to the presence of a sulphur atom, TTA is unable to undergo [3-
oxidation. This modified FA is known to reduce plasma TGs, probably due to hepatic
proliferation of mitochondria and an increased B-oxidation of FAs through PPAR-
dependent mechanisms [68]. Also, feeding-induced obesity is prevented and insulin
sensitivity improved in hyperlipidemic models following TTA administration [69].
TTA has effects that are similar to fibrates in type 2 diabetic patients, as demonstrated
through an open-label study, where participants received 1 g TTA daily for four

weeks, resulting in reduced serum LDL cholesterol [70].

/\/\/\/\/\/\/\ "
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Figure 2. Structure of tetradecylthioacetic acid (TTA).
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1.4 Metabolism and heart disease

1.4.1 Fatty acid metabolism

FAs destined for the heart mainly comes from albumin-bound, adipose tissue derived,
non-esterified FAs or from TG components of VLDL or chylomicrons [71]. TG
components are hydrolysed into non-esterified FAs by lipoprotein lipase (LPL). FAs
are the primary energy substrate for the heart which are delivered to cardiomyocytes
via a three protein-mediated mechanism (cluster of differentiation 36, FA transport
protein, and FA binding protein plasma membrane) [72,73], and acyl-CoA esters are
formed following cell entry by acyl-CoA synthetases, processes which are regulated
by PPARs [74]. Esterified FAs are destined to various fates: incorporation into TG or
plasma membrane phospholipids following elongation and desaturation; complete FA
catabolism and energy production; or conversion to derivatives like eicosanoids via
the COX or LOX pathways [46]. The essential FAs LA and ALA are the precursors
for longer chain n-6 and n-3 PUFAs which are important constituents of cell

membranes [75].

Fatty acid synthesis

Endogenous FAs are synthesized through a series of steps involving elongases and
desaturases (Figure 3) [76]. A9 desaturase is involved in the conversion of SFAs into
monounsaturated FAs (MUFAs), introducing a double-bond at the 9, 10 position of
FAs. The membrane-bound A6 and A5 desaturases introduce additional double-bonds
in n-9, n-6, and n-3 PUFAs [77]. As n-6 and n-3 PUFAs compete for the same
desaturases and elongases, the dietary intakes of these FAs are essential for which
pathway will be prioritized. Thus, FA composition of cell membranes partly depends
on the dietary intake of essential FAs. In addition to dietary intake, the overall FA
status also depends on endogenous synthesis and transport, controlled by several

factors including genetics, age, sex, extent of oxidative stress, and lifestyle [78].
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Figure 3. Fatty acid metabolism. Abbreviations: A9 d, A9 desaturase; A6 d, A6 desaturase; AS d,
A5 desaturase; elo, elongase. A total overview of fatty acid metabolism is complex. Thus, this

simplified illustration includes only fatty acids that are considered relevant for this thesis.

Fatty acid catabolism

Mammalian tissues most commonly depend on mitochondrial pyruvate
decarboxylation (from glucose, lactate, or amino acids) or FA oxidation (especially of
long-chain FAs) to provide energy [79]. Some FAs are dependent on the peroxisomes
to undergo oxidation, especially very long-chain FAs. Other FAs can be metabolized

in either peroxisomes or mitochondria, while short-chain FAs are exclusively
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oxidized in mitochondria [80]. Typically, FAs destined for peroxisomes undergo the
first step(s) of oxidation in this organelle, generating a number of acyl-CoA esters

which are subsequently transported for further oxidation in mitochondria.

Carnitine maintains a rigorous balance between free and esterified CoA in the cell,
and is present in cells and tissues as free L-carnitine and acylcarnitines of a wide
variety of chain-lengths [81]. L-carnitine is a water-soluble quaternary amine that is
endogenously synthesized from lysine and methionine, but can also be obtained
through the diet [82,83]. The carnitine shuttle is involved in transport of long-chain
FAs into the mitochondrial matrix for B-oxidation. Carnitine palmitoyltransferase I
(CPT-]) is a PPARa regulated protein located in the outer mitochondrial membrane
which form long-chain acylcarnitine esters (>C12) through transesterification, where
acyl-groups from acyl-CoA are transferred to L-carnitine. CPT-I is regarded as a key
regulator of mitochondrial B-oxidation of long-chain FAs, shuttling acylcarnitines
across the mitochondrial membranes with the help of carnitine-acylcarnitine
translocase (CACT). A second carnitine palmitoyltransferase, CPT-II, present in the
mitochondrial matrix, catalyzes the transesterification to intramitochondrial CoA.
Free L-carnitine can leave the mitochondria via CACT. Carnitine acetyltransferase
(CRAT), which is present both in the mitochondrial matrix and in peroxisomes, has
the ability to reconvert short- and medium-chain acyl-CoAs to acylcarnitines [84],
which can also leave the mitochondria through CACT and be transported out of the
tissue to other destinations or for urinary excretion [79]. Complete mitochondrial -
oxidation generates acetyl-CoA, a process which is also regulated by PPARa. Acetyl-
CoA is further metabolized in the tricarboxylic acid (TCA) cycle, ultimately

generating energy through the electron transport chain [74].

1.4.2 Triglycerides and cardiovascular disease

Increased levels of TGs have been associated with CVD risk, and for this reason
numerous approaches have been made to achieve reduced TG levels. TG synthesis is

situated in the hepatocytes, regulated by SREBP-1c. Substrates for TG synthesis are
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glucose and non-esterified FA. Glycolysis provides pyruvate, from which acetyl-CoA
is made available for entering the TCA cycle, and finally conversion of citrate to TGs.

Non-esterified FAs are directly incorporated into TGs [21].

Particles rich in TGs are VLDL, LDL, intermediate density lipoprotein (IDL), and
chylomicrons [85]. Human TGs usually have SFAs and MUFAs as building blocks,
with n-3 PUFA in only trace amounts. Approaches to improve insulin sensitivity are
probably the best way to decrease TGs, which could be achieved by increased
physical activity and weight loss [86]. Furthermore, TG levels can be reduced by
drugs like statins, fibrates, TTA, and thiazolidinediones, but also by high-dose dietary
n-3 LCPUFAs [85]. After several years studying TG and its association with CVD,
one can conclude that TG is a relatively weak risk factor in itself. However, it is a

marker of underlying changes related to lipid- and lipoprotein metabolism [85].

Since dietary n-3 LCPUFAs have a well-known effect of reducing plasma TG,
hypertriglyceridemia has been one of the main indications for n-3 LCPUFA treatment

related to CHD [87].

1.4.3 Omega-3 fatty acids and cardiovascular disease

In general, consumption of fish and n-3 LCPUFAs, mainly EPA and DHA, has been
associated with a reduced risk of CVD and mortality [88,89]. The most likely
mechanism of action is the antiarrhythmic properties of EPA and DHA [90]. In
addition to their association with reduced TG levels, dietary intake of n-3 LCPUFAs
has also been related to anti-inflammatory effects [91,92]. Beneficial effects seem
particularly pronounced in patients with reduced ventricular function and heart failure
[93]. At the molecular level, dietary n-3 LCPUFA alters cardiac mitochondrial
phospholipid composition, thereby affecting mitochondrial function [94], and exerts
pleiotropic effects considered to be cardioprotective [95]. Altogether, EPA and DHA
phospholipid incorporation is increased on the expense of reduced ARA content. Very

high doses of n-3 PUFA can, however, be pro-oxidative [96].



28

Existing international guidelines recommends an n-3 LCPUFA intake of at least 250
mg/day or 2 servings of oily fish per week for the general population [97]. The
recommended intake for patients with CVD is 1 g/day and for hypertriglyceridemic
patients 2-4 g/day [8]. In Norway, and especially in coastal Western Norway, fish
consumption and supplemental intakes of n-3 LCPUFAs have traditionally been high
[98,99], and only few people would be expected to have intakes below the suggested
threshold. No clinical benefits were seen among Norwegian patients with previous
AMI who received 4 g/day of n-3 LCPUFA supplements for 1-2 years, although TG
levels were significantly decreased following n-3 LCPUFA consumption [100].
Similarly, there was no reduction in total cardiovascular events or mortality in Danish
patients with chronic hemodialysis receiving 1.7 g/day of n-3 LCPUFAs [101].
However, the number of incident AMIs was significantly reduced in this high-risk
population. In a Norwegian trial among elderly men with high-risk of CVD, there was
a borderline statistically significant reduced risk of all-cause mortality associated with
an increased intake of n-3 LCPUFAs [102]. Two Japanese studies showed no
association between a higher intake of n-3 LCPUFAs and coronary artery disease
(CAD) mortality or sudden death [103,104]. There was, however, a significantly
decreased risk of non-fatal coronary events, mainly AMI, with high intakes of n-3
LCPUFAs. Even though the overall associations between n-3 LCPUFA intakes and
reduced risk of major cardiovascular events and mortality are controversial, there are
indications of beneficial effects on certain outcomes with intakes above the suggested

threshold level.

1.4.4 Omega-3 fatty acids and diabetes mellitus

Numerous studies have focused on diets among patients with diabetes, with
conflicting evidence and inconclusive results regarding its associations to dietary n-3
LCPUFAs [105,106,107,108,109,110]. Although several studies have demonstrated
associations between increasing intakes of n-3 PUFAs and decreased incidence of
diabetes [111,112,113], a large cohort study in US adults without pre-existing chronic

disease [114] and a prospective study in women [115] concluded that high intakes of
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n-3 LCPUFAs and fish might increase the incidence of type 2 diabetes. A study in
post-MI patients did not report any relations between n-3 LCPUFAs and
cardiovascular events [116]. However, a post hoc analysis among the diabetic
participants revealed a strong decline in cardiovascular events after n-3 PUFA

supplementation [117].

In the diabetic state, cardiac metabolism is modified by systemic metabolic changes,
which alters lipid profile and thus FA utilization. This could eventually result in
severe disease such as heart failure [118]. Randomized trials in heart failure patients
have demonstrated reduced mortality [119] and improved left ventricular systolic
function and functional capacity [93,120] following n-3 LCPUFA intervention.
Previous studies indicate insulin resistance among patients with heart failure [121].
Data from studies in persons with type 2 diabetes have shown benefits of n-3
LCPUFAs on blood TG, with no improvement in insulin sensitivity or glucose control
[87]. Treatment strategies including dietary intake of n-3 LCPUFA have been
recommended among patients with type 2 diabetes according to the American Heart

Association and the American Diabetes Association statements from 2007 [122].
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2. Aims of study

2.1 Overall aim

The overall aim was to investigate the dietary intake of n-3 LCPUFAs and risk of

future coronary events in patients with CAD and to explore possible mechanistic

effects of PPAR activation in heart by bioactive FAs in an animal model.

2.2 Specific aims

1.

2.

3.

To examine the relation between dietary intake of n-3 LCPUFAs or fish and
risk of incident coronary events or mortality in a patient cohort having well-
characterized and well-treated CAD (90% statin users) and a relatively high
consumption of n-3 LCPUFAs.

To reveal a possible influence of impaired glucose metabolism on n-3
LCPUFA effects by studying the association between n-3 LCPUFA intake and
risk of AMI in CAD patients with or without diabetes mellitus. This was based

on the beneficial effects previously observed in heart failure patients.

To study PPAR mechanisms in the rat heart by investigating the long-term
influence of the poorly oxidizable mitochondrial targeted pan-PPAR agonists
TTA and/or high-dose FO on cardiac lipid metabolism. The effect on FA
composition and related gene expression was observed in an animal model.
Data from liver was applied to reveal possible organ specific effects in the

heart.
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3. Subjects and Methods

3.1 Human studies

3.1.1 Study population

The participants in the human studies included in this thesis were a sub-selection of
patients included in the Western Norway B-Vitamin Intervention Trial (WENBIT).
The main study was a prospective, randomized, double-blind, placebo-controlled
secondary prevention study which investigated the effect of homocysteine lowering B
vitamins (0.8 mg folic acid + 0.4 mg vitamin B-12), vitamin B-6 (40 mg), their
combination, or placebo on cardiovascular outcomes and all-cause mortality [123].
Eligible patients in the trial were men and women aged >18 years undergoing
coronary angiography for suspected CAD and/or aortic valve stenosis at Haukeland
University Hospital or Stavanger University Hospital in Western Norway. Patients
who participated in other trials, abused alcohol, suffered from mental illness, had
cancer, or were unavailable for follow-up were excluded from participating in the
trial. Patients were recruited between 1999 and 2004. During this period a total of
10241 patients underwent coronary angiography for suspected CAD or acute coronary
syndrome (ACS) at the two study centers. Due to capacity reasons, not all eligible
patients were screened. A total of 4241 patients at Haukeland University Hospital
consented to withdrawal of blood at baseline, regardless of them being included in
WENBIT after coronary angiography. This total cohort is denoted the Bergen
Coronary Angiography Cohort (BECAC). At Stavanger University Hospital 969
patients were included in WENBIT, with blood samples being withdrawn exclusively
in those being recruited into the study after diagnosed with CAD assessed by coronary
angiography. Thus, a biobank was built up of samples from a total of 5210 patients
from the two hospitals, denoted the Western Norway Coronary Angiography Cohort

(WECAC). All participants who were eligible for and consented to participate in
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BECAC signed a consent form, and participants in WENBIT signed a separate
consent form. A total of 3090 patients were randomly assigned into the WENBIT
study. The study protocol was in accordance with the principles of the Declaration of
Helsinki, and the trial was approved by the Regional Committee for Medical Research
Ethics, the Norwegian Medicines Agency, and the Data Inspectorate. Overall, there
was no short- or long-term benefits on cardiovascular outcome associated with the

study treatment [123].

In Paper 1 we studied participants in WENBIT who completed a semiquantitative
food-frequency questionnaire (FFQ) at trial enrollment. In total, 2484 patients
completed the FFQ. Nineteen questionnaires were excluded because they contained
more than one blank page. Participants with very low (<3000 kJ for women and
<3300 kJ for men) or very high (>15000 kJ for women and >17500 kJ for men)
estimated daily energy intakes were excluded (n=53), leaving 2412 patients with valid
dietary data. In Paper 2 we investigated the same cohort as in Paper 1, but by doing
sub-group analyses according to parameters of glucose metabolism, and 34 patients
were excluded because of missing HbAlc data. Thus, Paper 2 included a total of
2378 patients with available data on HbAlc and with FFQ considered of adequate
quality. Figure 4 provides an overview of patient selection from baseline collection
of blood samples and recruitment to WENBIT, and to final inclusion in the sub-
studies presented in Paper 1 and 2. In an independent study based on the source
population for patients recruited to WENBIT at Haukeland University Hospital,
serum FA composition was determined among 1367 consecutive patients examined in
2000-2001. In the currently investigated cohort, 723 patients had FA composition
data.
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Figure 4. Flow of randomized patients from WECAC to study populations in Papers 1 and 2.
WENBIT FFQ designates the study population in Paper 1 and WENBIT HbAlc the study
population in Paper 2. Abbreviations: WECAC, Western Norway Coronary Angiography Cohort;
WENBIT, Western Norway B-Vitamin Intervention Trial; HUS, Haukeland University Hospital;
SUS, Stavanger University Hospital; BECAC, Bergen Coronary Angiography Cohort; FFQ, Food
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3.1.2 Dietary assessment

The FFQ (Supplement A) was developed at the Department of Nutrition, University
of Oslo, and had previously been validated against plasma phospholipid FA
concentrations in adult and older Norwegian men and women with correlations of
0.51 and 0.49, and the ability to classify 81% and 78% into the same or adjacent
quartile, for EPA and DHA, respectively [124]. The FFQ was given to patients on the
day of enrollment and returned by mail to the study center or collected at the follow-
up appointment 1 month later. The FFQ included 169 food items that were grouped
according to Norwegian meal patterns and was designed to obtain information on
usual food intake during the past year. The frequency of consumption was given per
day, week, or month, depending on the items in question. The portion sizes were
given as household measures or units such as slices or pieces. Intakes of fish and fish
products were assessed by questions related to breakfast, lunch, and dinner. For
breakfast or lunch, amounts were estimated from number of sandwiches with the
following spreads eaten per week: tinned mackerel in tomato paste or smoked
mackerel; sardines, pickled herring, anchovies, or similar; and salmon or trout (11
frequency categories). For lunch or dinner, categories were fish cakes, fish pudding,
or fish balls; fish fingers; boiled cod, coalfish, or haddock; fried cod, coalfish, or
haddock; fresh, salt-cured, or smoked herring; fresh or smoked mackerel, salmon, or
trout (wild or farmed); fish stew, fish soup, or fish au gratin; and shrimp or crab (9
frequency categories and 5 related amount categories such as piece, fillet, or
household measures). Dietary fish data was presented as total fish intake. The FFQ
also included questions about supplements, including cod liver oil, cod liver oil
capsules, and FO capsules. Intake categories were 3-fold: whole year or winter use
only, times per week, and amount per time. Total intake of n-3 LCPUFA was used for
the analyses. Nutrient intake was calculated by using a database and a software
system developed at the Department of Nutrition, University of Oslo

(Kostberegningssystem, version 3.2; University of Oslo, Norway) [125].
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3.1.3 Assessment of clinical data

Demographic, clinical, and routine laboratory data were obtained by study personnel.
Smokers included self-reported current smokers, those reported having quitted within
the last four weeks, and patients with plasma cotinine levels >85 nmol/L. Left
ventricular ejection fraction (LVEF) (%) was determined by ventriculography or
echocardiography and values <50% were considered to be impaired. Estimated
glomerular filtration rate (eGFR) was calculated applying the Chronic Kidney Disease
Epidemiology Collaboration [126]. In Paper 2, participants were sub-grouped into
non-diabetic (no previous diabetes and HbAlc <5.7%), pre-diabetic (no previous
diabetes and HbAlc >5.7%), and diabetic (previously diagnosed diabetes or fasting
baseline serum glucose >7.0 or a non-fasting glucose >11.1 mmol/L). These threshold
levels were selected based on established numbers for diagnosing pre-diabetes and
diabetes [127]. According to the new diabetes definitions, patients with HbAlc >6.5%
are classified with diabetes. It is presently unknown if this patient group hold a risk of
macrovascular complications which is comparable to those with diabetes either
clinically diagnosed or defined by threshold glucose levels [128]. Therefore patients
with HbAlc >6.5% who were not previously diagnosed with diabetes were classified

as having pre-diabetes in our study.

3.1.4 Assessment of laboratory data

Standard blood laboratory parameters were analyzed from fresh samples according to
routine protocols at the respective central laboratories at the two study centers.
Samples for the biobank were collected together with routine blood samples at
baseline coronary angiography and stored at -80°C until analysis. Reagent kits of type
Tina-quant” on Apolipoprotein A-I (Apo A-l, ver.2), Apo B (ver.2), and C-reactive
protein (latex, high sensitive assay) were obtained from Roche Diagnostics (GmbH,
Mannheim, Germany), and serum measurements on these parameters were done on
the Hitachi 917 system (Roche Diagnostics). HbAlc was determined by matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF
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MS) [129] and plasma cotinine by liquid chromatography/tandem mass spectrometry
(LC/MS/MS) at BEVITAL AS (http://www.bevital.no). Serum FA methyl esters

(FAMESs) were obtained by heating of lipids with methanol at 90°C for one hour.
Sulphuric acid was used as a catalyst [130]. After extraction into an organic solvent,
FAMEs were analyzed by gas-liquid chromatography (GC). The gas chromatograph
(GC 8000 TOP, Finnigan, Austin, TX, USA) was equipped with a programmed
temperature vaporization injector, flame-ionization detector, AS 800 autosampler, and
with a fused silica capillary column DB1-ms (J & W Scientific, Folsom, CA, USA).
Hydrogen was used as a carrier gas. Column temperature was programmed from 110
to 310°C with a gradient of 2.5°C/min. GC signal was acquired and evaluated with
Chromeleon software (Dionex Corporation, Sunnyvale, CA, USA). Peaks were
identified by means of known FA standards and by means of mass spectra, obtained
by GC/MS analysis (GCQ, Finnigan) on the same column. Internal standard (C21:0)
was used for quantification after calibration with known mixtures of FA standards.

LDL cholesterol was calculated by using the Friedewald formula [131].

3.1.5 Endpoints and follow-up

The main endpoint in Paper 1 was a composite of coronary events comprising
hospitalization for unstable angina pectoris, non-fatal AMI, and coronary death. In
addition, the following separate endpoints were considered: all-cause death, coronary
death, AMI (fatal and non-fatal), and stable angina pectoris with angiographically
verified progression of CAD. In Paper 2, the endpoint was fatal and non-fatal AMI,
presented both as total AMI and as separate fatal and non-fatal AMIs.

Events and supplemental medical information were collected from hospitals and on
deaths from the Norwegian Cause of Death Registry. If death occurred <28 days after
the onset of an event, the event was classified as fatal. AMI was classified according
to the diagnostic criteria of the revised definition of AMI from 2000 [132].
Procedure-related non-fatal AMI occurring <24 hours after coronary angiography,

percutaneous coronary intervention (PCI), or coronary artery bypass graft surgery
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(CABG) were excluded. Cases of unstable angina pectoris were classified as
endpoints if patients were urgently admitted to hospital due to acute attacks of typical
ischemic symptoms, accompanied by electrocardiographic ST-T findings of
myocardial ischemia at rest, and/or if coronary angiography verified significant
progression of their CAD [133]. Endpoints were recorded until December 31* 2006,

and all events were adjudicated by members of the endpoints committee.

3.1.6 Statistical analyses

Paper 1

In Paper 1, participants were ranked into quartiles of n-3 LCPUFA consumption
[combined daily intakes of EPA, docosapentaenoic acid (DPA, 22:5n-3), and DHA]
expressed as percentage of total energy (%TE), to control for confounding by

differences in energy intake [134], or ranked into quartiles of fish intake (g).

Statistical analyses were performed by using SPSS for Windows, version 15 (SPSS
Inc, Chicago, IL) and R version 2.0 (The R Foundation for Statistical Computing,
Vienna, Austria). Generalized additive models (GAMs) were applied to explore any
non-linear associations between intake of n-3 LCPUFAs and the main endpoint of
coronary events after adjustment for potential confounders [135,136]. The functional
form of the natural logarithm of n-3 LCPUFA intake (g) was modeled with a
smoothing spline fit (4 df) in a multivariate Cox proportional hazards model. Power
was assessed on the basis of a 2-sided chi-square test (significance level of 5%)
comparing quartile 1 with quartiles 2—4 (combined) (SamplePower 2.0; SPSS Inc,
Chicago, IL). The statistical power to detect a decrease in event rate from 15% in
quartile 1 to 10% in quartiles 2—4 of n-3 LCPUFAs (33% decrease in relative risk)
was 90%. To detect a decrease from 15% to 12% (20% decrease in relative risk)

would give a power of 46%.
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Paper 2

In Paper 2, participants within each sub-group of non-diabetes, pre-diabetes, and

diabetes were ranked into tertiles of daily n-3 LCPUFA (%TE) and fish (g) intake.

Spearman’s rank correlation was used to assess associations between various
continuous parameters. The Kolmogorov-Smirnov test was used to examine the
continuous FA variables for normal distribution. Variables that were not normally
distributed were log-transformed. Estimated marginal means and 95% confidence
intervals (CIs) of FA profile were calculated for non-diabetic, pre-diabetic, and
diabetic participants by one-way analysis of covariance (ANCOVA), with
adjustments made for age, sex, and statin dose. Post-hoc comparisons for specified
between-group differences were made by using the Tukey HSD test for FAs where

groups significantly differed as assessed by ANCOVA.

Survival curves were created for follow-up until the 95" percentile of follow-up time
(corresponding to 6.8 years) using the Kaplan-Meier method. Interactions between
intake of n-3 LCPUFAs and diabetes were tested by adding product terms in the Cox
model. Statistics were performed by using IBM SPSS Statistics for Windows, version
19 (SPSS Inc., Chicago, IL, USA) and R version 2.15.2 (R Development Core Team,

Vienna, Austria).

Paper 1 and 2

Means and SDs [or medians (25th, 75th percentile)] and proportions were computed
for selected baseline characteristics and dietary variables. Trends across quartiles or
tertiles were tested by using linear regression for continuous variables and logistic

regression for binary variables.

Hazard ratios (HRs) and 95% CIs were estimated by using Cox proportional hazards.
Tests for trend were performed by assigning equally spaced weights for each quartile

(1-4) or tertile (1-3) of n-3 LCPUFA or fish intakes and modeling this as a
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continuous variable in separate Cox proportional hazards models. The basic model
included age and sex. Additional covariates in the multivariate model were selected

on the basis of clinical relevance (Table 1).

Table 1. Covariates included in the multivariate adjusted models in Cox regression analyses in
Papers 1 or 2

Continuous Categorical Paper 1 Paper 2

Hypertension Yes or no X

Current smoking Yes or no' X X
Serum triglycerides mmol/L X
Left ventricular ejection fraction % X X
Extent of CAD 0-3° X
Current use of statins Yes or no X

Acute coronary syndrome Yes or no X X
Diabetes mellitus Yes or no X

Baseline PCI Yes or no X
Baseline CABG Yes or no X
Fasting Yes or no X
Folic acid treatment Yes or no X
Vitamin B6 treatment Yes or no X

Abbreviations: CABG, coronary artery bypass graft surgery; CAD, coronary artery disease; PCI,
percutaneous coronary intervention

'Still smoking at baseline or <1 month since quitting, or assessed by cotinine levels >85 nmol/L
Non-significant; single, double, or triple vessel

Several covariates were assessed for adjustment, but did not appreciably alter the
results and were not included in the final model (Table 2). Physical activity was not
included because data was missing in 23% of the patients. P-values <0.05 were

considered to be statistically significant.
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Table 2. Covariates assessed for use (but not included) in Cox regression analyses in Papers 1
or2

Continuous Categorical Paper 1 Paper 2
Body mass index Quartiles X X
Previous AMI Yes or no X
Previous PCI Yes or no X
Previous CABG Yes or no X
Previous cerebrovascular disease Yes or no X
Previous carotid artery stenosis Yes or no X
Previous peripherial arterial disease Yes or no X
Serum apolipoprotein A-I g/L X
Serum apolipoprotein B g/L X
Glycosylated haemoglobin % X
C-reactive protein mg/L X
Current use of B-blockers Yes or no X X
Current use of ACE inhibitors Yes or no X X
Current use of metphormin Yes or no X
Current use of sulphonamides Yes or no X
Current use of insulin Yes or no X
Dietary intake of SFA Quartiles X
Dietary intake of n-6 PUFA Quartiles X
Dietary intake of ALA Quartiles X
Dietary intake of fiber Quartiles X
Dietary intake of thiamine Quartiles X
Dietary intake of riboflavin Quartiles X
Dietary intake of tocopherol Quartiles X
Physical activity 0-3' X X

Abbreviations: ACE, angiotensin-converting enzyme; ALA, a-linolenic acid; AMI, acute myocardial
infarction; CABG, coronary artery bypass graft surgery; CAD, coronary artery disease; n-6 PUFA,
n-6 polyunsaturated fatty acids; PCI, percutaneous coronary intervention; SFA, saturated fatty acids
'0, 1, 2-3, or >4 days/week
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3.2 Animal study

3.2.1 Study design and sampling

Male Wistar rats, aged eight to ten weeks, were obtained from Taconic Europe A/S.
They were housed in groups of five and maintained at a constant 12 hours light-dark
cycle at a temperature of 22 + 1°C and a relative humidity of 55 + 5%. Animals were
acclimatized under these conditions for one week prior to study start and had free
access to standard chow during the acclimation period and water at all times. During
the feeding period the animals received one out of five diets for a period of 50 weeks

(Table 3).

Table 3. Animal study diets

Diet (% w/v)' Low fat Control TTA FO TTA + FO
Lard (fat) 5.0 23.0 22.6 12.6 12.2
Soybean oil (fat) 2.0 2.0 2.0 2.0 2.0
TTA 0.375 0.375
EPAX 4020 TG 10.4 10.4
Casein (protein) 15.6 19.7 19.7 19.7 19.7
Cornstarch 57.2 353 353 353 353
Sucrose 10.0 10.0 10.0 10.0 10.0
Fiber 5.0 5.0 5.0 5.0 5.0
AIN-93G mineral mix 3.5 3.5 3.5 3.5 35
AIN-93 vitamin mix 1.0 1.0 1.0 1.0 1.0
L-cysteine 0.3 0.3 0.3 0.3 0.3
Choline bitartrate 0.25 0.25 0.25 0.25 0.25
Tert-butyl-hydroquinone 0.014 0.0014 0.0014 0.0014 0.0014
KH,PO,4, monobasic 0.13

Abbreviations: TTA, tetradecylthioacetic acid; FO, fish oil; EPAX 4020 TG, fish oil provided by
EPAX AS
'Ingredients are given in mass concentration (mass/volume, % w/v)

After 50 weeks, the animals were sacrificed using isoflurane (Forene, Abbott
Laboratories, Abbott Park, IL) under non-fasting conditions. The abdomen was
opened in the midline and blood was drawn by cardiac puncture and collected in BD
Vacutainer tubes containing EDTA (Becton, Dickinson, and Company, Plymouth,

UK). The heart and liver tissues were collected and immediately freeze-clamped as
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drainage of blood from the animal was complete. Plasma and tissue samples were

stored at -80°C until analyses.

Gastric total n=210

v

Gastric heart n=106

Voo b

Heart tissue

Low fat Control TTA FO TTA+FO
samples per | | 777 p1s || nes ne22 n-t6
diet group

[ J
AHEIVSES in Lipids FAcomp En:lymes
h t ti n=15/group n=12/group andqPCR
earttissue n=10/group

Figure 5. Sub-group analyses on heart tissue of male Wistar rats after dietary intervention
with TTA and/or FO — Gastric heart study. A total of 210 rats were included in the main study,
from which 106 were selected for heart tissue sampling. Number of available tissue samples in each
group and number of animals included in each analysis were as designated. Abbreviations: TTA,
tetradecylthioacetic acid; FO, fish oil; FA comp, fatty acid composition; qPCR, real-time polymerase

chain reaction.

A total of 210 animals were included in the main study. As this study was not solely
designed for heart tissue analyses, the heart was only dissected out in 106 animals.
Between 10 and 15 heart tissue samples from each diet group was selected for the

following analyses (Figure 5): lipid pattern; FA composition; enzyme activity; or
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real-time polymerase chain reaction (qPCR). Selections were made based on

availability of heart tissue, capacity/cost, and achieving a sufficient sample size.

The animal experiments were standardized according to the Guidelines for the Care
and Use of Experimental Animals, and the protocol was approved by the Norwegian

State Board for Biological Experiments with Living Animals.

3.2.2 Tissue analyses

Tissue samples were homogenized and lipids extracted with chloroform-methanol
[137]. Samples were evaporated under nitrogen and re-dissolved in isopropanol
before lipid analysis on the Hitachi 917 system (Roche Diagnostics, GmbH,
Mannheim, Germany). Total cholesterol (CHOD-PAP) and TG (GPO-PAP) kits were
from Roche Diagnostics and the phospholipids kit from DiaSys Diagnostic Systems
GmbH (Holzheim, Germany). FAMEs were obtained from tissue extracted lipids and
FA composition was analyzed by following the same procedure as for serum, which

was described in Section 3.1.4.

After homogenization and fractionation [138], enzymatic activities of CPT-I and -II
[139], fatty acyl-CoA oxidase (ACOX) [140,141], glycerol-3-phosphate
acyltransferase (GPAT) [142], and FA synthase (FAS) [143] were measured in the

post-nuclear extracts of heart tissue.

Total cellular RNA was purified by using the RNeasy kit and the protocol for fibrous
tissue (Qiagen GmbH, Hilden, Germany). Prior to gene analyses, RNA quantity was
determined  spectrophotometrically (NanoDrop 1000, NanoDrop products,
Wilmington, DE, USA), while quality was evaluated by capillary electrophoresis
(Agilent 2100 Bioanalyzer, Agilent Technologies Inc., Santa Clara, CA, USA). RNA
was reversely transcribed to cDNA in 100 pl reactions using TagMan® Reverse
Transcription Reagents (Applied Biosystems, Foster City, CA, USA). Samples were
treated with RNase inhibitors as part of the protocol. Selected genes were analyzed

using qPCR (ABI PRISM 7900 HT Sequence Detection System, Applied
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Biosystems): Rn00566242 (Cpt-1b), Rn00571166 (Ucp2), Rn00565874 (Ucp3),
Rn00580241 (Pgcla), Rn00580051 ml (Tfam), Rn01455958 ml (Nrfl),
Rn00580728 (Cd36), Rn00588652 (Cact), Rn00577366 (Fabp3), Rn00563649
(Acadvl), Rn00566390 (Acadm), Rn00574634 (Acads), Rn00566193 (Ppara),
Rn00565707 (Ppard), Rn00440945 (Ppary), and Rn00585821 ml (Fatpl). All
primer/probe sequences for the studied genes were obtained from Applied
Biosystems. The MIQE guidelines for qPCR analyses were used when selecting

house-keeping genes [144,145].

3.2.3 Statistical analyses

The results were presented as means with their standard deviations (SD) for a
minimum of eight and a maximum of fifteen rats per group. Gene expression data was
normalized against the control diet group. The low-fat diet group was excluded from
the analyses, as this group was not comparable to the TTA- and FO-intervention
groups. Data was evaluated by two-way analysis of variance (ANOVA) for treatment
additivity and synergy [146]. Results were not adjusted for multiple comparisons, and
thus P-values <0.01 were considered significant. Statistics were performed by using

PASW Statistics for Windows, version 18 (SPSS Inc., Chicago, IL, USA).
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3.3 Methodological considerations

3.3.1 Human studies

The studied cohort (Paper 1 and 2) was large and well-characterized with high
accuracy in data collection including angiographic examination of CAD and a long-
term follow-up with respect to clinical endpoints. Being a prospective cohort study
among patients with stable angina, participants were likely to have stable dietary
habits, which might provide a more correct picture of sustained dietary intake during
follow-up compared with patients suffering an ACS. On the other hand, results
obtained in this patient cohort do not automatically apply to the general population.
Notably, since most previous studies have based their results on circulating levels of
n-3 LCPUFAs and since many studies have been done on patient groups not receiving
statins, data is scarce on the association between dietary intake of n-3 LCPUFA and
AMI in patients with CAD who are treated with statins. Our study had limited power
to detect significant effects due to a lower event rate than expected, and for this
reason we cannot exclude the possibility of false negative (type II error) or positive
(type I error) results. This is particularly applicable for the non-diabetes group in

Paper 2.

Observational studies like the current investigation are frequently applied in order to:
validate results from randomized controlled trials in less selective populations;
investigate sub-groups of interest; and generate new hypotheses as a basis for further
studies [147]. Since the exposure variables in this cohort were measured at baseline
only, while the outcome events occurred up to several years after, it is possible that
the exposure status might have changed during this period, resulting in a regression
dilution bias [148]. In order to correct for this, we would have needed multiple
measurements over time. Thus, we cannot rule out that estimates might have been
biased and thus the effects could be under- or overestimated. By studying
characteristics in the total population of FFQ respondents and non-respondents as

described in Paper 1, it seemed that patients with stable angina both had the most
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frequent FFQ response rate and the highest n-3 LCPUFA intake. Thus, since these
were patients with mostly stable angina and already established CAD, it can be
assumed that any changes in dietary habits due to known heart disease had already
been established at study start [149]. However, increased intakes of n-3 LCPUFAs
combined with other lifestyle factors like physical activity would altogether affect the
results. For this reason, we cannot exclude reverse causality or confounding from
inappropriately clarified or unrevealed risk factors or lifestyle habits in this study,
despite careful adjustments for important covariates. As these patients were all
participants in WENBIT, a B-vitamin intervention trial, it was necessary to rule out
the possibility of treatment with folic acid/vitamin B12 or vitamin B6 as potential
confounders. Adjustments for B-vitamin intervention in the survival analyses did not
affect the outcome. Furthermore, 89% of the patients were treated with statins. A
modifying effect by statins on n-3 LCPUFA supplementation has previously been
investigated, where no additional benefits could be found on top of statin treatment
[150]. Although we cannot rule out such an effect modification, adjustment for the
effective dose of statin treatment (expected % reduction in LDL of the actual type and

dose of statin) did not change the outcome (data not shown).

While selection bias might be a potential problem in observational studies,
randomized controlled trials are designed to eliminate such bias. However, when
observational studies are properly designed there seem to be no major differences in
outcome as compared to related randomized controlled trials [151]. Whereas
randomized controlled trials are typically limited by ethical rules to avoid major
adverse effects, observational studies do not have the same ethical challenges. The
current study was performed in a cohort with extensive data collection and follow-up,
reducing the confounding/selection bias to a minimum. AMI was chosen as the main
endpoint of the sub-group analysis in Paper 2, although the outcome-rate was overall
low. Using a composite endpoint as in Paper 1 increases the number of events.
However, it has been stated that composite endpoints might in general be inadequate,

since the results apply to the individual components of the endpoint [152].



47

The use of sub-group analyses may be contentious. Although there may be limited
reliability of sub-group analyses in general, due to a risk of bias, we have important
reasons for performing such analyses in this prospective study: (1) A solid clinical
hypothesis, supported by internal and external evidence and (2) Plausible pre-defined
sub-groups directly related to the hypotheses and aims. We did not perform multiple
testing additional to these hypotheses, in line with articles discussing this topic

[153,154].

Due to resource constraints, FFQs were not checked for errors when received at the
study center, and participants with extreme values or partially missing reported
intakes were excluded ahead of the current studies. However, the estimated dietary
intakes were comparable to previous surveys in the region using the same

questionnaire [155].

Serum was used for the FA analyses. Within-day coefficient of variation did not
exceed 5% for any FA, making the analyses accurate. In principle, serum FA profile
reflects the dietary intake corresponding to the latest meal before blood sampling [46].
Thus, measuring parameters like FA composition and HbA 1c during follow-up would
have been very useful to confirm that a similar pattern could be detected.
Unfortunately, due to cost and capacity reasons, this was not prioritized. Altogether,
any changes in patient status, like diet, lifestyle, and medications during follow-up,
would potentially influence the outcome. For optimization of FA composition results,
analyses might have been performed in erythrocytes because of their slower turnover
rate compared to lipoproteins in serum. Thus, erythrocyte samples have been
suggested to more likely resemble the long-term FA intake as compared to its serum
values [156]. Furthermore, we did not have serum FA composition data on the entire
study population. Thus, risk assessment was based on dietary data. Moreover, since
the majority of the patients in the studied cohort used statins, which significantly
influence the FA profile in plasma [157], FA composition was adjusted according to

statin dose before presenting the results.
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3.3.2 Animal study

The animals in this thesis were part of a larger study [158], which included a jejuno-
gastric reflux surgical procedure. A separate experiment enduring 11 weeks were
done comparing animals with and without operation, to make sure that the procedure
did not affect the nutritional state in the animals. There was no difference in body
weight or plasma lipids between the two groups (data not shown), and thus it was

assumed that the operation had no adverse effects regarding nutrition.

The following house-keeping genes were included in gene analyses: Hs99999901 sl
(18S, Eurogentec S.A., Seraing, Belgium), Rn99999916 sl (Gapdh, Applied
Biosystems), and Rn00821065 gl (Arbp, Applied Biosystems). The I/8S house-
keeping gene was found to be the most consistent between the diet groups using
geNorm [159] and was selected for normalizing the expression value of each gene in

all samples.



49

4. Main results

4.1 Paper 1

In this study among 2412 patients with CAD, mean age was 61.7 years, and 80.5%
were men. There were 84.7% with stable angina pectoris, 14.1% with ACS, and 1.3%
with aortic valve stenosis at baseline angiography. The majority of participants

received first-line treatment with acetylsalicylic acid and statins.

Mean (+ SD) daily dietary intakes of n-3 LCPUFAs and total fish across quartiles of
n-3 LCPUFA (footnote 1) or total fish (footnote 2) intake were as shown in Table 4.

Intakes of oily fish, as well as FO and cod liver oil supplements, increased across

quartiles of n-3 LCPUFA intake.

Table 4. Daily dietary intakes by quartiles

Quartile 1 Quartile 2 Quartile 3 Quartile 4
n-3 LCPUFAs (%TE)' 0.15 +0.06° 0.34 £0.06 0.57 £0.08 1.15+0.40
n-3 LCPUFAs (g)' 0.58+0.29 0.83+£0.30 1.36 £ 0.44 2.64+1.18
Total fish (g)' 64.3+£40.3 100.4 +48.0 123.9+54.1 149.8 £ 84.6
Total fish (g)* 41.1+16.3 81.4+93 118.0+12.4 198.0 + 63.8

Abbreviations: n-3 LCPUFAs, n-3 long-chain polyunsaturated fatty acids; %TE, percentage of total
energy

'By quartiles of n-3 LCPUFA intake (%TE)

?By quartiles of total fish intake (g)

*Mean = SD (all such values)

During a median (5th, 95th percentiles) follow-up of 57 (33, 83) months 292 patients
experienced a coronary event, 137 patients died (76 cases were coronary death), 210
had an AMI, and 298 patients with stable angina had an angiographic verified
progression of their CAD.
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Table 5. Hazard ratios (and 95% Cls)' for coronary events by quartiles of n-3 long-chain
polyunsaturated fatty acids (LCPUFAs) (%TE) and fish (g)

Intake of n-3 LCPUFA’ Total fish® Lean fish* Oily fish® Processed fish®
Age- and sex-

adjusted

Quartile 1 1.00 1.00 1.00 1.00 1.00
Quartile 2 0.80(0.58,1.12)  1.04(0.75,1.45) 0.80(0.57,1.12)  0.65(0.46,0.92) 0.8 (0.64, 1.21)
Quartile 3 0.86(0.62,1.19)  1.04(0.75,1.44)  0.99(0.72,1.36)  1.00(0.74,1.36)  0.78 (0.57, 1.08)
Quartile 4 0.93 (0.68,1.28)  0.98(0.70, 1.36)  0.92(0.67,1.28)  0.92(0.67,1.27)  0.83 (0.60, 1.14)
P for trend 0.77 0.88 0.95 0.78 0.19
Multivariate’

Quartile 1 1.00 1.00 1.00 1.00 1.00
Quartile 2 0.82(0.59, 1.14)  1.08(0.78,1.50)  0.79(0.56, 1.11)  0.66 (0.47,0.94) 0.8 (0.64, 1.20)
Quartile 3 0.90 (0.65,1.24)  1.07(0.77,148)  1.00(0.73,1.37)  1.00(0.74,1.37)  0.77(0.56, 1.07)
Quartile 4 0.95(0.69,1.31)  1.04(0.74,1.45)  0.98(0.70,1.36)  0.95(0.69,1.31)  0.86 (0.63, 1.19)
P for trend 0.89 0.86 0.76 0.69 0.26

'Hazard ratios and 95% Cls were calculated by using Cox proportional hazards.

*Combined eicosapentaenoic-, docosapentaenoic-, and docosahexaenoic acids.

3Total of lean-, oily-, processed-, and unspecified fish, in addition to shellfish and fish sandwich.
*Combined cod, pollock, and haddock.

*Combined herring (included pickled), mackerel (included smoked and in tomato sauce), salmon,
trout, sardines, anchovies, or similar.

%Combined fish cakes, fish pudding, fish balls, fish sticks, fish stew, fish soup, and fish gratin.
"Multivariate model adjusted for age (continuous), sex, left ventricular ejection fraction
(continuous), diabetes mellitus (yes or no), hypertension (yes or no), current smoker (still smoking at
baseline or <1 month since quitting), acute coronary syndrome (yes or no), and current use of statins.

The age- and sex-adjusted risk of having a coronary event was 20%, 14%, and 7%
lower for patients in quartiles 2, 3, and 4 of n-3 LCPUFAs, respectively, compared to
the lowest quartile, without any significant or dose-response relations (Table 5).
When comparing quartiles 2—4 (combined) with quartile 1 there was a 13% risk

reduction (P=0.27). HRs were not appreciably changed after multivariate adjustments.

There were no associations between intake of n-3 LCPUFAs and all-cause or
coronary mortality or AMI. Furthermore, there was no association between n-3
LCPUFA intake and risk of verified progression of CAD in patients with stable

angina. A post hoc additive proportional hazards model indicated a statistically
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significant increased risk at the very lowest end, equivalent to a daily intake of n-3

LCPUFAs below approximately 300 mg.

No associations could be seen between fish intake (total-, lean-, oily-, or processed
fish in g/day) and coronary events (Table 5) or any other studied outcome. Similarly,
risk of coronary events did not differ between users and non-users of FO or cod liver

oil.

4.2 Paper 2

The study population comprised 2378 patients with HbAlc data, where 16 (0.7%) had
type 1 and 301 (12.7%) type 2 diabetes, either clinically diagnosed or determined
according to fasting baseline serum glucose >7.0 or a non-fasting glucose >11.1
mmol/L before angiography. This study cohort had very similar characteristics to the
one in Paper 1, being the same cohort except from 34 patients who were excluded
due to missing HbAlc data. Mean (£ SD) daily dietary intakes of n-3 LCPUFAs,
including supplements, among all 2378 participants were 0.43 + 0.24, 1.08 = 0.37,
and 2.38 + 1.15 g/day for tertiles 1-3, respectively.

Serum FA profiles were evaluated among 723 patients. There was a strong
association between intake and serum levels of total n-3 LCPUFAs (rho=0.515,
P<0.001). There was no difference in mean serum levels of total or individual n-3

LCPUFAs between the three sub-groups.

During a mean (£ SD) follow-up of 4.8 (£ 1.4) years, a total of 208 participants
(8.7%) experienced a fatal or non-fatal AMI. Intake of n-3 LCPUFAs was energy

adjusted and given as %TE in the analyses.

In sub-groups, 1012 patients were classified with non-diabetes, 1049 patients with
pre-diabetes, and 317 patients with diabetes. In non-diabetic patients there was a non-
significant trend towards an increased risk of experiencing an AMI with n-3 LCPUFA

intakes corresponding to the upper vs. lower tertile. No associations were seen
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between tertiles of n-3 LCPUFA consumption and risk of AMI in pre-diabetic
patients, and restricting the analysis to patients with HbAlc >6.5% (n=423) provided
similar results (Table 6). Among patients with diabetes there was a significantly
reduced risk of experiencing an AMI in the upper vs. lower tertile of n-3 LCPUFA
intakes (P=0.02), with a dose-response relation (P for trend=0.01). Adding patients
with HbAlc >6.5% to the diabetes group clearly weakened the results (Table 6).

Table 6. Hazard ratios (and 95% Cls) for acute myocardial infarction (fatal and non-fatal) by
tertiles of dietary n-3 LCPUFA (%TE)!

423 patients with 740 patients with
HbAlc >6.5%" diabetes or HbAlc >6.5%’

Age/sex adjusted Multivariate® Age/sex adjusted  Multivariate®
Number of events 32 75
Tertile 1° 1.00 1.00 1.00 1.00
Tertile 2° 1.26 (0.55, 2.89) 1.24 (0.53,2.86)  0.83(0.49,1.42) 0.93 (0.53, 1.61)
Tertile 3’ 0.86 (0.35,2.11) 0.91 (0.36,2.28)  0.66 (0.38,1.16)  0.71 (0.40, 1.26)
P for trend 0.74 0.85 0.15 0.24

'LCPUFA, long-chain polyunsaturated fatty acids; %TE, percentage of total energy. Hazard ratios
and 95% ClIs were calculated by using Cox proportional hazards.

*Sub-group defined as those with HbAlc >6.5%, but with a fasting glucose <7.0 or a non-fasting
glucose <11.1 mmol/L and no previously diagnosed diabetes.

3Sub-group defined as clinically diagnosed diabetes, having a fasting glucose >7.0 or a non-fasting
glucose >11.1 mmol/L, or having HbAlc >6.5%.

*Multivariate model adjusted for age (continuous), sex, fasting (yes or no), current smoker (yes or
no), extent of coronary artery disease (non-significant; single, double, or triple vessel), left
ventricular ejection fraction (continuous), triglyceride levels (continuous), baseline acute coronary
syndrome (yes or no), baseline percutaneous coronary intervention (yes or no), baseline coronary
artery bypass graft surgery (yes or no), and treatment with folic acid or vitamin B6 supplements (yes
or No).

The number of patients in tertile 1 of n-3 LCPUFA was 141 in the sub-group with a total of 423
patients and 246 in the sub-group with a total of 740 patients.

The number of patients in tertile 2 of n-3 LCPUFA was 141 in the sub-group with a total of 423
patients and 247 in the sub-group with a total of 740 patients.

"The number of patients tertile 3 of n-3 LCPUFA was 141 in the sub-group with a total of 423
patients and 247 in the sub-group with a total of 740 patients.

Also, a separate analysis including the 258 patients who were previously clinically
diagnosed with diabetes, regardless of baseline blood glucose levels, did not change

the result (Table 7). The diabetes sub-group tended to have an increased n-3
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LCPUFA intake compared to the others, and thus analysis was repeated using total

population based tertiles, providing similar results (Table 7).

Table 7. Hazard ratios (and 95% ClIs) for acute myocardial infarction (fatal and non-fatal) by
tertiles of dietary n-3 LCPUFA (%TE)"

Diabetes (n=258) Diabetes (n=317)°
Age/sex adjusted Multivariate* Age/sex adjusted Multivariate*
Number of events 36 43
Tertile 1° 1.00 1.00 1.00 1.00
Tertile 2° 0.55(0.26,1.17)  0.62(0.27,1.42)  0.53(0.25,1.11)  0.61 (0.27, 1.36)
Tertile 3’ 0.33(0.14,0.80)  0.32(0.13,0.81)  0.48(0.23,0.97)  0.50(0.23, 1.07)
P for trend 0.01 0.02 0.04 0.07

'LCPUFA, long-chain polyunsaturated fatty acids; %TE, percentage of total energy. Hazard ratios
and 95% ClIs were calculated by using Cox proportional hazards.

Diabetes defined as clinically diagnosed.

*Diabetes defined as clinically diagnosed, or as having a fasting glucose >7.0 or a non-fasting
glucose >11.1 mmol/L, with n-3 LCPUFA tertiles based on the total study population (n=2378).
*Multivariate model adjusted for age (continuous), sex, fasting (yes or no), current smoker (yes or
no), extent of coronary artery disease (non-significant; single, double, or triple vessel), left
ventricular ejection fraction (continuous), triglyceride levels (continuous), baseline acute coronary
syndrome (yes or no), baseline percutaneous coronary intervention (yes or no), baseline coronary
artery bypass graft surgery (yes or no), and treatment with folic acid or vitamin B6 supplements (yes
or No).

The number of patients in tertile 1 of n-3 LCPUFA was 86 in the sub-group with a total of 258
patients and 98 in the sub-group with a total of 317 patients.

The number of patients in tertile 2 of n-3 LCPUFA was 86 in the sub-group with a total of 258
patients and 99 in the sub-group of 317 patients.

"The number of patients in tertile 3 of n-3 LCPUFA was 86 in the sub-group with a total of 258
patients and 120 in the sub-group of 317 patients.

When doing separate analyses on fatal- and non-fatal AMIs there was an almost 5-
fold significantly increased risk of fatal AMI in the upper vs. lower tertile of n-3
LCPUFA intakes (P for trend=0.02) in non-diabetic patients, but a significant
reduction by 78% in the upper vs. lower tertile (P for trend=0.02) in patients with

diabetes. There were no significant risk associations for non-fatal AMI in any sub-

group.

Interestingly, in the non-diabetic sub-group mean (+ SD) HbAlc levels were

significantly lower in tertiles 2 (P=0.008) and 3 (P=0.01), compared to tertile 1 of n-3
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LCPUFA intakes (4.87 £ 0.62 and 4.87 £ 0.65 vs. 4.99 + 0.54, respectively).
Furthermore, non-diabetic patients who experienced an AMI had significantly lower
mean HbAlc levels, compared to those who did not experience an AMI (4.77 = 0.63
vs. 4.92 £ 0.60, P=0.04). This association was strengthened and more pronounced
among those who had a fatal AMI event (4.55 £ 0.68 vs. 4.92 + 0.60, P=0.02). No

such differences were observed in those with pre-diabetes or diabetes.

4.3 Paper 3

At study start, mean (= SD) weight of the animals was 266 (£32) g. Animals treated
with TTA gained less weight during the study, compared to those not receiving TTA
(P<0.001). After 50 weeks of follow-up, no changes could be seen in cardiac TG after
TTA or FO treatment. There were significantly increased levels of total cardiac
cholesterol after TTA treatment (mean = SD, 3.21 + 0.20 vs. 2.93 = 0.24 umol/g heart
tissue, p<0.001) and of cardiac phospholipids after FO treatment (14.68 + 0.91 vs.
13.69 + 0.88 umol/g heart tissue, p<0.001), compared to control.

There were several changes in both cardiac and hepatic FAs following TTA and/or
FO administration. In heart, total FAs and mead acid (MA, C20:3n-9) were
significantly increased, while total SFAs and ARA were decreased after TTA
treatment. MUFAs and MA were significantly decreased following FO treatment. The
n-3/n-6 PUFA ratio, as well as EPA and DHA, was significantly increased after TTA
and FO treatment. Cardiac DPA were increased following TTA treatment and
decreased following FO treatment. FA measurements in liver showed a significant
increase in C16:0, total MUFAs, and MA, and a decrease in C18:0 and total n-6
PUFAs, after dietary intervention with TTA. Total SFAs, total MUFAs, MA, and total
n-6 PUFAs were decreased in liver of rats treated with FO. In contrast to the increase
in cardiac n-3 PUFAs, these FAs were significantly decreased in liver following TTA

treatment, but increased after FO treatment.
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Changes in cardiac activity of key metabolic enzymes were associated with TTA
treatment, including reduced activity of CPT-I and increased activities of CPT-II,
ACOX, GPAT, and FAS. Enzyme activities of ACOX and GPAT were also

significantly increased by FO treatment.

Cardiac expression of several PPAR-targeted genes was affected by the intervention.
Cpt-Ib (isoform of Cpt-I expressed in muscle), Ucp3 (encoding the uncoupling
protein 3), and Cact mRNAs were upregulated, while Ucp2, Ppard, and Ppary
mRNAs were downregulated after TTA administration. Cpt-Ib and Fatpl were
upregulated after FO administration. All above-mentioned effects of TTA and/or FO
intervention on FA composition, enzyme activities, and gene expression were

significant at the 1% level by two-way ANOVA.
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5. Discussion

The main focus of this thesis was to study the associations between dietary intake of
n-3 LCPUFAs and effects on coronary outcomes in humans. Effects of bioactive FAs
were also studied in an animal model to get into more depth at the mechanistic level.
First, we investigated possible relations between dietary n-3 LCPUFAs and coronary
events in patients with established and well-treated CAD who had relatively high
intakes of fish and n-3 LCPUFA supplements, without being able to reveal an overall
association between intakes and events (Paper 1). Only patients with very low intakes
seemed to have a slightly increased risk of experiencing a coronary event. Second, we
aimed at elucidating possible effects in sub-groups of the original cohort from Paper
1, with a focus on patients with or without diabetes mellitus (Paper 2). We revealed a
reduced risk of AMI in the upper, compared to the lower tertile of n-3 LCPUFA
intakes among patients with diabetes. On the contrary, a high intake of n-3 LCPUFAs
among non-diabetic patients with HbAlc levels <5.7% was associated with an
increased risk of fatal AMI, although the event rate was limited in this sub-group.
Third, since PUFAs are PPAR agonists and there have been much recent focus on
PPAR targeted therapy in relation to CVD, we sought to discover the specific
myocardial effects in a rodent model to explore possible mechanisms (Paper 3). Rats
were treated with the pan-PPAR agonist TTA (having a main effect on PPARa) or
high-dose FO (having effects on both PPARa and PPARYy), which after 50 weeks
induced marked changes in cardiac PUFA composition resulting in a cardiac-specific
increase in n-3 LCPUFA levels. Also, changes in enzyme activities and gene
expression, which could be related to PPAR effects, indicated an increased cardiac

FA oxidation.
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5.1 Dietary intake of Omega-3 fatty acids and coronary
events

Dietary intake of n-3 LCPUFAs and their proposed beneficial effects on
cardiovascular- and coronary events has been a major focus among both researchers
and “common people” during the recent decades. Conflicting results have been
reported and the effects are under continuous debate. We found no associations
between n-3 LCPUFA intake and coronary events or mortality in the total study
cohort of patients with CAD (Paper 1). The mean intake of n-3 LCPUFAs was 1.35
g/day, and only 1.7% had intakes <250 mg/day. The observed trend of an increased
risk of experiencing a coronary event among subjects with an intake below
approximately 300 mg/day of n-3 LCPUFAs could indicate that patients with very
low intakes of these FAs might benefit from increasing their fish- or n-3 LCPUFA
supplementary intakes. This is in line with previous findings demonstrating reduced
coronary death among those consuming fish once or twice a week, compared to those

who rarely eat fish, as observed in some prospective cohort studies [160].

The current observations of a weak effect of n-3 LCPUFAs in patients with stable
angina are consistent with findings from several studies, and recent meta-analyses
have concluded similarly [161,162]. Other meta-analyses have demonstrated an
association between a high dietary intake of n-3 LCPUFAs and reduced risk of
cardiovascular death, cardiac death, all-cause mortality, and cardiovascular- and
coronary events [163,164], although they partly included the same studies as the
meta-analyses reporting no effects. It all seems to depend on the heterogeneity of the
study populations, the inclusion criteria of the meta-analyses (population, dosage, and
follow-up time), the type of statistical methods being used, and how results have been
interpreted. Altogether, based on the large number of conflicting reports discussing a
proposed effect of dietary n-3 LCPUFAs, it seems that no clear associations can be
drawn for a wide, heterogeneous population of patients with or in high risk of CVD.
Therefore, we further investigated possible associations in specific sub-groups within

the study cohort. Based on studies in heart failure patients, where promising
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beneficial effects have been demonstrated [93,119,120], we aimed at focusing more

specifically at patients with diabetes and AMI incidence.

In some previous investigations, a high intake of fish or n-3 LCPUFAs have been
associated with a reduced risk of non-fatal AMI [104,134,165,166]. A sub-group
analysis of the large clinical trial JELIS concluded that there was an overall increased
risk of experiencing a major coronary event among patients with impaired glucose
metabolism, compared to normoglycemic patients, but that treatment with EPA
significantly reduced the increased event rate in those with impaired glucose
metabolism [167]. The association between a high intake of n-3 LCPUFAs and
reduced risk of incident AMI among patients with diabetes as revealed in the current
study (Paper 2) was especially pronounced for fatal AMI events. This may be an
important finding related to secondary treatment of diabetes, bearing in mind the
generally increased risk of cardiovascular mortality in this patient group [15]. The
recent large randomized controlled trial (ORIGIN) in 12536 patients with
dysglycemia and at high risk for cardiovascular events was unable to reveal any
beneficial effects of daily n-3 LCPUFA supplementation [168]. Baseline dietary
intake of n-3 LCPUFAs among participants in this trial was only about 200 mg/day,
which was comparable to the intake in the very lowest spectre of our population. The
intervention group received 1 g/day of n-3 LCPUFAs, while intakes in the upper
tertile in our diabetes group had a mean intake of 2.42 g/day. Furthermore,
participants in ORIGIN had a median HbAlc of 6.4% and fasting plasma glucose
levels >6.1 mmol/L. In the current study, the diabetes group had a median HbAlc of
7.2%, and the fasting serum glucose threshold for diagnosing diabetes was >7.0
mmol/L. Notably, there was increased mortality after aggressive glucose lowering
treatment in a study among diabetic patients with baseline median HbAlc 8.1% [169].
Thus, an overall intensive glucose lowering in ORIGIN may also have influenced
outcome following n-3 LCPUFA supplementation. Based on our results
demonstrating no effect in the pre-diabetes group or in the separate analyses where all
patients with HbAlc >6.5% were grouped together with patients diagnosed with

diabetes, we suggest that the ORIGIN patients were more similar to our pre-diabetes
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patients. Therefore, the results of the ORIGIN trial do not seem to interfere with our

findings.

Another finding from the sub-group analysis in the current study was the significantly
increased risk of experiencing a fatal AMI among non-diabetic patients with high
intakes of n-3 LCPUFAs. Similar to this proposed negative effect in the non-diabetic
group, a randomized controlled trial among male patients with angina pectoris
revealed an increased risk of cardiac death among participants advised to eat oily fish
or FO capsules [170]. They were unable to explain the reason for this adverse
outcome. Similarly, in a canine model of post-MI ischemia, high-dose n-3 PUFA
supplementation was associated with incident arrhythmias in dogs not originally

vulnerable to ischemia [171].

When studying the total patient cohort (Paper 1), no clear effects were revealed
related to dietary intake of n-3 LCPUFAs. Notably, opposing effects were observed in
sub-groups of this cohort (Paper 2). Although the number of events was limited
within the sub-groups, the suggested associations highlights the importance of
acknowledging potential modifying factors which can possibly be hidden in
heterogeneous cohorts. Analyses based on sub-phenotypes may thus be important for

future personalized nutrition.

5.2 Suggested mechanisms

When relating the rodent results to humans one has to consider the differences
between the species, including the extent of PPARa expression which is lower among
humans than demonstrated in rat liver. Also, there are major differences in lipoprotein
metabolism between rats and humans [23]. However, the rodent model provided us
with interesting clues as a basis to explain our findings at a mechanistic level,

especially in terms of PPAR mediated effects by FAs. TTA has been shown to
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resemble the constituents of fish oil, EPA and DHA, by exerting PPAR mediated

effects on mitochondrial metabolism [172].

5.2.1 Changes in fatty acid metabolism

Results from our rodent study (Paper 3) indicated an induced mitochondrial and
peroxisomal cardiac PB-oxidation following TTA treatment, in accordance with
findings from two previous studies where an increased myocardial FA oxidation was
associated with reduced cardiac efficiency [28,67]. This reduced efficiency has been
suggested to be caused by an uncoupling of glucose metabolism, with subsequent
acidosis and ischemia [173]. Based on this increase in FA oxidation, TTA has been
suggested to have a direct effect on cardiac transcription [67], which is most likely
mediated through PPARa activation, since no effect has been observed in PPARa-
null mice [28]. Findings also suggested an increased lipogenesis and phospholipid
esterification, based on increased cardiac activities of FAS [174] as observed after
TTA treatment and of GPAT [175] after both TTA and FO treatment. Being poorly
oxidizable FA substrates compared to SFA [176], LCPUFAs in the form of activated
acyl-CoAs will most likely be diverted towards lipid synthesis in the liver [175].
Furthermore, LCPUFAs are relatively poor substrates for TG synthesis and are thus
mainly incorporated into tissue phospholipids [177]. This could explain why n-3
PUFA levels increase in heart and decrease in liver and plasma following TTA
treatment. A previous study did show that TTA induced an overall increased hepatic
oxidation of EPA and DHA, concluding that EPA mainly underwent mitochondrial

oxidation while DHA oxidation was exclusively peroxisomal [139].

PPARa activation is known to induce degradation of malonyl-CoA [178], a natural
inhibitor of CPT-I [179]. However, we observed a decreased cardiac CPT-I activity
after TTA administration, which have also previously been shown in liver [180].
Certain conditions can lead towards a reduced FA oxidation efficiency, which might
be the case in TTA treated animals even though oxidation capacity in itself seems

upregulated. One possible explanation could be a change in carnitine balance between
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the tissues and blood. Recent studies in rodents and cell culture show that insulin-
resistance leads to increased levels of acylcarnitine intermediates in serum and
muscle, due to incomplete B-oxidation [181,182,183]. When tissues have decreased
amounts of carnitine, transport of long-chain FAs across the mitochondrial
membranes will be impaired while shorter FAs that do not depend on CPT-I will be

completely oxidized in the mitochondria [184].

5.2.2 Diet-induced effects on fatty acid composition

The observed FO induced decrease in overall cardiac n-6 PUFA in the rodent study
(Paper 3) could be explained by dietary n-3 LCPUFAs directing FA metabolism
towards the n-3 pathway, due to competing enzymes in the n-6 and n-3 PUFA
pathways [77]. This FO effect was different from that of TTA, where ARA was the
only cardiac n-6 PUFA being significantly decreased. Still, both TTA and FO
treatment induced an increase in cardiac EPA and DHA. In a previous study the
PPARa agonist WY-14643 induced a replacement of n-3 PUFA with n-6 PUFA in
myocardial phospholipids of isolated cardiomyocytes [178], and thus showed a
somewhat different effect from both TTA and FO in the rodent model. The TTA
effect on n-3 LCPUFAs was particularly pronounced with an increase in cardiac
DPA. In contrast, cardiac DPA was decreased after FO treatment. DPA is an
elongation product of EPA, which constitutes only a fraction of total n-3 LCPUFA
intake when based on fish or FO intakes [185,186]. Seal oil and meat are natural
sources more enriched in DPA [186,187,188]. Effects on the LOX pathway has been
demonstrated in platelets were ARA was shunted into the pathway in the presence of
DPA [189]. Thus, an apparent link exists between ARA and DPA, which might
explain part of the cardiac-specific mechanisms underlying decreased ARA and
increased DPA as exerted by TTA. Importantly, DPA is not found to be an active
ligand for PPARa [190], and will thus not in itself exert PPAR effects.

In addition to increased cardiac n-3 LCPUFAs, decreased cardiac ARA and decreased

hepatic n-3 LCPUFAs, TTA treatment was also associated with elevated levels of
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MA both in heart and liver, which could be related to an essential FA deficiency [96].
When dietary levels of the essential FAs LA and ALA are depleted, membrane
function and eicosanoid production is maintained through alternative routes due to a
metabolic switch that induces the conversion of MA from oleic acid (18:1n-9)
[191,192]. Similar findings have previously been reported in animals on a partially
hydrogenated FO diet [193] or after treatment with fenofibrate [194], and may be
caused by excess PPAR activation. The extensive increase in hepatic FA oxidation as
observed after TTA treatment [96] may theoretically lead to a reduced VLDL
secretion from the liver. A consequence of this could be that easily oxidizable

substrates for cardiac FA oxidation are less available.

Altogether, when comparing the effects on FA composition in heart and liver as
exerted by TTA and/or FO in Paper 3, there were organ specific changes as
previously mentioned, but also opposite effects of the two diets were apparent. In
liver, levels of C16:0, total MUFAs, oleic acid, and MA were increased by TTA but
decreased by FO treatment. Hepatic levels of n-3 LCPUFAs were reduced after TTA
and increased after FO treatment. In cardiac tissue, levels of MA and DPA were
increased by TTA but decreased by FO treatment. Similar effects were the increase in
cardiac n-3 LCPUFAs and decrease in n-6 PUFAs as exerted by both treatments.
Notably, studying the FA composition of the TTA and FO combination group, nearly
all cardiac PUFA parameters pointed in the same direction, some more pronounced,
as was seen for FO alone. This suggests that possible negative effects, like for
instance an increase in MA after TTA administration, were diminished using the
combination supplements. Even though the TTA concentrations in the food were
equal for both the TTA group and the combination group, the measured levels in the
heart differed between the pure TTA group and the combination group. This
difference could be explained by either a decreased uptake through the intestine, a
competitive mechanism during uptake into the heart muscle, or an increased clearance
through the system. We also measured a higher amount of TTA in the heart tissue
compared to liver, suggestive of an organ-specific accumulation of the non-oxidizable

TTA in the heart.
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An increased risk of AMI has previously been associated with increased serum levels
of palmitic acid (16:0) and decreased levels of PUFAs, in particular LA [195,196]. In
our patient cohort (Paper 2), we demonstrated increased serum levels of SFAs and
decreased levels of n-6 PUFAs in patients with diabetes, compared to the other
patients in the cohort. There was, however, no difference in saturated and trans fat
intake between the sub-groups. In addition, diabetes patients had a borderline
significantly higher intake of total PUFAs. There was no difference in serum n-3
LCPUFA levels between the sub-groups in the cohort, but intakes tended to be higher
among patients with diabetes. Diabetes is associated with high levels of non-esterified
FAs, which are primarily used in FA oxidation [71] or for TG synthesis [21].
Furthermore, an excess dietary intake of carbohydrates increases de novo lipogenesis,
which over time may develop into dyslipidemia with a shifted balance in the
circulating lipoprotein particles [197]. Based on this, the observed changes in serum
levels of SFAs and PUFAs that were not associated to the dietary intake, demonstrate
that serum FA composition mainly reflected a dysregulated metabolism in patients

with diabetes [198], in line with a probably overall reduced PPAR activity.

5.2.3 Mechanisms in relation to dietary omega-3 effects in humans

Our overall findings did not reveal a clear association between dietary n-3 LCPUFAs
and outcome in patients with CAD, but indicated a beneficial effect among patients
with diabetes, in line with relations previously seen in patients with reduced
ventricular function and heart failure [93]. On the contrary, there seemed to be a
disadvantageous effect in patients without diabetes and HbAlc <5.7% who had high
intakes of n-3 LCPUFAs. The PPAR effects demonstrated using the animal model,
including differences in n-3 LCPUFA levels in heart vs. liver, might help to explain
the underlying mechanisms of the proposed conditional favorable/unfavorable effects
of n-3 LCPUFAs. TTA treatment has been associated with reduced cardiac efficiency
in normal but not in diabetic mice [28,67] and may be related to the observed possible

essential FA deficiency in the current study. This may in some ways be in parallel to
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the proposed negative effects observed in patients without diabetes and the beneficial
effects observed in those with diabetes in relation to intake of n-3 LCPUFA.
Although circulating levels of n-3 LCPUFAs are usually directly associated with the
dietary intake [18], our results indicate that serum- and tissue levels probably depends
to a large extent on in vivo metabolism during disease or metabolic changes induced
by bioactive FAs. In line with our findings, which we propose to be mainly related to
PPAR effects, a recent transcriptomics analysis revealed effects of dietary FAs on
cardiac gene expression, suggesting PPARa as an important mediator [199]. Since
PPARa activation results in more pronounced effects in rodents compared to humans
[26,27], it is difficult to draw direct associations between rodent and human studies.
However, mechanisms revealed in animals are very important tools to be able to reach
to the next step in human studies when exploring the causal factors of risk

associations.

As previously mentioned, PPARs are key regulators of interactions between genes
and environmental factors like diet [22]. To demonstrate how human genetics can
affect changes in lipid metabolism, a polymorphism in PPARa (L162V) has been
associated with increased plasma levels of total cholesterol, LDL cholesterol, Apo B,
HDL cholesterol, Apo A-I, and apolipoprotein C-III (Apo C-III) [22,200]. There are
indications that persons having this polymorphism might have an increased risk of
developing some of the components comprising the metabolic syndrome [200].
Furthermore, allelic variability seems to partly explain different individual response
on similar diets [22] and a significant interaction between the PPARo L162V
polymorphism and dietary PUFA intake has been detected, influencing lipid
metabolism [201]. Thus, dietary intake of PUFAs and its outcome is probably partly

dependent on genetic predisposition [202].

In the current study, the observed risk association between a high n-3 LCPUFA intake
and fatal AMI was also related to lower HbAlc levels in the non-diabetic sub-group.
One could propose that PPARy activity might be induced in patients with overall low

HbA 1c levels, due to its association with improved insulin sensitivity [20]. In relation
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to the current findings, a high intake of n-3 LCPUFAs might be unfavourable in
subjects having a phenotype with an already high PPARy activity, proposing a
metabolic imbalance between the PPAR subtypes. Such imbalance would be expected

to be particularly high in patients with low PPARa activity.

On the other hand, PPARYy activity would be expected to be low in patients with
insulin resistance and diabetes. Furthermore, hypertriglyceridemia are generally
associated with diabetes [203], and based on the TG lowering effect of PPARa
activation, high levels of serum TGs might be a response to reduced hepatic PPARa
activity [54]. Diabetes has, additionally, been linked to mitochondrial dysfunction
[204], which might also be related to impaired PPAR activity. PPARa is the main
driver of mitochondrial B-oxidation [205]. Thus, because n-3 LCPUFAs are potential
dual PPARa / PPARYy agonists [206], one can suggest that the beneficial effect in
diabetic patients may be particularly pronounced in patients with overall low PPAR

activity.

Dienoyl-CoA reductase (Decr) null mutant mice are unable to catabolize PUFAs
during mitochondrial B-oxidation, leading to an accumulation in the tissues. During
fasting, the expression of gluconeogenic genes is inhibited in these animals, leading to
hypoglycemia [207]. In fasted PPARa -/- mice there is also a connection between
hypoglycemia and accumulation of TGs in both liver and heart tissue [208]. Thus,
persons with idiopathic hypoglycemia could hypothetically have a defect PUFA
catabolism, making it disadvantageous to increase PUFA intake. The increased risk of
fatal AMI which was associated with a high n-3 LCPUFA intake and a lower HbAlc
in patients without diabetes might thus also be related to the above mentioned
mechanisms. Taken together, these findings suggest that there is a reverse relationship

between PUFAs and blood glucose in fasted individuals.

Altogether, further studies are needed to elucidate the complex mechanisms behind
the observed associations. However, concerning the low number of events within the
sub-groups, together with the observational study design, the data should be

interpreted with caution. The proposed beneficial effect among diabetes patients
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should preferably be validated in randomized controlled trials. The associations
shown in the non-diabetic sub-group, seen together with the uncertain outcomes in
previous studies, argue against the use of high-dose n-3 LCPUFA in secondary
prevention of CAD among patients without diabetes. Due to the ethical considerations
by performing randomized clinical trials investigating proposed negative effects,
results in this sub-group of patients with HbAlc levels <5.7% should primarily be
verified by other observational studies, by re-analyses of prior randomized studies, as
well as by mechanistic studies. The clinical benefits of n-3 LCPUFAs in secondary
prevention of CAD are continuously debated. If the current results suggesting
different effects in sub-groups of heterogeneous populations are validated by future
studies, it might be time for a reassessment of the current dietary advices on n-3
LCPUFA supplementation [8]. Based on our results, and in light of the opposing
results and conclusions from other studies, there is still no recipe on an optimal diet
for patients with CAD as a whole. The dietary advices of the future should probably
be given to each individual based on genetics and disease status and considered in the

context of relevant biomarkers and phenotypes.
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6. Conclusions

In the total cohort of patients with well-treated CAD and with a relatively high dietary
intake of n-3 LCPUFAs, we observed no significant association between intake of n-3
LCPUFAs or fish and risk of coronary events or mortality. After sub-group analysis, a
high intake of n-3 LCPUFAs was associated with a significantly reduced risk of AMI
in participants with diabetes, but with an increased risk of fatal AMI among non-

diabetic participants with HbAlc levels <5.7%.

In rats, long-term administration of the pan-PPAR agonist TTA or high-dose FO were
associated with distinct effects on lipid metabolism in the heart, different from liver.
FA composition was changed, including an increase in n-3 LCPUFA in rat heart
muscle. Furthermore, cardiac mitochondrial and peroxisomal FA oxidation was
affected as demonstrated through changes in key enzyme activities and gene

expression.
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7. Future perspectives

In general, 1 believe that good health is achieved by consuming a balanced diet in
portions adjusted to each individual needs. If one adds regular exercise on top of this,
most of the work is done, and the need for supplements is limited. With the increased
focus on dietary intake of n-3 LCPUFA nowadays, one must bear in mind that

balance should remain as a keyword in a good and healthy diet.

The results presented in this thesis bring out the importance of taking every factor into
account before general advice and recommendations regarding the use of dietary
supplements are given. Our results demonstrate that different phenotypes may require
individual treatment and follow-up. Current work in our group also reveals strong
genetic relations to diet and lifestyle. Large-scale studies targeted against the

appropriate populations are needed and new biological markers should be established.

Being the cardiac primary transcription regulator, PPARa is an essential FA oxidation
determinant in the heart [28]. A reduced cardiac PPAR activation due to impaired
lipolysis of TGs could lead to an accumulation of neutral lipids and thus affect
mitochondrial function [37]. Based on this, biomarkers for the proposed PPAR
imbalance should be established. The acylcarnitines and their metabolites, which hold
possible pathophysiological mechanisms related to impaired mitochondrial function,
are among the markers we will have further focus on in terms of AMI and mortality.
Impaired mitochondrial function has been demonstrated in patients with obesity-
related diseases [209], and there has recently been a special attention to dysregulation
of FA oxidation. In this context, recent studies have aimed towards the use of
acylcarnitine profiling as a new approach to evaluate chronic metabolic conditions
[210,211,212]. Elevated fasting values of short-, medium-, and long carbon-chain
acylcarnitines have been observed in obese or type 2 diabetic individuals [211], and

recent studies in rodents and cell culture showed that insulin resistance lead to
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increased levels of acylcarnitine intermediates in serum and muscle, due to

incomplete B-oxidation [181,182,183].

The indicated association between low HbAlc, a high intake of n-3 LCPUFAs, and
increased risk of fatal AMI among non-diabetics in connection with Paper 2, paves
the way for investigating this association in more depth [213]. This risk association
might be related to the adverse effects of hypoglycemia. In support of this, a previous
community-based prospective cohort study demonstrated a significantly increased risk
of all-cause mortality in non-diabetic individuals with HbAlc <5.0% [213]. A link
has been demonstrated between hypoglycemia, endothelial dysfunction, and increased
oxidative stress [214], which could produce a certain metabolic profile. Accordingly,
high-dose FO supplementation has also been associated with an increased oxidative
damage in rats [96]. Since HbA1c and endpoint data is available on a more extended

population than the one used for dietary data, this will be subject for a separate study.

Furthermore, mechanisms underlying excess PPAR activation should be explored into
more depth, since this might provide an explanation why n-3 LCPUFA supplements
seem to give favorable effects only under certain conditions. It is also notable that
PPARa and its agonists hold important properties beyond FA and glucose
metabolism, like effects on amino acid metabolism [215,216], which makes it
important to do more extensive investigations of PPAR stimulation and cardiac
metabolism. Main focus will be on PPAR related markers in response to various
dietary fats. To elucidate the specific mechanisms in humans, further studies in
human cells and in animals that are more physiological similar to humans are
probably necessary. PPARa activation is observed during fasting, activated by
adipose-derived FAs, and has been shown to play an important role in carnitine
metabolism in mice [217,218], with an increased hepatic carnitine synthesis after
PPARa activation [219,220]. However, no such association has yet been described in
humans. One group has demonstrated an increased carnitine synthesis and uptake as a
result of fasting in pigs [221]. Since pigs are in general suitable models for humans, it

is not unlikely that humans could have a similar response upon PPARa activation.
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The ultimate aim will be to reveal biomarkers that can be utilized to identify and

outline person specific dietary recommendations.
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