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ABSTRACT 
The Monte Sant'Angelo Megabreccias (Cenomanian) is one of three distinct and 

impressive Cretaceous megabreccias exposed on the flank of the Apulian platform, 

Gargano Promontory, southern Italy. This thesis describes and interprets stratigraphic 

and petrophysical data collected from two successions on the northern and southern 

Gargano peninsula, respectively. 

The northern succession displays a prograding (outcrop scale) package of clast-supported 

and matrix-supported megabreccias which grade upwards into proximal calciturbidites. 

The southern succession displays an aggrading (outcrop scale) package of stacked, 

matrix-supported megabreccias. Sedimentological mapping led to the recognition of 

subfacies which suggest that marginal platform areas were source of these allochthonous 

debrites. Sediments were lithified prior to erosion and re-sedimentation. Data support 

previous speculations on synsedimentary tectonics as a controlling factor for the 

repeated collapse of these marginal areas. Changes in accommodation space controlled 

the depositional patterns.  

One hundred and seventeen plug samples with corresponding thin-sections, 

permeability- and porosity measurements are classified according to three porosity 

classification systems. All three systems fail to produce adequate correlations of 

permeability and porosity for their respective groupings. Poroperm distributions also form 

the basis for petrophysical interpretations in terms of stratigraphic impact, and 

correlations between poroperm signatures and stratigraphic properties of the Monte 

Sant'Angelo Megabreccias are discussed. 

Stratigraphic and petrophysical analysis supports the subdivision of the mapped 

megabreccias into 4 distinct flow-units, which display important differences in terms of 

depositional pattern, internal fabric and petrophysical properties. Important differences 

are also mapped in the comparison of the northern and southern succession. These 

differences are underpinned by statistical analysis of petrophysical data, and coincide 

with the stratigraphic data. The diagenetic history and its impact on reservoir properties 

is described and discussed. 
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INTRODUCTION 
This study presents a stratigraphic and petrophysical investigation of the 

Monte Sant’Angelo Megabreccias (Cenomanian), exposed on the slope of 

the Cretaceous Apulian carbonate platform, on the Gargano Promontory, 

southern Italy. The study is based on field observations and the petrophysical 

and stratigraphic analysis of representative 

samples.  
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Figure 1.1 – Italy 
 
Arrow: Gargano peninsula. 

N 

(http://www.maplandia.net/) 

PURPOSE AND GOALS 

The goal of this thesis is to describe and interpret the collected petrophysical and 

stratigraphic data with special emphasis on the relations between permeability 

and porosity. The study further aims to address methods for measuring and 

estimating porosity and permeability. The integration of petrophysics and 

stratigraphy, and the combination of elements of sedimentology and petroleum 

engineering, seek to add to our understanding of poroperm signatures in 

carbonate slope deposits. 

METHODS 

Two successions were studied and a total of 117 plug samples (mini-drill cores) 

were collected from two localities on the Gargano Peninsula, Italy. Among these, 

52 were collected from an 11x5 m grid of samples while the remaining 65 

samples were representative for selected fabrics, established stratigraphic units 

and lithologies. Thin-sections were obtained for the samples along with 

permeability and porosity measurements for 107 and 113 samples, respectively. 

Effectively, poroperm measurements were available for a total of 107 samples. 

  1 
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Porosity and permeability of 28 samples were measured in-house, while 115 

were measured externally by Reslab AS. Among these, 26 samples were 

measured both in-house and externally.  

Standard laboratory methods were used. In-house measurements were 

measured using brine, while external measurements were performed using gas. 

Porosity was estimated from epoxy-stained thin-sections using image-analysis 

methods. Samples and corresponding poroperm datapoints were classified 

according to the systems developed by Choquette & Pray (1970), Lucia (1983, 

1995, 1999, 2007) and Lønøy (2006).  

A ‘Nikon Alpaphot-2 YS2’ polarization microscope was used for studies of fossil 

content, mineralogy, textural composition and diagenetic relations and a ‘Spot 

RT3’ digital camera was used to produce digital images of thin-sections. 

A digital topographic model of the Vico del Gargano quarry was developed using 

Irap RMS™ based on portable GPS measurements in the field. 

Image enhancement methods were developed and applied on high-resolution 

images of the Malpasso Valley outcrop. 

Snedecor’s F-test (e.g. Davies, 2002) and Student’s t-test (e.g. Davies, 2002) 

was applied on the normally distributed porosity (φ) and permeability (ln k/log 

k) datasets. 

Cathodoluminescence (i.e. Richter et.al., 2003) were performed on selected 

thin-sections. Staining of thin-sections using Alizarinrot S and Kaliumhexa-

cyanoferrat (III) (Dickson, 1966; Lindholm & Finkleman, 1972; James & 

Choquette, 1990) were subsequently performed with only minor results. 

For extended description of selected methods, see appendix 1. 
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GEOLOGICAL FRAMEWORK 
The Gargano Promontory belongs to the northern sector of the Apulian 

foreland, which forms a broad, low-elevation region east of the 

Apennines (fig 2.1). An approximately 6 km thick accumulation of shallow-water, 

Mesozoic carbonates (Apulian Platform) (e.g. Ciaranfi et.al., 1988; Ricchetti 

et.al., 1988; Schlüter, 2008) now constitute the bulk of the Apulian foreland. The 

lowermost ~ 1 km of this succession is made up of Triassic anhydrite-dolomite 

deposits (Butler et.al., 2004) and a few wells have found fluvial-deltaic 

terrigenous facies of Permo-Triassic age (Ricchetti et.al., 1988; Bosellini et.al., 

1993; Butler et.al., 2004; Di Bucci et.al., 2006). Based on magnetic and 

gravimetric data, an igneous/metamorphic Paleozoic basement is hypothesized 

(i.e. Mostardini & Merlini, 1986; Chiappini et.al., 2000; Tiberti et.al., 2005; Di 

Bucci et.al., 2006). 

The area primarily shows extensional deformation and NW-SE striking normal 

faults divides the region into a series of fault blocks (Funiciello et.al., 1991; 

Marsella et.al., 1995, Brankman & Aydin, 2004). The grade of deformation is, 

however, very little compared to the interior of the Apennine chain (fig 2.1). The 

1000 km2 region is uplifted some 900 meters above the adjacent foreland, 

related to contractional step-over between two sinistral, E-W-trending faults, 

among which the Mattinata fault is the most prominent (e.g. Tondi et.al., 

  

 

Figure 2.1 - Gargano 
 
Cross-section of Apennines and the Gargano, displaying 
the uplifted, less deformed, Gargano area (modified from 
Pieri et.al., 1997). 
 
Overview map of the Adriatic region and southern Italy, 
Gargano peninsula indicated. Google maps, December 
2007. 
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2005; Billi et.al. 2007). The Apennine Thrust belt initiated during the latest 

Cretaceous to Pleistocene (e.g. Dewey et.al., 1989; Boccaletti et.al., 1990; 

Monaco et.al., 1998; Ghisetti & Vezzani, 1999; Menardi Noguera & Rea, 2000; 

Patacca & Scandone, 2001) and emplaced a series of thick Mesozoic and early 

Cenozoic carbonate platform (Apenninic platform units) and deep-water basinal 

units onto the western margin of the Apulian platform (Brankman & Aydin, 2004) 

during Tertiary times (fig 2.1). The Cretaceous platform-to-basin transition in the 

Gargano has long been a topic of contrasting interpretations (e.g. Sinni & Masse, 

1987; Borgomano & Philip, 1987; Graziano, 1992, 1994, 1999, 2000, 2001; 

Bosellini et.al. 1993, 1994, 1999; Sinni & Borgomano 1994; Morsilli & Bosellini 

1997; Borgomano, 2000) in terms of age assignments, correlation patterns, 

facies analysis and genetic interpretation. 

Authors have stated that the Apulian Platform was affected by syn-sedimentary 

tectonics during the Early Cretaceous, that down-faulted the platform margin and 

produced thick toe-of-slope megabreccia intervals (e.g. Masse & Borgomano, 

1987; Graziano 1994, 2000, 2001). These same deposits are considered by 

Bosellini et.al. (1993, 1994, 1999) and Bosellini & Neri (1993) to be Albian- 

 

A 

B 

Figure 2.2 – Bosellini et.al. (2000) 
 
A) Upper Cretaceous stratigraphy of Gargano, 

modified from Bosellini et.al., 2000. Note the 
occurrence of one single Cenomanian 
megabreccia level labelled “Monte S. 
Angelo”. 

B) Cretaceous platform margin scallops on the 
Gargano Promontory. Localities in the 
present study is indicated by red dots (from 
Bosellini et.al., 2000). 
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Cenomanian in age and these authors 

physically correlate them to other 

Cenomanian megabreccias exposed 

elsewhere in the Gargano area. The 

resulting huge lithosome, termed the 

Monte S. Angelo Megabreccia (figure 

2.2A) is viewed by these latter authors 

as the product of repeated gravity 

collapses of the scalloped platform 

margin during a late Albian-

Cenomanian low-stand that has been 

linked to the bauxitiferous unconformity 

of the Apulia Platform (e.g. Bosellini 

et.al., 1993, 1994, 1999).  

Bosellini & Morsilli (1994) reported the 

identification of two scallop features on 

the Cretaceous Apulian margin, 

interpreted as margin collapses during a 

Cenomanian low-stand of the relative 

sea-level (figure 2.2B) and in part 

occupied by megabreccias and by a 

thick Miocene succession (Bosellini, 

1999). 

The reported occurrence of one single 

and unique megabreccia unit has been 

questioned by Graziano (1999, 2000) 

who states that the huge single megabreccia body (Monte S. Angelo 

Megabreccia, sensu Bosellini et.al. (1993, 1994, 1999) is actually composed of 

three distinct megabreccias that were deposited during the Aptian-Albian (Posta 

Manganaro Megabreccias), Cenomanian (Monte Sant’Angelo Megabreccias, sensu 

stricto) and Turonian (Belvedere di Ruggiano Megabreccias). These megabreccia 

levels were deposited, respectively, during distinct episodes of drowning, 

progradation and continental exposures of the Apulia platform (Graziano, 2001) 

(fig 2.4). The megabreccia levels sharply overlie tectonically enhanced 

??

??

Belvedere di Ruggiano Megabreccias 
middle Turonian 

Calcare di Altamura 
Formation 

Belvedere di Ruggiano 
Megabreccias 

Figure 2.3 – Cretaceous megabreccia levels in 
Gargano and generic mechanisms 
 
(Modified from Graziano, 2001). 

San Giovanni Rotondo 
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unconformities of late early Aptian, late Albian and late Cenomanian ages 

(Graziano 2001) connected to a bulge-related deformation induced by the distant 

collision-tectonics at the eastern margin of the Adriatic plate (Graziano, 1992, 

1994, 2001) and eustatic sea-level changes played only a minor role in 

controlling their formation. The scope of the present study is the megabreccias 

pertaining to the Monte Sant’Angelo Megabreccias (sensu Graziano, 2001) (figs 

2.3 and 2.4).  

Carbonate megabreccias formed by major platform margin gravitational 

instability events were first identified as such in the geological record around fifty 

years ago (e.g. Rigby, 1958) but have commonly been misinterpreted as patch 

Calcare di
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4 Figure 2.4 – Stratigraphy 
 
Upper: Upper Cretaceous stratigraphy of 
Gargano, modified from Graziano (2001). 
Note three distinct megabreccia levels. 
Numbers on top corresponds to locations in 
fig 2.4B. 
Lower: Facies map of the Gargano Peninsula 
modified from Graziano (2001). Numbers 
correspond to locations in figure 2.4A. 
Localities are indicated (Vico del Gargano, 
Malpasso Valley). 
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reefs or in-situ bioherms (e.g. Pray & Stehli, 1962; Cook et.al., 1972; Conaghan 

et.al., 1976; Read & Pfeil, 1983; Spence & Tucker, 1997). The term megabreccia 

(Cook et.al., 1972; Mountjoy et.al., 1972; Wright & Burchette, 1996; Spence & 

Tucker, 1997) has been most widely adopted among many other proposed and 

used terms for such deposits. Carbonate megabreccias are found on many 

platform margins (i.e. the Mid-Cretaceous Pyrenean Basin (Spain) (Drzewiecki & 

Simó, 2002), the mid-Cretaceous Gorbea Platform (Spain) (Garcia-Mondéjar, 

1990; Garcia-Mondéjar & Fernández-Mendiola, 1993; Fernández-Mendiola, et.al., 

1993, Rosales et.al., 1994), the Late Jurassic Lusitanian Basin (Portugal) (Ellis 

et.al., 1990), the Upper Cretaceous Maiella Platform (Italy) (Mutti et.al., 1996) 

along with numerous others spanning from the Late Permian to recent platforms 

of Bahamas and the Nicaraguan Rise (for extensive lists, see Drzewiecki & Simó, 

2002, table 1; Spence & Tucker, 1997, table 1 ). 

The Monte Sant’Angelo Megabreccias are situated within the Monte Sant’Angelo 

Limestones Formation (fig 2.4A) and constitute a stacked pile of amalgamated 

megabeds up to 20 meters thick, which is uniquely made up of intraclastic 

gravels and boulders up to 3 m across, composed of rudists (Caprinids and 

Radiolitids), gastropods and Orbitolina grainstones-to-rudstones (Graziano, 

2001). The maximum thickness of the Monte Sant’Angelo megabreccia is 

reported by Graziano (2001) to be around 200 meters near the village of Monte 

Sant’Angelo, where large-scale channel geometry and an erosive lower boundary 

occur. Graziano (2001) further reports that the intraclasts of the Monte 

Sant’Angelo Megabreccias are often subrounded and float in a locally abundant 

matrix which shows similar composition and texture but different diagenetic 

features. The clasts and matrix of these deposits are of the same age. Grains of 

the intraclasts are reported to be well rounded and sorted, but lack any internal 

sedimentary structures (Graziano, 2001). 

The Apulian Platform is limited to the north (Marche-Umbria), to the east 

(Adriatic Sea) and to the west (Molise-Lagonegro) by Jurassic and Cretaceous 

deep-marine deposits (e.g. Eberli et.al., 1993; Zappaterra, 1994). According to 

geophysical data, wells and sub-sea observations, several authors suggest that 

the platform probably also stretched over the Otranto-strait to the Greek islands 

of Cephalonia and Zante towards the Cephalonia-fault where it terminates 

7 
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abruptly and is shifted toward the southwest (Rossi & Borsetti, 1974; Auroux 

et.al., 1985; Finetti et.al., 1996; Sachpazi et.al., 2000). 

The Apulian platform is considered an isolated type carbonate platform by 

several authors (e.g. Eberli et.al., 1993; Simo et.al., 1993; Bosellini et.al., 1999; 

Philip et.al., 2003; Schlüter et.al., 2008). Bosellini (2002) states that the Apulia 

Platform should be considered an attached type platform, connected, at least 

during Jurassic-early Cretaceous times, to a wider continental area (North Africa) 

(figure 2.5B). Vlahovic et.al. (2005) indicated that the Apulian Platform area 

represented parts of the Gondwana margin until the Middle Triassic. Intense 

tectonic activity that culminated during the Middle Triassic led to the formation of 

a huge shallow-marine isolated carbonate platform within the southern Tethys 

realm (the name Southern Tethyan Megaplatform (STM) is proposed by Vlahovic 

et.al. (2005) for this paleogeographic entity). Disintegration of the STM led to 

the separation of the Apulian platform from the Apenninic platform and the 

Adriatic platform and took place during Toarcian times (Bernoulli, 1971; Jelaska, 

1973; Zappaterra, 1990, 1994; Grandic et.al., 1999; Vlahovic et.al., 2005). 

Nicosia et.al. (2007) states that the main periadriatic carbonate platforms were 

probably connected during most of the Cretaceous. This scenario results in a 

shallow-water area of some 600 000 km2 – or nearly twice the size of present- 

 

A B 

Ad An Ad 

Ap Ap 

Af 

Exposed land 

Carbonate platforms 

Terrigenous shelves 

Deep marine 
Af Deep oceanic basin 

Figure 2.5 – Cenomanian paleogeography of the Periadriatic region 
 
A) Aptian (107-114 Ma) paleogeography of the western Tethys Ocean and the Peri-adriatic domain 

(Simo et.al., 1993). 
B) Jurassic-Early Cretaceous paleogeographic reconstruction (Bosellini, 2002). 
 

Ap: Apulian Platform, An: Apennine Platform, Ad: Adriatic Platform, Af: Africa 
 

8 



  2 – Geological framework 

day Norway. Considering the small percentage of emergent areas within 

platforms, such dimensions are necessary in order to fit the needs for a large 

land animal population indicated from paleontological evidence (Nicosia et.al. 

2007). These authors also conclude that carbonate platforms of the Neotethys 

domain may have been connected to Gondwana mainland in the south and, from 

Coniacian times, to the Laurasian mainland in the north, during periods of low 

sea-level, where inter-platform areas have emerged and bridged the oceanic 

area between these platforms and the African mainland. 

A number of carbonate platforms existed within the favorable conditions of the 

Tethys realm. On the northern and southern margins, on the passive margins of 

the Eurasian and African plates, attached-type platforms developed while 

isolated-type platforms developed in the central parts (e.g. Philip, 2003). 

According to paleoclimatic reconstructions, these carbonate platforms were, 

during the late Cretaceous, located at lower latitudes on the northern 

hemisphere (Barron & Washington, 1982; Lloyd, 1982). While the northern 

platforms were mainly influenced by wet temperate climatic conditions (e.g. 

Parrish et.al., 1982, Philip et.al., 1991), the southern platforms developed in an 

arid climate (Philip, 1982). Among the platforms of the central Tethys, strong 

paleobiogeographic similarities with the southern Tethyan province exists (Philip, 

2003). 

On all the carbonate platform domains of the southern Tethyan belt, repeated 

variations of sea-level were superimposed on tectonic-related substrata 

contributing to a complex depositional pattern in which the Cenomanian rudist-

bearing carbonate facies accumulated (e.g. Vlahovic et.al., 1994; Csoma et.al., 

2004; Vlahovic et.al., 2005; Carannante et.al., 2007). 

9 
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DATA 
This chapter presents the data which form the basis for the subsequent 

stratigraphic and petrophysical discussion and conclusions. The data are 

here presented accordingly. 

 

STRATIGRAPHIC DATA 
The stratigraphic information is divided according to informal and descriptive 

stratigraphic entities termed units. They reflect mainly major differences in rock 

fabric, but are also confined by important surfaces. Lithofacies and corresponding 

subfacies are described for each unit, and a tabulated overview is presented in 

table 3.1. 

For the classification of carbonates, the Dunham (1962) classification with 

modifications by Embry & Klovan (1971) is mostly used. Classifications based on 

grain sizes (e.g. Scholle & Ulmer-Scholle, 2003) and the classification by Folk 

(1959, 1962) are also utilized. 

 

Figure 3.1 displays a generalized cross-section of the carbonate slope 

environment, and introduces terms that are used throughout the presentation of 

data and the subsequent discussion of data. Similar divisions of the platform-to-

basin transition have been published by numerous authors (e.g. Flügel, 2004) 

and a variety of terms and opinions exist.  

Logged sections are presented in figure 3.2 which introduces stratigraphic units 

and lithofacies which will be further elaborated. Localities are further introduced 

in relations to description of lithofacies. 

Figure 3.1 – Carbonate slope: Terms and zones 
 
Carbonate slope nomenclature used in the presentation of data. Based largely on James & Mountjoy (1983) 
and Heath & Mullins (1984). This sketch is not to scale. 

Upper slopeLower slope
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Figure 3.2 – Logged sections 
 

 Position of logs. Vico del Gargano logs are positioned on topographic model of the quarry. 
 

 Logs and legend. Numbers on Vico del Gargano logs correspond to topographic model. 
 
This figure spans two pages. Subfacies are derived from thin-section analysis and not included on logs. 
Lithofacies are indicated. Localities are further introduced later in this chapter. 
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Grainstones, lithofacies A2 

Interpreted boundary of 
amalgamated beds 

B1 

Graded grainstones (lithofacies D2) 

M  W P  G   F   R 

Dunham 
Classification 

Scale:  
1 m steps 

X 
Unit 

Section not 
investigated 
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Table 3.1 – Units, lithofacies and subfacies  

Locality 
Unit 
ID 

Litho-
facies ID 

Sub-
facies ID Name/description Boundaries Sedimentary structures Biota 

Important diagenetic 
features Interpretation 

 
Matrix-supported 
rudist 
megabreccias 

See lithofacies M1 See lithofacies M1 See lithofacies M1 See lithofacies M1 See lithofacies M1 

 
Matrix-supported 
rudist 
megabreccia 1 

Sharp upper 
boundary. Base is 
not exposed. 

Sub-horizontal 
bedded, thick 10-15 
m amalgamated 
beds. Poorly sorted, 
matrix-supported. 
Clasts from few cm to 
~1-2 m across. 

See subfacies M1 See subfacies M1 
Debris-flows originating from 
the marginal areas of the 
platform.  

M1a Grainstone   Marginal platform 
environment 

M1b 
Grain-dominated 
extraclastic 
packstone 

  Marginal platform-to-
foreslope environment 

M1c 
Mud-dominated 
extraclastic 
packstone 

  Marginal platform-to-
foreslope environment 

M1d Mud-dominated 
skeletal rudstone   Foreslope-to-platform 

margin environment 

M
al

pa
ss

o 
V
al

le
y 

M 

M1 

M1e Wackestone    

Benthic 
foraminifers, 
rudist- and 
bivalve fragments 

Grain-dissolution, 
micrite envelopes 
early marine-phreatic 
isopachous cement 
and meteoric-phreatic 
cement, nonfabric-
selective dissolution.  
 
M1d and M1e micrite 
matrix also have 
rhombohedra shaped 
selective dissolved 
pores. 

Low-energy foreslope 
environment 

 
Wacketones and 
graded calcarenite 
packstones 

Sharp upper 
boundary. Lower 
not exposed. 

See lithofacies A1/A2 See lithofacies 
A1/A2 See lithofacies A1/A2 Distal slope-to-proximal 

basin deposits 

A1  Lime mudstones/ 
wackestones 

Sharp upper and 
lower boundaries 

Horizontal, thin 
bedding 

Thalassanoid trace 
fossils Stylolites Hemipelagic highstand-

shedding deposits 
A 

A2 
 Graded 

calcarenite 
grainstone 

Sharp lower-, 
gradient upper 
boundaries. 

Graded, horizonal 
bedding. Bouma-
divisions DE. 

 Sparite cements Distal low-density 
calciturbidites 

 
Clast-supported 
rudist 
megabreccias 

See lithofacies B1 See lithofacies B1 See lithofacies B1 See lithofacies B1 See lithofacies B1 

 

Clast-supported 
rudist 
megabreccia with 
bouldersized 
clasts ranging 
from cm to m 
scale. 

Sharp 

Matrix-supported, 
poorly sorted, cm to 
several m lithoclasts. 
Some clasts have 
internal sedimentary 
structures (bedding) 

See subfacies See subfacies 

Single-event submarine 
landslide (grain flow) 
originating from the upper-
slope, margin and platform 
interior areas. 

B1a 

Grainstone with 
bimodal 
distributed grains. 
Well rounded lime 
pellets and 
moderately 
rounded skeletal 
fragments. 

   

Early isopachous 
sparite cement. 
Dominance of moldic 
porosity. Micrite 
envelopes preserve 
grain shapes and 
sizes. 

High-energy marginal 
platform environment 

B1b Grain-dominated 
packstone   Orbitolina sp. 

Moderate energy marginal 
platform-to-foreslope 
environment 

B 

B1 

B1c 

Mud-dominated 
packstone with 
skeletal fragments 
and pellets. 

   

Micrite envelopes, 
early isopachous 
marine-phreatic 
cement. Later equant 
meteoric-phreatic 
cement. 

Low-energy foreslope-to-
marginal platform 
environment 

  

Matrix-supported 
rudist 
megabreccias 
separated by 
packstone 
clinoforms. 

Sharp base. Top 
not exposed. 

Stacked megabreccia 
beds, separated by 
northwards dipping 
packstone clinoforms. 

See lithofacies C1 
and C2 

See lithofacies C1 and 
C2 

Debris-flow deposits 
originating from upper-slope 
and marginal areas. 
Prograde northwards. 

C1  

Dense, 20-40 cm 
packstone layers 
separating units B 
and C, and 
segments of facies 
C2 

Sharp top and 
base. Local 
undulations. 

Local soft-sediment 
deformations 

Benthic 
foraminifers, 
bivalve- and 
rudist fragments 

 
High-stand shedding of 
platform-derived skeletal 
materials. 

C 

C2  
Matrix-supported 
rudist 
megabreccias 2 

Sharp base and 
top, local 
undulations. 

Matrix-supported, 
poorly sorted, few cm 
to < 1 m lithoclasts. 

  Middle-to-lower slope debris-
flow deposits 

  Graded 
grainstones 
alternating with 
matrix-supported 
megabreccias 

Not exposed 

Large-scale syncline 
shaped. Stacked 
channelled beds of 1-
2 m. 

See lithofacies D1 
and D2 

See lithofacies D1 
and D2 

Stacked channelled proximal 
high-density calciturbidites 
and megabreccia debris-
flows 

 
Matrix-supported 
rudist 
megabreccias 3 

Undulating, locally 
channelled 

Matrix-supported, 
poorly sorted < 1 m 
clasts, < 2 m beds. 

See subfacies See subfacies 
Multiple debris-flows 
interbedded with proximal 
calciturbidites. 

D1a Orbitolina 
grainstone   High-energy, platform 

margin environment. 

D1b Grain-dominated 
packstone   High-energy, platform 

margin environment. 

D1 

D1c Mud-dominated 
packstone   

Benthic 
foraminifers, 
bivalve- and 
rudist fragments Lower-energy, platform 

margin-to-foreslope 
environment 

V
ic

o 
de

l G
ar

ga
no

 Q
ua

rr
y 

D 

D2 Graded 
grainstones 

Erosive based, 
channelled. 

Bouma-divisions 
T(abc) Orbitolina sp. 

Early isopachous 
marine-phreatic 
cement, later equant 
meteoric-phreatic 
cement, grain-
dissolution, rare 
nonfabric-selective 
porosity. Proximal high-density 

turbidites on proximal-to-
middle slope 

Colours are for visualization purposes only. Boundaries and sedimentary structures are not included for subfacies, which are derived from thin-sections.  
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MALPASSO VALLEY 

The Malpasso Valley is situated approximately 4 km SSE of the village of Monte 

Sant’Angelo and cuts through Cretaceous slope strata (fig 3.3). Weathering is a 

major problem on this locality, which limits the detailed stratigraphic analysis. 

81 mini-drill cores were collected from the Malpasso Valley, including 52 from a 

10 x 5 m grid on the west wall and 29 representative clast- and matrix samples 

from the eastern wall. The petrophysical parameters results from analysis of 

these samples are presented in chapter 4 and discussed in chapter 5. A total of 4 

days were spent on this locality during August 2006, collecting plug samples.  

 

 

 

N 

Figure 3.3 – Malpasso Valley 
 

A) Southern Gargano overview (Google maps as of December 2007). Arrow points to location of 
the Malpasso Valley. 

B) Topography from Google Earth as of April 2008 draped with geological map 1:000 000 by R. 
Selli. MP = Malpasso Valley.  

C) Topographic map draped on topography from Google Earth™ as of April 2008. 
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  3 – Data 

DESCRIPTION OF UNIT M AND CORRESPONDING LITHOFACIES CORRESPONDING LITHOFACIES 

Unit M and lithofacies M1 are the same entity. The term unit M is introduced for 

implementation with the units of the Vico del Gargano succession. See table 3.1 

for a graphical view of this issue. 

Unit M and lithofacies M1 are the same entity. The term unit M is introduced for 

implementation with the units of the Vico del Gargano succession. See table 3.1 

for a graphical view of this issue. 

Unit M/lithofacies M1 consists of matrix-supported rudist megabreccias, that are 

confined to sub-horizontal, amalgamated 5-15 m beds (figure 3.4). The upper 

boundary of this unit/lithofacies is sharp towards overlying slope deposits of the 

Monte Acuto Limestone Formation. Lower boundary is not exposed. Mapped 

thickness is some 40 meters. Lithoclasts are poorly rounded, and the deposit is 

poorly sorted. Image enhancement methods were utilized in the visualisation of 

lithoclasts (figure 3.5). Investigated lithoclasts consists of grainstones that are 

dominated by moldic porosity. The lithoclast/matrix contacts are sharp and 

distinct, and related to abrupt changes in fabric (figure 3.6). 

Unit M/lithofacies M1 consists of matrix-supported rudist megabreccias, that are 

confined to sub-horizontal, amalgamated 5-15 m beds (figure 3.4). The upper 

boundary of this unit/lithofacies is sharp towards overlying slope deposits of the 

Monte Acuto Limestone Formation. Lower boundary is not exposed. Mapped 

thickness is some 40 meters. Lithoclasts are poorly rounded, and the deposit is 

poorly sorted. Image enhancement methods were utilized in the visualisation of 

lithoclasts (figure 3.5). Investigated lithoclasts consists of grainstones that are 

dominated by moldic porosity. The lithoclast/matrix contacts are sharp and 

distinct, and related to abrupt changes in fabric (figure 3.6). 

DESCRIPTION AND INTERPRETATION OF SUBFACIES TO LITHOFACIES M1 DESCRIPTION AND INTERPRETATION OF SUBFACIES TO LITHOFACIES M1 

Subfacies M1a is a well sorted, moderately rounded grainstone dominated by 

moldic and interparticle porosity. Some 

samples display in extraclasts. Grains 

display micrite envelopes (Bathurst, 1966), 

and dissolution have frequently removed 

the entire grain leaving an inverted porosity 

fabric that is overgrown with calcite 

cement. Two distinct generations of calcite 

cements are recognized. An inner rim of 

isopachous, bladed cement has precipitated 

directly onto the rounded grains preserved 

through micrite envelopes. Equant calcite 

cement has precipitated onto the marine 

cement. 

Subfacies M1a is a well sorted, moderately rounded grainstone dominated by 

moldic and interparticle porosity. Some 

samples display in extraclasts. Grains 

display micrite envelopes (Bathurst, 1966), 

and dissolution have frequently removed 

the entire grain leaving an inverted porosity 

fabric that is overgrown with calcite 

cement. Two distinct generations of calcite 

cements are recognized. An inner rim of 

isopachous, bladed cement has precipitated 

directly onto the rounded grains preserved 

through micrite envelopes. Equant calcite 

cement has precipitated onto the marine 

cement. 
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InterpretationInterpretation: Subfacies M1a originates 

from higher-energy areas on the platform 

margin. Extraclasts of this subfacies were 

eroded and re-deposited into lower-energy 

areas on the foreslope by erosion where  

Figure 3.4 – Malpasso Valley, S-N/N-S 
/E-W section.  
 
A) Photo and sketch of western wall. 
B) Photo and sketch of eastern wall. 
C) E-W section from main road. 
D) Positions on topography, and legend. 

Monte Sant’Angelo Megabreccias 

Monte Acuto Limestones 

Covered Internal boundary 
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(0) 

E 

(B) 

(A) 
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Figure 3.6 – Lithofacies M1, clast-to-
matrix transect of samples  

 
Samples 74-78 displays a transect from 
inner lithoclast to surrounding matrix.  
 
See photo/sketch for sample locations 
relative to clast. 

77 

78 76 

75 

74 

5 mm 5 mm 5 mm 5 mm 5 mm 

77 78 76 75 74 

Figure 3.5 – Lithofacies B1, matrix-supported 
megabreccias 1. 
 
A) Enhanced east-wall sections display clasts of various 

shapes and sizes, floating in the abundant 
surrounding matrix. Some clasts indicated by arrows. 

B) Image (A) position indicated on topographic map. 
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  3 – Data 

they were mixed with mud-rich fractions and lithified prior to re-sedimentation as 

lower-slope megabreccia components. This subfacies mainly contribute to 

lithoclasts of the megabreccias, but possibly also to the matrix as smaller fraction 

extraclasts. This subfacies may also have been produced through the 

disintegration of lithoclasts during transport. 

 

Subfacies M1b displays grain-dominated packstones, cemented by micrite mud. 

Grains are unsorted and moderately rounded and consist mostly of skeletal 

grains. Remnants of rudist, bivalves and echinoderms are recognized. Micrite 

envelopes are present but not common, and locally observed surrounding 

grainstone and packstone extraclasts. Micrite mud is locally abundant, but 

confined to certain areas of the samples (e.g. sample 1-9, figure 3.7). Nonfabric-

selective dissolution porosity is observed along with rare intraparticle pores 

within preserved skeletal fragments, but the subfacies is dominated by 

interparticle porosity. A fringe of isopachus cement surrounds most grains, which 

shape and size is generally defined through micrite envelopes. They are in turn 

coated with equant calcite cement that is the volumetrically dominant cement 

fraction (figure 3.7). Orbitolina sp. and Echinoid fragments are recognized. 

Interpretation: Subfacies M1b is interpreted as deposits of semi-protected areas 

of the foreslope to the carbonate platform. Skeletal grains were derived from 

adjacent rudist colonies related to higher-energy parts of the platform. This 

subfacies lithified on the foreslope prior to re-deposition, and occurs within 

lithoclasts as well as the matrix to the lower-slope megabreccias. This suggests 

that disintegration of lithoclasts during transport may have contributed to the 

matrix. 

 

Subfacies M1c displays mud-dominated packstones. Most grains are rudist-, 

bivalve- or echinoid fragments. Nonfabric-selective porosity is observed but the 

subfacies is dominated by interparticle and moldic porosity. The packstones 

locally grade into wackestones. Compaction-features are observed. Micro-

porosity occurs within the mud-fraction of this subfacies, visible through weak 

epoxy staining of the fabrics. Rhombohedra-shaped pores that show no 

cementation occur, confined to micrite-dominated fabrics (figure 3.7). 
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2-2 1-9 

5 mm 5 mm 

5 mm 

2-1M 3-2 

5 mm 

Figure 3.7 – Subfacies M1a, M1b and M1c 
 
A) Subfacies M1a as displayed in sample 3-5. 
B) Subfacies M1b as displayed in samples 2-2 and 1-9. 
C) Subfacies M1c displayed in samples 2-1M and 3-2. Sample 2-1M originated from megabreccia matrix. 

This sample is cut by nonfabric-selective vug filled with recent silts (arrow). 

1 mm 

3-5 

5 mm M1a 

M1b 

M1c 

M1b 



  3 – Data 

21 

 

Figure 3.9 – Diagenetic observations 
 
Sample 106 displays subfacies M1a – Grainstone. An isopachous, bladed calcite cement coats (2) individual 
grains that are defined by micrite envelopes (1). Equant calcite cement (3) precipitated onto the 
isopachous cement and within in interparticle (IP) and moldic (M) pores. 

106A 

1 mm 

3 

2 

1 

IP 

M 0.5 mm 

Figure 3.8 – Subfacies M1d and M1e 
 
A) Subfacies M1d as displayed in sample 76, which 

originated from a clast/matrix contact on the 
eastern wall. Note selective dissolved, coarse 
rhombohedra-shaped pores. 

B) Subfacies M1e as displayed  in sample 2-9 are 
micrite cemented rudstones with abundant and 
rudist fragments. 
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Interpretation: Subfacies M1c is interpreted as originating from lower-energy 

parts of the platform foreslope. They were lithified prior to re-deposition into 

lower-slope megabreccias. Grains were derived from adjacent populations of 

rudists, echinoderms and bivalves on the platform upper slope and margin. 

 

Subfacies M1d consists of mud-dominated rudist rudstones with skeletal 

fragments in a micrite wackestone matrix. The subfacies is dominated by 

interparticle porosity but intraparticle porosity occurs rarely. Skeletal fragments 

within this lithofacies display little or no early marine calcite cementation (figure 

3.8).  

Interpretation: Subfacies M1d is interpreted as megabreccia matrix. They are 

sediments produced on the marginal areas, and transported to the lower-slope 

domain along with the matrix-supported debris-flows. 

 

Subfacies M1e consists of micrite wackestones, with scattered rhombohedra-

shaped pores which are confined to the micrite matrix. The subfacies only rarely 

show calcite cementation. Grains are skeletal fragments and pellets. No internal 

organization is observed (figure 3.8). 

Interpretation: Subfacies M1e constitutes the matrix to the megabreccias along 

with other components. These sediments were derived from the marginal areas 

of the platform, and deposited onto the slope. Rhombohedra-shaped pores 

suggest the selective dissolution of dolomite or pyrite crystals. The lack of 

cement within these pores indicate that dedolomitization were late in the 

diagenetic history of these sediments. 

 

INTERPRETATION OF UNIT M AND CORRESPONDING LITHOFACIES 

Unit M/Lithofacies M1 are debris-flows that originated from the upper-slope and 

marginal environments where sediments lithified prior to re-deposition to the 

lower-slope domain. Matrix constitutes mostly similar subfacies as the lithoclasts, 

indicating similar source and disintegration of lithoclasts during transport. The 

internal segmentation of the megabreccia levels indicates multi-event deposition. 
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VICO DEL GARGANO 

The Vico del Gargano Quarry is situated in the northern part of the Gargano, 2 

km west of the village of Vico del Gargano and approximately 20 km north of the 

village of Monte Sant’Angelo, (figure 3.10). The quarry exposes a 360 m long N-

S trending outcrop. A total of 36 plug samples were drilled from this locality 

during 4 days of May 2007. 

4 units where mapped in the quarry; A through D. Each unit contains one or 

more lithofacies and subfacies which are described and interpreted below. 

 

 

 

 

 

Vico del Gargano Quarry 

Figure 3.10 – Vico del Gargano Quarry 
  
A) Orthophoto of the quarry, from Portale 

Cartografico Nazionale 
(http://www.pcn.minambiente.it/). 

B) Geological map (Lago di Varano 1:000 
000, R.Selli) draped onto topography 

from Google Earth as of March 2008.  
C) Overview map of Gargano. Google maps 

as of December 2007. 
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Figure 3.11 – Unit A 
 
A) Unit A as displayed in the middle  

parts of the quarry (see  
topographic model).  
Lithofacies indicated. Upper  
boundary of unit A indicated by  
stippled line. 

B) Stray unit B boulder suppressing  
underlying deposits of unit A. 

C) Lithofacies A2. Inlined thin-section:  
Sample 320 displays a grainstone with  
interparticle porosity. 

D) Lithofacies A1 with Thalassanoid  
bioturbation. Pen for scale. 
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DESCRIPTION OF UNIT A AND CORRESPONDING LITHOFACIES 

Unit A is the lowermost unit mapped in the Vico del Gargano Quarry. The unit 

consists of two facies; Homogenous lime wackestone layers of facies A1 

interbedded with graded grainstone/packstone beds of facies A2 (medium-to-

coarse calcarenite). Sharp boundaries separate these interbedded facies, no 

erosive features are observed. No paleo-current indicators were observed. The 

unit displays a thickness of 5 meters in the mapped succession. Soft-

sedimentation features are observed within the upper parts of this unit where it 

is locally suppressed by the overlying unit B (figure 3.11). No frequency or 

thickness trends of the internal layers of this unit are observed. Unit A is 

separated from the overlying unit B by a sharp boundary.  

Lithofacies A1 consists of lime wackestones, confined to parallel laminae and thin 

(1-15 cm) beds. It is interbedded with lithofacies A2. Thallasanoid bioturbation is 

observed (figure 3.11). The database contains no samples from this facies. 

Lithofacies A2 consists of graded calcarenite grainstones which are sharp-based, 

but show upper boundaries that locally appear more gradual. One thin-section 

(#320) is available from this facies, displaying a dominance of interparticle 

porosity between poorly sorted grains (figure 3.11). Some moldic porosity occur. 

Grains consist of rudist- and bivalve fragments and Orbitolina sp. as well as 

pellets of different origins. Grains are cemented by equant calcite sparite. No 

micrite mud is observed. Three beds of this facies are observed in the exposed 

succession (5 m). No vertical trends in terms of bed thickness, frequency or 

other features were derived from the exposed section.  
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Figure 3.12 – Unit B/Lithofacies B1 
 
A) Photo and sketch of lithofacies B1 as displayed in the 

southern most parts of the quarry.  
B) Lithoclast displayed in the southern parts  

of the quarry with selection: Preserved  
rudist shell and abundant shell  
fragments. Arrows point to clast. 

C) Unit B displays a pinch-out geometry  
between the underlying unit A and the  
overlying unit C. Mapped angle of deposit  
is less than 0.1° relative to top unit A datum. 

D) Position of profile (C) and position of images  
(A) and (B) (arrow) on topographic quarry  
model. 
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INTERPRETATION OF UNIT A 

Interpretation: Lithofacies A1 is interpreted as distal slope to proximal basin 

hemipelagic deposits, with fine grained materials deposited mainly from 

suspension probably related to high sediment production on the adjacent 

carbonate platform. These deposits mark periods of local non-deposition of 

coarser materials from the platform. Thalassanoid trace fossils suggest episodic 

halts in sediment supply or sufficient low sedimentation rates to accommodate 

biota on the sea-floor. 

Interpretation: Lithofacies A2 is interpreted as low-density calciturbidites (TDE) 

deposited in the distal slope to proximal basin environment. The absence of 

amalgamated turbidite beds indicates that deposition from turbiditic flows in this 

area were not very frequent during this time period, which in turn underpins the 

distal position of this succession relative to the carbonate factory. 

Interpretation: Unit A is interpreted as turbidites interbedded with marine 

hemipelagic mudstones (background sedimentation) on the distal shelf/basin. 

This unit was not dated, but previously established stratigraphy (figure 2.4) 

indicate that this unit may be interpreted as the transition between Monte 

Sant’Angelo Limestones and Scaglia Fm/the transition between the upper 

Mattinata Limestones/Fucoid Marls.  

 

DESCRIPTION OF UNIT B AND CORRESPONDING LITHOFACIES 

Unit B and lithofacies B1 are the same entity and are here subsequently not 

described separately. 

Lithofacies B1 is a poorly sorted, polygenic matrix-supported rudist rudstone 

megabreccia. The base and top of the unit are sharp and non-erosive.  Individual 

lithoclasts range from cm to meter scale. Some larger lithoclasts show preserved 

internal sedimentary structures. Other lithoclasts show an abundance of rudist 

shell fragments as well as whole preserved rudist shells. No matrix is observed 

within this lithofacies. No segmentation or organization is observed. Mapped 

thickness is 7 meters in the southernmost parts of the quarry, thinning towards 

the north and pinching out between units A and C in the middle parts of the 

quarry (figure 3.12). Unit B/Lithofacies B1 is here represented only by some 

stray outlying boulders (figure 3.12).  
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325 A 

5 mm 1 mm 
B1a 

Figure 3.13 – Subfacies B1a, B1b and B1c 
 
A) Subfacies B1a – Grainstone. Sample 325 originates from a lithofacies B1 clast. 
B) Subfacies B1b – Grain-dominated packstones. Sample 327 displaying Orbitolina sp. 
C) Subfacies B1c – Mud-dominated packstones. Sample 318 displays subfacies B1c and originates from a B1 

megabreccia clast. 
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DESCRIPTION AND INTERPRETATION OF SUBFACIES TO LITHOFACIES B1 

Subfacies B1a is a grainstone dominated by moldic porosity (figure 3.13). Grains 

display a bimodal distribution of well-rounded, well-sorted lime sands and poorly 

sorted, less rounded skeletal fragments. Individual grains show borings and have 

well developed micrite envelopes. Isopachous cement precipitated onto the 

commonly dissolved grains. Equant cement grows onto the early isopachous rim. 

Interpretation: Subfacies B1a sands originate from high-energy areas of the 

platform margin, where reworking by tides and/or waves produced this relatively 

mature sediment. Rudist probably colonized the sand-banks from which this 

subfacies was derived, and produced the described skeletal fragments. These 

were also subject to reworking in this higher-energy environment, but to a lesser 

extent, prior to lithification. This subfacies lithified and underwent diagenetic 

alterations prior to erosion and re-sedimentation.  

 

Subfacies B1b displays a grain-dominated packstone, cemented by lime mud 

(figure 3.13). Rudist fragments are abundant and constitute the bulk of the 

poorly sorted, moderately rounded grains of this packstone (rudstone). Orbitolina 

sp. is common but not abundant throughout the available samples. Grains are 

coated by thin rims of isopachous, bladed cement. Interparticle porosity is 

dominant, but samples also display selective-dissolution moldic pores. 

Interpretation: Subfacies B1b is interpreted to originate from low-energy areas of 

the platform margin-to-upper slope. Grains were derived from the adjacent 

higher-energy marginal. They were lithified prior to their re-deposition. 

 

Subfacies B1c show is a mud-dominated packstone with cemented skeletal grains 

and well rounded pebbles. Grains are poorly sorted and variably rounded (figure 

3.13). Moldic porosity is dominant, but interparticle porosity occurs. Some molds 

are lined with calcite cement. 

Interpretation: Subfacies B1c originates from the protected low-energy 

environments in the marginal platform area. Grains originate from higher-energy 

areas on the adjacent platform margin. 
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Figure 3.14 – Lithofacies C1,  
packstone 
 
A) Southern parts of Vico del Gargano quarry east wall display 

facies C1 (indicated by arrows) separating segments of upper 
unit C. Due to faulting in this area, these clinoforms of unit C 
in this particular area appear horizontal, while as in the rest of 
the quarry, they dip toward the north. 

B) Facies C1 displayed further north with respect to (A). See 
topographic model with positions indicated. Holes are sample-
sites. Stapled line indicates the boundary towards overlying 
segment of facies C2 – matrix-supported megabreccia. 

C) Facies C1 separating units B and C, in the southern parts of 
the quarry.  

D) Sample 342 displays a dense packstone with rounded skeletal 
grains and little porosity. 
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  3 – Data 

INTERPRETATION OF UNIT B 

Interpretation: Unit B/lithofacies B1 is interpreted as a single-event, grain-flow 

deposit which originated on the upper-slope/marginal areas of the platform, 

deposited on the lower-slope. The lack of matrix indicates that lithoclasts were 

densely lithified prior to re-sedimentation, and also indicates that transport 

distance was short. This is underpinned by the occurrence of large, irregular 

clasts with preserved internal bedding of the platform interior environment. 

 

DESCRIPTION OF UNIT C AND CORRESPONDING LITHOFACIES 

Unit C constitutes the bulk of the mapped Vico del Gargano succession. It 

consists of two lithofacies; C1 (packstone) and C2 (matrix-supported rudist 

megabreccias 2). The latter is the dominant facies, whereas the first only appear 

in thin (~ 30 cm) intervals within the succession, defining clinoforms (Rich, 

1951) separating the megabreccia bodies. 

Unit C caps unit B but where unit B is pinched out (middle and northern parts of 

the quarry), unit C rests directly onto unit A. Total mapped thickness of unit C is 

46 meters with internal megabreccia bodies showing thicknesses of 

approximately 5-10 meters. Some clinoforms consists of 10-30 cm packstone 

layers that locally show evidences of soft-sediment deformation.  

Lithofacies C1 consists of dense packstones. Its grains are of bimodal distribution 

with fairly sorted and rounded sands and scattered larger skeletal fragments 

(Orbitolina sp., bivalves and rudists) (figure 3.14). Grains are moderately 

rounded and skeletal fragments are less than 2 mm in size.  

Lithofacies C2 is a matrix-supported rudist megabreccia. It is segmented into 

multiple stacked 5-10 beds, separated by clinoforms (figure 3.15). Compared to 

lithofacies B1, these megabreccias are better sorted and appear more organized. 

The present dataset does not support mapping of subfacies within these 

megabreccias. Boundaries are well defined, and apparently non-erosive. 
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Figure 3.16A – Unit C downlaps onto unit A. 
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Figure 3.15 – Lithofacies C2, matrix-
supported megabreccias 2 
 
A) Facies C2 as displayed in the western 

parts of the outcrop (old quarry), 
separated by a soft-sediment 
deformed intralayer of facies C1. 
White arrows indicate facies C2. 

B) Facies C1 as displayed in the middle 
parts of the main quarry. Lower unit is 
facies C1. Facies C2 is indicated by 
black arrow. 

 
Samples 338 and 339 display mud-
dominated Orbitolina packstones.  
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  3 – Data 

INTERPRETATION OF UNIT C 

Interpretation: Lithofacies C1 is interpreted as the result of highstand shedding 

(Eberli & Ginsburg, 1989; James & Kendall, 1992; Schlager et.al., 1994; Maurer, 

2000; Rendle & Reijmer, 2002) of sediments derived from the adjacent 

carbonate platform. These sediments were deposited as low-density turbidites or 

grain-flows. It constitutes the clinoforms that separate the megabreccias of 

lithofacies C2. 

Interpretation: Lithofacies C2 consists of matrix-supported megabreccias which 

are interpreted as debris-flow deposits on the lower-slope. Lithoclasts were 

derived from the upper slope and marginal areas of the adjacent carbonate 

platform. Matrix composition resembles that of litholasts, reflecting the 

disintegration of lithoclasts and incorporation of additional facies during 

transport. 

Interpretation: Unit C is interpreted as debris flow deposits laid down on the 

lower slope. Main source of sediments was the marginal- and upper-slope 

environments. Unit C downlap onto unit A (figure 3.16A/B), and is segmented by 

clinoforms. 

 

 

 

SW 

Figure 3.16B – Unit C downlaps onto unit A 
 
Middle quarry, looking south-east. 

Unit A 

Unit B 

Unit C 

Fault 

Clinoforms 
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Figure 3.17 – Unit D 
 
A) Overview photo-stitch displaying the upper north quarry wall, non-distorted photo and 3X vertical 

distance photo with some internal boundaries indicated. 
B) Lower, westernmost parts of northern quarry wall. Internal boundaries indicated. Sketch slices photo 

and displays changes in fabric. 
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  3 – Data 

DESCRIPTION OF UNIT D AND CORRESPONDING LITHOFACIES 

Unit D is, in stratigraphic terms, the uppermost mapped unit of the Vico del 

Gargano quarry succession. It displays multiple internal boundaries, separating 

two mapped facies; matrix-supported megabreccias (D1) and coarse graded 

grainstones (D2) and the overall package display the shape of an anticline (figure 

3.17).  

The internal unit D bodies thin towards E and W and generally thicken towards 

the intra-body centers. Some internal boundaries show erosive lower bases. This 

unit is mapped on the same level as the uppermost parts of unit C. The transition 

between the mapped upper parts of unit C and unit D is not exposed. 

 

Lithofacies D1 consists of matrix-supported megabreccias confined to lense-

shaped bodies of around 1 meter that thin towards the west and the east in the 

exposed section. No evidence of erosion was observed in relations to these 

confined megabreccia bodies. Subfacies of this lithofacies are described below. 

 

Lithofacies D2 is interbedded with the megabreccias of lithofacies D1. It displays 

graded grainstones, confined to bodies showing thicknesses of up to 1 meter. 

Lateral termination is not observed, but the erosive beds generally thin toward 

the edges of the exposed section, towards east and west. The lower parts of 

these deposits are coarse calcarenites to fine calcirudites and may locally classify 

as floatstones. They grade up trough calcarenites that show planar laminations. 

Rare layers display massive sands above the planar laminated subdivision. The 

grainstones are dominated by interparticle porosity between calcarenite skeletal 

fragments that are well sorted but not particularly rounded (fig 3.18). Benthic 

foraminifers are common, but not abundant. Rudist- and bivalve fragments are 

observed. Nonfabric-selective porosity occurs along with rare intraparticle 

porosity, but the general dominance is of interparticle porosity. 
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Figure 3.18 – Subfacies D1a, D1b and D1c 
 
A) Subfacies D1a – Grainstones. Sample 334 displays abundant benthic foraminifers. 1: Orbitolina 

(Conicorbotilina) Concava, 2: Orbitolina (Conicorbitolina) conica (D'Archiac, 1837). 
B) Subfacies D1b – Grain-dominated packstones. Sample 344 display dominance of moldic porosity, 

cut by late nonfabric-selective pore with recent silts. 
C) Subfacies D1c – Mud-dominated packstones. Sample 345 displays rounded grainstone extraclasts, 

rounded pebbles with bladed calcite cement coating and skeletal fragments. 
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  3 – Data 

DESCRIPTION AND INTERPRETATION OF SUBFACIES TO LITHOFACIES D1 

Subfacies D1a consists of grainstones with an abundance of well preserved 

benthic forams of different sizes, but they are generally significantly larger than 

the grainstone grains. The grainstones display well-sorted, poorly rounded 

skeletal fragments. 

Interpretation: Subfacies D1a is interpreted as extraclasts derived from the 

foreslope where it originally was deposited through gravity-driven processes and 

highstand-shedding. Benthic foraminifers accumulated on top of this sandy 

deposit. It was re-deposited through debris-flows and now occurs within 

lithoclasts and matrix to the megabreccia beds of lithofacies D1. Benthic 

foraminifers are interpreted as Orbitolina (Conicorbitolina) conica sp. and 

Orbitolina (Conicorbitolina) concava sp. (D'Archiac, 1837) (figure 3.18A). 

 

Subfacies D1b consists of grain-dominated packstones cemented by micrite mud. 

Grains are pellets and rudist fragments. Non-fabric selective porosity and 

intraparticle porosity is observed, but the subfacies is dominated by interparticle 

porosity. Moldic pores are defined by micrite envelopes, and lined with calcite 

cement. However, the grains show very little calcite cement coating. 

Interpretation: Subfacies D1b consists of extraclasts derived from the upper 

slope and margin. It was re-sedimented through debris-flows and occurs in both 

matrix and clasts of the D1 megabreccias. The lack of cement on the outside 

(coatings) of grains and the abundant calcite cement on the inside (linings) of 

moldic pores, suggest that cementation occurred post-depositional of these 

megabreccias. 

 

Subfacies D1c displays mud-dominated packstones with micrite-cemented 

extraclasts of grainstones (figure 3.18B) and packstones (figure 3.18C), as well 

as bivalve fragments. Moldic pores are abundant and most grain shapes are 

preserved only by micrite envelopes. Molds are lined, and most extraclasts are 

coated with, isopachous bladed calcite cement. 

Interpretation: Subfacies D1c packstones are interpreted as elements originating 

from the platform margin and/or foreslope environments. These sediments were 

lithified prior to re-deposition. 
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Figure 3.19 – Lithofacies D1 and D2 
 
A-B) Lithofacies D1 as displayed on the northern quarry wall. Clasts indicated by arrows. Stippled line 

in B) indicates internal unit D boundary between lithofacies D1 (upper) and D2 (lower) 
C) Oblique view of the northern wall along with its position and orientation on topographic model. 
D)  Graded grainstone layer of facies D2 as displayed on the upper part of the northern quarry wall. 
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  3 – Data 

INTERPRETATION OF UNIT D 

Interpretation: Lithofacies D1 is interpreted as debris flows on the middle-to-

lower slope. Lithoclasts were derived from the marginal areas of the platform, 

where they were lithified or semi-lithified prior to re-sedimentation. Subfacies 

D1a (grainstones) are recognized within both lithoclasts and matrix to these 

megabreccias, indicating that matrix and lithoclasts predominantly was produced 

by sediments from the same source. The disintegration of lithoclasts, and 

possibly the incorporation of additional facies during transport contributed to the 

matrix. 

 

Interpretation: Lithofacies D2 consists of grainstones which are interpreted as 

proximal turbidite flow deposits commonly displaying Bouma-divisions A and B 

and rarely C (Bouma, 1962) (figure 3.19). Their paths were largely controlled by 

submarine topography, and an overall channeled pattern is recognized. 

  

Interpretation: Unit D displays an alternating succession of debris-flow deposits 

(D1) and proximal turbidites (D2). Depositional pattern suggests that the 

deposits are channeled, by the control of submarine topography. Sediments were 

derived from the marginal areas of the platform, where high-energy 

environments produced mature sediments, but mud-dominated facies also occur 

within this unit indicating that lower-energy environments also contributed to the 

components of this unit. 
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  3 – Data 

PETROPHYSICAL DATA 
This section presents the petrophysical database, according to locality (tables 

3.2A/B). Samples that lack permeability and/or porosity measurements are 

omitted from all further presentations of data related to poroperm transforms 

and relationships. Each sample is assigned a numerical sample ID. Samples # 0-

200 refer to Malpasso Valley samples, while samples #300-400 refer to Vico del 

Gargano samples. Samples originating from the Malpasso west-wall grid (figure 

3.20) also have individual grid-ID’s referring to the samples position within the 

grid (Column#-Row#). Measured permeability and measured porosity refer to 

numbers derived from laboratory measurements. Estimated porosity and 

estimated permeability refer to numbers derived from estimation methods. 
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C E Figure 3.21 – Grid of samples 
 
A) Malpasso Valley west wall grid of samples. Upper: 

Grid location indicated on image of west wall. 
Lower: Sample ID’s. Single-numbered row and 
column are axis used for sample ID generation, not 
representing samples. Note that samples are 
missing to complete the full 10 x 5 m grid. A 
complete 9 x 4 m grid is available. 

(A) 

B) Grid sampling using portable drill and climbing 
gear. 

C) Topograhic map draped on topography (Google 
Earth as of March 2007) 
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Fig 3.20 – Lucia Classification System 
 
Modified based on Lucia (1983, 1995, 1999, 2007).  
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Figure 3.21 – Lønøy (2006) classification system 
 
Classification system of Lønøy (2006) with modified pore class abbreviations based on Lucia (1983, 1995, 
1999, 2007) (except for Mudstone Microporosity (MP)). Transforms are empiric trendlines derived from 
Lønøy (2006). 

Kest = 1.4955Ln(φest) – 3.2488 Kest = 1.8347Ln(φest) – 5.0328 

Kest = 1.5253Ln(φest) – 2.5953 Kest = 1.7150Ln(φest) – 4.0711 

Kest = 1.8095Ln(φest) – 3.0914 Kest = 1.8589Ln(φest) – 3.7318 

Kest = 1.4912Ln(φest) – 4.5699 Kest = 1.9711Ln(φest) – 6.1918 

Kest = 1.5036Ln(φest) – 3.317 Kest = 0.1305Ln(φest) – 2.2155 

Kest = 1.399Ln(φest) – 2.3081 

Kest = 0.1281φest – 2.1901 

Kest = 1E-05φest
3 – 0.0028φest

2 – 0.2141φest – 2.3746 

Kest = 0.1534φest – 2.1991 Kest = 0.2613φest – 1.3407 

Kest = 0.0861φest – 2.382 

(N/A) 

N/A 



Monte Sant’Angelo Megabreccias 

 

Table 3.2A – Petrophysical data, Malpasso Valley Lucia (1983, 1995, 1999, 2007) Lønøy (2006)  
Grid 
ID ID Lithofacies/ 

subfacies φmeas, eff 
kmeas, abs 
[mD] φest, eff 

Dominant 
poretype 

IP 
fraction 

kest, abs 
[mD] 

Dominant 
poretype 

kest, abs 
[mD] Remarks 

1.0 32 M1a 18.8 % 25.2 17.1 % IP 15.3 % 528.6 IGuMe 9.1  
1.1 22 M1a 21.8 % 6.83 19.6 % SV 7.5 % 0.2 MO-Ma 11.6  
1.2 23 M1a 22.5 % 305 17.2 % IP 1.9 % 0.0 IGuMe 18.5  
1.3 24 M1c 23.8 % 132 14.6 % TV 4.1 % 0.0 VUG 201.1  
1.4C 25 M1d 19.9 % 2.02 10.4 % SV 6.0 % 0.0 MO-Ma 7.2  
1.4M 25 M1c 18.0 % 4.19 3.9 % TV 2.7 % 0.0 VUG 26.4  
1.5 26 M1c 15.6 % 1.05 7.1 % SV 1.1 % 0.0 MO-Ma 2.1  
1.6 27 M1b 15.0 % 0.49 6.5 % IP 5.6 % 0.1 IGuMe 3.8  
1.7 28 M1a 12.0 % 45.8 5.8 % IP 12.0 % 67.1 IGuMe 1.6  
1.8 29 M1b 20.4 % 31.9 7.3 % IP 8.4 % 0.3 IGuMe 12.6  
1.9 30 M1b 21.6 % 158 15.0 % IP 7.8 % 1.6 IGuMe 15.9  
1.10 31 M1a 20.9 % 104 19.2 % IP 7.0 % 0.6 IGuMe 13.8  
2.0 33 M1b 17.9 % 29 4.7 % IP 5.4 % 0.0 IGuMe 7.5  
2.1C 38 M1d 24.4 % 268 20.2 % TV 10.0 % 1.0 VUG 250.4  
2.1M 38 M1c 15.9 % 2.64 8.1 % TV 1.4 % 0.0 VUG 12.7  
2.2 43 M1b 21.5 % 13.6 10.0 % SV 6.9 % 0.1 IGuMe 15.5  
2.3 48 M1a 20.5 % 9.89 13.5 % SV 4.8 % 0.0 IGuMe 12.9  
2.4 52 M1a 24.9 % 158 11.1 % SV 4.6 % 0.0 MO-Ma 23.8  
2.5 56 M1b 16.5 % 5.04 4.5 % IP 7.0 % 0.1 IGuMe 5.5  
2.6 70 M1b 22.0 % 248 14.5 % SV 10.8 % 1.6 VUG 108.6  
2.7 59 M1b 23.2 % 209 15.8 % IP 2.6 % 0.0 IGuMe 21.1  
2.8 63 M1c 25.2 % 23.9 7.0 % IP 3.1 % 0.0 IGuMe 29.1  
2.9 67 M1d 24.4 % 7.48 4.5 % IP 6.0 % 0.0 MO-Ma 21.2  
3.0 34 M1b 22.1 %  5.5 % SV 8.0 % 0.2 IGuMe 17.3 No measured k 
3.1 39 M1d 18.5 % 2.42 5.6 % SV 4.0 % 0.0 MO-Ma 4.9  
3.2 44 M1c 21.4 % 36 8.8 % IP 12.8 % 4.5 IGuMe 15.2  
3.3 49 M1d 23.1 %  10.9 % IP 16.2 % 18.9 IGuMe 20.6 No measured k 
3.4C 53 M1a 20.8 % 0.67 18.9 % IP 14.5 % 342.8 MO-Ma 9.0  
3.4M 53 M1b   7.3 % IP   IGuMe  Bad quality thin-section 
3.5 57 M1b 20.0 % 2.67 9.0 % IP 8.0 % 0.2 IGuMe 11.7  
3.7 60  21.4 % 23.9 0.0 %      No thin-section 
3.8 64 M1a 15.2 % 2.02 7.3 % IP 9.1 % 6.1 IGuMe 4.0  
3.9 68 M1b 27.6 % 200 10.6 % SV 22.1 % 8.7 MO-Ma 40.9  
4.0 35 M1c 23.7 % 38 7.3 % SV 10.1 % 1.0 MO-Ma 18.2  
4.1 40 M1a 24.2 % 54 8.6 % SV 2.4 % 0.0 MO-Ma 20.4  
4.2 45  20.4 % 12.9 0.0 %      No thin-section 
4.3 50 M1c 16.0 % 52.3 9.2 % IP 14.4 % 1.1 IGuMe 4.8  
4.4 54 M1b 14.1 % 2.66 3.2 % IP 12.7 % 4.2 IGuMe 2.9  
4.5 58 M1c   7.9 % TV   VUG 0.0 No measurements 
4.6 72 M1d 20.3 % 19.7 10.0 % IP 12.2 % 3.3 IGuMe 12.3  
4.7 61 M1a 23.7 % 46.2 17.4 % IP 9.5 % 8.5 IGuMe 22.9  
4.8 65 M1d   10.6 % SV   MO-Ma  No measurements 
4.9 69 M1c 15.6 % 7.12 2.3 % SV 1.6 % 0.0 MO-Ma 2.1  
5.0 36 M1c 16.9 % 6.8 2.8 % IP 8.5 % 0.3 IGuMe 6.0  
5.1 41 M1c 21.9 % 39.3 16.0 % SV 4.4 % 0.0 MO-Ma 12.0  
5.2 46 M1b 12.1 % 3.01 6.4 % IP 4.8 % 0.0 MO-Ma 0.7  
5.3 51 M1b 18.7 % 7.76 12.7 % IP 11.2 % 2.0 IGuMe 9.0  
5.4 55 M1b 17.6 % 26.4 8.9 % IP 12.3 % 3.5 IGuMe 7.0  
5.5 ?? M1b 14.7 % 0.32 7.4 % TV 4.4 % 0.0 VUG 8.2  
5.6 73 M1b 17.4 % 4.72 7.5 % IP 12.2 % 3.3 IGuMe 6.8  
5.7 62 M1a 18.3 % 0.648 10.4 % SV 7.3 % 0.9 MO-Ma 4.7  
5.8 66 M1a 13.7 % 5.75 11.0 % SV 2.7 % 0.0 MO-Ma 1.1  
6.0 37 M1a 27.6 % 142 9.0 % IP 13.8 % 220.2 IGuMe 41.7  
6.1 42 M1a 23.7 % 15.5 10.1 % IP 16.6 % 1076.8 IGuMe 22.8  
6.2 47 M1b 10.1 % 0.17 4.5 % SV 6.1 % 0.0 MO-Ma 0.3  
 74 M1a 19.0 % 3.515 10.3 % SV 1.5 % 0.0 MO-Ma 5.7  
 75 M1a 22.6 % 11.165 26.5 % SV 4.3 % 0.0 MO-Ma 14.0  
 76 M1e 19.0 % 9.431 6.9 % IP 6.9 % 0.0 IGuMe 9.4  
 77 M1d 20.2 % 586.842 10.0 % IP 11.1 % 1.9 IGuMe 12.1  
 78 M1c 20.7 % 1.129 9.2 % TV 10.0 % 1.0 VUG 67.6  
 80 M1b 29.0 %  16.7 % SV 8.7 % 4.0 MO-Ma 52.5 No measured k 
 82A M1b 21.5 % 40.5 16.1 % SV 2.2 % 0.0 MO-Ma 10.8  
 82B M1b 21.4 %  16.6 % SV 6.4 % 0.3 MO-Ma 10.4 No measured k 
 83A M1c 29.1 % 134 13.1 % IP 17.5 % 30.3 IGuMe 51.3  
 83B M1c 21.2 % 12.1 3.5 % SV 6.4 % 0.1 MO-Ma 10.0  
 84A M1c 20.4 % 30.5 14.2 % TV 8.2 % 0.3 VUG 61.5  
 84B M1c 13.2 % 0.921 4.1 % SV 5.3 % 0.1 MO-Ma 1.0  
 85A M1a 22.5 % 203 10.3 % SV 4.5 % 0.0 MO-Ma 13.8  
 85B M1c 12.1 % 2.07 2.7 % SV 3.6 % 0.0 MO-Ma 0.7  
 100A M1a 22.4 % 3.81 15.8 % SV 2.2 % 0.0 Mo-Ma 13.4  
 100B M1c 22.2 % 12.8 13.3 % IP 15.5 % 14.8 IGuMe 17.6  
 101A M1d 18.5 %  7.0 % SV 7.4 % 0.1 MO-Ma 4.9 No measured k 
 101B M1c 17.6 % 7.97 3.8 % IP 12.3 % 3.6 IGuMe 7.1  
 102 M1a 21.4 % 12.9 16.3 % IP 12.8 % 117.1 IGuMe 15.2  
 103 M1d 21.1 % 10.9 2.1 % IP 12.7 % 4.2 IGuMe 14.4  
 105A M1b 23.6 % 22.24 29.0 % TV 3.5 % 0.0 VUG 187.9  
 105B M1c 17.6 % 2.75 4.1 % IP 12.3 % 3.5 IGuMe 7.0  
 106A M1a 15.4 % 0.33 13.0 % IP 4.6 % 0.0 IGuMe 4.1  
 106B M1b 14.4 % 0.108 10.2 % SV 2.2 % 0.0 MO-Ma 1.4  
 107 M1b 17.0 % 3.751 5.8 % SV 1.7 % 0.0 MO-Ma 3.2  
 108A M1b 22.7 %  34.4 % TV 7.9 % 1.8 VUG 138.1 No measured k 
 108B M1b 27.5 % 37.26 19.7 % SV 11.0 % 31.1 MO-Ma 40.5  
 109 M1c 19.3 % 7.167 4.1 % SV 7.7 % 0.1 MO-Ma 6.2  
 110 M1c 20.1 % 2.86 15.4 % SV 8.0 % 0.3 MO-Ma 7.6  
 111 M1c 22.7 % 17.73 8.3 % SV 6.8 % 0.1 MO-Ma 14.4  
 112A M1d 16.9 % 1.56 8.6 % SV 6.8 % 0.1 MO-Ma 3.1  
 112B M1c 16.6 % 8.389 15.4 % IP 13.3 % 5.6 IGuMe 5.6  
 113 M1d 16.0 % 2.44 5.8 % SV 6.4 % 0.1 MO-Ma 2.4  
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Table 3.2B – Petrophysical data, Vico del Gargano  Lucia (1983, 1995, 1999, 2007) Lønøy (2006)  

ID Lithofacies/ 
subfacies φmeas, eff 

kmeas, abs 
[mD] φest, eff 

Dominant 
poretype IP fraction kest, abs 

[mD] 
Dominant 
poretype 

kest, abs 
[mD] Remarks 

313 B1b 22.1 % 0.537 17.4 % SV 4.4 % 0.0 Mo-Ma 12.6  
314 B1b 25.0 %  13.3 % SV 7.5 % 1.0 Mo-Ma 24.2 No measured k 
318 B1c 19.8 % 0.311 15.6 % SV 2.0 % 0.0 Mo-Ma 7.1  
319 C1 7.7 % 1.87 0.6 % IP 7.7 % 2.0 IGuMe 0.3  
320 A1 8.4 % 1.71 5.7 % IP 6.3 % 0.2 IGuMe 0.4  
325 B1a 14.2 % 0.021 13.3 % SV 5.7 % 0.1 MO-Ma 1.3  
326 B1b 8.2 % 0.336 4.4 % SV 0.8 % 0.0 MO-Ma 0.2  
327 B1b 10.3 % 2.41 3.2 % IP 9.3 % 2.0 IGuMe 0.8  
328 B1b 6.1 % 0.120 3.5 % IP 5.5 % 0.0 IGuMe 0.1  
332 C2 6.6 % 0.008 2.7 % SV 2.0 % 3.0 MO-Ma 0.1  
333 C2 12.9 % 8.69 9.4 % SV 3.9 % 0.0 MO-Ma 0.9  
334 C2 12.0 %  6.3 % IP 9.6 % 9.4 IGuMe 1.6 No measured k 
335 C2 13.5 % 0.62 3.9 % SV 5.4 % 0.0 MO-Ma 1.1  
337 C1 20.2 % 2.76 4.2 % IP 0.0 % 3.0 IGuMe 12.1  
338 C2 12.6 %  2.9 % IP 11.3 % 0.4 IGuMe 1.9 No measured k 
339 C2 10.8 % 0.189 1.0 % IP 6.5 % 4.0 IGuMe 1.0  
340 C1 6.6 %  1.8 % IP 6.6 % 0.4 IGuMe 0.1 No measured k 
341 C1 2.8 % 0.012 0.0 % IP 2.8 % 0.0 IGuMe 0.0  
342 C1 3.5 % 0.017 0.2 % IP 3.5 % 0.0 IGuMe 0.0  
343 D1c 17.7 % 5.58 5.2 % SV 8.8 % 2.0 MO-Ma 3.9  
344 D1b 31.6 % 58.4 15.8 % SV 9.5 % 8.4 MO-Ma 81.4  
345 D1c 13.9 % 6.26 6.7 % SV 4.2 % 3.0 MO-Ma 1.2  
346 D1a 17.4 % 735 11.2 % IP 9.0 % 5.4 IGuMe 6.7  
351 D2 24.1 % 8453 17.9 % IP 15.6 % 621.2 IGuMe 24.3  
352 D2 22.9 % 878 12.8 % IP 22.9 % 161.6 IGuMe 19.9  
353A D1a 15.0 % 0.659 10.1 % IP 9.0 % 3.0 IGuMe 3.8  
353B D1a 17.8 % 1.3 11.5 % IP 14.2 % 283.5 IGuMe 7.3  
354 D1 21.6 % 838 12.1 % IP 0.0 % 4.0 IGuMe 15.7  
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STRATIGRAPHIC ANALYSIS 
Data include four megabreccia units; Unit M (Malpasso Valley) in the 

south, Units B, C and D (Vico del Gargano) in the northern parts of 

Gargano. They show important differences in terms of depositional pattern, fabric 

and diagenetic succession. Logged sections are presented in chapter 3. 

4
 

IMPORTANT DIFFERENCES AND SIMILARITIES 

On outcrop scale, the southern and northern successions differ in terms of 

depositional pattern. The southern megabreccias (unit M) display an aggrading 

pattern of deposition, while the most prominent megabreccia unit of the northern 

succession (unit C) displays a prograding pattern of deposition that downlaps 

onto underlying distal slope facies of unit A. See figure 4.1 for geographic 

position of the individual units. 

The individual megabreccias differ in 

terms of fabric. Unit B displays clast-

supported, poorly sorted and chaotic 

megabreccias with irregular lithoclasts 

that span from some few cm to 

several meters across. Units M and C 

display more organized, better sorted 

matrix-supported megabreccias. Unit 

C is segmented and display individual 

beds of 5-10 m that are separated by 

dense packstone clinoforms, while unit 

M display amalgamated beds of 10-15 

m. Unit D exhibit megabreccias that 

are confined to thinner (1-2 m) beds, 

and interbed with proximal turbidites. 

Matrix is locally abundant and lithoclasts are scattered to a greater extent than 

the previously discussed units. Unit D appears to be controlled to some extent by 

submarine topography, and display a channeled geometry. 

N 

Vico del Gargano 

(A)BCD 

Malpasso Valley 

M 

5 km 

Figure 4.1 – Geographic position of units 

The three megabreccia units (M, C and D) that display matrix-supported fabrics 

were deposited as multiple-event debris-flows. These were matrix-supported also 
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during transport, and the breccias show indications of lithoclast disintegration 

during transport. The clast-supported unit B is interpreted as a grain-flow deposit 

in relations to a single-event submarine landslide, and displays no matrix. 

Among the features that these breccias share, is the apparent similarities in 

textures and composition of lithoclast and matrix for the individual units. This 

indicates that matrix and lithoclasts of each unit were derived mostly from the 

same sources, which for all megabreccias was interpreted to be the 

corresponding marginal areas and related sub-environments. Differences in 

margin environments are, however, interpreted. It is suggested that lithoclast 

fragmentation occurred during transport and as such contributed to the matrix 

component. Diagenetic alterations of the sediments also appear to display a 

common succession of dissolution and cements for lithoclasts/matrix which will 

be further presented towards the end of this chapter. 

 

PATTERNS AND MECHANISMS 

Unit B is the stratigraphic lowermost megabreccia of the Vico del Gargano 

succession. The underlying unit A was deposited on the distal slope to proximal 

basinal areas, and it is assumed that it records more or less the paleo-horizontal 

level. Using this unit as a datum, the angle of unit B is less than 1 degree and no 

changes in this angle are mapped within the Vico del Gargano quarry. This 

suggests that unit B was deposited as a sheet-like accumulation, and the 

interpretation of this unit as a talus-like deposit caused by rock-fall is not very 

likely. Such a depositional model would probably entail to a larger extent the 

disintegration of larger lithoclasts and a higher angle that might be expected to 

close in on the angle of repose. Instead, a low-angled slope is suggested. 

Schlager et.al. (1991) published a similar interpretation of the depositional 

mechanism of such deposits (see also Schlager, 2005, fig 7.19). As pointed out 

by Spence & Tucker (1997); limestone megabreccias may form on a wide range 

of slope angles, including on very low-angled and low-relief slopes. The 

catastrophic appearance of unit B/lithofacies B1 indicates that its deposition was 

sudden and not preceded by other similar margin-derived sediments. This 

suggests that the trigger-mechanism that released this landslide was probably 

not related to platform growth in response to changes in relative sea-level. 
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The progradational pattern that is displayed by the northern megabreccias (i.e. 

unit C) is interpreted as the record of high sediment production rates that 

exceeded vacant accommodation space, promoting the progradation of the 

platform.  

Unit C downlaps onto unit A and by such it defines an important surface which 

corresponds to the top of unit A. In a sequence stratigraphic setting, this surface 

may be interpreted as the maximum flooding zone (Posamentier & Allen, 1999) 

which marks the onset of the highstand systems tract. Graziano (2001) stated 

that the Monte Sant'Angelo Megabreccias was associated with the highstand 

systems tract. This surface may possibly be related to a higher-frequency cycle 

that impacted on the Apulian platform margin. However, the present dataset 

does not allow for any confirmation of this, nor does it support any further 

discussion on the sequence stratigraphic meaning of these deposits. The relation 

between this surface and unit B is not exposed. Unit B is, however, interpreted to 

be positioned below the downlap surface and it is expected that unit C downlaps 

also onto unit B (figure 4.2B).  

 

TRIGGERS 

It is suggested that unit B is the result of a major seismic event that destabilized 

the platform margin and upper slope by the sudden increase in pore-pressure 

which was induced by the prograding seismic shock-wave (e.g. Spence & Tucker, 

1997). Seismic shocks probably constitutes the most common exogenic trigger 

causing seafloor instability (e.g. Cook et.al., 1972; Naylor, 1978, 1981; Field 

et.al., 1982; Mutti et.al., 1984; Marjanac, 1985; Mullins et.al.; 1986, Hine et.al., 

1992; Spence & Tucker, 1997) and most megabreccias have commonly been 

interpreted as the results of synsedimentary tectonics (e.g. Castellarin, 1972, 

Bernouilli et.al., 1990).  

Unit C is interpreted as the deposits of debris-flows that displayed some degree 

of cyclic occurrence. This coincides with the interpretation of unit M (Malpasso 

Valley). These flows originated from the upper-slope and fore-slope, and were 

probably also matrix-supported during transport. Seismic triggers are suggested 

also for these deposits, but it is likely that oversteeping of the upper-slope during 

highstands of the relative sea-level (e.g. Graziano, 2001) destabilized the slope 

and laid the foundations for failures.  
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Graziano (2001) states that synsedimentary tectonics to a large extent controlled 

the deposition of the Monte Sant'Angelo Megabreccias and he further notes that 

such seismic activity during the Cenomanian were recorded by the coeval 

shallow-water deposits of the Apulian Platform (Iannone, 1996). The 

observations of this study agree with Graziano (2001) in terms of dominant 

trigger mechanisms for these gravitational events being seismic events caused 

by synsedimentary tectonics. Tectonic activity during the Cenomanian has also 

been recorded for the Adriatic Carbonate Platform (Vhlacovic et.al., 2005; 

Husinec & Jelaska, 2006). 

 

A SUGGESTED PRINCIPAL MECHANISM 

The aggrading pattern of the Malpasso Valley succession suggests that 

accommodation space exceeded sediment supply, which prevented the south-

eastward progradation of the platform during this highstand of the relative sea-

level. While the succession mapped on the northern parts of the Gargano (Vico 

del Gargano) suggest a ‘keep-up’ type platform response, the southern 

(Malpasso Valley) suggests more that of a ‘catch-up’ type response, on outcrop 

scale. This differentiated response is here seen in relations to differentiated rates 

of subsidence for this area during the Cenomanian, coinciding with, and largely 

controlling, the deposition of the Monte Sant'Angelo Megabreccias. 

Such differential subsidence implies that the area was either tilted or segmented 

by faults. Graziano (2001) describes the activity of normal faults that dissected 

the Apulian margin during late Aptian – early Albian p.p. times, related to the 

deposition of the Posta Manganaro Megabreccias (see fig 2.3), which are 

confined to the southern Gargano area. Such margin-parallel fault-systems may 

have been active, or re-activated during Cenomanian times. This agrees with 

Borgomano (2000), who described activity of normal faults during Cenomanian 

times. Amphitheatre-like scallops on the margin of the Apulian Platform that 

formed during Cenomanian times was described by Bosellini et.al. (1999), 

suggesting large-scale failures. This study agrees with the speculations of 

previously published studies, and normal faults that dissected the margin is 

interpreted (figure 4.1A) for the Malpasso Valley depositional model. However, 

no margin-cutting faults are interpreted in the proposed depositional model for 

the northern succession (Vico del Gargano) (figure 4.1B). Posta Manganaro 
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Megabreccias, as described by Graziano (2001), are confined to the southern 

Gargano only. This may imply that active segments belonging to the same fault 

system were only directly affecting the southern succession. However, 

synsedimentary tectonics that was related to the displacement in these faults 

may also have affected the northern succession.  

The proposition of normal faults transecting the margin only for the southern 

succession match the indications of high subsidence rates in the south and 

subsequent elevated accommodation space generation that promoted an 

aggrading pattern. The northern succession, however, did not record elevated 

accommodation space but is still influenced by synsedimentary tectonics. 
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Figure 4.2A – Proposed depositional model for the Malpasso Valley succession  
 
Fault is interpreted and its position, orientation and displacement are hypothetical. Not to scale. Facies 
distributions and volumes are hypothetical. Sea-levels are hypothetical. 
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Slope 
facies 

Figure 4.2B – Proposed depositional model for the Vico del Gargano quarry 
 
Not to scale. Facies distributions and volumes are hypothetical. Sea-levels are hypothetical. 

Platform 
facies 

Foreslope 
facies 

Lower-slope 
and basinal 
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Deposition of unit B 
(red), model based on 

Schlager (2005, fig 7.19) 

Prograding megabreccias 
define the downlap surface 

Unit D 

Slope profile is flattened, 
deposition of channeled 
turbidites interbedded with 
megabreccia debris- 
flows controlled by 
submarine topography.  
 
Stippled area: Vico del 
Gargano quarry succession. 
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Unit C 

Downlap surface 
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Figure 4.3 – Diagenesis 
 
A) Sample 85B displays an extraclast confined by an erosion surface that cut grains, micrite envelopes 

and cements. Sample originates from a clast-matrix contact on the eastern wall of the Malpasso 
Valley outcrop. 

B) Sample 112A display an extraclastic packstone (floatstone) with two distinct cement generations. An 
isopachous rim of “dog-tooth” marine phreatic calcite cement (1) is subsequently coated by drusy 
equant calcite (2). Selective dissolution of rhombohedra shaped grains are confined to micrite matrix 
only in the present dataset, and is here shown (3) to affect calcite cement growth on adjacent 
grains. This sample originates from a lithoclast on the eastern wall of the Malpasso Valley. 

C) Samples 2.1C and 2.1M displays nonfabric-selective late dissolution pores indicated by arrows. 
These samples originate from a lithoclast and the surrounding matrix, respectively. 

D) Sample 113 from a matrix sample on the Malpasso eastern wall. It displays rhombohedra-shaped 
fabric-selective pores that suggest dissolution of pyrite or dolomite crystals. 
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DIAGENETIC HISTORY 

The diagenesis of the Monte Sant'Angelo Megabreccias displays a succession of 

cementation and dissolution that can be grouped into three major stages and 

domains; 

1) Marine-phreatic diagenesis is characterized by the development of micrite 

envelopes (Bathurst, 1966, early grain dissolution and an isopachous rim of 

bladed calcite cements (figure 4.3B). The isopachous cement coats the micrite 

envelopes that preserve grain shape, and line the moldic pores that resulted 

from grain dissolution. This indicates that precipitation of this cement 

coincided with the dissolution of grains.  

2) Meteoric-phreatic diagenesis is characterized by extensive, equant calcite 

(‘doog-tooth’) cement that obstructs both initial and secondary porosity of 

these sediments. This cement generation coats the isopachous cement. 

Observations of compaction structures that affect this cement generation 

places it prior to the burial diagenesis in the diagenetic history. 

3) Burial diagenesis is characterized by compaction features. The occurrence of 

stylolites in unit A (Vico del Gargano) indicates burial depths of at least 800 m 

(e.g. Shinn & Robbin, 1983; Railsback, 1993; Tucker, 1993). Compaction 

affected the matrix to the megabreccias more than the equivalent lithoclasts 

which it surrounds. While compaction structures were observed within 

representative matrix-samples, no such structures were observed within 

lithoclast samples. This reflects that the lithoclasts were previously lithified 

prior to re-deposition and that the majority of overburden was consequently 

absorbed mostly by the non-lithified matrix. 

4) Late diagenesis occurred during Tertiary uplift and subsequent sub-aerial 

exposure (e.g. Borgomano, 2000) and is characterized by the development of 

nonfabric-selective vuggy porosity that affects both matrix and lithoclasts (fig 

4.3C). Fresh-water leaching is also suggested by Graziano (1994, 2001) to 

have developed during Turonian uplift and exposure of the Apulian Platform. 

Rare meteoric blocky calcite also characterize this domain, which locally add a 

cement generation to the two previously described (figure 4.3B) 

The selective dissolution of rhombohedra pores (figure 4.3D) confined to the 

micrite matrix indicates the fabric-selective dolomitization and subsequent 
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dedolomitization (von Morlot, 1847), probably by the effect of fresh-water 

leaching related to recent uplift and sub-aerial exposure. The absence of calcite 

within these pores suggests that the meteoric-phreatic precipitation of equant 

cements preceded the dedolomitization. 

Cathodoluminescence was performed on samples of the present database, but 

the samples did not illuminate presumably due to low presence of magnesium 

(Mn) and iron (Fe), possibly suggesting that the carbonate succession is very 

clean and unpolluted by siliciclastic sources. Samples were stained using 

Alizarinrot S and Kaliumhexacyanoferrat (III) (Dickons, 1966) to display a red 

staining of cement and grains. Some areas were not stained, presumably by the 

effect of LMC. No bluish colours were observed, indicating that iron-rich calcite or 

iron-rich dolomites are not present (Dickons, 1966; Lindholm & Finkleman, 1972; 

James & Choquette, 1990). Preliminary examination of samples using electron 

microscope (SEM/BSE) did not display any occurrence of dolomite in zones that 

apparently did not stain. 
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The foundation for the petrophysical analysis is the data presented in 

chapter 3. The classification system for porosity in carbonates developed 

by Lucia (1983, 1995, 1999, 2007) is commonly used by reservoir engineers, 

mainly because it links pore classification to flow properties and numerical 

modeling of properties. The system developed by Choquette & Pray (1970) is 

preferred by petroleum geologists as it links the classification of pore-types to 

depositional setting and diagenetic history. The system developed by Lønøy 

(2006) is based on an empiric approach, and was aimed at obtaining higher 

coefficient of correlations in the classification a large carbonate database. 

Different definitions of ‘vuggy porosity’ exist. In this discussion, the term refers 

to all pores that are not interparticle, as applied by Lucia (1983, 1995, 1999, 

2007). In contexts where vuggy porosity (sensu Lønøy, 2006) is discussed, the 

term ‘VUG’ is used. 

Poroperm classes are introduced (figure 5.1) and results are discussed within the 

framework of these. The purpose of poroperm classes is to enable the discussion 

the combined signature of porosity and permeability without implementing 

reservoir properties, which also rely on additional parameters. 1 mD is generally 

considered an absolute low for hydrocarbon production, and a corresponding 

boundary of 5% porosity was chosen to denote poroperm class 1. The 

boundaries between classes 2 and 3 were set at 15% porosity and 10 mD. 

 
Figure 5.1 – Poroperm classes 
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BIAS IN POROSITY ESTIMATIONS 

Porosity was estimated for all samples where thin-sections were available, and 

the results were compared to measurements derived from standard laboratory 

methods (figure 5.2A). Two conclusions may be drawn from this plot; 1) 

Estimated values are as a trend lower than their measured counterparts, and 2) 

a significant scatter indicates that the offset from the neutral line (where 

measured equals estimated values) is not constant. 

It was suggested that quality of thin-sections may be partly responsible for this 

bias. Thin-sections were classified according to this, on a scale of 1 (porosity not 

visible, very poor quality) to 4 (porosity well defined, thin-section is of good 

quality) but no trends were observed (figure 5.2B). It was further investigated 

whether pore-types could be linked to this bias, but as displayed in figure 5.3C, 

no apparent trend was observed when plotting according to petrophysical classes 

(Lucia, 1983, 1995, 1999, 2007) that is founded on a modified Dunham 

classification based on fabric. 

The scatter in the differences between estimated and measured values is 

probably caused by scale-issues, as thin-sections represent poorly the fabric and 

porosity of the plug sample. 

It is further suggested that the general elevation of measured values is caused 

by estimation from image analysis failing to include pores with diameter below 

the point of visual distinction. This includes microporosity (e.g. Lønøy, 2006) but 

may also include smaller fractions of all poretypes. Hence, lower porosity is 

estimated. 

The present database does not support empiric corrections to these 

measurements. 
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Figure 5.2 – Measured vs. estimated porosity 
 

A) Measured vs. estimated porosity (no classification) 
B) Classified according to descriptive thin-section quality (1-4) 
C) Classified according to petrophysical class (fabric) (1-3) (Lucia, 1983, 1995, 1999, 2007). 
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LØNØY CLASSIFICATION SYSTEM 

Figure 5.3 displays datapoints representing samples classified according to the 

system developed by Lønøy (2006). Present dataset trendlines and the original 

trendlines provided by Lønøy are included in the plots, for comparison.  

Classifying the present database using this system evidently does not produce 

reliable coefficients of correlations. This must, however, be seen in relations to 

the relative low number of samples of this database, which limits the reliability of 

these results. These plugs have been measured predominantly using gas-

permeability corrected for Klinkenberg effect (Klinkenberg, 1941) (see also 

appendix 1 for extended introduction to these methods), which is the same 

method as used by in the development of this system (Lønøy, 2006). However, 

Lønøy (2006) reports that most plugs had a diameter of 2.5 cm (~ 1 in.) (some 

VUG-dominated plugs were larger). The present database consists of plugs which 

diameters are 3.8 cm (1.5 in.) and 5 cm (2 in.). The use of larger plugs may 

reflect in the lowered coefficient of correlations. This illustrates the heterogeneity 

of carbonates, and depicts the difficulties in obtaining reliable porosity-

permeability transforms. Another noticeable effect was that the use of slightly 

larger plugs apparently increases the correlation coefficient for VUG-dominated 

samples. However, Lønøy (2006) states that larger samples were utilized in the 

classification of VUG-dominated samples. 

Important is also the fact that very few samples show dominance of only one 

poretype, which is a decisive factor for this system (Lønøy, 2006). In relations to 

this, Lønøy (2006) note that samples of mixed pore-types plot between end-

members, but show a bias towards the pore-type which has the highest 

permeability. This database further contains only three poretypes included in this 

system and as such, any discussion regarding the Lønøy-system based on these 

results is at best fragmental. 
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Figure 5.3 – Lønøy (2006) pore-types 
 
Poroperm for poretypes according to Lønøy (2006).  
 
A) Samples dominated by interparticle mesopores (IGuMe) 
B) Samples dominated by moldic macropores (Mo-Ma) 
C) Samples dominated by vuggy pores (VUG) 

A 

C 

B 

Lønøy (2006) 
reported R2 = 0.86 

Lønøy (2006) 
reported R2 = 0.90 

Lønøy (2006) 
reported R2 = 0.50 
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CHOQUETTE & PRAY CLASSIFICATION SYSTEM 

The database was classified according to the system developed by Choquette & 

Pray (1970). However, this provided no unique poretype groups. Figure 5.3 

displays pore-types according to the system of Lønøy (2006), but these classes 

also correspond to the pore-classes Interparticle (A), Moldic (B) and Channel (C) 

as defined by Choquette & Pray (1970) for the present database. As such, no 

further petrophysical investigations have been undertaken based on this 

classification system. 

 

LUCIA CLASSIFICATION SYSTEM 

The classification system developed by Lucia (1983, 1995, 1999, 2007) is based 

on the premise that permeability is mainly controlled by interparticle porosity 

and touching vugs, but may be predicted for interparticle porosity only. The 

presence of separate vugs (SV) (i.e. moldic pores) will elevate porosity but the 

pores are only connected through the surrounding interparticle porosity. 

Presence of touching vugs (TV) (i.e. fractures, dissolution enhanced fractures, 

channels (sensu Choquette & Pray, 1970) and other nonfabric-selective pores) 

may cause dramatic increase in permeability without the equivalent increase in 

porosity (e.g. Lucia, 2007; Lucia & Ruppel, 1996). The fact that the Lucia-system 

is based on the premise that permeability may be predicted from the interparticle 

porosity fraction only causes the Lucia-system to suffer from the bias related to 

porosity estimation from thin-section images (figure 5.2).  

The present database was classified according to the Lucia-system, and 

corresponding poroperm plots are presented in figure 5.4. Figure 5.4A-C display 

petrophysical classes 1, 2 and 3, respectively, according to dominant pore-types. 

Trendlines are provided for the datasets. No trendlines are provided for class 3 

samples, and for touching-vug dominant class 1 samples, due to low number of 

samples. Trendlines show that this grouping does not support good correlations 

of porosity and permeability for the present dataset. 

Figure 5.4D display all samples according to petrophysical class along with 

trendlines obtained without concern for the dominant type of porosity. The 

coefficient of correlation was significantly lower for these trendlines, compared to 

those presented in figures 5.4ABC. 
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Figure 5.4 – Lucia (1983, 1995, 1999, 2007) classification system 
 
A) Petrophysical class 1 datapoints (grainstones) according to dominant poretypes. TV-dominant provides 

no trendline (n=1) 
B) Petrophysical class 2 datapoints (grain-dominated packstones) according to dominant poretypes. 
C) Petrophysical class 3 datapoints (mud-dominated fabrics) according to dominant poretypes. No 

trendlines provided due to the low number of samples. 
D) All samples according to petrophysical class. 
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PERMEABILITY PREDICTION AND COMPARISON OF SYSTEMS 

Figure 5.5 display predicted permeability based on porosity using the systems of 

Lønøy (2006) and Lucia (1983, 1985, 1999, 2007). The datapoints derived using 

the Lønøy-system apparently conforms better to the neutral line than do the 

values derived using the Lucia-system. The amount of scatter for the Lucia-

system estimates compared to those of the Lønøy-system is likely to be related 

to previously discussed uncertainties related to the estimation method. These are 

significantly larger than the uncertainties attached to the laboratory 

measurements. The Lucia-system suffers from this, and results display higher 

degree of scatter. 

Figure 5.5 also displays that, for the Lønøy-system, the VUG-group apparently 

trend higher than estimated values, while IGuMe and Mo-Ma groups scatter 

equally on both sides of the neutral line. This may suggest that a bias is related 

to the former poretype group that acts on these results in addition to the general 

scatter. For the Lucia-system, an apparent bias is recognized for class 3 

datapoints (correspond to samples of mud-dominated fabrics). 

An important effect that is not covered by the Lucia-system is cement. This was 

also noted by Lønøy (2006). The petrophysical classes of the Lucia-system are, 

for limestones, founded on the Dunham classification with modifications, along 

with grain size and sorting. This is unaffected by cement that may reduce 

porosity and obstruct permeability through narrowing of the pore-throats and 

subsequently increase the spread of datapoints. The Lønøy-system is based on 

pore size and distribution. The latter is a new contribution to pore classification, 

and is not covered by the Lucia-system or the Choquette & Pray (1970) system. 

It may, however, be argued as to what impact the porosity distribution have on 

porosity/permeability transforms and relations. 

The prediction of permeability based on porosity that was performed for this 

database suggests that the system developed by Lønøy (2006) yields better 

correlations to measured values compared to the Lucia-system. It also indicates 

that increased plug sizes capture better the heterogeneous fabric of these 

samples, resulting in poorer correlations between porosity and permeability. 

Subsequently, the prediction of permeability is less reliable when increasing 

sample sizes. 
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Figure 5.5 – Permeability estimation results compared to measured results 
 
Upper: According to classification system. 
Lower: According to poretype groups for both classification systems. 
 
Estimated values are derived from measured porosities (Lønøy) and estimated interparticle porosity 
fraction (Lucia). 
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MALPASSO VALLEY  

Figure 5.7 display poroperm values for the Malpasso Valley samples, subdivided 

according to origin (lithoclast/matrix/unknown). All datapoints in this plot 

correspond to samples of lithofacies B1, which is the only mapped lithofacies 

within the studied succession of this outcrop. Representative lithoclast- and 

matrix datapoints are plotted in figure 5.7A. While lithoclast samples apparently 

show no trends, the matrix datapoints apparently conform to a linear trendline 

(R2 = 0.82, n=7).  

Figure 5.7B, C and D combined displays 

datapoints corresponding to the complete 

population of samples derived from the Malpasso 

Valley outcrop (unit B, lithofacies B1). Samples 

pertaining to petrophysical class 1 plot 

predominantly within classes 2 and 3. This effect 

is expected based on observation of separate 

vugs (moldic pores) dominance in this dataset. 

Data points representing samples that were 

assigned to petrophysical class 2 predominantly plot in classes 2 and 3. The 

offset towards class 3 indicates presence of separate vugs, which is confirmed 

through sedimentological analysis of these samples. Apparently, no datapoints 

reflect the presence of touching vugs, which were observed within the 7 samples 

that are classified as TV-dominant. This may reflect that thin-sections fail to 

capture the dominant fabric of the sample. Although touching vugs are present 

(as confirmed from thin-sections) they may also be oriented in directions that fail 

to increase measured permeability using standard laboratory methods. In order 

to promote permeability through a plug sample, a network of vugs must transect 

both short-ends of the plug sample (figure 5.6). This reflects that measuring of 

increased permeability due to touching-vug networks is directional dependent.  

An apparent similarity of all three petrophysical classes was that datapoints 

scatter irrespectively of dominant poretypes. A possible dependence is observed 

for class 3 samples, but the number of samples does not support statistically 

reliable conclusions. In terms of poroperm classes (figure 5.7E), unit M plots 

predominantly within classes 2 and 3. 

 

 

Figure 5.6 – Directional effect of 
touching vugs 
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Unit M
Lithofacies M1 | Malpasso Valley

Matrix trendline:
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Figure 5.7 – Malpasso Valley samples 
 
A) Representative lithoclast- and matrix samples. Matrix samples (log k) conform to a linear trendline. 
B-D) According to petrophysical class and dominant poretypes. 
E) Complete unit M dataset according to origin. Boundaries of poroperm classes indicated. 
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UNIT B 

Results from samples originating from unit B (Vico del Gargano quarry) are 

displayed in figure 5.8. Lithofacies B1 (clast-supported rudist megabreccias) is 

the only lithofacies mapped within this unit. The samples were classified 

according to origin (lithoclast/ unknown). Very little matrix was observed within 

this unit, and no matrix samples were recovered. 

Plotting the poroperm values of lithoclasts vs. unkown samples suggests that the 

lithoclasts plot at higher porosities than the samples of no confirmed origin. It 

may be speculated as to whether the unknown samples pertain to the 

megabreccia matrix, which consists of the same fabric as lithoclasts. It is 

expected that the matrix will suffer for compaction effects more than the already 

lithified lithoclasts. Hence, it is expected that it displays lower porosity values 

compared to lithoclast interiors. Diagenetic effects may also cause this 

segmentation, as flow-properties through the megabreccia unit may be selective 

in terms of lithoclasts and matrix. These effects may explain the two trends 

displayed in this figure 5.8A. 

The unit B sample population plotted according to subfacies (figure 5.8B) shows 

that samples belonging to the “unknown” group of figure 5.8A all pertain to 

subfacies B1b – grain-dominated packstones. These datapoints plot in 

petrophysical class 2, which is expected based on their fabric. The plot also 

reveals that lithoclast samples belong to subfacies B1a (grainstones) and B1c 

(mud-dominated fabrics). These samples are, in terms of petrophysical 

properties, expected to differ significantly. However, they both plot below 

petrophysical class 3. In relations to this, it is emphasized that the number of 

samples from this unit is very low and not statistically representative. Figure 

5.8D displays poroperm data from unit B plotted according to assigned 

petrophysical class. It displays that datapoints belonging to class 2, based on 

fabric, plot in their expected class. Samples pertaining to class 3 plot below their 

expected class. However, this is expected as both datapoint represent samples 

that are dominated by separate vuggy porosity.   

The dataset does not support the detailed discussion of these apparent trends. 

However, the offset in terms of petrophysical classes that are displayed by these 

datapoints seem to match the sedimentological observations performed on their 

corresponding samples. 
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Figure 5.8 – Unit B, Vico del Gargano quarry 
 
A) According to origin (lithoclast/matrix/unkown) 
B) According to subfacies – poroperm classes indicated. 
C) According to subfacies, with interparticle porosity fraction. Petrophysical classes (Lucia 1983, 1995, 

1999, 2007) indicated. Interparticle porosity fractions are corrected for method-related off-set. 
D) According to assigned petrophysical class. 
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UNIT C 

Poroperm measurements were obtained for eight samples belonging to unit C. 

Two belong to facies C1 (packstone) and seven pertain to unit C2 (matrix-

supported megabreccias 2). Among these, six originated from the matrix and 

one originated from a lithoclast. In terms of petrophysical classes (figure 5.9A), 

the datapoints that correspond to these samples plot within their expected 

petrophysical classes. The petrophysical effect of vugs in this dataset is not 

observed, nor is it confirmed through thin-sections.  

When plotted for measured values (figure 5.9B), the single datapoint 

corresponding to a lithoclast sample plot within poroperm class 1. The datapoints 

of matrix samples plot within the domain of class 2. A low number of samples 

gathered from unit C produced petrophysical results. This is reflected in the 

number of datapoints in these plots and does not allow for extended elaboration 

on patterns. 

Lithofacies C1 is a dense packstone that constitute clinoforms between the C2 

megabreccia bodies. It is expected, based on stratigraphic analysis, that these 

have low poroperm values. They may act as seals or baffles to flow, segmenting 

this unit in terms of reservoir quality. Figure 5.9B displays towards a 

confirmation of this as the C1-datapoints are confined to the lower left low-

perm/low-porosity corner of the plot. The apparent ability of this lithofacies to 

segment unit C into flow-units has implications for reservoir of this unit. 
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Figure 5.9 – Unit C, Vico del Gargano quarry 
 
A) Unit C according to petrophysical classes (Lucia, 1983, 1995, 1999, 2007). Samples that plot below 

0.1 mD is omitted from this plot. 
B) Unit C according to lithofacies. C2 is divided according to origin. Poroperm classes indicated. Circled 

datapoints represent lithofacies C1 samples. 
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UNIT D 

Poroperm measurements were available for a total of 9 samples belonging to unit 

D. Among these, 7 samples pertain to lithofacies D1 (matrix-supported rudist 

megabreccias 3) while the remaining two originated from lithofacies D2 (graded 

grainstones). When plotted according to the Lucia (1983, 1995, 1999, 2007) 

system (figure 5.10A), datapoints corresponding to subfacies D1a (Orbitolina 

grainstones) predominantly plot in the class 3 domain. This reflects the 

dominance of separate vugs in these samples. The same effect is noted for 

datapoints corresponding to subfacies D1b (grain-dominated packstones) but the 

offset is apparently less than similar offset of subfacies D1a. Subfacies D1c 

(mud-dominated packstones) produce datapoints that plot in the upper parts of 

class 3/lower class 2. This may reflect occurrence of separate vugs in the 

corresponding samples. However, the number of datapoints within this dataset 

does not support detailed discussion of their plotting patterns. The datapoints 

representing samples of lithofacies D2 show plot within poroperm class 3 (figure 

5.10B), as do datapoints corresponding to the matrix to the D1 megabreccias. 

Lithoclast datapoints, however, predominantly plot within poroperm class 2. 
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Figure 5.10 – Unit D, Vico del Gargano quarry 
 
A) Unit D according to petrophysical classes.  
B) Unit D according to lithofacies. D1 is divided according to origin. Poroperm classes indicated. 
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COMPARISON OF MEGABRECCIA UNITS 

The datapoints responding to the population of megabreccia samples (unit M, 

lithofacies B1, C2 and D1) are displayed in figures 5.11 and 5.12. All samples 

pertaining to other facies are omitted (unit A, lithofacies C1 and D2). Figure 5.11 

displays poroperm signatures of the Monte Sant’Angelo Megabreccias in terms of 

poroperm classes, according to lithofacies. While facies B1 is clast-supported 

(unit B, Vico del Gargano) the remaining samples are derived from matrix-

supported breccias. 

Facies M1 (Malpasso Valley) and D1 (Vico del Gargano) predominantly plot within 

poroperm classes 2 and 3, while facies B1 and C2 (Vico del Gargano) 

predominantly plot within classes 1 and 2. 

A derivation from this plot is that the clast-supported breccias of facies B1 along 

with the lithoclasts of the matrix-supported facies C2 plot below 1 mD which may 

be considered a lower-end for hydrocarbon production. C2 matrix, on the other 

hand, plot in poroperm class 2. 

Although facies B1 and C2 differ in terms of depositional mechanism and fabric, 

this indicates that the low reservoir quality of their lithoclasts is a similarity which 

they share. The lithoclasts are derived from the leeward platform margin (e.g. 

Borgomano, 2000), and it is suggested that this area locally displayed poor 

ability to produce sediments with high porosity/permeability. It may be 

speculated wether the margin that fed these deposits at this time was dominated 

by low-energy environments. The undulating platform margin may include 

protected areas or embayements that accumulate finer grain fractions and locally 

contribute to low-reservoir properties in their lithified form. Scallops that were 

created by platform margin collapses may created such protected parts of the 

margin. The matrix of unit C2, however, probably consists of dissintegrated 

lithoclasts and other materials derived from adjacent areas and possibly from the 

lower slope, where it was swept along and mixed with the megabreccia debris-

flows. This re-sedimentation of small sized fragmented materials may promote 

reservoir conditions more than the lithified lithoclasts that maintained their 

internal fabric during transport. The matrix-supported debris-flows of facies M1 

plot above 1 md and locally show permeability and porosity values meeting the 

requirments for poroperm class 3. In terms of reservoir properties, this poroperm 

class must be considered favourable. 
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Figure 5.12 is the summary of previously presented plots according to 

petrophysical classes displaying, however, only datapoints derived from 

megabreccia samples. This plot reflects the effects of vuggy porosity that shifts 

the clouds of datapoints towards the left (touching vugs) or right (separate 

vugs). Samples pertaining to class 1 display an offset towards classes 2 and 3, 

indicating that the poroperm signature of these grainstones were significantly 

affected by the moldic porosity which they contain. This result is expected based 

on sedimentological analysis of these samples. It may be speculated on whether 

the effect of touching vugs is also present. This may counter-effect the effect of 

separate vugs, but the former probably overprints the latter based on 

observations of the fabric of the corresponding samples. 

Samples that were assigned to class 2 display the same trend, but the effect of 

separate vugs for this population is less than for those of class 1. This class 

displays the effect of touching vugs, which shift selected datapoints leftwards.  

Datapoints reflecting samples that pertain to petrophysical class 3 displays a 

larger degree of scatter compared to the two former classes. They predominantly 

plot within their expected class. The effect of touching vugs in terms of porosity 

and permeability units is not as severe as potentially may be assumed from the 

appearance in this logarithmic plot but this class nevertheless displays a 

noticeable effect of both touching- and separate vugs. 
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Figure 5.11 – All megabreccia samples by lithofacies and clast/matrix/unknown 
 
Poroperm classes indicated. Lithofacies B1 is clast-supported. 
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Figure 5.12 – All megabreccia according to assigned petrophysical class 
 
Poroperm classes indicated. Lithofacies B1 is clast-supported. 

Samples of class 1 plot 
predominantly in the lower parts of 
the class 2 domain, reflecting the 
effects of separate vugs 

Samples of class 3 (mud-
dominated fabrics) plot within 
their expected class, but show 
severe scatter due to effects of 
separate and touching vugs. 

Samples of class 2 plot are less affected 
by separate vugs than class 1 samples, 
but still plot predominantly in class 3. 
Some samples are presumably affected 
by touching vugs. 

? 
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MALPASSO GRID OF SAMPLES AND STATISTICAL ANALYSIS 

The datapoints corresponding to 50 samples derived from the Malpasso Grid 

were plotted according to their height level in the grid (figure 5.12A&B). No 

vertical trends were recognized in these plots. The grid, however, represents one 

megabreccia-bearing bed of debris-flows. Although no intra-bed vertical trends 

were derived, vertical trends on reservoir scale are not investigated.  

Figure 5.12C: 26 (52%) grid samples pertain to poroperm class 3, 18 (36%) 

samples belong to poroperm class 2 while the remaining 6 (12%) samples 

belong to poroperm class 1. Among the 100 samples derived from all 

megabreccias (both localities) (figure 5.11), 42 (42%) belong to poroperm class 

3, 39 (39%) belong to class 2 while 19 (19%) belong to class 3. Of the 79 

samples that were derived from the Malpasso Valley outcrop (lithofacies M1) 

only, 39 (50%) samples belong to class 3, 32 (40%) samples pertain to class 2 

while the remaining 8 (10%) belong to poroperm class 1. A total of 94 samples 

were derived from matrix-supported megabreccias (lithofacies M1, C2 and D1). 

Among these, 42 (45%) samples meet the requirements for poroperm class 3, 

38 (40%) belong to class 2 while 14 (15%) samples are placed within poroperm 

class 3. 

Statistical analysis of values derived from the grid, compared to selected sample 

populations (table 5.1A & B) suggest that the arithmetic mean permeability 

values of the grid only differ from those of the clast-supported megabreccias 

(unit B) with statistical significance, for both permeability values. For porosity 

values, no significant differences were derived from the present dataset. The 

differences in variance between grid-derived values and other selected 

populations differed with statistical significance for all compared populations 

except the population consisting of all samples from the Malpasso Valley. In 

other words, the grid-derived poroperm values did show significantly different 

variances than all populations that included Vico del Gargano-samples. 

These observations suggest that the clast-supported megabreccias cannot be 

represented by the Malpasso West Wall grid in terms of poroperm signatures but 

that the grid is sufficiently representative of the megabreccias exposed in the 

Malpasso Valley. This underpins the use of flow-units within which representative 

poroperm values are obtained. 
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Table 5.1A: Permeability values from grid compared with selected populations 

 n GM 
(k) 

AM  
(ln k) 

∆AM [mD] 
t-test for ∆AM (α = 0.05) 

SD VA 
(ln k) 

∆V [mD] 
F-test for ∆V (α = 0.05) 

Grid 50 13.3  2.59  1.9  3.63  
1.80 15.0     All samples 103 7.4 2.0 t>tα 

    2.5 6.33 F<Fα     
1.99  2.2    All MB 99 6.7 1.9  t>tα 

   2.4 5.81  F<Fα    
1.6   1.7   M. supp. 93 8.3 2.1   t>tα   2.3 5.33   F<Fα   

1.23    0.08  Malpasso 79 10.9 2.4    t>tα 
 1.9 3.55    F>Fα  

50.4     1.1 C. supp. 6 0.3 -1.3     t<tα 1.6 2.50     F<Fα 
                
                
Table 5.1B: Porosity values from grid compared with selected populations 

 n GM 
(%) 

AM  
(%) 

∆AM [%] 
t-test for ∆AM (α = 0.05) 

SD VA 
(%) 

∆V [%] 
F-test for ∆V (α = 0.05) 

Grid 52 19.3  19.8  4  0.2  
1.2 0.1     All samples 113 17.5 18.6 t>tα 

    1.4 0.3 F<Fα     
1.2  0.1    All MB 109 17.5 18.6  t>tα 

   1.4 0.3  F<Fα    
1   0.1   M. supp. 102 17.8 18.8   t>tα   1.2 0.3   F<Fα   

0.1    > 0  Malpasso 85 19.5 19.9    t>tα 
 0.4 0.2    F>Fα  

4.7 0.1 C. supp. 7 13.5 15.1     t>tα 
3.3 0.3     F<Fα 
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Figure 5.12 – Malpasso Valley grid 
 
A) All grid samples plotted according to vertical grid level. Poroperm classes indicated. 
B) According to vertical grid level, petrophysical classes indicated. 
C) Grid with poroperm classes indicated. Samples that lack measured poroperm values and thin-sections 

are omitted form the grid.  *) Lacks permeability measurements. Numbers derived using Lønøy (2006) classification system. 
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Malpasso Valley compared to Vico del Gargano quarry samples: Difference in 

mean arithmetic porosity values (∆ = 5.53 porosity units) (table 5.2A) is 

statistically significant for α = 0.005. Difference in the mean geometric values (∆ 

= 9.81 mD) (table 5.2B) is statistically significant for α = 0.025. 

Malpasso clast samples compared to Malpasso matrix samples show a difference 

in mean arithmetic porosity (∆ = 2.12 porosity units) (table 5.3A) that is not 

statistically significant for α = 0.05. The difference in mean geometric 

permeability values (∆ = 2.98 mD) (table 5.3B) is neither statistically significant 

for α = 0.05. 

Comparison of Vico del Gargano clasts and matrix samples show a difference in 

mean arithmetic porosity values (∆ = 1.74 porosity units) (table 5.4A) that is not 

statistically significant for α = 0.05. The difference in mean geometric 

permeability values (∆ = 10.32 mD) (table 5.4B) is statistically significant for α 

=0.025 but not statistically significant for α = 0.05 when outliers (samples #346 

and #354) are omitted (table 5.4C). 

Difference in mean arithmetic porosity values (∆ = 1.5 porosity units) (table 

5.4D) between units B and C is not statistically significant for α = 0.05. Neither is 

the difference in permeability mean geometric values between these two units 

 

Table 5.2 – Malpasso Valley vs. Vico del Gargano Quarry samples 
     

Malpasso vs. Vico: Porosity 
Table 5.2A Malpasso Vico F-test t-test 
n 78 28   
Arithmetic mean 19.7 % 14.17 %  t > tα=0.005 
Standard deviation 4.14 7.06   
Variance 17.12 49.83 F > Fα=0.05

  
     

Malpasso vs. Vico: Permeability 
Table 5.2B Malpasso Vico F-test t-test 
n 74 26   
Arithmetic mean 2.4291 mD 0.43088 mD  t > tα=0.025 
Standard deviation 1.8979 3.9593   
Variance 3.602 15.676 F > Fα=0.05  
Geometric mean 11.34 mD 1.53 mD   

 

Table 5.3 – Malpasso Valley results 
     

Malpasso, clasts vs. matrix samples: Porosity 
Table 5.3A Clast samples Matrix samples F-test t-test 
n 14 8   
Arithmetic mean 19.98 17.86  t < tα=0.05 
Standard deviation 3.62 2.58   
Variance 13.08 6.64 F < Fα=0.05  
     

Malpasso, clasts vs. matrix samples: Permeability 
Table 5.3B Clast samples Matrix samples F-test t-test 
n 14 8   
Arithmetic mean 19.9874 1.4618  t < tα=0.05 
Standard deviation 1.5689 1.7530   
Variance 2.4615 3.0733 F < Fα=0.05  
Geometric mean 7.29 mD 4.31 mD   
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(∆= 1.08 mD), for α = 0.05 (table 5.4E). Difference in mean arithmetic porosity 

values between units B and D (∆ = 6.35 porosity units) (table 5.4F) is not 

statistically significant for α = 0.05, while the difference in mean geometric 

permeability values (table 5.4G) (∆ = 297.36 mD) is statistically significant for α 

= 0.0005. Unit C compared with unit D show difference in mean arithmetic 

porosity values (∆ = 7.85 porosity units) that is statistically significant for α = 

0.05 (table 5.4H). The difference in mean geometric permeability values (∆ = 

296.28 mD) is statistically significant for α = 0.025 (table 5.4I). 

Table 5.4 – Vico del Gargano results 
     

Clast vs. matrix samples: Porosity 
Table 5.4A Clast samples Matrix samples F-test t-test 
n 12 8   
Arithmetic mean 14.41 % 16.15 %  t < tα=0.05 
Standard deviation 4.60 8.20   
Variance 21.18 67.20 F > Fα=0.05  
     

Clast vs. matrix samples: Permeability (F- and t-tests based on ln k values) 
Table 5.4B Clast samples Matrix samples F-test t-test 
n 10 8   
Arithmetic mean -1.1072 2.3652  t > tα=0.025 
Standard deviation 3.1116 3.1509   
Variance 9.682 9.9283 F < Fα=0.05  
Geometric mean 0.33 mD 10.65 mD   
     

Clast vs. matrix samples: Permeability (F- and t-tests based on ln k values) (samples #346 and #354 omitted). 
Table 5.4C Clast samples Matrix samples F-test t-test 
n 10 6   
Arithmetic mean -1.1072 0.93184  t < tα=0.05 
Standard deviation 3.1116 2.0089   
Variance 9.682 4.0356 F < Fα=0.05  
Geometric mean 0.33 mD 2.54 mD   
     

Unit B vs. Unit C: Porosity 
Table 5.4D Clast samples Matrix samples F-test t-test 
n 9 15   
Arithmetic mean 14.52 13.02  t < tα=0.05 
Standard deviation 7.05 7.16   
Variance 49.66 51.28 F < Fα=0.05  
     

Unit B vs. Unit C: Permeability 
Table 5.4E Unit B Unit C F-test t-test 
n 8 13   
Arithmetic mean -1.8637 0.21491  t < tα=0.05 
Standard deviation 1.9829 3.7357   
Variance (ln) 3.9318 13.956 F < Fα=0.05  
Geometric mean 0.16 mD 1.24 mD   
     

Unit B vs. Unit D: Porosity 
Table 5.4F Unit B Unit C F-test t-test 
n 9 3   
Arithmetic mean 14.52 20.87  t < tα=0.05 
Standard deviation 7.05 4.77   
Variance 49.66 22.77 F < Fα=0.05  
     

Unit B vs. Unit D: Permeability 
Table 5.4G Unit B Unit D F-test t-test 
n 8 4   
Arithmetic mean -1.8637 5.6955  t > tα=0.0005 
Standard deviation 1.9829 3.7993   
Variance 3.9318 14.435 F < Fα=0.05  
Geometric mean 0.16 mD 297.52 mD   
     

Unit C vs. unit D: Porosity 
Table 5.4H Unit C Unit D F-test t-test 
n 15 3   
Arithmetic mean 13.02 20.87  t > tα=0.05 
Standard deviation 7.16 4.77   
Variance 51.28 22.77 F < Fα=0.05  
     

Unit C vs. unit D: Permeability (T- and f-tests based on ln k) 
Table 5.4I Unit C Unit D F-test t-test 
n 13 4   
Arithmetic mean 0.21491 5.6955  t > tα=0.025 
Standard deviation 3.7357 3.7993   
Variance 13.956 14.435 F < Fα=0.05  
Geometric mean 1.24 mD 297.52 mD   
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THE EFFECT OF DIAGENESIS ON POROPERM SIGNATURES 

The present dataset display abundant moldic porosity, produced by the 

dissolution of grains in the marine-phreatic domain prior to re-sedimentation and 

re-deposition. These separate vugs increase porosity without contributing to 

permeability, as they are only interconnected through the interparticle porosity 

that occupies the areas between the moulds (e.g. Lucia, 2007). The effect of 

touching vugs may increase permeability drastically (e.g. Lucia & Ruppel, 1996; 

Lucia, 2007). Such porosity exists in the present dataset, and is described in the 

diagenetic history of these sediments. Their effects on poroperm datapoints have 

been demonstrated. However, it is evident that the effect of separate vugs is 

reflected to a far greater extent compared to the effect of touching vugs. It may 

be argued that these to some extent will counter-effect each other, but the net-

offset of the datapoints are demonstrated to be towards the influence of separate 

vugs. This is probably the echo of scale- and directional dependence of touching 

vugs systems. Hence, larger samles may reflect better this effect than the 

present database. Several concerns have been addressed on the fact that plug 

data not adequately describe such fabrics (i.e. Lucia 1999, 2007; Honarpou et.al. 

2003; Byrnes, 2004; Zhang et.al., 2005; Ehrenberg, 2007) and it is a common 

sense perception that larger samples better capture heterogeneous fabrics. This 

is important in terms of reservoir description through core- and plug analysis. 

Another important take-away from these plots is that the effect of separate vugs 

apparently decrease as fabrics become increasingly mud-dominated. This reflects 

the sedimentological observations that are presented in chapter 3, which 

revealed that separate vugs occur predominantly as moldic pores defined by 

dissolved grains. The relative grain-dominance of a sample is reflected in the 

assignment of petrophysical classes and is also in this study reflected by the 

subdivision of microfacies. When grain-content decreases, the amount of moldic 

pores decrease accordingly and the effect of these separate vugs subsequently 

decreases.  

 



IMPLICATIONS FOR RESERVOIR CHARACTERIZATION 
Carbonate slope megabreccias may form significant reservoirs (e.g. Enos 

& Moore, 1983; Cook & Mullins, 1983; Enos, 1985; Casabianca et.al., 

2002) by the introduction of significant volumes of reservoir rocks into the lower-

slope to basinal areas. A number of reservoirs produce from slope-deposits (e.g. 

the Poza Rica Field offshore Mexico (Enos, 1977)), and megabreccia-bearing 

reservoir levels has been reported from several carbonate fields, although most 

of them are associated with karst systems (Sun et.al., 1998; Casabianca et.al., 

2002). Apulian Platform carbonates form the reservoir unit in several major oil 

fields in the Val d’Agri area of southern Italy (Shiner et.al., 2004), but no reports 

or published data on production from slope megabreccia deposits in this area are 

available. In-house studies by BG International during the mid-1990s identified 

platform-margin megabreccias as one of several potential reservoir facies 

(Beckett, 1994; Beckett et.al., 1995, as reported by Casabianca et.al., 2002). 

6

 

POROSITY AND PERMEABILITY 

Porosity of the Monte Sant’Angelo Megabreccias is to a large extent controlled by 

the diagenetic evolution. Dissolution of grains in the marine-phreatic zone 

produced secondary porosity. Isopachous calcite cement that precipitated within 

the same zone obstructed both initial and secondary porosity. Extensive equant 

calcite cements that precipitated within the meteoric-phreatic zone largely 

obstructed porosity and is to a large responsible for the relatively low effective 

porosity values that are displayed by these units. Later stage dissolution by 

fresh-water may have promoted permeability. It is implied that this later stage 

diagenetic overprint occurred during uplift, erosion and exposing of these 

sediments and the effect of this nonfabric-selective porosity should be removed 

in the assessment of reservoir quality of these deposits. 

The petrophysical results have been presented in terms of poroperm classes 

which, although tempting, must not be directly translated to reservoir properties 

and quality. Although vital for reservoir characterization and existence, poroperm 

signatures alone do not provide very useful answers. Reservoir properties are 

derived from a number of other additional factors such as wettability, saturation, 

volume, connectivity and play. Poroperm classes may be combined with such 

other parameters in the assessment of reservoir properties. 
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Based on poroperm classes, however, the Monte Sant'Angelo Megabreccias 

display properties that indicate reservoir quality. A majority of datapoints plot 

within poroperm classes 2 and 3. Matrix-samples produced elevated values 

compared to corresponding lithoclasts for the northern succession units (BCD). 

This issue is discussed further in relations to zoning and segmentation of this 

potential reservoir. 

 

ZONING 

The present study has shown that zoning and segmenting of megabreccia 

intervals occurs at various scales.  

Firstly, the Monte Sant'Angelo Megabreccias are confined in time and space 

depending on 1) accommodation space, 2) sediment production and 3) triggers 

for re-deposition. Megabreccias were not deposited during periods not meeting 

these criteria which may have created a segmenting on reservoir scale that may 

be seen in relations sequence stratigraphy and platform responses (i.e. sediment 

production). 

Secondly, the Monte Sant'Angelo Megabreccias occurs as several stacked, and 

distinct, levels. In the southern parts, these were on outcrop scale amalgamated 

and no apparent hinders for fluid flow occurred between them. Unit C of the Vico 

del Gargano, on the other hand, show the occurrence of dense packstone 

clinoforms which are expected to obstruct and control the behavior of fluids 

within the stacked package of megabreccia debris-flow deposits. This effect is 

well known for siliciclastic reservoirs, where individual parasequences may 

segment the reservoir into flow units. These are, however generally mappable 

over long distances and possibly also between individual wells. This enables the 

mapping and modeling of such baffles. This may not be the case for the Monte 

Sant'Angelo Megabreccias and equivalent reservoirs. However, it is noted that 

the slope at this particular spot probably occupied a very narrow zone. The 

clinoforms may segment the reservoir vertically, but may not contribute much to 

horizontal (lateral) segmentation. 

Thirdly, lithoclasts and matrix display different petrophysical properties and their 

contacts are distinct. The mapping of fluid behavior across lithoclast-matrix 

boundaries is important for the overall fluid flow through these sediments. 
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Samples of lithofacies D1 and C2 display higher porosity and permeability for the 

matrix than for the corresponding lithoclasts. This probably reflects the 

provenance area for these materials, which may not have produced reservoir 

quality rocks. Matrix was probably formed by the disintegration of lithoclasts and 

incorporation of other facies during transport, and this re-organization of 

sediments produced fabrics with elevated reservoir qualities which now constitute 

the matrix to these megabreccia units. It is likely that flow through these 

deposits would be facilitated mainly through the matrix rather than lithoclasts 

which in this specific case are more resistant to flow. It is further implied that 

although lithoclasts have lower permeability, they would still account for a fair 

amount of total hydrocarbon storage space within these deposits. This poses a 

significant challenge in the modeling, simulation and production of hydrocarbons 

that are trapped in reservoirs that are dominated by matrix-supported 

megabreccia debris-flows.  

Unit D display stacked megabreccia debris-flows that are interbedded with 

proximal turbidites which show elevated poroperm values. This clear 

differentiation of poroperm signatures within such depositional packages is 

important information that has impact on reservoir characterization of such 

deposits. The intra-unit megabreccia bodies are able to store hydrocarbons, but 

the surrounding turbidite deposits may display much greater ability to transmit 

fluid-flow. The difference in flow-properties poses a major challenge for reservoir 

modeling, simulation and production. 

 

LOG RESPONSES AND THE PREDICTION OF PERMEABILITY 

Focus on permeability estimation based on porosity data may contribute to the 

standing challenge of permeability estimation for carbonate reservoirs. 

Permeability is generally derived from core-data (high resolution) or production 

tests (low resolution), but may also be derived from electric logs that measure 

intrusion of drilling fluids to the formation and magnetic resonance logs 

(MR/NMR). As pointed out by several authors (e.g. Lønøy, 2006), the calibration 

of well-log responses to permeability data from cores works well in reservoirs 

with a simple and continuous relationship between porosity and permeability 

such as clean sandstones. It is considered here that the Monte Sant'Angelo 

Megabreccias does not provide such simple relationships. 
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Several published studies deal with the estimation of permeability based on well 

log data for carbonate reservoirs (e.g. Ahmed et.al., 1991; Hassall et.al., 2004; 

Frank et.al., 2005; Sullivan et.al., 2006; Ballosino et.al., 2006; Suat Bagci & 

Akbas, 2007) and the ongoing research on this subject is one of great 

importance in the pursuit for cost-efficient, reliable and continuous permeability 

mapping on reservoir scale.  

The data for the present study displays that one-dimensional data are not 

transferable to larger areas. I.e. no columns of the Malpasso grid of samples are 

representative for the entire grid. The grid is further not representative for the 

megabreccias exposed in Vico del Gargano. 

Some lithoclasts display preserved internal bedding, and the outlines of these 

may be derived from dip-meter logs. This may further provide a basis for the 

calibration of other logging equipments to the signatures of lithoclasts and 

matrix. This may provide clues as to megabreccia types and depositional model 

(matrix vs. clast-supported). Image-logs may provide clues as to dominant pore-

types and petrophysical classes (e.g. Lucia, 2007), and may assists in the 

mapping of diagenetic impact. 

 

VOLUMES AND PLAY 

Volumes depend on the mapping of lateral extent and variations, which has not 

been performed for the purpose of the present study. Casabianca et.al. (2002) 

published volumetric estimates for the megabreccias of the Maiella Carbonate 

platform, but the transferability of these numbers to the Apulia slope is 

questionable and the present data does not support such applications. 

It is assumed that the megabreccias are confined to the lower-slope, that they 

pinch-out upwards (marginwards) and downwards (basinwards) and are overlain 

by non-reservoir deposits. This may coincide with a ‘Tamabra play’ (Viniegra & 

Castillo, 1970; Enos, 1977, 1985, 1988;) which is one of carbonate slope 

deposits pinch-out up-dip into sealing basinal facies (Horbury et.al., 2005). The 

discussion on this subjects is speculative. Graziano (2001) states that the Monte 

Sant'Angelo Megabreccias was mapped with thicknesses of some 200 m in the 

vicinity of the town of Monte Sant’Angelo, on the southern Gargano. Depending 

on the lateral extent, this may imply that these debrites may form significant 

reservoir volumes. 
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IMPACT OF DIAGENESIS 

The effect of diagenesis and the mapping of diagenetic history for carbonate 

reservoirs are crucial inputs to any decisions be it in the exploration, production 

or field-development phases. For the Monte Sant'Angelo Megabreccias, late 

diagenetic alterations of the sediments have significantly lowered the porosity of 

these sediments. While early diagenesis increases porosity through dissolution of 

grains, the coinciding marine-phreatic cementation obstructs interparticle 

porosity. Burial diagenesis have affected the matrix to the megabreccias for the 

most part, while porosity within lithoclasts has been preserved through early 

lithification and cementing. This being said, petrophysical analysis of units B and 

C (Vico del Gargano) indicate that lithoclasts display lower poroperm values 

compared to the surrounding matrix. As discussed in chapter 5, this effect 

probably reflects that the margin and upper-slope environments from which the 

sediments were derived, displayed poor initial reservoir properties. The 

disintegration of lithoclasts as well as the incorporation of additional sediments in 

the debris-flows during transport promoted the reservoir properties of the 

matrix. This has important implications in terms of reservoir characterization, as 

it is expected that production from such bimodal reservoirs will drain the high-

permeability matrix promoting immature water break-trough and encapsulating 

remaining hydrocarbons that are situated within lithoclasts. Such partial 

production will to a large extent influence the recovery factor of such reservoir 

facies. 
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SUMMARY AND CONCLUSIONS 
The Monte Sant'Angelo Megabreccias have been investigated through the 

mapping, description and interpretation of two successions on the 

Gargano Promontory, Apulia, southern Italy. These were exposed in the 

Malpasso Valley and the Vico del Gargano quarry, on the southern and northern 

parts of the Gargano, respectively. 

7
 

SUMMARY 

The two successions were selected based on previously published data, indicating 

that they represented proximal (Malpasso) and distal (Vico del Gargano) 

positions relative to the Cretaceous platform margin. These data were largely 

based on outcrops on the southern Gargano (e.g. Graziano, 2001; see also figure 

2.4). The occurrence of clast-supported megabreccias in the northern succession, 

however, proposes that it may not be directly transferable to the northern parts 

of the Gargano. 

The northern and southern succession displayed important differences in terms 

of depositional pattern, fabric and petrophysical properties which, along with 

petrophysical analysis, promoted the subdivision of the two successions into flow 

units. The southern succession displayed an aggrading package of matrix-

supported megabreccias confined to amalgamated, 10-15 m beds. The northern 

succession display the transition from clast-supported, chaotic megabreccias into 

prograding, matrix-supported megabreccias that were confined to 5-10 m beds 

separated by packstone clinoforms, and capped by a channelled package of 1-2 

m megabreccia beds interbedded with proximal calciturbidites. 

While the matrix-supported megabreccias are interpreted as deposits of debris-

flows that were matrix-supported also during transport, the clast-supported 

debrites are interpreted as grain-flow deposits. 

Stratigraphic analysis allowed for the mapping of subfacies that suggests that 

megabreccias were derived from the marginal and upper-slope environment. This 

agrees with previously published studies. It is further suggested, based on this 

dataset, that provenance for the northern and southern megabreccias were 

different in terms of energy-level and subsequent reservoir quality. This 
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translates into differences in energy-levels along the eastern margin of the 

Apulian Platform, agreeing with previously published interpretations. 

The Monte Sant'Angelo Megabreccias was triggered by synsedimentary tectonics, 

but accommodation space controlled their depositional pattern. For the southern 

succession, faults that dissected the platform margin were interpreted, agreeing 

with the speculations put forwards by Borgomano (2000). These faults induced 

the elevated generation of accommodation space. However, high rates of 

sedimentation in the adjacent carbonate factory matched the available 

accommodation space and induced the aggrading pattern which is displayed in 

the southern succession.  It is further implied that differentiated subsidence rates 

during the Cenomanian provoked the differences in accommodation space and 

generated the synsedimentary tectonic activity that triggered these debrites. In 

terms of trigger-mechanisms, this study agrees with previously published data 

concerning these deposits (e.g. Graziano, 2001) as well as other studies related 

to limestone megabreccias (e.g. Spence & Tucker, 1997). 

No indications of siliciclastic input was recorded, which supports previously 

published interpretations of the geometry of the Cretaceous Apulian Platform. 

Diagenetic history of these sediments display a succession of cementation and 

dissolution that may be described in terms of four major stages and domains; 1) 

the marine-phreatic zone is characterized by the dissolution of grains and 

precipitation of an isopachous bladed calcite cement. 2) The meteoric-phreatic 

zone was characterized by the precipitation of equant calcite cement that 

constitutes the volumetrically most dominant cement generation in these 

sediments. 3) Burial diagenesis was characterized by compaction features, and 

affected the matrix to a greater extent than corresponding lithoclasts, reflecting 

the lithified fabric of the latter. 4) Uplift and sub-aerial exposure during Tertiary 

times induced fresh-water leaching and promoted the evolution of a diffuse 

nonfabric-selective porosity that affected both matrix and lithoclasts. 

One hundred and seventeen plug samples with corresponding thin-sections and 

porosity/permeability measurements formed the petrophysical database. Porosity 

was estimated based on image analysis, and compared with the corresponding 

measured values. This displayed a significant scatter, and a clear offset of 

datapoints indicating that estimated values were significantly lower than the 

measured values. This is explained by the estimation method failure to include 
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smaller pores and microporosity. No results relating fabric or thin-section quality 

to the errors was observed. This bias reflected in permeability estimation and 

prediction using the Lucia (1983, 1995, 1999, 2007) system. The permeability 

estimations derived using the system developed by Lønøy (2006) displayed 

better correlations to measured permeability. 

In an attempt to produce good correlations of porosity and permeability, the 

database was classified according to the systems developed by Choquette & Pray 

(1970), Lucia (1983, 1995, 1999, 2007) and Lønøy (2006). The subgroups of the 

Choquette & Pray system coincided with the subdivision of the Lønøy-system for 

this database. Although these latter systems produced better correlations for 

porosity and permeability relative to the Lucia-system, all three systems failed to 

produce adequately correlations. The coefficients of correlations that were 

obtained by Lønøy (2006) were not reproduced for the present dataset. 

However, this is seen in relations to the failure of the present database to meet 

all requirements laid down by Lønøy (2006). Further, the plugs of the present 

database were larger than those used by Lønøy (2006), and it is suggested that 

this may reflect in poorer R2-values. 

The majority of megabreccia datapoints plot in poroperm classes 2 and 3 

(porosity above 15 %, and permeability above 10 mD), which suggests that they 

display reservoir quality in terms of porosity and permeability. However, the 

complete reservoir characterization relies on a number of additional parameters 

and the present database does not support conclusions on this subject. 

The majority of megabreccia datapoints are shifted towards the right in terms of 

petrophysical classes (Lucia, 1983, 1995, 1999, 2007). This reflects the 

abundant moldic porosity that these sediments display, and coincide with 

stratigraphic description and interpretation. The effect of touching vugs is also 

recognized in the petrophysical data, but not to the extent that might be 

anticipated from stratigraphical analysis. This apparent deteriorating is 

subscribed to the failure of plug-scale samples to capture adequately this scale- 

and directional dependent fabric. 

50 samples were gathered from an 11x5 m grid of samples in the southern 

succession. No vertical trends within this grid were recognized in terms of 

poroperm classes and petrophysical classes. Statistical analysis reveals that the 

grid of samples adequately represents the southern succession but fail to capture 
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the petrophysical properties of the northern succession. This underpinned the 

need for separately described flow-units. 

Important implications for reservoir characterization of these deposits were 

described. Zoning of these units are expected to occur on different scales. Firstly, 

the mapped successions display deposits that are confined in time and space by 

features of the depositional environment that must be fulfilled. This include 

trigger-mechanisms, sediment production and accommodation space. Secondly, 

the description of clinoforms in the northern succession (unit C) that from 

petrophysical analysis indicate low porosity and permeability, may segment this 

unit into sub-units in terms of flow. Thirdly, the different petrophysical properties 

of lithoclasts and corresponding matrix may have implications for production and 

pose challenges for the modelling of such debrites.  

The intense heterogeneity of these debrites poses important challenges as to the 

interpretation of their responses to wireline or LWD logging. It is suggested that 

dipmeter logs may capture preserved bedding within lithoclasts and potentially 

provide a basis for calibration. The volumes of these debrites are not mapped for 

the purpose of this study, but it is indicated that they may form significant 

reservoirs. Based on previously published studies (e.g. Graziano, 2001), it is 

implied that these debrites may form significant reservoir volumes. 
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CONCLUSIONS 

 

 Occurrence of clast-supported megabreccias in the Vico del Gargano may not 

correlate with the established paleogeometry of the Apulian platform margin. 

A reconsideration of this scheme is called for. 

 Within the Monte Sant'Angelo Megabreccias, important differences was 

mapped in terms of fabric, depositional pattern, depositional mechanisms and 

petrophysical properties among different megabreccia flow-units as well as 

among the northern and southern successions. 

 The debris-flows and grain-flow were triggered by synsedimentary tectonics, 

agreeing with previously published data. Their depositional patter was 

controlled by the accommodation potential. 

 The majority of megabreccia datapoints plot in poroperm classes 2 and 3 

(porosity above 15 %, and permeability above 10 mD), which suggests that 

they display reservoir quality in terms of porosity and permeability. 

 Petrophysical data reflects the observations of separate vugs. The effect of 

touching vugs was, however, not recognized to the extent that was 

anticipated from stratigraphic analysis. This reflects that plug-scale samples 

may not be suited for description of such fabrics, which is highly scale- and 

directional dependent. This agrees with previously published concerns on this 

subject. 

 The grid of samples that were gathered from the southern succession 

provided where representative of this succession. However, it failed to 

satisfactorily represent the megabreccias exposed in the northern succession. 

This is underpinned by statistical analysis of the data. 

 Porosity and permeability of these debrites suggests reservoir quality. The 

southern succession displays generally higher values in terms of these 

petrophysical properties than do the northern succession. The northern 

succession was characterized by matrix samples displaying elevated values 

compared to their corresponding lithoclasts. This suggests that reservoir 

quality of these deposits were induced not by the preserved marginal facies, 

but probably the disintegration of lithoclasts during transport and reworking 

of sediments during deposition. 
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METHODS 
The present database of petrophysical measurements were 

derived from plug samples collected from the two outcrops; 

Malpasso Valley and Vico del Gargano quarry. 

Poroperm values were obtained for the available plugs through standard 

laboratory methods. A selected number of plug samples were measured in-

house, while the bulk of samples were measured externally, by Reslab AS.  

The database of sample thin-sections was utilized in the estimation of porosity 

and permeability. For porosity estimation, the software Photoshop CS2™ by 

Adobe® was utilized. This software were also utilized for image enhancement. 

For the estimation of permeability from porosity values, the two systems of Lucia 

(1983, 1995, 1999, 2007) and Lønøy (2006) where used. The system developed 

by Choquette & Pray (1970) was not utilized, although it is noted that this 

system is a widely used classification system, especially amongst petroleum 

geologists. 

This section presents the technical description of the laboratory methods and 

estimation methods, as well as briefly introducing the evolution of the digital 

topography model and image enhancement methods. 

POROSITY 

A rock’s porosity, or fluid-storage capacity, is the void part of the rock’s total 

volume unoccupied by particles or cement. Absolute porosity is defined as the 

ratio of the total void volume, VPa, to the bulk volume VB of a rock sample, 

irrespective of whether the voids are interconnected or not, while the effective 

porosity is defined as the ratio of the total volume of interconnected voids, VP, to 

the bulk volume of the sample (equation A1.1) (e.g. Zolotukhin & Ursin, 2000). 

 

 

def
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V V V
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φ
−

= =
Equation A1.1 
 
VPa = Total pore volume 
VB = Bulk volume (total sample volume) 
VM = Matrix volume 

A1 
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IN‐HOUSE POROSITY MEASUREMENTS 

Porosity was measured on selected plug samples using the following method: 

Plug samples weighed when dry and when saturated to 100 % brine saturation. 

The difference in weight yields the volume of pore space within the plug, when 

the density of the brine is known. Divided on the bulk volume of the sample 

(measured), the effective porosity is calculated (equation A1.1).  

Uncertainties related to this method lies mainly in the weighing process, but also 

to some extent in the saturation of the samples.  

Uncertainties lie in; 

 Dimensions of plugs. Standard deviations and accuracies were available for 

plug dimension measuring-equipment. 

 Weighing of plugs. Standard deviations and accuracies for equipment were 

available and are mapped. 

 Vacuum-related uncertainties. The vacuum induced was sufficient, and 

minimizes this uncertainty factor. 

 Saturation. A possibility exists that plugs may not have been 100% saturated 

with brine. Due to sufficient vacuum, this uncertainty factor was minimized. 

 Plug sample irregularities. Some plugs were not evenly sided. This effect was 

noticeable, and must account for some uncertainty. However, techniques 

were used to overcome this uncertainty factor. Among these were the triple 

measuring of plug dimensions, using average values which should minimize 

this uncertainty factor. 

 Large pores cut by plug wall. Some plugs displayed large pores and cavities 

that were cut by plug wall. The method relies on 100% saturation of plugs 

while weighing. Such large pores may not have capillary properties sufficient 

to withhold brine. A solution was developed, and plugs were wrapped in 

plastic tape to contain water. This solution is believed to minimize this 

uncertainty factor, but this still accounts for a large portion of the mapped 

uncertainty related to this method. 

A1-2 
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PERMEABILITY 

The permeability of a porous medium is the medium’s capability to transmit 

fluids through its network of interconnected pores. Permeability is thus related to 

the effective porosity (connected pores) of the porous medium and all factors 

affecting the latter will also affect the former.  

Permeability may be regarded as a constant property of a porous medium only if 

the flow through the medium is of a single phase. This is the absolute 

permeability. However, when more than one fluid is introduced to the same 

medium, the effective permeability of each fluid will vary strongly with respect to 

its relative saturation. One fluid will hinder the free flow of the other fluid causing 

the effective permeability of the two to be drastically reduced compared to the 

absolute permeability. The ratio of a porous media’s effective permeability to a 

particular fluid versus its absolute permeability is termed the relative 

permeability to that fluid. 

 

The permeability, k, appears in the Darcy equation as a proportionality 

coefficient rather than an established physical parameter. The quantitative 

definition of permeability as a physical unit can be derived by rearranging 

equation A1.2. This implies that a unit permeability is the permeability of a 

porous medium whose unit proportion, with a unit length (1 cm) and unit cross-

sectional area (1 cm2), is able to transmit – under a unit pressure differential (1 

atm) – a fluid of a unit viscosity (1 cp) at a unit rate (1 cm3/s). This permeability 

unit is termed darcy (1 D) and is generally referred to in millidarcies (mD). 

KLINKENBERG EFFECT 

A gas flowing at relatively low pressures through a porous medium tends to 

behave like an inviscid fluid, due to negligible friction against the pore-channel 

Equation A1.2  
Darcy Equation in generalized form for linear, horizontal 
flow of an incompressible fluid. 
 

q  Fluid flow rate [cm3/s] 
∆p  Pressure gradient across porous medium 

during flow [atm] 
A Cross-sectional area of the porous medium in 

the flow-transverse direction [cm2] 
∆x Length of porous medium in flow-parallel 

direction [cm] 
K Absolute permeability [D] 
μ Viscosity [cp] 

K A pq
xμ

⋅ Δ
= −

Δ

Note: The negative component of the original Darcy Equation 
serves mainly as a mathematical correction to the negative 
pressure gradient in the x-direction (∆p drops as ∆x 
increases). For the purpose of this study, this formality is 
disregarded as the absolute value for ∆p/∆x is used. 
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walls. The flow velocity at the walls is non-zero and the bulk flow velocity is 

effectively higher than might be expected for a liquid or a high-pressure gas. 

This causes gas permeability at low mean pressures to display erroneously high 

values compared to the same sample’s liquid (absolute) permeability.  This 

phenomenon is known as the Klinkenberg Effect (Klinkenberg, 1941). The Darcy 

Equation assumes a Newtonian fluid behaviour, and the Klinkenberg Effect 

requires an appropriate correction to be made (Zolothukin & Ursin, 2000).  

IN‐HOUSE PERMEABILITY MEASUREMENTS 

Permeability is defined through the Darcy equation, and the methods used to 

calculate this parameter relies on the fact that the flow-rate is a function of the 

pressure gradient (equation A1.2). In the setup used (fig A1.1), production-end 

pressure was kept constant at atmospheric pressure leaving only changes in 

injection-end pressure to define changes in the pressure gradient. The remaining 

parameters; permeability, viscosity, production-end pressure and plug length 

and area, were kept constant throughout the process. Flow-rates and 

corresponding pressure gradients were plotted, and a linear relationship was 

derived. The slope of this line represents the remaining parameters of the Darcy 

equation, and permeability was calculated based on three or more 

measurements for each plug sample.  

 

Flowrate 
monitoring 

Injection-end pressure 
monitoring 

Uncertainties lie in; 

 Pump accuracy and flow-rate consistency throughout the process. This was 

measured separately for the pump used for these measurements, and 

measured flow rate showed no significant deviation from calculated flow rate. 

 Pressure-control during permeability measurements. Standard deviations and 

accuracies were available for the equipment used for pressure-control. 

Injection Production 

Figure A1.1 - In-house permeability measurement setup 

Production-end 
pressure 
monitoring Confining pressure applied by hydraulic 

oil and rubber sleeve and monitored 

Brine for 
injection 

Core plug 

Pump with 
flowrate 
indicator 

A1-4 



  Appendix 1 – Methods 

 Plug lengths. Standard deviations and accuracies were available for plug 

dimension measuring-equipment. 

Accuracy of in-house permeability measurements were approximately 5 %. For 

measurements and uncertainty calculations, see appendix 2. 

EXTERNAL POROSITY AND PERMEABILITY MEASUREMENTS 

Gas permeability was determined by flowing nitrogen gas through the samples at 

steady-state conditions, recording the flow rate and pressure drop over the 

sample. 20 Bar confinement pressure was applied. The gas permeability was 

corrected for the Klinkenberg effect (see section A1.2.1.2). For permeabilities 

below 2.0 mD, the following correction algorithm was used: K = 0.68 x Kn21.06. 

For permeabilities above 2.0 mD, an iteration loop was used.  

Uncertainties related to the porosity measurements were reported to be ± 0.5%. 

Uncertainties related to permeability measurements were reported to be max 5% 

in the 100 mD area, and somewhat higher in the areas below 1 mD. 

The above information was provided by Olav Bryberg, Reslab AS, September 

2007. Further information on the specifications of this method may be obtained 

by contacting Reslab AS. 

ESTIMATION OF POROSITY 

Porosity was estimated from epoxy-stained thin-sections using Adobe™ 

Photoshop CS2 on digital photos of the sections. High-resolution 2X 

magnification images using the Spot camera, as well as high-resolution scans of 

thin-sections were obtained. These digital images formed the basis for porosity 

estimation. 

Visible pore-space was selected using the magic wand tool in combination with 

the select similar feature. The histogram tool gives the accurate number of pixels 

in the selected area. Divided by the total amount of pixels in the image an 

estimate of the pore area fraction is obtained. This was performed on each 

whole-sections scan. In addition, this method was performed on a number of 2X 

magnified sub-sections from each thin-section. These results were compared to 

the whole-section porosity. For permeability estimation, porosity estimations 

from whole-section scans were used where available, and mean values from 2X 

sub-sections were used where the former were unavailable. 

  A1-5   
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ESTIMATION OF PERMEABILITY 

Permeability was estimated using the systems developed by Lucia (1983, 1995, 

1999, 2007) and Lønøy (2006). For the Lucia-system, interparticle porosity 

fraction was determined using porosity estimation methods and used for the 

prediction of permeability. For the Lønøy-system, measured values of porosity 

were utilized. For extended introductions to these systems, read the publications 

of Lønøy (2006) and Lucia (2007). See also chapters 3 and 4 of this study.  

 systems developed by Lucia (1983, 1995, 

1999, 2007) and Lønøy (2006). For the Lucia-system, interparticle porosity 

fraction was determined using porosity estimation methods and used for the 

prediction of permeability. For the Lønøy-system, measured values of porosity 

were utilized. For extended introductions to these systems, read the publications 

of Lønøy (2006) and Lucia (2007). See also chapters 3 and 4 of this study.  

DIGITAL TOPOGRAPHY MODEL DIGITAL TOPOGRAPHY MODEL 

Several photos were taken and digitally stitched together forming panorama 

overviews of different parts of the Vico del Gargano quarry outcrop from several 

different angles. GPS positions along with elevation data were recorded along the 

edges of the quarry using a handheld GPS. The points were imported to RMS as 

XYZ-data and used to create a framework for the topographic model. Additional 

points were manually digitized in Irap RMS using the GPS-measurements as a 

framework, to form the basis for 

mapping of the surface that forms the 

topographic model. 

Several photos were taken and digitally stitched together forming panorama 

overviews of different parts of the Vico del Gargano quarry outcrop from several 

different angles. GPS positions along with elevation data were recorded along the 

edges of the quarry using a handheld GPS. The points were imported to RMS as 

XYZ-data and used to create a framework for the topographic model. Additional 

points were manually digitized in Irap RMS using the GPS-measurements as a 

framework, to form the basis for 

mapping of the surface that forms the 

topographic model. 

A 

A surface was then draped across the 

altered set of XYZ-points, and further 

edited using the contour-editing 

feature in Irap RMS. The resulting 

topographic surface was compared 

with photos of the area until a 

sufficient correlation between the two 

was reached (fig A1.2A). 

A surface was then draped across the 

altered set of XYZ-points, and further 

edited using the contour-editing 

feature in Irap RMS. The resulting 

topographic surface was compared 

with photos of the area until a 

sufficient correlation between the two 

was reached (fig A1.2A). 

B 

Based on the field work and photos, 

selected horizons were interpreted and 

plotted on the topographic surface as 

points. Figure A1.2B show one of these 

surfaces activated for demonstrational 

purposes. 

Based on the field work and photos, 

selected horizons were interpreted and 

plotted on the topographic surface as 

points. Figure A1.2B show one of these 

surfaces activated for demonstrational 

purposes. 

Figure A1.2 – Topographic model  
 
Topographic model of Vico del Gargano quarry, 
screenshots from Irap RMS™. 
 

A) Model overview looking SE. 
B) One unit visualized (transparent grey 

surface).   
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IMAGE ENHANCEMENT 

Image enhancement methods were developed and used on digital photos. The 

software used for the image enhancement was Photoshop™ CS2, by Adobe®.  

re developed and used on digital photos. The 

software used for the image enhancement was Photoshop™ CS2, by Adobe®.  

An example is presented to visualize these methods (figure A1.3). The original 

image (A) display megabreccias on the eastern wall of the Malpasso Valley 

outcrop. Some clasts are visible as scattered slightly darker grey areas on the 

rock face. 

An example is presented to visualize these methods (figure A1.3). The original 

image (A) display megabreccias on the eastern wall of the Malpasso Valley 

outcrop. Some clasts are visible as scattered slightly darker grey areas on the 

rock face. 

Although some clasts are visible prior to 

enhancement, it is evident that the image 

does not sufficiently exhibit the details of 

the complex geological deposit which it 

contains.  

Although some clasts are visible prior to 

enhancement, it is evident that the image 

does not sufficiently exhibit the details of 

the complex geological deposit which it 

contains.  
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Inverting proved to be a valuable and 

simple method, turning dark areas light and 

vice versa. This method utilized an 

automated feature of the software and 

requires no advanced technical knowledge. 

This may also be applied using a number of 

other image-editing software. In the 

example displayed in figure A1.3B, levels, 

colours and contrast are automatically 

adjusted by the software to a best-fit of the 

contents. A further, and slightly more 

advanced method, is to adjust curves for 

each RGB channel to enhance contrasts in 

the image. A colour gradient may be added 

for increased visibility (figure A1.3C). 
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Figure A1.3 – Image enhancement 
  
A) High resolution photo used for method 

development and description, from the 
eastern wall of the Malpasso Valley. 
Photo: Pr. Mike Talbot, UiB. Sections 
used for enhancement indicated. 

B) Result after inverting and automatically 
adjusting levels and colours. 

C) Result after adding colour gradient.  
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IN‐HOUSE LABORATORY MEASUREMENTS 
Poroperm values from 26 samples were measured in-house 

using methods further described in appendix 1. This section 

presents selected highlights from the laboratory journal. 

Tables A2.1 and A2.2 presents porosity and permeability measurements, 

respectively. Uncertainties are provided by equipment standards for measured 

values, and calculated based on these for calculated values. Reverse permeability 

was measured on selected plugs. 

The following remarks correspond to remark-indications in both tables: 

1) Length and diameter measurements were performed 3 times for irregular 

plugs, and mean length was used for further calculations. 

2) Plastic tape was wrapped around plugs with large pores cut by plug wall, 

to prevent water from seeping out prior to weighing. Weight of tape is 

included in further calculations on those plugs, theoretically yielding 

slightly elevated uncertainties. 

3) Flowrates provided by pump was ml/h. These values are re-calculated to 

Darcy-compatibility (ml/s). 

4) Pressure provided by pressure-control equipment in bars. These values are 

re-calculated to Darcy-compatibility (atm). 

5) Slope of linear trend based on pressure/flow-rate plots. See appendix 1 for 

further description of method. 
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POROSITY MEASUREMENTS 

Table A2.1 – In-house porosity measurements. Laboratory journal. 

 Plug dimensions  

Plug # 

Length 
(measurements) 

[cm] 1) Length (mean) [cm] 

Diameter 
(measurements) 

[cm] 1) 
Diameter (mean) 

[cm] 
Flow area (short-end 

area) [cm2] 
Weight before 
saturation [g] 

Weight before 
saturation including 

plastic [g] 2) 
                     
                     45 

5.09 ± 0.002 5.090 ± 0.010 3.69 ± 0.002 3.690 ± 0.010 10.694 ± 0.058 111.06 ± 0.01 N/A ± 0.01 
                     
                     63 

5.09 ± 0.002 5.090 ± 0.010 3.69 ± 0.002 3.690 ± 0.010 10.694 ± 0.058 111.7 ± 0.01 N/A ± 0.01 
4.174 ± 0.002    3.996 ± 0.002             
4.056 ± 0.002    4.022 ± 0.002             82A 
4.094 ± 0.002 4.108 ± 0.068 4.051 ± 0.002 4.023 ± 0.032 12.711 ± 0.201 114.10 ± 0.01 N/A ± 0.01 
4.298 ± 0.002    4.021 ± 0.002             

4.3 ± 0.002    4.029 ± 0.002             82B 
4.254 ± 0.002 4.284 ± 0.027 4.058 ± 0.002 4.036 ± 0.021 12.794 ± 0.135 114.66 ± 0.01 N/A ± 0.01 
7.646 ± 0.002    4.917 ± 0.002             
7.734 ± 0.002    4.935 ± 0.002             83 
7.688 ± 0.002 7.689 ± 0.051 4.911 ± 0.002 4.921 ± 0.014 19.019 ± 0.107 306.79 ± 0.01 308.05 ± 0.01 
2.496 ± 0.002    3.716 ± 0.002             
2.545 ± 0.002    3.758 ± 0.002             100A 
2.528 ± 0.002 2.523 ± 0.028 3.765 ± 0.002 3.746 ± 0.028 11.023 ± 0.166 58.48 ± 0.01 58.72 ± 0.01 
4.718 ± 0.002    3.744 ± 0.002             

4.7 ± 0.002    3.766 ± 0.002             100B 
4.686 ± 0.002 4.701 ± 0.018 3.75 ± 0.002 3.753 ± 0.013 11.064 ± 0.075 109.25 ± 0.01 109.66 ± 0.01 
2.514 ± 0.002    3.725 ± 0.002             
2.489 ± 0.002    3.745 ± 0.002             101A 
2.495 ± 0.002 2.499 ± 0.014 3.735 ± 0.002 3.735 ± 0.012 10.956 ± 0.068 60.39 ± 0.01 60.69 ± 0.01 
6.835 ± 0.002    3.746 ± 0.002             
6.824 ± 0.002    3.76 ± 0.002             101B 
6.822 ± 0.002 6.827 ± 0.008 3.72 ± 0.002 3.742 ± 0.023 10.998 ± 0.136 167.92 ± 0.01 168.68 ± 0.01 
6.800 ± 0.002    3.766 ± 0.002             
6.831 ± 0.002    3.739 ± 0.002             102 
6.815 ± 0.002 6.815 ± 0.018 3.746 ± 0.002 3.750 ± 0.016 11.047 ± 0.092 161.27 ± 0.01 162.21 ± 0.01 
2.72 ± 0.002    3.728 ± 0.002             

2.636 ± 0.002    3.728 ± 0.002             105A 
2.628 ± 0.002 2.661 ± 0.053 3.73 ± 0.002 3.729 ± 0.001 10.919 ± 0.007 61.25 ± 0.01 61.55 ± 0.01 
6.148 ± 0.002    3.726 ± 0.002             
6.124 ± 0.002    3.744 ± 0.002             105B 
6.14 ± 0.002 6.137 ± 0.014 3.746 ± 0.002 3.739 ± 0.012 10.978 ± 0.068 151.26 ± 0.01 151.97 ± 0.01 

2.082 ± 0.002    3.752 ± 0.002             
2.09 ± 0.002    3.734 ± 0.002             106A 

2.111 ± 0.002 2.094 ± 0.017 3.726 ± 0.002 3.737 ± 0.015 10.970 ± 0.088 52.55 ± 0.01 52.73 ± 0.01 
5.166 ± 0.002    3.734 ± 0.002             
5.09 ± 0.002    3.724 ± 0.002             106B 

5.084 ± 0.002 5.113 ± 0.047 3.734 ± 0.002 3.731 ± 0.006 10.931 ± 0.034 128.41 ± 0.01 128.76 ± 0.01 
2.138 ± 0.002    3.721 ± 0.002             
2.122 ± 0.002    3.758 ± 0.002             108A 
2.13 ± 0.002 2.130 ± 0.009 3.766 ± 0.002 3.748 ± 0.026 11.035 ± 0.153 47.95 ± 0.01 N/A ± 0.01 

5.082 ± 0.002    3.714 ± 0.002             
5.032 ± 0.002    3.726 ± 0.002             108B 
4.98 ± 0.002 5.031 ± 0.059 3.739 ± 0.002 3.726 ± 0.014 10.906 ± 0.084 110.59 ± 0.01 111.16 ± 0.01 

4.622 ± 0.002    3.73 ± 0.002             
4.594 ± 0.002    3.724 ± 0.002             112A 
4.59 ± 0.002 4.602 ± 0.018 3.748 ± 0.002 3.734 ± 0.014 10.951 ± 0.081 112.94 ± 0.01 N/A ± 0.01 

5.952 ± 0.002    3.754 ± 0.002             
5.96 ± 0.002    3.76 ± 0.002             112B 

5.982 ± 0.002 5.965 ± 0.017 3.748 ± 0.002 3.754 ± 0.007 11.068 ± 0.041 147.38 ± 0.01 N/A ± 0.01 
6.128 ± 0.002    3.772 ± 0.002             
6.189 ± 0.002    3.768 ± 0.002             318 
6.100 ± 0.002 6.139 ± 0.051 3.783 ± 0.002 3.774 ± 0.009 11.188 ± 0.051 148.79 ± 0.01 149.21 ± 0.01 
7.995 ± 0.002    3.780 ± 0.002             
7.971 ± 0.002    3.751 ± 0.002             326 
7.972 ± 0.002 7.979 ± 0.014 3.748 ± 0.002 3.760 ± 0.018 11.102 ± 0.109 218.9 ± 0.01 219.77 ± 0.01 
5.618 ± 0.002    3.776 ± 0.002             
5.590 ± 0.002    3.734 ± 0.002             328 
5.608 ± 0.002 5.605 ± 0.016 3.760 ± 0.002 3.757 ± 0.024 11.084 ± 0.143 157.7 ± 0.01 N/A ± 0.01 
6.660 ± 0.002    3.770 ± 0.002             
6.626 ± 0.002    3.780 ± 0.002             341 
6.654 ± 0.002 6.647 ± 0.020 3.776 ± 0.002 3.775 ± 0.006 11.194 ± 0.034 193.26 ± 0.01 N/A ± 0.01 
8.348 ± 0.002    3.764 ± 0.002             
8.350 ± 0.002    3.790 ± 0.002             343 
8.352 ± 0.002 8.350 ± 0.002 3.762 ± 0.002 3.772 ± 0.016 11.175 ± 0.096 207.22 ± 0.01 208.15 ± 0.01 
4.772 ± 0.002    3.744 ± 0.002             
4.772 ± 0.002    3.766 ± 0.002             353A 
4.748 ± 0.002 4.764 ± 0.014 3.726 ± 0.002 3.745 ± 0.023 11.017 ± 0.136 119.08 ± 0.01 N/A ± 0.01 
5.321 ± 0.002    3.776 ± 0.002             
5.336 ± 0.002    3.754 ± 0.002             353B 

5.3 ± 0.002 5.319 ± 0.021 3.79 ± 0.002 3.773 ± 0.021 11.183 ± 0.123 163.73 ± 0.01 164.46 ± 0.01 
4.03 ± 0.002    3.779 ± 0.002             

4.045 ± 0.002    3.73 ± 0.002             354 
4.049 ± 0.002 4.041 ± 0.011 3.76 ± 0.002 3.756 ± 0.028 11.082 ± 0.167 92.93 ± 0.01 N/A ± 0.01 
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 Table A2.1 (continued) 

 Weighing (continued) Volumes Results 

Plug # 
Weight after 

saturation [g] 
Weight, injected 

water [g] 
Volume, injected 

water [cm3] Bulk Volume [cm3] Pore volume [cm3] Effective porosity [%] 
                        
                        45 
122.73 ± 0.01 11.67 ± 0.02 11.11 ± 0.02 54.43 ± 0.13 11.11 ± 0.02 20.42 % ± 0.06 % 
                        
                        63 
123.94 ± 0.01 12.24 ± 0.02 11.66 ± 0.02 54.43 ± 0.13 11.66 ± 0.02 21.42 % ± 0.06 % 
                        
                        82A 
124.28 ± 0.01 10.18 ± 0.02 9.70 ± 0.02 52.22 ± 0.89 9.70 ± 0.02 18.57 % ± 0.32 % 
                        
                        82B 
126.95 ± 0.01 12.29 ± 0.02 11.70 ± 0.02 54.81 ± 0.37 11.70 ± 0.02 21.36 % ± 0.15 % 
                        
                        83 
324.65 ± 0.01 16.6 ± 0.02 15.81 ± 0.02 146.25 ± 0.99 15.81 ± 0.02 10.81 % ± 0.07 % 
                        
                        100A 
65.26 ± 0.01 6.54 ± 0.02 6.23 ± 0.02 27.81 ± 0.33 6.23 ± 0.02 22.40 % ± 0.27 % 
                        
                        100B 
121.79 ± 0.01 12.13 ± 0.02 11.55 ± 0.02 52.02 ± 0.22 11.55 ± 0.02 22.21 % ± 0.10 % 
                        
                        101A 
66 ± 0.01 5.31 ± 0.02 5.06 ± 0.02 27.38 ± 0.16 5.06 ± 0.02 18.47 % ± 0.13 % 
                        
                        101B 
182.58 ± 0.01 13.9 ± 0.02 13.24 ± 0.02 75.08 ± 0.25 13.24 ± 0.02 17.63 % ± 0.06 % 
                        
                        102 
179.23 ± 0.01 17.02 ± 0.02 16.21 ± 0.02 75.29 ± 0.25 16.21 ± 0.02 21.53 % ± 0.08 % 
                        
                        105A 
68.74 ± 0.01 7.19 ± 0.02 6.85 ± 0.02 29.06 ± 0.58 6.85 ± 0.02 23.56 % ± 0.48 % 
                        
                        105B 
164.41 ± 0.01 12.44 ± 0.02 11.85 ± 0.02 67.38 ± 0.18 11.85 ± 0.02 17.58 % ± 0.06 % 
                        
                        106A 
56.44 ± 0.01 3.71 ± 0.02 3.53 ± 0.02 22.98 ± 0.19 3.53 ± 0.02 15.38 % ± 0.15 % 
                        
                        106B 
137.38 ± 0.01 8.62 ± 0.02 8.21 ± 0.02 55.89 ± 0.52 8.21 ± 0.02 14.69 % ± 0.14 % 
                        
                        108A 
53.55 ± 0.01 5.60 ± 0.02 5.33 ± 0.02 23.50 ± 0.13 5.33 ± 0.02 22.69 % ± 0.15 % 
                        
                        108B 
126.46 ± 0.01 15.87 ± 0.02 15.11 ± 0.02 54.87 ± 0.65 15.11 ± 0.02 27.55 % ± 0.33 % 
                        
                        112A 
121.87 ± 0.01 8.93 ± 0.02 8.50 ± 0.02 50.39 ± 0.22 8.50 ± 0.02 16.88 % ± 0.08 % 
                        
                        112B 
158.88 ± 0.01 11.50 ± 0.02 10.95 ± 0.02 66.02 ± 0.20 10.95 ± 0.02 16.59 % ± 0.06 % 
                        
                        318 
163.52 ± 0.01 14.31 ± 0.02 13.63 ± 0.02 68.69 ± 0.58 13.63 ± 0.02 19.84 % ± 0.17 % 
                        
                        326 
227.44 ± 0.01 7.67 ± 0.02 7.30 ± 0.02 88.58 ± 0.27 7.30 ± 0.02 8.25 % ± 0.03 % 
                        
                        328 
161.66 ± 0.01 3.96 ± 0.02 3.77 ± 0.02 62.13 ± 0.27 3.77 ± 0.02 6.07 % ± 0.04 % 
                        
                        341 
196.03 ± 0.01 2.77 ± 0.02 2.64 ± 0.02 74.41 ± 0.23 2.64 ± 0.02 3.55 % ± 0.03 % 
                        
                        343 
225.45 ± 0.01 17.3 ± 0.02 16.48 ± 0.02 93.31 ± 0.20 16.48 ± 0.02 17.66 % ± 0.04 % 
                        
                        353A 
127.37 ± 0.01 8.29 ± 0.02 7.90 ± 0.02 52.49 ± 0.22 7.90 ± 0.02 15.04 % ± 0.07 % 
                        
                        353B 
175.56 ± 0.01 11.1 ± 0.02 10.57 ± 0.02 59.48 ± 0.28 10.57 ± 0.02 17.77 % ± 0.09 % 
                        
                        354 
103.07 ± 0.01 10.14 ± 0.02 9.66 ± 0.02 44.79 ± 0.21 9.66 ± 0.02 21.56 % ± 0.11 % 
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PERMEABILITY MEASUREMENTS 
Table A2.2 – In-house permeability measurements 

 Measured values for Darcy input Result Reverse permeability measurements 

Plug # 

Pump 
flowrate 
[ml/h] 

Darcy flowrate 
[ml/s] 3) 

Injection-end 
pressure [atm] 4) 

Slope 
[unit-
less] 5) 

Absolute  
permeability 

[mD] 
Darcy flowrate  

[ml/s] 3) 
Injection-end  

pressure [atm] 4) 

Absolute reverse 
permeability 

[mD] 
150 0.042 ± 0.001 2.17 ± 0.02                
300 0.083 ± 0.001 3.82 ± 0.02                45 
400 0.111 ± 0.001 4.97 ± 0.02 0.0248 12.9 ± 0.6          
150 0.042 ± 0.001 1.03 ± 0.02                
350 0.097 ± 0.001 2.18 ± 0.02                63 
450 0.125 ± 0.001 2.84 ± 0.02 0.0461 23.9 ± 1.2          
50 0.014 ± 0.001 6.18 ± 0.02                
75 0.021 ± 0.001 9.10 ± 0.02                83 
100 0.028 ± 0.001 13.38 ± 0.02 0.0019 0.8 ± 0.2          
100 0.028 ± 0.001 1.97 ± 0.02                
200 0.056 ± 0.001 3.73 ± 0.02                100A 
300 0.083 ± 0.001 5.61 ± 0.02 0.0153 3.8 ± 0.3          
100 0.028 ± 0.001 1.35 ± 0.02                
200 0.056 ± 0.001 2.34 ± 0.02                100B 
300 0.083 ± 0.001 3.36 ± 0.02 0.0277 12.8 ± 0.8          
100 0.028 ± 0.001 2.38 ± 0.02       0.028 ± 0.001 2.94 ± 0.02    
150 0.042 ± 0.001 3.54 ± 0.02       0.042 ± 0.001 4.19 ± 0.02    101B 
200 0.056 ± 0.001 4.74 ± 0.02 0.0118 8.0 ± 0.8 0.056 ± 0.001 5.37 ± 0.02 7.7 ± 0.8 
200 0.056 ± 0.001 0.72 ± 0.02                
300 0.083 ± 0.001 1.09 ± 0.02                105A 
400 0.111 ± 0.001 1.38 ± 0.02 0.0837 22.2 ± 2.1          
100 0.028 ± 0.001 5.79 ± 0.02       0.028 ± 0.001 7.30 ± 0.02    
150 0.042 ± 0.001 8.64 ± 0.02       0.042 ± 0.001 10.37 ± 0.02    105B 
200 0.056 ± 0.001 11.94 ± 0.02 0.0045 2.7 ± 0.3 0.056 ± 0.001 13.84 ± 0.02 2.6 ± 0.3 
50 0.014 ± 0.001 8.54 ± 0.02                
75 0.021 ± 0.001 12.68 ± 0.02                106A 
100 0.028 ± 0.001 17.29 ± 0.02 0.0016 0.3 ± 0.1          
100 0.028 ± 0.001 0.40 ± 0.02       0.028 ± 0.001 0.43 ± 0.02    
250 0.069 ± 0.001 0.96 ± 0.02       0.069 ± 0.001 1.05 ± 0.02    108B 
490 0.136 ± 0.001 1.87 ± 0.02 0.0741 37.3 ± 2.6 0.136 ± 0.001 2.03 ± 0.02 34.3 ± 2.5 
50 0.014 ± 0.001 4.36 ± 0.02       0.014 ± 0.001 4.01 ± 0.02    
100 0.028 ± 0.001 8.63 ± 0.02       0.028 ± 0.001 8.25 ± 0.02    112A 
150 0.042 ± 0.001 12.53 ± 0.02 0.0034 1.6 ± 0.2 0.042 ± 0.001 12.49 ± 0.02 1.5 ± 0.2 
100 0.028 ± 0.001 1.92 ± 0.02       0.028 ± 0.001 2.28 ± 0.02    
150 0.042 ± 0.001 2.86 ± 0.02       0.042 ± 0.001 3.33 ± 0.02    112B 
200 0.056 ± 0.001 3.87 ± 0.02 0.0143 8.4 ± 0.8 0.056 ± 0.001 4.36 ± 0.02 7.9 ± 0.8 
10 0.003 ± 0.001 8.96 ± 0.02                
15 0.004 ± 0.001 10.24 ± 0.02                318 
20 0.006 ± 0.001 13.92 ± 0.02 0.0005 0.3 ± 0.2          
20 0.006 ± 0.001 10.83 ± 0.02                
25 0.007 ± 0.001 14.80 ± 0.02                326 
30 0.008 ± 0.001 17.17 ± 0.02 0.0004 0.3 ± 0.2          
5 0.001 ± 0.001 8.11 ± 0.02                
12 0.003 ± 0.001 17.02 ± 0.02                328 
9 0.003 ± 0.001 13.38 ± 0.02 0.0002 0.1 ± 0.2          
100 0.028 ± 0.001 3.53 ± 0.02                
150 0.042 ± 0.001 5.49 ± 0.02                343 
220 0.061 ± 0.001 8.39 ± 0.02 0.0069 5.6 ± 0.5          
25 0.007 ± 0.001 4.69 ± 0.02                
50 0.014 ± 0.001 9.75 ± 0.02                353A 
75 0.021 ± 0.001 14.63 ± 0.02 0.0014 0.7 ± 0.2          
150 0.042 ± 0.001 3.11 ± 0.02       0.042 ± 0.001 6.38 ± 0.02    
200 0.056 ± 0.001 5.01 ± 0.02       0.056 ± 0.001 8.57 ± 0.02    353B 
250 0.070 ± 0.001 6.12 ± 0.02 0.0090 4.7 ± 0.5 0.070 ± 0.001 9.32 ± 0.02 4.5 ± 0.5 
300 0.083 ± 0.001 0.22 ± 0.02                
400 0.111 ± 0.001 0.27 ± 0.02                354 
490 0.136 ± 0.001 0.33 ± 0.02 0.4840 192.4 ± 37.4          

 

FIXED VALUES AND FORMULAS 

Brine density (ρbrine): 1.05 g/cm3 

Brine viscosity (μbrine): 1.09 cp 

Darcy and porosity equations are presented in Appendix 1. 

Equation A2.1 was used to calculate uncertainties in permeability measurements. 
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Equation A2.1: Absolute permeability uncertainty 



LIMITATIONS AND SUGGESTIONS FOR FUTURE 
CONTRIBUTIONS 
Some limitations that have acted on this study should be 

addressed and accounted for. Firstly, the database from which the presented 

results are derived is not sufficiently large enough to produce reliable results in 

terms of petrophysical and sedimentological data. Secondly, this study, along 

with other similar studies, also suffers from the strict time-restraints that are put 

upon master-theses submissions. Thirdly, the thin-sections that were produced 

for the purpose of this study were severely delayed and displayed low qualities. 

These thin-sections were vital components of the present database, and errors 

related to thin-section qualities have impacted on the final results. 

A3 

The time restraints also introduce limitations in relations to the combination of 

sedimentology and petroleum engineering that is attempted in this study. 

Ideally, all samples in the present database should be measured using both 

described laboratory methods and subsequently more efforts should be put into 

the method comparison, as it is assumed that method-related factor have 

impacts on the results. However, inasmuch as petroleum engineering and 

petroleum geology are related, and should be combined, in terms of hydrocarbon 

exploration and –production, master studies generally do not span these two 

areas. An important feature is the wettability of the samples, which in turn 

control secondary vital parameters such as relative permeability. The samples in 

the present dataset origin from outcrops, and they are assumed to be strongly 

water-wet by the effect of exposure. Most carbonate reservoirs are, on the 

contrary, oil-wet and this may have important impacts on the flow of 

hydrocarbons through these rocks. 

The investigation of structural geology, fracturing and their relations to fluid flow 

facilitation should also be addressed. These areas have not been investigated for 

the purpose of the present study. 

This study probably raises more questions than it answers, spanning from 

uncertainties related to the depositional environment and histories to 

uncertainties in petrophysical properties and the measurements and estimations 

of the former. It is evident that reliability of the results would benefit from the 

expansion of the database and this should be stressed by future contributors. 

Some suggestions for future contributions are proposed here: 

A3-1 
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Additional localities should be investigated and sampled to contribute to the 

variety and size of the dataset. The apparent differences in terms of depositional 

mechanism, sequence stratigraphy and petrophysical properties should be 

explored through the expansion of the database and incorporation of additional 

localities. The paleogeographic situation of these deposits is unclear, and the 

presence of clast-supported megabreccias in the Vico del Gargano area raises the 

need for a re-evaluation of the Cenomanian paleogeography with respect to the 

eastern margin of the Apulian Platform as it appears on the northern Gargano. 

For reservoir exploration and field-development related scenarios, the detailed 

mapping of the margin relative to the slope deposits is important as reefs and 

shoals of the margin may represent the main reservoir while slope-deposits in 

many cases are explored as potential secondary discoveries. The expansion of 

the present database may form the foundation for reservoir modelling of 

megabreccia-bearing slope deposits, which may contribute to the overall 

understanding of these deposits. Also, the effect of lithoclasts on formation 

evaluation well-logging signals should be explored and modelled in order to 

predict the log-responses that may be related to such reservoirs. 

On the petroleum engineering side, further investigation of the plug samples that 

make up the present dataset should be undertaken in order to map important 

petrophysical properties related to wettability and saturation-profiles. The 

mapping of poretypes and porosity-relations may also be further investigated 

using more advanced methods such as MR-scanning. 

On the geophysical side, the mapping of velocities and synthetic seismic 

modelling of the Monte Sant’Angelo Megabreccias may contribute to the 

increased understanding of the response of such deposits and their appearance 

on seismic data.  
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