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Abstract

Polycomb/Trithorax Response Elements (PREs) are epigenetic elements that can maintain established tran-
scriptional states over multiple cell divisions. Sequence motifs in known PREs have enabled genome-wide
PRE prediction by the PREdictor and jPREdictor, using combined motif occurrences for scoring sequence
windows. The EpiPredictor predicts PREs by using the method of Support Vector Machines (SVM), which
enables the construction of non-linear classifiers by use of kernel functions. Aspects of using SVMs for PRE
prediction can be investigated, such as setting of SVM parameters, using SVM decision values for scoring
and using alternative feature sets.

The PRE prediction implementation presented in this thesis, called PRESVM, uses SVM decision values
to score sequence windows. PRESVM implements the feature sets used by (j)PREdictor and EpiPredictor, as
well as feature sets using relative motif occurrence distances and periodic motif occurrence. Grid search and
Particle Swarm Optimization are supported for setting SVM parameters. For evaluating PRE predictions of
multiple classifiers against experimental data sets, an application called PREsent has been implemented.

For a similar configuration for PRESVM and jPREdictor, PRESVM predicted a larger number of can-
didate PREs, which were more sensitive to but had lower Positive Predictive Values against experimental
data considered than those of jPREdictor. A formal relationship was established between the PRESVM
and jPREdictor decision functions for this configuration. The trade-offs make it difficult to conclude that
either classifier is superior. Many configurations remain to be tested, and the results encourage further testing.
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Chapter 1

Preface

The project for this thesis was proposed by Marc Rehmsmeier, my supervisor during my master’s degree stud-
ies. Marc Rehmsmeier has worked with Leonie Ringrose on in silico prediction of instances of a type of DNA
sequence element called Polycomb/Trithorax Response Elements (PREs for short). In this thesis, work con-
tinues on this task by applying a different method, the machine learning method of Support Vector Machines.

There are DNA sequences of known PREs, but what defines them is not well understood. The method
Ringrose et al. [1] developed made use of pairing certain sequence motifs (short re-occurring substrings) in
the known PREs, and they found that this better distinguished PREs from non-PREs than considering the
motifs by themselves [1]. The machine learning method of Support Vector Machines enables modelling non-
linear relationships, and the work by Ringrose et al. would suggests that non-linear relationships between
motif occurrences could play a role. It is thus interesting to ask whether using Support Vector Machines
might improve PRE prediction.

Soon after having started with this master’s project, an article was published by Zeng et al. [2] in which
Support Vector Machines were used for predicting PREs. However, multiple aspects of using Support Vector
Machines for PRE prediction were not discussed. In this thesis, the use of Support Vector Machines for
predicting PREs is explored further.

In Chapters 2-4, the background will be given. First, the biology of Polycomb/Trithorax Response El-
ements will be discussed. Afterwards, machine learning and Support Vector Machines will be explained.
Then, the considered statistics for evaluating results will be given.

In Chapter 5, the method used in this thesis is outlined, and Chapter 6 and Chapter 7 elaborate on
details of the method. Multiple parts of the method are based on the method developed by Ringrose et al.
[1]. However, the use of Support Vector Machines has its own considerations to make, and these will be
discussed. Also, Support Vector Machines are flexible, and making use of this flexibility will be explored.

It is important to evaluate how well the prediction results obtained using the method agree with exper-
imental results. Chapter 8 outlines how such evaluations can be made. Results are presented in Chapter
9, including tests of some of the possibilities that the method of Support Vector Machines offers, as well as
comparison with the method developed by Ringrose et al. [1].

Two main software applications have been developed during the work with this thesis, and their imple-
mentations are the subject of Chapter 10.

Finally, the thesis concludes with Chapter 11.
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Chapter 2

Biological background

Inside the nucleus of eukaryotic cells, hereditary information is stored in chromosomes as sequences of de-
oxyribonucleotides (DNA). In prokaryotic cells, hereditary information is stored as DNA in the nucleoid.
The DNA sequence of all chromosomes of a cell constitute its genome. Reading DNA sequences from DNA
molecules is called sequencing. Today, multiple genomes have been sequenced. In this thesis, the focus is on
the genome of the fruit fly, Drosophila melanogaster.

2.1 The Polycomb system

The Drosophila melanogaster genome contains over 120 million base pairs, divided on chromosomes X/Y,
2L/2R, 3L/3R and 4. The genome contains regions that encode functional products such as proteins, called
genes [3], as well as regions with other functions. The FlyBase [4] Drosophila melanogaster annotation release
5.47 contains over fifteen thousand annotated genes. According to the central dogma of molecular biology,
the genes are transcribed from DNA to messenger RNA, which in turn is translated to protein [5]. The
transcription of genes to RNA is referred to as gene expression [3]. The genome is largely the same in all
cells of an organism, but cells need the ability to specialize to perform particular functions in a multi-cellular
organism. Thus, there is a need for regulating the expression of genes. It may also be necessary for cells
to be able to remember gene expression states over cell division. The persistence of the expression states of
genes over cell division, not caused by a change in the genomic sequence, nor by the event that established
the expression states, is called epigenetics [6].

In Drosophila melanogaster, two types of genomic elements that are involved in regulating the expression
of genes are called initiator elements, which are involved in establishing states of gene transcription, and
maintenance elements, which maintain established gene transcription states [6].

Polycomb/Trithorax Response Elements (or PREs for short), the sequence elements that are investigated
in this thesis, are maintenance elements. Polycomb group (PcG) and Trithorax group (TrxG) proteins asso-
ciate with this class of cis-regulatory DNA elements (regulating on the same DNA molecule), and through
the PREs they can maintain established transcriptional states over many cell generations, making the PREs
epigenetic [6]. The roles of the PcG and TrxG proteins in PRE target gene expression state maintenance
are antagonistic, where PcG proteins maintain transcriptional repression, whereas TrxG proteins maintain
active transcriptional states [6].

On the PREs, PcG and TrxG proteins form complexes [7]. Currently, three PcG protein complexes have
been identified in Drosophila melanogaster, called Polycomb Repressive Complexes 1 (PRC1) and 2 (PRC2),
and Pleiohomeotic Repressive Complex (PhoRC) [7]. The PcG proteins at the core of these complexes are
listed in Table 2.1. Of the PcG proteins, Pho binds to specific DNA sequences, and additional proteins
that bind to PREs may be involved in the recruitment of the PcG complexes [7]. In addition to Drosophila
melanogaster, there is also work on PcG proteins in vertebrates, where their involvement includes cancer and
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maintaining stem cell and differentiated cell identity [8].

2.2 Determination of Polycomb/Trithorax Response Elements

Multiple methods have been employed in the search for Polycomb/Trithorax Response Elements. Early
methods include transgene analysis and chromatin immunoprecipitation (ChIP) [1]. In recent years, multiple
new methods have aided in the discovery of PREs. In 2003, Ringrose et al. [1] devised a computational
procedure called the PREdictor, which enabled in silico prediction of PREs across the whole Drosophila
melanogaster genome (genome-wide). Since then, the ChIP-chip (ChIP combined with microarray [9]) and
ChIP-seq (ChIP combined with high-throughput sequencing [10]) methods have been developed and applied
for discovering PREs and their associated target genes [11, 12, 13, 14, 15].

With the PREdictor, Ringrose et al. [1] used sequences of known 12 PREs and 16 non-PREs to predict
PREs genome-wide. The 12 PRE sequences have lengths ranging from 1219bp to 5383bp, and the 16 non-PRE
sequences have lengths ranging from 369bp to 7008bp. Alignment of the known PRE sequences has shown
little sequence similarity, but these sequences are enriched in certain sequence motifs [1]. Sequence motifs
are short, re-occurring strings of DNA. They may be degenerate, meaning that for some motif positions,
multiple nucleotides might be accepted, and mismatches may also be accepted. Ringrose et al. [1] considered
7 sequence motifs, and these are listed in Table 2.2. Most of these correspond to PcG/TrxG protein binding
sites [1].

The PREdictor scans the PRE and non-PRE sequences for occurrences of 7 sequence motifs and their re-
verse complements (corresponding to occurring on the opposite strand) (Figure 2.1(b)). Weights are assigned
to the motifs or pairs of motifs according to how often they occur in the PRE versus non-PRE sequences,
and this is used to assign scores to sequence windows. For evaluation, a 500bp sliding window is moved
in 100bp increments across the PRE and non-PRE sequences (Figure 2.1(a)), the corresponding regions are
scored, and the maximum window score obtained for each sequence is considered. Ringrose et al. [1] found
that scores based on occurrence frequencies of individual motifs only weakly separate PREs from non-PREs.
Ringrose et al. [1] then considered the frequencies with which pairs of the 7 motifs occur within 220bp from
each other in PRE versus non-PRE sequences, and they found that these give better separation of PREs from
non-PREs. The next step in their method establishes a score cutoff such that only one region is expected
to have a higher score than the cutoff in a randomly generated sequence of the same length as and with the
nucleotide distribution of the Drosophila melanogaster genome. The PREdictor was then applied across the
Drosophila genome, which resulted in the prediction of 167 non-overlapping PREs. Multiple of the predicted
PREs have been verified [16].

ChIP allows investigating the association between certain proteins and DNA [17]. This is done by cross-
linking the proteins of interest and DNA. The sequence is then be split at random points (ideally uniformly),
and the sequence fragments that are cross-linked to the protein of interest are isolated. The remaining se-
quence fragments are then treated with a micro-array (ChIP-chip [9]) or sequenced (ChIP-seq [10]). These
methods have been applied in a number of studies, for genome-wide mapping of the binding of PcG and
TrxG proteins to identify PREs and associated target genes [11, 12, 13, 14, 15].

Work on computational determination of PREs has since continued. In 2006, a new, versatile implemen-
tation of PREdictor, called the jPREdictor, was implemented in Java, containing a Graphical User Interface
(GUI) and support for Position-Specific Scoring Matrix (PSSM) motifs [18]. Fiedler and Rehmsmeier [18]
tested PRE prediction with the jPREdictor with the addition of a PSSM Pho motif and the DSP1 motif,
which resulted in 378 PRE predictions. Additional motifs have since been discovered, and these are listed
together with the DSP1 motif in Table 2.3. However, training the jPREdictor with the addition of the rest
of these motifs did not result in improved PRE prediction [19]. In 2012, Zeng et al. devised the EpiPredictor
[2], a Support Vector Machine PRE prediction method, in which the occurrence frequencies of the 7 se-
quence motifs considered by Ringrose et al. were used. In 2013, a Support Vector Machine PcG target gene
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Complex Core proteins
PRC1

Polyhomeotic (Ph)
Posterior sex combs (Psc)
Sex combs extra (Sce)
Polycomb (Pc)

PRC2
Enhancer of zeste (E(z))
Supressor of zeste 12 (Su(z)12)
Nurf55

PhoRC
Pleiohomeotic (Pho)
dSfmbt

Table 2.1: Core proteins of the PcG complexes of Drosophila melanogaster that have been characterized [7].

(a)

+

-
A C G A T G G C G A A A G C C A T C G T A
T G C T A C C G C T T T C G G T A G C A T

G C C A T
A T G G C

(b)

Figure 2.1: 2.1(a): A sliding window moves across the sequence in fixed increments. 2.1(b) Motif occurrences
or their reverse complements are found.
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Name Function Sequence motif Allowed number
of mismatches

G GAGA factor (GAF) binding site GAGAG 0
G10 Extended GAGA factor (GAF) binding site GAGAGAGAGA 1
PS Pleiohomeotic (Pho/Phol) core site GCCAT 0
PM Pleiohomeotic (Pho/Phol) consensus CNGCCATNDNND 0
PF Pleiohomeotic (Pho/Phol) consensus GCCATHWY 0
EN 1 Motif important for engrailed PRE silencing GSNMACGCCCC 1
Z Zeste binding site YGAGYG 0

Table 2.2: These sequence motifs were used by Ringrose et al. [1] for predicting Polycomb/Trithorax Response
Elements with the PREdictor. The motif sequences are given in IUPAC nucleotide codes.

Binding protein Sequence motif
Dsp1 GAAAA

Grainy head (Grh) TGTTTTT

Sp1/KLF RRGGYGY

Table 2.3: Since the original work of Ringrose et al. with the PREdictor, these motifs have been discovered
[6]. The motif sequences are given in IUPAC nucleotide codes.

prediction method was devised that does not require a negative training set, using Mapping-Convergence [20].

In this thesis, the work continues on in silico PRE identification. Machine learning is central to this work,
and is discussed in the next chapter.
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Chapter 3

Machine learning

For many tasks, it can be difficult to formulate a particular algorithm that may perform the task well. The
task might be poorly understood, and the system might need the ability to adapt to new information. One
may, however, be able to formulate the problem in terms of experiences, such that if the system could learn
from those experiences, the system would be able to perform the task.

Machine learning enables the construction of systems that can learn. Machine learning is applied to many
different problem areas. Examples include problems of constructing systems producing advanced behaviours,
such as robot control and playing games, and recognition and prediction problems. For the former type of
problems, the system may learn from experimentation. For the latter, one typically selects examples for the
system to learn from, and it may then be implemented as a classification problem. In this thesis, machine
learning is used for classification.

3.1 Classification problems and learning

In classification problems, one has a set of objects, X, and a set of classes, C = {C1, ..., Cn}. The task is
to decide which class Ci an object x ∈ X is an instance of. If there are two classes, this is called binary
classification.

Definition 1 (Classifier) For a set of objects X and a set of classes C = {C1, ..., Cn}, a classifier is a
function c : X → C, which assigns classes Ci to objects x ∈ X. A decision function will here refer to a
functional formulation of a classifier.

Learning comes in when the correct definition of the classifier c(x) is unknown, but classes are known for
a subset of objects. It is then desirable to construct an approximation of c(x) based on a set of objects with
known classes.

Definition 2 (Function approximation) A hat over a function name will be used to denote an approxi-
mately equal function, i.e. ĉ(x) ≈ c(x).

Definition 3 (Cartesian product) For two sets X and Y , X × Y = {(x, y)|x ∈ X ∧ y ∈ Y } denotes the
Cartesian product.

Definition 4 (Training set) A training set is a set that will be presented to a learning machine. For using
objects from a set X with known classes, it will be a set T ⊂ X × C of pairs of objects and known classes.
The elements (x, y) ∈ T will be referred to as training examples.

Elements of a training set (x, y) ∈ T may be presented to a learning machine. The learning machine
constructs an approximation ĉ(x) ≈ c(x) = y, which may be used to classify objects for which the correct
class is not known a priori. This is an example of supervised machine learning, since the objects in the
training set are labelled with classes (the alternative is called unsupervised learning). Supervised machine
learning is often used for learning concepts, where the goal is to predict members versus non-members of a
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concept. This can be implemented as a binary classification.

A machine learning method needs to store the knowledge that is to be learned. This storage will typically
be in a form that makes generalizing assumptions about the relationships between the training examples that
have been presented. This results in a model, and the process of generating or updating the model based
on examples is called learning. The generalizing assumptions make it possible to use the resulting model for
making predictions outside the training set.

Definition 5 (Model) An approximation ĉ(x) ≈ c(x) generated by a machine learning method will be re-
ferred to as a model.

Definition 6 (Learning) The process of generating and updating a model based on training examples will
be referred to as learning.

The objects x ∈ X may not be of a type readily useable by a machine learning method. It is then
necessary to extract features from the objects that can be presented to the learning machine.

Definition 7 (Feature) A feature f(x) of an object x ∈ X is a description of a property of x. In this thesis,
such a property description will always be a real value, i.e. f : X → R.

Definition 8 (Vector) A vector ~a ∈ Rd is a vector of real values (a1, a2, ..., ad).

If the objects are strings of text, the features can for example be the frequencies with which particular
words occur within the objects. For an object x, the word frequencies might then be collected into a vector
of real values ~x and presented to the learning machine.

When applying machine learning to a classification problem, it is important to select a good training set
and feature set. The features should be sufficiently descriptive of the objects belonging to each class, and
the training set should contain objects that sufficiently represent the classes.

Ideally, the resulting model should generalize to the larger X×C, i.e. ĉ(x) ≈ c(x),∀x ∈ X. If the learning
machine learns the training set too well, it may be biased by the choice of training set, which can result in
poor generalization. This is a common problem in machine learning and is called over-fitting [21, 22]. Mul-
tiple methods have been proposed to reduce this problem, and some of these will be described and discussed
later.

There are a number of machine learning methods available, such as Artificial Neural Networks, Support
Vector Machines, Bayesian methods and Decision Tree Learning. The focus in this thesis will be on Support
Vector Machines (or SVM for short).

3.2 Support Vector Machines

If one can define a set of q real value features describing the objects in the domain under investigation x ∈ X,
these can be collected into a vector ~x, here called an instance vector.

Definition 9 (Instance vector) For an object x ∈ X and real value features f1(x), ..., fq(x), the feature
values may be collected into a vector ~x = (f1(x), f2(x), ..., fq(x)). Such a vector will be referred to as an
instance vector.

For n objects, this then gives n instance vectors in q-dimensional space. The instance vectors may addi-
tionally be associated with classes, such as whether or not the corresponding object is a member of a target
concept.

The Support Vector Machine is a machine learning method that constructs a hyper-dimensional plane to
separate instance vectors of different classes. This hyperplane is constructed to have maximal margin to in-
stance vectors of each class. The vectors closest to the dividing hyperplane are called the support vectors, and
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Figure 3.1: 3.1(a): Example of a 2-dimensional feature space with instances drawn as ⊕ and 	 corresponding
to positive and negative classes, respectively. The hard line is a potential dividing line, and the dotted lines
denote the margins. ~N denotes the normal of the dividing line. 3.1(b) Example of a case where a line is
unable to properly separate the training instances, but a non-linear surface can separate them.

the support vectors define the hyperplane with maximal margin. For a soft-margin classifier, some instance
vectors may be ignored (treating them as noise), which may give better generalization than its alternative,
called a hard-margin classifier [21]. Figure 3.1(a) illustrates this in two dimensions.

Definition 10 (Dot product) ~a ·~b =
∑q
i=1 ai ∗ bi for ~a,~b ∈ Rq denotes the dot product of vectors ~a and ~b.

To construct a linear classifier, a hyperplane can be constructed to optimally separate the training in-
stance vectors. Such a hyperplane can be represented by the vector equation ~N · ~x = b, where ~N is the
hyperplane normal vector, ~x is an arbitrary vector and b is an offset term. The signed distance from some
instance vector ~x to this hyperplane is ~N · ~x − b, where the sign may be used to assign a discrete class, i.e.
ĉ(~x) = sgn( ~N · ~x− b) [21].

It may be that the instance vectors are distributed such that there is no hyperplane that separates the
instance vectors. Figure 3.1(b) illustrates this issue. A non-linear classifier can be constructed by applying
the kernel trick. This will be discussed in the next section.

3.3 Kernel function

The kernel trick involves using a transformation Φ(~x) = ~x∗ that maps vectors ~x ∈ Ra to vectors in a
higher-dimensional space ~x∗ ∈ Rb, b > a. Based on this transformation, one can define the kernel function
k(~x, ~y) = Φ(~x) ·Φ(~y), which evaluates the dot product in this higher-dimensional space in terms of vectors in
the original space. A linear classifier may then be constructed to separate vectors in this higher-dimensional
space [21]. The decision function then may be ĉ(~x) = sgn( ~N · Φ(~x)− b).

The kernel function has a particular utility in the context of Support Vector Machines. The decision
function of a Support Vector Machine makes use of the fact that the normal of the dividing hyperplane can
be expressed in terms of the support vectors:

~N =

l∑
i=1

αiyiΦ(~xi).
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Here, l is the number of training instance vectors, ~xi are training instance vectors, yi are the associated
target values (such as 1 for a positive instance and −1 for a negative instance), and αi are Lagrangian
multipliers, where for support vectors αi > 0 [21]. Substituting this into the decision function gives:

ĉ(~x) = sgn

(
l∑
i=1

αiyiΦ(~xi) · Φ(~x)− b

)
.

But this means that:

ĉ(~x) = sgn

(
l∑
i=1

αiyik(~xi, ~x)− b

)
.

Thus, the decision function is formulated in terms of the kernel function, which can be simplified in terms
of vectors in the original space. Thus, the computational complexity is not significantly increased by this
mapping to higher-dimensional space.

In this thesis, the Support Vector Machine implementation in LibSVM will be used. Kernel functions
provided in LibSVM include [23]:

• the linear kernel: k(~x, ~y) = ~x · ~y;

• the polynomial kernel: k(~x, ~y) = (γ~x · ~y + c0)d, γ > 0;

• the radial basis function kernel: k(~x, ~y) = e−γ‖~x−~y‖
2

.

For these kernels, the parameters γ, c0 and d are called kernel parameters. When used in this thesis, d
will be locked to 2 and 3, referred to as quadratic and cubic kernels, respectively.

3.4 SVM formulations

There are multiple Support Vector Machine formulations. The formulations dictate how the Support Vector
Machine is constructed from the training vectors. The formulations in LibSVM are C-Support Vector Classi-
fication, ν-Support Vector Classification, one-class SVM, ε-Support Vector Regression and ν-Support Vector
Regression [24].

The C-Support Vector Classification requires only a parameter C > 0 [24], which is called the cost pa-
rameter, as an increase in C corresponds to treating errors as being more expensive when constructing the
SVM [21]. Additionally, it supports the use of multiple classes. To use C-Support Vector Classification,
class membership probabilities can be obtained for each class. Classification with more than two classes can
be made binary by combining the probabilities into a score. In this thesis, the maximum probability for
belonging to a positive class will be multiplied by one minus the maximum probability for belonging to a
negative class to make a score. Additionally, the C-Support Vector Classification supports the weighting of
different classes, which may be useful when when the training data is unbalanced [24].

The ν-Support Vector Classification only requires a parameter ν ∈ (0, 1], which controls for the fraction
of training errors versus fraction of support vectors [24].

The one-class SVM formulation requires the parameter ν ∈ (0, 1] [24]. An interesting property of the
one-class SVM is that only training instances of one class, the positives, are used during construction. By the
standard implementation in LibSVM, one-class SVM does not give a continuous classification value. How-
ever, it can be tricked by switching its type to ε-Support Vector Regression after training, as it is handled
identically in most cases after training.

Additionally, Support Vector Regression can be used to approximate a real valued function. The ε-Support
Vector Regression has the cost parameter C > 0 in addition to a parameter ε > 0 [24]. The ν-Support Vector
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Regression has both the cost parameter C > 0 and ν ∈ (0, 1] [24].

The C-Support Vector Classification only requires the C parameter. The selection of parameters, dis-
cussed later, is automated and requires up to many training cycles, so a reduced number of parameters is
useful. At the same time, the LibSVM implementation of the C-Support Vector Classification formulation
clips probabilities as they approach 1, and this can pose issues when a larger threshold is desired (for example
due to wanting very few predictions expected by chance). The ε-Support Vector Regression implementation
on the other hand does not clip output values.
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Chapter 4

Classifier validation

When one has constructed a classifier, one needs a way to measure how well it performs. This could for
example be in order to compare different algorithms applied to the same kind of classification problem, or
to compare multiple runs of the same algorithm but with different parameters. One may wish to determine
how well an algorithm approximates the training data, and how well one might expect it to generalize to
unobserved instances of the domain under investigation.

4.1 The confusion matrix and associated statistics

If the classification problem is binary, the classifier may return a score for an object x ∈ X, such that a larger
value indicates larger confidence that x belongs to the class one is trying to predict members of.

Definition 11 (Binary label set) B = {⊕,	} is the set of positive and negative classification labels, re-
spectively.

Definition 12 (Binary label assignment function) For a real value y ∈ R, [y]± ∈ B denotes a function
assigning a binary class label for y, such that [y]± = ⊕ if y > 0, and [y]± = 	 otherwise.

If the classifier is of the form ĉ(~x) ≈ c(~x) = y, where ~x ∈ Rd is an instance vector and y ∈ R denotes a
score, one obtains a binary classification for the classifier by applying a score threshold as [ĉ(~x)− t]±. Given

a set of pairs of instance vector and unique labels S ⊂ Rd × B, the following sets can be defined:

Definition 13 (Original set classes)

P (S) = {~x|(~x, y) ∈ S, y = ⊕}

N(S) = {~x|(~x, y) ∈ S, y = 	}
where P (S) ∩N(S) = ∅

Definition 14 (Predicted set classes)

P̂ (S, ĉ, t) =
{
~x|(~x, y) ∈ S, [ĉ(~x)− t]± = ⊕

}
N̂(S, ĉ, t) =

{
~x|(~x, y) ∈ S, [ĉ(~x)− t]± = 	

}
P̂ (S, ĉ, t) ∩ N̂(S, ĉ, t) = ∅

These constitute the sets of instance vectors that are positives, the ones that are negatives, the ones
that are predicted as positives and the ones that are predicted as negatives, respectively. The condition
P (S)∩N(S) = P̂ (S, ĉ, t)∩N̂(S, ĉ, t) = ∅ ensures that only one label is assigned to each instance vector. Also,
positives and negatives together cover all instance vectors of S, so P (S) ∪N(S) = P̂ (S, ĉ, t) ∪ N̂(S, ĉ, t).

The relationship between predicted classes and actual classes may be summarized in a table called the
confusion matrix. This will here be defined for the binary case.
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Definition 15 (Set cardinality) For a set S, |S| refers to its cardinality, its number of elements.

Definition 16 (Confusion matrix values) The measures True Positives, True Negatives, False Positives
and False Negatives, respectively, are defined as follows.

TP (S, ĉ, t) = |P (S) ∩ P̂ (S, ĉ, t)|

TN(S, ĉ, t) = |N(S) ∩ N̂(S, ĉ, t)|

FP (S, ĉ, t) = |N(S) ∩ P̂ (S, ĉ, t)|

FN(S, ĉ, t) = |P (S) ∩ N̂(S, ĉ, t)|

For simplicity, the parameters of TP , TN , FP and FN will be dropped when they are not informative.

Definition 17 (Confusion matrix) The confusion matrix for a binary classification problem is a 2x2 con-
tingency table indicating the agreement and disagreement between predicted classes and actual classes [25].

P̂ N̂
P TP FN
N FP TN

A first measure that may be defined from the confusion matrix is the fraction of positives that are pre-
dicted as positives, known as the Sensitivity, True Positive Rate (TPR) and Recall [26]. In this thesis, the
word Sensitivity will primarily be used.

Definition 18 (Sensitivity)

Sensitivity = TPR = Recall =
TP

TP + FN

Similarly, a useful measure that can be defined from the confusion matrix is the fraction of predicted
positives that are actual positives, known as the Positive Predictive Value (PPV ) and Precision [26]. When
used together with Sensitivity, the names Recall and Precision will be used.

Definition 19 (Positive Predictive Value)

PPV = Precision =
TP

TP + FP

It is also useful to measure how many of the negatives are predicted as positives, known as the False
Positive Rate (FPR) [26]. There is also the equivalence FPR = 1 − Specificity. When used together with
TPR, the names Sensitivity and 1− Specificity will primarily be used, or otherwise TPR and FPR.

Definition 20 (False Positive Rate)

FPR = 1− Specificity =
FP

FP + TN

One way to measure the overall classifier performance from the confusion matrix is to measure the pro-
portion of instances that are correctly classified, which is referred to as the Accuracy [24].

Definition 21 (Accuracy)

Accuracy =
TP + TN

TP + FP + TN + FN

An issue with this measure is that if the set of positives is larger than the set of negatives, then TN will
have less of an impact on the Accuracy than TP . Similarly, if the set of negatives is larger than the set
of positives, then TN will have a larger impact than TP . An alternative measure that uses all four of the
confusion matrix values is Matthews Correlation Coefficient (MCC ) [25].
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Definition 22 (Matthews Correlation Coefficient)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Sometimes, TN may be unknown or not well-defined. In such cases, an alternative to Accuracy and
MCC is the F -measure, which combines Precision and Recall, and thus does not use TN [27].

Definition 23 (F-measure)

Fβ = (1 + β2)
Precision ∗Recall

(β2 ∗ Precision) +Recall

β > 0 is a weighting of Precision versus Recall. For β > 1, Recall has a larger impact on the fraction than
Precision, and opposite for 0 < β < 1.

4.2 Continuous quality measures

The confusion matrix values are discrete, in the sense that TP , TN FP and FN directly depend upon the
size of the labelled set used for evaluation. Thus, the measures based on the confusion matrix values are
also discrete. In certain cases, it can be useful to have continuous quality measures. For the binary case,
continuous classification scores can be used. To define quality measures based on such values and allow the
same values to occur multiple times, the values can be collected in vectors. One measure is the Pearson
correlation coefficient [25].

Definition 24 (Pearson Correlation Coefficient) For a vector S = [s1, ..., sn] ∈ Rn, let S = 1
n

∑n
i=1 si

denote the mean vector component. Similarly, let σS denote the standard deviation of components of S. For
vectors A,B ∈ Rn, where A = [a1, ..., an] and B = [b1, ..., bn], the Pearson Correlation Coefficient is given by

C(A,B) =

n∑
i=1

(ai −A)(bi −B)

σAσB
.

Definition 25 (Pearson Correlation Coefficient for classification values) Consider a set V = {(~x1, y1), ..., (~xn, yn)}
of n validation elements with labels yi ∈ B. Let f(yi) = 1 if yi = ⊕ and f(yi) = −1 if yi = 	. A vector
of classification values can be denoted as c = [ĉ( ~x1), ..., ĉ( ~xn)]. Similarly, a vector of target values can be
denoted as v = [f(y1), ..., f(yn)]. The Pearson Correlation Coefficient between c and v can then be used as a
quality measure.

For a classifier ĉ, this quality measure gives the correlation coefficient between the classification values
ĉ(~xi) and values based on correct labels for each ~xi (1 for a positive label and −1 for a negative label). The
respective means are subtracted from classification and target values, and the measure is scaled down by the
standard deviations. Accordingly, the measure is determined by the distance of each classification values to
the classification mean, with values closer to the mean having a smaller impact. When the target value and
classification value are one the same side of their respective means, the measure increases, and otherwise it
decreases.

The sum of squared errors has been used in gradient descent for measuring the error during training of
neural networks [22]. A quality measure can be made by using one minus the sum of squared errors.

Definition 26 (1-sum of squared errors) Consider a set V = {(~x1, y1), ..., (~xn, yn)} of n validation ele-
ments. Let f(b) = 1 if b = ⊕ and f(b) = −1 if b = 	. A vector of classification values can be denoted as
c = [ĉ( ~x1), ..., ĉ( ~xn)]. Similarly, a vector of target values can be denoted as v = [f(y1), ..., f(yn)].

1− E2 = 1−
n∑
i=1

(vi − ci)2
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Figure 4.1: Example of a Receiver Operating Characteristic curve (solid line). The dotted line corresponds
to a perfect classification. The diagonal corresponds to random classification.

4.3 Receiver Operating Characteristic curves

For binary classification as defined above, [ĉ(~x)− t]±, the measures TP , TN , FP and FN are functions of
the threshold value t. When t is maximal, all classifications will be negative. As t is decreased, more instances
are classified as positive, until all instances are classified as positive. Thus, measures using confusion matrix
cells may be plotted against one another by varying the threshold t.

Definition 27 (Receiver Operating Characteristic curve) Receiver Operating Characteristic curves (ROC
curves) are plots of the Sensitivity in the y-axis against 1− Specificity in the x-axis [5].

An example of a ROC curve is shown in Figure 4.1. Starting with no positive classifications gives a point
in the bottom left of the plot, and as t is decreased and the classifier gives more positive classifications,
some may be correct (contributing to the Sensitivity, upward) and some may be incorrect (contributing to
1 − Specificity, rightward). Thus, a good classifier will have a ROC curve tending towards the upper left
of the plot. A random classification will be around the diagonal. The construction of a Receiver Operating
Characteristic curve is illustrated by Algorithm 3. This procedure could be optimized by ordering classifier
score and label pairs according to scores and iteratively updating the confusion matrix values.

Since the ROC curve of a good classifier will tend towards the upper left of the plot, a quality measure
has been defined to capture this tendency, called the Area Under the Curve (AUC or AUROC) [28]. This
measure calculates the area under the ROC curve. In some cases, it may be desirable to only capture the
classifier performance for lower 1− Specificity, and thus this measure will be defined as a function of the x
axis coverage.

Definition 28 (ROC Area Under the Curve (AUC)) Based on a ROC curve, the area under the curve
in the interval 0 ≤ 1− Specificity ≤ x can be calculated, and this will be referred to as AUC(x).

The regular AUC/AUROC is then given by AUC(1). This measure can be calculated by gradually gener-
ating points on the ROC curve and summing up areas below the curve. Algorithm 2 demonstrates the method.
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Algorithm 1 ROC plot construction

Input:
C ∈ R× B: A set of paired classifier scores and correct labels.
makePoint(x, y): Makes a plot point with X-position x and Y-position y.
makeLine(a, b): Makes a line from point a to point b.

S ← {v|(v, f) ∈ C} ∪ {−∞} . Get scores from the classifications for thresholds.
. For the final iteration, all should be classified as positive, thus the added −∞.

pa ← 0
while S 6= ∅ do

t← maxS . Get maximum scoring classification, to be used as a threshold.
S ← S/t . Remove it from the list.
TP, FP, TN, FN ← 0
for all (v, f) ∈ C do . Find confusion matrix values for the cutoff.

if v > t then
if f = ⊕ then

TP ← TP + 1
else

FP ← FP + 1
end if

else
if f = ⊕ then

FN ← FN + 1
else

TN ← TN + 1
end if

end if
end for
TPR← TP

TP+FN

FPR← FP
FP+TN

pb ← makePoint(FPR, TPR) . Note the point as the current line end ...
if pa 6= 0 then

makeLine(pa, pb) . ... and make a line if there is a line start.
end if
pa ← pb . Make this line end be the start of the next line.

end while
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Algorithm 2 Calculation of the AUC(x) measure

Input:
C ∈ R× B: A set of paired classifier scores and correct labels.

function AUC(x)
S ← {v|(v, f) ∈ C} ∪ {−∞} . Get scores from the classifications for thresholds.

. For the final iteration, all should be classified as positive, thus the added −∞.
AUC ← 0
FPRa ← 0
TPRa ← 0
while S 6= ∅ do

t← maxS . Get maximum scoring classification, to be used as a threshold.
S ← S/t . Remove it from the list.
TP, FP, TN, FN ← 0
for all (v, f) ∈ C do . Find confusion matrix values for the cutoff.

if v > t then
if f = ⊕ then

TP ← TP + 1
else

FP ← FP + 1
end if

else
if f = ⊕ then

FN ← FN + 1
else

TN ← TN + 1
end if

end if
end for
TPRb ← TP

TP+FN . Get new ROC point.

FPRb ← FP
FP+TN

if FPRb > x then . Restrict to 0 ≤ FPRb ≤ x.
FPRb ← x
TPRb ← TPRa + (x− FPRa)(TPRb − TPRa)

end if
a← FPRb − FPRa
AUC ← AUC + aTPRa + a

2 (TPRb − TPRa)
if FPRb = x then . End at the desired False Positive Rate.

break
end if
TPRa ← TPRb
FPRa ← FPRb

end while
return AUC

end function
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Figure 4.2: Example of a Precision/Recall curve. The dotted line marks a perfect classifier. The grey line
marks random classification performance.

4.4 Precision/Recall curves

In some cases, the set of True Negatives, TN , may not be well-defined. For example, if the classification task
is to mark certain phrases in a document, then TN is the set of regions marked neither in the validation set
nor by the classifier, and is thus not well-defined defined due to the number of phrases in a document not
being well-defined [27]. TN could also be very large, such that the curve could tend towards the upper left
even if there are many false positives for each true positive. Precision and Recall do not depend on TN ,
and this gives an alternative plot for visualizing classifier performance.

Definition 29 (Precision/Recall curve) In a Precision/Recall plot (PR plot), Precision is plotted on
the y-axis and Recall on the x-axis [26].

An example is shown in Figure 4.2. Similarly to the construction of ROC plots, PR plots are constructed
by varying the threshold t. The construction of a Precision/Recall curve is illustrated by Algorithm 3. The
approach is mostly identical to the construction of a ROC plot, except for using Precision and Recall.

For interpreting PR plots, it can be noted that going from left to right in a PR plot corresponds to
increasing Sensitivity. The higher a point on the curve is, the higher the portion of positive classifications
are correct. Thus, an ideal curve would cover the top of the plot. It has also been shown that a classifier
dominates in a ROC plot if and only if it dominates in a corresponding PR plot [26]. A random classifier

will have performance around a line flat over Recall, where Precision = |P |
|P |+|N | [29]. However, calculating

the expected random performance by this definition requires knowing N , and thus TN , and as noted these
may be unknown.

4.5 Measuring generalization

A trained classifier can be applied to classify the training data to see how well it has been learned. However,
it is usually more useful to measure how well one might expect the classifier to classify instances of the larger
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Algorithm 3 PR plot construction

Input:
C ∈ R× B: A set of paired classifier scores and correct labels.
makePoint(x, y): Makes a plot point with X-position x and Y-position y.
makeLine(a, b): Makes a line from point a to point b.

S ← {v|(v, f) ∈ C} ∪ {−∞} . Get scores from the classifications for thresholds.
. For the final iteration, all should be classified as positive, thus the added −∞.

pa ← 0
while S 6= ∅ do

t← maxS . Get maximum scoring classification, to be used as a threshold.
S ← S/t . Remove it from the list.
TP, FP, TN, FN ← 0
for all (v, f) ∈ C do . Find confusion matrix values for the cutoff.

if v > t then
if f = ⊕ then

TP ← TP + 1
else

FP ← FP + 1
end if

else
if f = ⊕ then

FN ← FN + 1
else

TN ← TN + 1
end if

end if
end for
Precision← TP

TP+FP

Recall← TP
TP+FN

pb ← makePoint(Precision,Recall) . Note the point as the current line end ...
if pa 6= 0 then

makeLine(pa, pb) . ... and make a line if there is a line start.
end if
pa ← pb . Make this line end be the start of the next line.

end while
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class under investigation. One approach to this is to apply the classifier to a set separate from the training
data. This may not be practical if only a few instances of the class are known, as it may be desirable to use
all of these instances for training. The technique of cross-validation provides an alternative.

The basic idea of cross-validation is to train the classifier on a subset of the training set and classify
the remainder [21]. As the classified elements have not been used during training, this gives a measure of
generalization. A confusion matrix can be constructed based on the resulting classifications.

Definition 30 (n-fold unbalanced cross-validation) For a training set T ⊂ X ×C, shuffle its elements
randomly and divide it into n (approximately) evenly sized subsets T1, ..., Tn (folds). For each fold i ∈ [1, n],
train the classifier on T1 ∪ ... ∪ Ti−1 ∪ Ti+1 ∪ ... ∪ Tn, and use the trained classifier to classify Ti [21].

The unbalanced cross-validation approach derives its name from the fact that it does not consider the
number of training examples for each class. If there are many more training examples of one class than of
others, this could in some cases lead to folds with few or no training examples for some class or classes. An
alternative is to first partition the training set according to classes, divide these partitions into class-specific
folds, and join class-specific folds to form the folds used.

Definition 31 (n-fold balanced cross-validation) For a training set T ⊂ X×C with m classes, divide T
into subsets T 1, ..., Tm according to class. For each class j ∈ [1,m], shuffle the corresponding subset randomly,
and divide it into n (approximately) evenly sized subsets T j1 , ..., T

j
n (folds). For each fold i ∈ [1, n], make joined

subsets Ti = T 1
i ∪ ...∪ Tmi . For each fold i ∈ [1, n], train the classifier on T1 ∪ ...∪ Ti−1 ∪ Ti+1 ∪ ...∪ Tn, and

use the trained classifier to classify Ti.

The number of folds can be selected to control for how many times the classifier is trained. Both balanced
and unbalanced cross-validation use randomization for constructing the folds. Thus, there may be noise in
quality measurements made on the folds. To reduce this issue, n-fold cross-validation can be repeated k
times, and the quality can be measured over the full set of classifications, or it can be measured for each
repeat and averaged. Alternatively, cross-validation can be done by only leaving a single training example
out during training for validation, called Leave-One-Out cross-validation.

Definition 32 (Leave-One-Out cross-validation) For a training set T ⊂ X × C, let its elements be
denoted by t1, ..., tn. For each element ti ∈ T , train the classifier on {t1, ...ti−1, ti+1, ..., tn} and use the
trained classifier to classify ti [21].
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Chapter 5

Prediction of Polycomb/Trithorax
Response Elements with Support
Vector Machines

In this thesis, Support Vector Machines are applied to the prediction of Polycomb/Trithorax Response
Elements. This carries with it a series of design choices. The ideal is to develop an application that can
take example sequences and additional parameters, and predict PREs in a given genome without further
user intervention. The implementation of Polycomb/Trithorax Response Element prediction in this thesis is
named PRESVM (read pre-S.V.M.). First, the use of Support Vector Machines for PRE prediction will be
discussed, and then the design of PRESVM will be explained.

5.1 Why Support Vector Machines may improve prediction of
PREs

The PREdictor scores sequence windows by summing weighted frequencies of paired motif occurrences within
220bp. Applying the PREdictor genome-wide with a score threshold calibrated for an E-value of 1, Ringrose
et al. were able to identify 167 candidate Polycomb/Trithorax Response elements [1]. Since paired motif
occurrences were found to be predictive of PREs, this may indicate non-linear relationships between motif
occurrence frequencies.

Support Vector Machines have properties that could be beneficial for the prediction of Polycomb/Trithorax
Response Elements. Any real valued features may be used with Support Vector Machines, so there may be
feature sets other than paired motif occurrence frequencies that could help the prediction task. There might
also be non-linear relationships between feature values, which an SVM might model.

In early 2012, Zeng et al. [2] published a Support Vector Machine implementation of PRE prediction.
They found that non-linear kernels better distinguished PREs from non-PREs than a linear kernel. Thus,
PRESVM is not the first Support Vector Machine implementation of PRE prediction. However, Zeng et al.
[2] used single motif occurrence frequencies in windows as features for the SVM, so the question remains
of whether other real valued feature sets might give improved PRE prediction. There are also additional
considerations, such as selecting parameters for the Support Vector Machine and how to construct training
vectors from training sequences.
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Figure 5.1: The PRESVM pipeline. A dotted box indicates that the step is optional.

5.2 PRESVM

PRESVM has been designed such that it after being supplied with parameters runs through all steps needed
to make genome-wide predictions of PREs without requiring further user intervention. It is also useful to be
able to evaluate different configurations without making genome-wide predictions. Thus, PRESVM consists
of a pipeline with a series of optional steps, depicted in Figure 5.1.

The compulsory parameters are: 1) at least one feature set, 2) a set of motifs and 3) training sequences.
Additional pipeline steps that should be executed can be specified. With threshold calibration and/or genome-
wide prediction, a genome must also be specified.

In the feature selection step, a subset of the specified features are selected using mRMR feature selection
[30]. In the parameter optimization step, a search is run for optimal SVM parameters. In the validation
step, a classifier is constructed with the given configuration and is applied to the training sequences for vali-
dation, as well as any specified sets of validation sequences. During the cutoff calibration step, the classifier
is applied to a large, randomly generated sequence, such that a cutoff is chosen for a desired E-value. After
the cutoff calibration step there is a second validation step, such that the influence of the resulting cutoff on
classification performance may be investigated. A profile is then generated to describe the run. Finally, the
classifier is applied genome-wide for prediction. These steps are described in more detail later.
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The profile generation step outputs a profile in XML format. This profile contains a detailed description
of the configuration that was used during the run, as well as paths to files generated during genome-wide
prediction. It also contains validation sequence scores, which can later be used for visualizing classifier per-
formance via ROC and PR curves.

5.3 Support Vector Machines and sequences

To apply Support Vector Machines to the prediction of PREs, it must be decided how the classifier should
be trained and how it should be applied for prediction. First, sequences and sequence coordinates can be
defined.

Definition 33 (Sequence) A sequence S ∈ Snt is a string of nucleotides (A, T, G and C).

Definition 34 (Sequence coordinates) For a sequence S ∈ Snt and A,B ∈ N where A ≤ B, S : A...B
denotes the subsequence of S from nucleotide A (base 1) up to and including nucleotide B.

Definition 35 (Sequence length) For a sequence S : A...B, S ∈ Snt, λ(s) = B−A+ 1 denotes its length.

The goal is to train a classifier and apply it across a whole genome to predict PREs. As was done with
the PREdictor [1], the classifier can be applied across the genome using a sliding window.

Definition 36 (Sequence sliding window) For a sequence S : A...B, S ∈ Snt, a sliding window will refer
to a function

W (S,w, s, i) = S : X...Y

where X = A + s(i − 1) and Y = min{X + w − 1, B}. w > 0 is the window width, s > 0 is the window
stepping and i is the window index (base 1). When no range is specified, i goes from 1 up to including only
one window where Y = B.

Assume there are training sequences S1, ...Sn and features f1(Si), ..., fm(Si). The features can be applied
to the full training sequences for constructing training vectors, or they can be applied using a sliding win-
dow over the sequences, giving a training vector for each window. Using a sliding window to make training
vectors may give a very large training set, but a larger step size can be used during training to make up for
this. Alternatively, one or more windows may be selected from each sequence as representative to construct
training vectors.

It has been suggested that it is important that the feature values are scaled and shifted to have the same
range over the training examples, and the same scaling and shifting should also be used when the trained
classifier is to be applied for classification [23].

In the case of non-PRE sequences, it can be noted that every window in a non-PRE training sequence
should correspond to a negative, and thus either the full sequences or sequence windows can be used for
constructing training vectors.

In the case of PRE sequences, it may be that up to many of the sequence windows are not important for
PRE function. The PREdictor [1] PRE training sequences have lengths in the range 1.2kb− 5.4kb, whereas
it has been suggested that PREs have lengths of only a few hundred base pairs [6]. Also, the sequences may
vary in length, as with the PREdictor [1] training sequences, which has implications both for training with
the full sequences and with sequence windows. If the full sequences are used for training, there are certain
feature sets (discussed in Chapter 6) where sequence lengths are used for normalization, and because of this,
differing sequence lengths might result in important features being normalized away. If training is done using
sequence windows, there may be more windows for some sequences. For using sequence windows for training,
it should be noted that a soft-margin classifier might treat irrelevant windows as noise. If irrelevant windows
put constraints on the decision surface and thus distort it, then the exclusion of these windows could lead to a
decision surface that better separates PREs from non-PREs. Alternatively, representative sequence windows
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might be selected directly. However, for trying to select representative windows directly from the training
sequences, it may be difficult to decide on a good selection criterion, and a poor selection criterion might
have a negative impact on the resulting classifier.

After a classifier has been trained, it is desirable to apply it to sequences for validation, such as the
training sequences. Since the classifier will be applied across the genome using a sliding window, it makes
sense to also apply it using a sliding window during validation. If all validation sequence window scores are
used to measure classification performance, there is the potential issue that longer sequences may have more
windows, and thus have a higher influence on the classification performance measurement. To avoid this, the
window scores for each validation sequence can be combined into a single sequence score. In this thesis, this
will be done by letting the maximum window score for a sequence be the score of the full sequence, as was
done with the PREdictor [1].

score(S) = max
i
ĉ((f1(W (S,w, s, i)), ..., fm(W (S,w, s, i))))

The classifier threshold may then be applied to obtain a binary classification for each sequence, and this
enables the construction of a confusion matrix for the validation sequences.

5.4 Training data

To train a classifier to predict PREs genome-wide, it is necessary to have a set of known PRE sequences for
the classifier to learn from. For Support Vector Machines, other than in the case of one-class SVM, it is also
necessary to have sequences of one or more non-PRE classes to learn from. In this thesis, the training data
used by Ringrose et al. [1] will be used. Additionally, the construction of alternative training data will be
explored briefly.

After a classifier has been trained, one may attempt to apply the trained classifier to the PRE training
sequences in order to identify significant sub-sequences. If the classifier can already be expected to give
reasonable genome-wide predictions of PREs, it may be hoped that the classifier will assign higher scores
to the more important PRE training sequence regions. One may then apply the trained classifier to the
PRE training sequences and select an equal number of high-scoring windows from each training sequence as
representative. These windows can then be used to train a new classifier. This is referred to as re-training
in this thesis. If the selected windows are indeed important for PRE function, the removal of other sequence
regions might amplify relevant features, and thus might improve prediction.

Ringrose et al. [1] defined PREs based on published coordinates of known PRE/TREs. For non-PREs,
they used promoter regions of genes that are regulated by the Z and GAF motifs. When using a multi-class
SVM, it is possible that training with additional classes may have an impact on predictions. One may for
example add a class of randomly generated sequences with the same nucleotide distribution as the genome,
corresponding to non-PREs.

In addition to the training sequences used by Ringrose et al. [1], it may be interesting to train a classi-
fier using data from the recent genome-wide ChIP-chip/ChIP-seq studies, such as [12, 14, 15]. For positive
(PRE) training examples, experimentally determined regions can be selected. If a selection of sequence mo-
tifs have already been chosen to be used for the classification task, the regions may be filtered for having
occurrences of these motifs. Alternatively, motifs can be selected based on the experimentally determined
regions. The selected regions can further be filtered, for example according to whether or not they are in-
tergenic. Afterwards, a selection of the regions can be selected randomly and taken as PRE training examples.

For negative training examples, one would ideally want to select genomic regions that one can be fairly
confident are not PREs. If sequence motifs are used, one possibility is to find genomic regions that are
enriched in the sequence motifs and randomly select a number of regions and use them as non-PRE training
examples. As the regions are selected due to being enriched in the motifs, but paired occurrences of motifs
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are more predictive of PREs [1], it may be speculated that perhaps many or most of the selected regions will
not be PREs. However, there is a risk of selecting PREs using this approach. With a soft-margin classifier,
it is possible that false negatives will be filtered out as noise.

An alternative to selecting a set of non-PRE training examples is to use Mapping-Convergence, as was re-
cently done for the prediction of PcG target genes in humans using Support Vector Machines [20]. Mapping-
Convergence starts with a positive set and an unlabeled set, and the unlabeled set is used to iteratively
construct a negative training set. This has not been implemented in PRESVM.

5.5 Genome-wide prediction

When predicting PREs in a genome, the classifier is applied across a whole genome in windows. Each
window will be given a score by the classifier, and this results in a score profile for each chromosome. In
PRESVM, these score profiles are exported to a Wiggle format file. This format was chosen due to its
support by the Integrated Genome Browser [31], and is explained in UCSC Genome Bioinformatics FAQ
for formats [32]. The Wiggle format is a human readable format, containing chromosome names, window
coordinates and corresponding profile values. The Wiggle format allows defining the length and step size for
windows at the start of a chromosome, such that the window scores may be given compactly, separated by
line breaks. In addition to being able to visualize such score profiles using the Integrated Genome Browser,
such score profiles also allow for other informative analyses, such as the correlations between different profiles.

A score threshold is applied to give binary classifications to windows. When applying a threshold to
window scores, overlapping positively classified windows are merged, giving a selection of non-overlapping
predicted regions in the genome. Such regions will here be referred to as bands.

Definition 37 (Band) Bands will refer to positively classified regions, where overlapping regions have been
merged.

In PRESVM, predicted bands are exported to a General Feature Format (GFF) file, and as with the
Wiggle format it was chosen due to its support by the Integrated Genome Browser [31], and is explained in
UCSC Genome Bioinformatics FAQ for formats [32]. GFF is a human readable format. GFF files consist of
lines specifying genomic regions. In addition to visualizing GFF files with the Integrated Genome Browser,
these files are also useful for investigating the overlap of predictions with experimentally determined regions
and what annotated genes are proximal to each predicted band. Genome-wide prediction is illustrated by
Algorithm 4.

5.6 Classifier threshold calibration

To predict genomic regions as being PREs, the classifier threshold must be set to a reasonable value. It is
desirable to set the threshold such that one has an idea of how many positive predictions can be expected by
chance. That is, it is desirable to select the threshold for some desired E-value. In this thesis, this will be
done similarly to how it was done with the PREdictor [1].

First, the distribution of nucleotides in the genome is found. Based on this distribution, a random se-
quence is generated. A trained classifier ĉ is applied to this sequence in windows as it would for genome-wide
prediction. If this sequence is of the same length as the genome, then the number of predictions made on
this randomly generated sequence for some threshold t gives an approximate E-value. Thus, the threshold
can be varied, and the approximate E-value can be noted for each threshold. This gives an approximated
E-value distribution. The final threshold can then be selected based on the E-value one desires.
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Algorithm 4 Genome-wide prediction

Input:
Chromosomes: Set of chromosome sequences.
ĉ : Rn → R: Classifier.
f1, ..., fn : Snt → R: Sequence features.
wsize ∈ N: Window width (w ≥ 1).
wstep ∈ N: Window step size (s ≤ w).

P ← ∅ . Set of genome-wide predictions.
for all C : A...B ∈ Chromosomes do

i← A
pa, pb ← −1 . This will note the start/end of a prediction when not −1.
loop

j ← min{i+ wsize, B}
W ← C : i...j . Get the window, cropped by the sequence length.
v ← ĉ((f1(W ), ..., fn(W ))) . Score the window.
if v > t then . Score above threshold so update prediction.

if pa = −1 then
pa ← i . Prediction not started, so note start.

end if
pb ← j

else if pa 6= −1 ∧ i > pb then . Score below cutoff, and passed prediction end, so finish it.
P ← P ∪ {C : pa...pb} . Register prediction.
pa, pb ← −1

end if
i← i+ wstep
if j = B then . Last window in the sequence, so break out of the reading loop.

break
end if

end loop
if pa 6= −1 then . Finish any open prediction.

P ← P ∪ {C : pa...pb}
end if

end for
return P



Chapter 5. Prediction of Polycomb/Trithorax Response Elements with Support Vector Machines 26

If the desired E-value is low, such as 1, the threshold found can be expected to vary significantly from
run to run when the randomly generated sequence is of the same length as the genome. The threshold
can be made more stable by scaling up the size of the randomly generated sequence, and scaling down the
approximated E-values. Let b(ĉ, t) denote the number of predictions made by a classifier ĉ on the randomly
generated sequence when using threshold t. Let l denote the size of the genome, let s ≥ 1 be a scaling factor,
and let the length of the randomly generated sequence be l ∗ s. The approximated E-value is then given by:

Êbands(ĉ, t) =
b(ĉ, t)

s
,

The scaling factor s can be used to make the thresholds for E-values more stable. Given a constant
probability for each window in the randomly generated sequence to be predicted, increasing the length of the
sequence increases the expected number of predicted windows, and thus the number of predicted bands is
divided by the scaling factor. This in turn reduces the influence of individual predictions on the approximated
E-value.

It then needs to be decided how the threshold should be varied. One could find all window classification
values over the full randomly generated sequence, and then iteratively use each as a threshold and find the
number of predictions (bands) in the random sequence. This can be computationally very expensive if the
scaling is large. Typically, a low E-value, such as Êbands(ĉ, t) = 1 is desired. To make the threshold fairly
stable a large scaling factor such as s = 100 should be used. Thus, it is desirable to have a more efficient
approach for varying the threshold.

If the E-value of interest is low, there should be a limited amount of predictions in the randomly generated
sequence. Each of these predictions may be based on up to multiple overlapping window classifications, but
the number of overlapping positively predicted windows should then typically be limited. A possibility then is
to find n top-scoring windows in the randomly generated sequence. The threshold can then be varied over the
scores of these windows. As these windows are top-scoring, only these windows would be classified as positive
in the randomly generated sequence when using their scores as threshold values, and one can therefore avoid
classifying all windows from the randomly generated sequence multiple times. For each threshold, taking the
overlaps between positively predicted top-scoring windows into account gives the predicted regions, and this
can be used to get a corresponding approximated E-value.

This approach, called the highscore based E-value threshold calibration method, is implemented in
PRESVM. An issue with this approach is that the number n of top-scoring windows to find in the ran-
domly generated sequence must be decided. If n is too small, the threshold for the desired E-value may
not be found. One possibility is to select n based on an expectation of how many windows will overlap in a
prediction. If one expects i overlapping windows for a prediction, one possibility is to use n = i∗ s∗E, where
E is the desired E-value and s is the scaling factor for the randomly generated sequence. In PRESVM, n is
chosen by the following equation

n = 2s ∗ E ∗ wsize
wstep

where wsize is the window size used and wstep is the sliding window step size. Thus, if the step size is de-
creased, n will increase. This makes sense, since if the step size is reduced, one would expect more overlapping
windows to be predicted as positive. The chosen n may be larger than necessary, but this should reduce the
probability of n being too small. The approach is illustrated in Algorithm 5.

Another way to vary the threshold is to find the range of window classification values over the genome,
and to divide this range into m evenly spaced thresholds. The classifier is then applied to the randomly
generated sequence, and the number of predictions for each threshold is noted. The approximated E-value
for each threshold is then calculated based on the corresponding number of predictions.

As shown for genome-wide prediction, predictions can be made as the classifier is applied to the sequence.
Thus, this approach can be implemented by keeping the necessary prediction state variables for each of the
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Algorithm 5 Highscore based E-value threshold calibration

Input:
ĉ : Rn → R: Classifier.
f1, ..., fn : Snt → R: Sequence features.
wsize ∈ N: Window width (w ≥ 1).
wstep ∈ N: Window step size (s ≤ w).
s ∈ N: Random sequence scaling factor.
λ(G): Size of the genome.
R : A...sλ(G): Randomly generated sequence.
UpdateHighscore(v, i, j): Updates the highscore with score v for the window spanning from i to j. If
the highscore is not full then an entry for the window spanning from i to j with score v is added to the
highscore. Otherwise, if v is greater than the lowest window score in the highscore, the lowest scoring
highscore entry is replaced with an entry for the window spanning from i to j with score v.
GetHighscores(): Gets the set of top window scores found.
GetPredictions(x): Gets the number of predicted bands for treshold x based on the high-score windows.

i← A
loop

j ← i+ wsize
if j ≥ λ(R) then . Last window in the sequence, so break out of the reading loop.

break
end if
W ← R : i...j . Get the window.
v ← ĉ((f1(W ), ..., fn(W ))) . Score the window.
UpdateHighscore(v, i, j)
i← i+ wstep

end loop
for x ∈ GetHighscores() do

Ê(x)← 1
sGetPredictions(x) . Calculate the approximated E-value for each threshold.

end for
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m thresholds considered, and to update them for each threshold as the classifier is being applied to the
randomly generated sequence. Note, however, that only some prediction state variables will change for some
classification value changes. If the classification value increases, this may correspond to the beginning of
one or more predicted regions. If the classification value decreases, it may similarly result in some predicted
regions having ended.

The interval based E-value calibration method is implemented in PRESVM. A reasonable value for m,
the number of thresholds, should be chosen. In PRESVM, m is chosen using the following equation:

m = 50 ∗ s

where s is the scaling factor for the randomly generated sequence. It makes sense to scale m with s, as an
increase in s should make finer threshold E-value approximations more stable. The approach is illustrated
in Algorithm 6.

5.7 Comparison of PRESVM and other PRE prediction methods

To predict PREs, the PREdictor assigns scores to sequence windows. These scores are weighted sums of
paired motif occurrence frequencies. Using PRESVM with a similar feature set and a linear kernel allows for
a comparison of PRESVM and the PREdictor.

In LibSVM, the ε-Support Vector Regression function approximation when using a linear kernel is given
by

ĉ(~x) =

l∑
i=1

(cik(~yi, s(~x)))− ρ

=

l∑
i=1

(ci~yi · s(~x))− ρ.

where the ~yi are support vectors, and the ci are coefficients. It is important to scale feature values to have
the same range over the training data [23], and thus s([x1, ..., xl]) = [(x1 + q1)r1, ..., (xl + ql)rl] denotes the
feature vector scaling transformation, where qi is the shifting of feature i and ri is the scaling factor.

The dot product in the decision function can be reformulated as a vector component product sum, and
rearranged as follows:

ĉ(~x) =

l∑
i=1

(ci~yi · s(~x))− ρ

=

l∑
i=1

ci∑
j

(yi,j(xj + qj)rj)

− ρ
=
∑
j

(
l∑
i=1

(rjciyi,j) (xj + qj)

)
− ρ

=
∑
j

(
l∑
i=1

(rjciyi,j)xj

)
+
∑
j

(
l∑
i=1

(rjciyi,j) qj

)
− ρ

where xj denotes the j’th component of ~x, and yi,j denotes the j’th component of ~yi.

This decision function can be expressed as a weighted sum of feature values as follows:

ĉ(~x) =
∑
j

wjxj + d
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Algorithm 6 Interval based E-value threshold calibration

Input:
ĉ : Rn → R: Classifier.
f1, ..., fn : Snt → R: Sequence features.
wsize ∈ N: Window width (w ≥ 1).
wstep ∈ N: Window step size (s ≤ w).
s ∈ N: Random sequence scaling factor.
λ(G): Size of the genome.
R : A...sλ(G) + wstep: Randomly generated sequence.
m: Number of prediction states to keep track of.
S1, ..., Sm: A set of prediction states.
ClosestPredictionState(v): Gets the prediction state Si with threshold closest to v.
UpdatePredictionState(Sx, i, v): Updates prediction state Sx for window start coordinate i and classifica-
tion value v.
Predictions(Sx): Gets the number of predictions for prediction state Sx.
Threshold(Sx): Gets the threshold for prediction state Sx.

tlast ← 1
i← A
loop

j ← i+ wsize
W ← R : i...j . Get the window.
v ← ĉ((f1(W ), ..., fn(W ))) . Score the window.
t← ClosestPredictionState(v)
if t > tlast ∨ i = A then . Make necessary prediction state updates.

for x ∈ [tlast, t] do
UpdatePredictionState(Sx, i, v)

end for
else if t < tlast then

for x ∈ [t, tlast] do
UpdatePredictionState(Sx, i, v)

end for
end if
tlast ← t
i← i+ wstep
if j ≥ sλ(G) then . Last window in the sequence, so break out of the reading loop.

break
end if

end loop
for x ∈ [1,m] do

Ê(Threshold(Sx))← 1
sPredictions(Sx) . Calculate the approximated E-value for each threshold.

end for
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where

wj =

l∑
i=1

rjciyi,j

and

d =
∑
j

(
l∑
i=1

(rjciyi,j) qj

)
− ρ.

Note that the vector components xj correspond to feature values, so assuming the feature sets are similar,
weights wj for PRESVM may be compared with corresponding weights assigned by the PREdictor. Thus,
this gives a relationship between the PREdictor and PRESVM (with such a configuration) in terms of the
decision functions.

The PREdictor calculates the feature weights by the following equation [1]

wj = ln
f(pj |PRE)

f(pj |non-PRE)
= ln f(pj |PRE)− ln f(pj |non-PRE)

where f(pj |PRE) is the number of occurrences of some motif pair pj in a PRE sequence per kilobase, and
similarly for f(p|non-PRE) in non-PRE sequences. For a Support Vector Machine, the actual placement of
the decision surface, and thus the weights, will depend on the Support Vector Machine parameters, as well
as how the training data is sampled for constructing the training vectors. This makes it difficult to compare
the decision surface construction in a general manner. It may however be noted that the PREdictor could be
seen as constructing one vector for each class based on finding mean vectors for each class and applying the
logarithm. Outliers could thus have an impact on the PREdictor, where the SVM should be more robust.
Also, it is possible that constructing the decision surface with maximal margin (as an SVM would) may im-
prove separation of the training data and/or generalization compared to taking the logarithm of class means
(as the PREdictor would).

As was noted in the first section of this chapter, PRESVM is not the first Support Vector Machine im-
plementation of Polycomb/Trithorax Response Element prediction. Zeng et al. [2] used motif occurrence
frequencies combined with a Support Vector Machine to predict PREs genome-wide. However, there are some
important differences between their implementation, EpiPredictor, and the implementation in this thesis.

Firstly, the EpiPredictor uses the SVM for binary classification to filter out sequence windows, and for
windows that are not classified as negative it assigns scores by using the total number of motif occurrences in
each window [2]. A trained SVM can assign a continuous classification value to a presented instance vector,
and PRESVM makes use of this to score each sequence window. It is possible that the classification value
from a trained SVM may give a better model of whether or not a region corresponds to a PRE than the
overall number of motif occurrences.

Secondly, although Zeng et al. [2] discuss the use of motif occurrence frequencies, and although this was
combined with different kernels, there are other potential feature sets to consider. Multiple feature sets have
been implemented in PRESVM, and combining these with a Support Vector Machine gives classifiers with
different performances (see Chapter 9).

Also, there are feature sets implemented in PRESVM that make use of motif occurrence pair distances.
The (j)PREdictor incorporates distances in terms of motif occurrence pairing distance cutoffs. However,
additional ways of using distances are implemented in PRESVM.
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Chapter 6

Sequence features

Feature sets in PRESVM are primarily based on occurrences of sequence motifs. A number of feature sets can
be defined based on motifs. Feature sets for motifs are divided into motif occurrence frequency feature sets,
motif occurrence distance feature sets and periodic motif occurrence frequency feature sets. Some additional
feature sets will be discussed briefly.

6.1 Motif occurrence frequency features

Multiple sequence motifs have been defined for PREs with a biological justification. An alternative is to
consider a set of k-mers, the set of all words of k nucleotides. When a set of motifs, M , has been defined,
one natural way to define a set of features is by the number of times the motifs occur within a sequence.
To formalize this, some measures need to be defined. For a sequence s, it is useful to define its set of motif
occurrences and what motif each occurrence corresponds to (here referred to as the motif occurrence type).

Definition 38 (Motif occurrences) For a sequence s ∈ Snt, the set O(s) denotes the set of motif occur-
rences in s.

Definition 39 (Motif occurrence type) For a set of motifs M , a sequence s ∈ Snt and a motif occurrence
o ∈ O(s), τ(o) ∈M denotes the type of the motif occurrence.

Definition 40 (Type-specific motif occurrences) For a set of motifs M , a sequence s ∈ Snt and motif
m ∈M , the set Om(s) = {o|o ∈ O(s) ∧ τ(o) = m} denotes the set of motif occurrences in s of type m.

Based on this, the following feature set can be defined.

Definition 41 (The nOcc feature set) For a set of motifs M , a sequence s ∈ Snt and motif m ∈M , the
occurrence frequency of m in s is defined as

nOcc(s,m) =
|Om(s)|
λ(s)

This is the number of occurrences of motifs m ∈ M in sequence s, divided by the sequence length λ(s).
This feature set has been used by Zeng et al. for predicting PREs with a Support Vector Machine [2]. The
feature set is illustrated by Figure 6.1. Although this feature set does not directly take paired motif occur-
rence into account, Zeng et al. suggested that combining it with a Support Vector Machine with a non-linear
kernel may model motif occurrence combinations [2].

Features that directly consider combined motif occurrences will be considered next. For this, the positions
of and the distances between motif occurrences need to be defined.

Definition 42 (Absolute value) For a real value v ∈ R, |v| ≥ 0 denotes its absolute value. Although the
same notation is used for set cardinality, the meaning will be clear from the context.
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nOcc(s, a) =
4

λ(s)
, nOcc(s, b) =

3

λ(s)

Figure 6.1: Illustration of the nOcc feature set. Motif occurrences are counted, and the counts are normalized
by sequence length.

Definition 43 (Motif occurrence start position) For a motif occurrence o ∈ O(s), πα(o) denotes the
index of the first nucleotide of the motif occurrence o.

Definition 44 (Motif occurrence end position) For a motif occurrence o ∈ O(s), πβ(o) denotes the
index of the nucleotide after the last of the motif occurrence o.

Definition 45 (Motif occurrence center position) For a motif occurrence o ∈ O(s), πγ(o) =
πα(o)+πβ(o)

2
denotes the position of the center nucleotide of the motif occurrence o. πγ(o) ∈ R.

Definition 46 (Motif occurrence gap distance) For motif occurrences o1, o2 ∈ O(s),

δα(o1, o2) = max{πα(o2)− πβ(o1), πα(o1)− πβ(o2), 0}

denotes the distance between motif occurrences o1 and o2, not counting nucleotides covered by occurrences o1

and o2.

Based on these measures, a measure of motif occurrence pairing can be defined, with a distance cutoff c
(i.e. the pairs have this distance or less if they affect the measure).

Definition 47 (The nPair feature set) For a set of motifs M , a sequence s ∈ Snt, motifs m1,m2 ∈ M
and distance cutoff c, a pairing set can be defined as

P (s,m1,m2, c) = {{o1, o2}|o1 ∈ Om1
(s) ∧ o2 ∈ Om2

(s) ∧ o1 6= o2 ∧ δα(o1, o2) ≤ c}.

Based on this pairing set, the distance-constrained, paired motif occurrence frequency is defined as

nPair(s,m1,m2, c) =
|P (s,m1,m2, c)|

λ(s)
.

This feature set is similar to the feature set used by Ringrose et al. [1] in the PREdictor to predict PREs.
It is worth noting that the nPair(s,m1,m2, c) feature set is reflexive, in the sense that nPair(s,m1,m2, c) =
nPair(s,m2,m1, c). This is clear since switching m1 and m2 only corresponds to a reordering of terms in
the pairing set, where order will not influence its cardinality. The reflexivity is expected, since Ringrose et
al. [1] reported having 28 features for 7 motifs. This feature set is illustrated in Figure 6.2.

In addition to directly considering motif occurrence pairing, the distance cutoff c in the nPair feature set
provides an additional, useful property. When training on full PRE sequences using the nOcc feature set,
motif occurrence frequencies will be found over the whole sequences, and thus any interactions between the
frequencies that a non-linear kernel might model would also be over the full sequences. If such interactions
are local, the distance cutoff c restricts the considered combinations.

The distance measure δα(o) is primarily used for comparison with the PREdictor. For other motif occur-
rence feature sets, the distance between the motif occurrence centers is used.
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Figure 6.2: Illustration of the nPair and nOccPair feature sets. The cutoff distance is marked as 2c in the
figure due to being two-sided. + and - denote the strands, and pairing is independent of whether or not
the occurrences are on the same or on opposite strands. For the nPair feature set, motif occurrence pairs
within the cutoff distances are counted, and the counts are normalized by sequence length. For the nOccPair
feature set, occurrences of the primary motif are counted if at least one occurrence of the secondary motif is
within the cutoff distance, and the counts are normalized by sequence length.

Definition 48 (Motif occurrence center distance) For motif occurrences o1, o2 ∈ O(s),

δγ(o1, o2) = |πγ(o1)− πγ(o2)|

denotes the distance between the centers of motif occurrences o1 and o2.

An alternative, similar feature set for motif occurrence pairing, which is not reflexive, is one that considers
the frequency with which a particular motif occurs within a set distance of any occurrence of a secondary
motif.

Definition 49 (The nOccPair feature set) For a set of motifs M , a sequence s ∈ Snt, motifs m1,m2 ∈
M and distance cutoff c, the nOccPair feature is defined as

nOccPair(s,m1,m2, c) =
|{(o1,m2)|o1 ∈ Om1

(s) ∧ ∃o2 ∈ Om2
(s) ∧ o1 6= o2 ∧ δγ(o1, o2) ≤ c}|

λ(s)

For this feature set, a motif occurrence of the first type is paired with the secondary motif, rather than with
each occurrence of the secondary motif, influencing pair uniqueness. To demonstrate its non-reflexiveness,
imagine there are five occurrences of ma and one of mb, all within the cutoff distance c from each other. For
ma as parameter m1 and mb as m2, the set will contain five elements, as all five occurrences of ma are within
the cutoff distance from the occurrence of mb. However, if mb is taken to be parameter m1 and ma as m2, the
set will only contain one element, as only the one occurrence of mb is counted. This is illustrated in Figure 6.2.

A potentially useful property of the nOccPair feature set is that it in addition to pairing motif occur-
rences also should capture the contribution of each motif. A drawback is that there will be more features,
and this may in turn increase the computational cost. The larger number of features may also require a
larger training set.
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+
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MDP (s, a, b) =
10 + 5

2
= 7.5

Figure 6.3: Illustration of the MDP feature set. The bold lines are distances to the closest motif occurrence
of b from each occurrence of a. Assuming that the left-most line is of length 10 and the right-most is of
length 5 gives the above feature value.

6.2 Motif occurrence distance features

A further possibility is that there is a trend towards particular distances between motif occurrences. This
might vary for different motif combinations. The first such feature that is considered in this thesis makes
use of proximal motif occurrence distances. The mean distance from occurrences of motif m1 to the closest
occurrences of m2 is called Mean Distance Proximal (MDP) in PRESVM.

Definition 50 (Set element exclusion) The set element exclusion operation is in this thesis defined as
X/e = {x|x ∈ X ∧ x 6= e}. Thus, it excludes the element e if it is a member of X, or otherwise gives X.

Definition 51 (The MDP feature set) For a set of motifs M , a sequence s ∈ Snt, a window size w and
motifs m1,m2 ∈M , the MDP feature is defined as

dp(s,m1,m2, w) =

{
(d, o1)|o1 ∈ Om1

(s) ∧ d = min
o2∈Om2

(s)/o1
δγ(o1, o2) ∧ d < w

}
MDP (s,m1,m2, w) =

1

|dp(s,m1,m2, w)|
∑

(d,o1)∈dp(s,m1,m2,w)

d.

If dp(s,m1,m2, w) = ∅, then to avoid MDP becoming undefined, MDP (s,m1,m2, w) = w.

The condition in the definition to avoid MDP becoming undefined uses the window size. The window size
was chosen assuming that there are motif occurrences outside the window. The window size is also used as
a distance cutoff, such that only local relative distances influence the features. The feature set is illustrated
in Figure 6.3.

If this feature set is combined with a linear kernel, it can be expected that most feature values will be too
common to be predictive. If it is combined with a non-linear kernel, feature values may be modelled more
specifically. However, this feature set does not include motif occurrence frequencies, and it may be neces-
sary to combine it with a motif occurrence frequency feature set to get satisfactory classification performance.

A similar feature set can be defined, where the mean distance from occurrences of motif m1 to the closest
occurrences of any motif is used. This is called Mean Distance Proximal Any type (MDPA) in PRESVM.

Definition 52 (The MDPA feature set) For a set of motifs M , a sequence s ∈ Snt, a window size w
and motif m ∈M , the MDPA feature is defined as

dpa(s,m,w) =

{
(d, o1)|o1 ∈ Om(s) ∧ d = min

o2∈O(s)/o1
δγ(o1, o2) ∧ d < w

}
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MDPA(s,m,w) =
1

|dpa(s,m,w)|
∑

(d,o1)∈dpa(s,m,w)

d.

If dpa(s,m,w) = ∅, then to avoid MDPA becoming undefined, MDPA(s,m,w) = w.

The reason why this feature set could be useful is that it might be that occurrences of any type need
to have a given distance from the considered motif in an actual PRE. The smaller number of features may
further reduce the risk of fitting unimportant variations in the training data.

Two additional feature sets can be constructed by changing the min in the formulae for MDP and MDPA
to max, giving the Mean Distance Distal (MDD) and Mean Distance Distal Any type (MDDA) feature sets.

Definition 53 (The MDD feature set) For a set of motifs M , a sequence s ∈ Snt, a window size w and
motifs m1,m2 ∈M , the MDD feature is defined as

dd(s,m1,m2, w) =

{
(d, o1)|o1 ∈ Om1(s) ∧ d = max

o2∈Om2
(s)/o1

δγ(o1, o2) ∧ d < w

}

MDD(s,m1,m2, w) =
1

|dd(s,m1,m2, w)|
∑

(d,o1)∈dd(s,m1,m2,w)

d.

If dd(s,m1,m2, w) = ∅, then to avoid MDD becoming undefined, MDD(s,m1,m2, w) = w.

Definition 54 (The MDDA feature set) For a set of motifs M , a sequence s ∈ Snt, a window size w
and motif m ∈M , the MDDA feature is defined as

dda(s,m,w) =

{
(d, o1)|o1 ∈ Om(s) ∧ d = max

o2∈O(s)/o1
δγ(o1, o2) ∧ d < w

}

MDDA(s,m,w) =
1

|dda(s,m,w)|
∑

(d,o1)∈dda(s,m,w)

d.

If dda(s,m,w) = ∅, then to avoid MDDA becoming undefined, MDDA(s,m,w) = w.

The mean distance from occurrences of one motif to occurrences of a second motif is called Mean Distance
Mean (MDM) in PRESVM.

Definition 55 (The MDM feature set) For a set of motifs M , a sequence s ∈ Snt, a window size w and
motifs m1,m2 ∈M , the MDM feature is defined as

dm(s,m1,m2, w) = {(d, o1, o2)|o1 ∈ Om1
(s) ∧ d = δγ(o1, o2) ∧ d < w}

MDM(s,m1,m2, w) =
1

|dm(s,m1,m2, w)|
∑

(d,o1,o2)∈dm(s,m1,m2,w)

d.

If dm(s,m1,m2, w) = ∅, then to avoid MDM becoming undefined, MDM(s,m1,m2, w) = w.

A potential issue with these feature sets is that they consider mean distances, but they do not take the
variations in the distances into account. Thus, the mean might be the same, but the distancing different.
One might attempt to augment these features with features giving the corresponding variances or standard
deviations. This has been considered, but has not been explored in this thesis.
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Figure 6.4: Illustration of periodic motif occurrences. The left-most occurrences of a and b would have centers
almost in the same direction relative to the double helix axis. The two occurrences of b, however, face almost
opposite directions.

6.3 Periodic motif occurrence frequency features

Considering DNA as a double-helix, for B-DNA, there are approximately 10.5bp per helix turn [3]. Thus,
shifting a motif occurrence by 5.25bp in either direction would make it face in the opposite direction relative
to the double helix axis. This is illustrated in Figure 6.4.

There are multiple ways to design feature sets to take this into account. One simple feature set uses paired
motif occurrences, where the pairs are weighted by a cosine curve. The curve is scaled to be non-negative,
so as to count pairs on the peaks. This is called the PEriodic DIstance (PEDI) feature set.

Definition 56 (The PEDI feature set) For a set of motifs M , a sequence s ∈ Snt, motifs m1,m2 ∈ M
and periodicity ω, the PEDI feature is defined as

PEDI(s,m1,m2, ω, c) =
1

2λ(s)

∑
{o1,o2}∈p(s,m1,m2,c)

(
cos

(
δγ(o1, o2)

ω
2π

)
+ 1

)
,

where
p(s,m1,m2, c) = {{o1, o2}|o1 ∈ Om1

(s) ∧ o2 ∈ Om2
(s) ∧ o1 6= o2 ∧ δγ(o1, o2) ≤ c}.

For an expanded version of this feature set, pairs are weighted with a periodicity of 10.5bp (for B-DNA),
where if the occurrences are on opposite strands, the phase is shifted by 5.25bp. This is called the nPairDH
(nPair, Double Helix) feature set.

Definition 57 (The nPairDH feature set) For a set of motifs M , a sequence s ∈ Snt, and motifs
m1,m2 ∈M , the nPairDH feature is defined as

nPairDH(s,m1,m2, c) =
1

2λ(s)

∑
{o1,o2}∈p(s,m1,m2,c)

(
cos

(
δγ(o1, o2) + 5.25s(o1, o2)

10.5
2π

)
+ 1

)
,

where
p(s,m1,m2, c) = {{o1, o2}|o1 ∈ Om1(s) ∧ o2 ∈ Om2(s) ∧ o1 6= o2 ∧ δγ(o1, o2) ≤ c},

and s(o1, o2) = 0 if o1 and o2 are on the strand, and s(o1, o2) = 1 otherwise.

If the distances between the motif occurrence centers might indicate whether or not factors bound to the
motifs might be able to interact, then the nPairDH feature set might model this.

The differences between the PEDI and nPairDH feature sets are illustrated by Figure 6.5. A potential
issue with these feature sets is that the distances between motif occurrence centers might not give the correct
curve phases. When considering the double helix, motif occurrence pairs can be considered to give a relative
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Figure 6.5: Illustration of the differences between the PEDI and nPairDH feature sets. Assume that all
occurrences of b are within the cutoff distance from the occurrence of a. For a), both PEDI(s, a, b, 10.5, c)
and nPairDH(s, a, b, c) will weight pairing the occurrence of a with it around zero. For b), both will
weight pairing with it around one. For c), nPairDH(s, a, b, c) will weight the pairing around one, whereas
PEDI(s, a, b, 10.5, c) will weight pairing with it around zero.

direction/phase. It may be that some relative phases for pairs are more predictive of PREs than others.
Without prior knowledge of what such optimal phases may be, it may instead be attempted to learn phases
from the training data.

One approach is to create a feature set where there are multiple curves with shifted phases for each motif
pair. For such a pairing, the motif occurrence pair distance should be signed. To make the feature value the
same when applied to the reverse complement sequence, the phase is reversed when the motif occurrence of
the first type is on the minus strand. For occurrence pairs on opposite strands, one could try shifting the
phases half way. However, to avoid making the assumption that pairing would be the same on the same
strand as on opposite strands, the curves are instead duplicated. Thus, for each motif pair, there will be 2∗ r
features, where r is the number of curves, here called the resolution.

Definition 58 (The nPairCosI feature set) For a set of motifs M , a sequence s ∈ Snt, motifs m1,m2 ∈
M , and periodicity ω, the nPairCosI feature is defined as

nPairCosI(s,m1,m2, i, r, q, ω, c) =
1

2λ(s)

∑
{o1,o2}∈p(s,m1,m2,c,q)

PairCosI(o1, o2, i, r, ω),

where

PairCosI(o1, o2, i, r, ω) = cos

(
2π

(
σ(o1)(πγ(o2)− πγ(o1))

ω
+
i

r

))
+ 1,

σ(o1) = 1 if o1 is on the plus strand, or σ(o1) = −1 if it is on the minus strand, and

p(s,m1,m2, c, 1) = {{o1, o2}|o1 ∈ Om1(s) ∧ o2 ∈ Om2(s) ∧ o1 6= o2 ∧ δγ(o1, o2) ≤ c ∧ σ(o1) = σ(o2)},

p(s,m1,m2, c, 2) = {{o1, o2}|o1 ∈ Om1
(s) ∧ o2 ∈ Om2

(s) ∧ o1 6= o2 ∧ δγ(o1, o2) ≤ c ∧ σ(o1) 6= σ(o2)}.

For this feature set, q specifies strandedness and i specifies the curve index. This feature set can give
many features per motif pair, so it can be more computationally expensive than for example the nPairDH
feature set, and it can require a larger training set. However, assuming that primarily certain phases are
informative, it can be combined with feature selection.

An alternative approach is to think of the nPair feature set as summing up 1’s for pairing motif occur-
rences. For a particular motif occurrence pair, the relative direction around the double helix based on the
distance measure can be represented in two dimensions as a vector, as with the arms of a clock, by having
the x-axis correspond to the cosine of the direction and the y-axis correspond to the sine of the direction.
Such vectors can be summed up. To get the same feature value on the reverse complement of a sequence,
the direction should be reversed if the occurrence of the first motif type considered is on the minus strand.
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For occurrences on opposite strands, one could shift the phase by half the periodicity. However, as with
nPairCosI, this is avoided here, by summing direction vectors separately for occurrences on the same strand
and on opposite strands. Thus, this feature set has 4 features per motif pair.

Definition 59 (The nPair2D feature set) For a set of motifs M , a sequence s ∈ Snt, and motifs
m1,m2 ∈M , where m1 6= m2, the nPair2D feature is defined as

nPair2Dx(s,m1,m2, q, c) =
1

λ(s)

∑
{o1,o2}∈p(s,m1,m2,c,q)

cos

(
2πσ(o1)(πγ(o2)− πγ(o1))

10.5

)
,

nPair2Dy(s,m1,m2, q, c) =
1

λ(s)

∑
{o1,o2}∈p(s,m1,m2,c,q)

sin

(
2πσ(o1)(πγ(o2)− πγ(o1))

10.5

)
,

where σ(o1) = 1 if o1 is on the plus strand, or σ(o1) = −1 if it is on the minus strand, and

p(s,m1,m2, c, 1) = {{o1, o2}|o1 ∈ Om1(s) ∧ o2 ∈ Om2(s) ∧ o1 6= o2 ∧ δγ(o1, o2) ≤ c ∧ σ(o1) = σ(o2)},

p(s,m1,m2, c, 2) = {{o1, o2}|o1 ∈ Om1(s) ∧ o2 ∈ Om2(s) ∧ o1 6= o2 ∧ δγ(o1, o2) ≤ c ∧ σ(o1) 6= σ(o2)}.

For the case where m1 = m2, the same feature may be used but with 2πσ(o1)(πγ(o2)− πγ(o1)) replaced with
2π|πγ(o2)− πγ(o1)|.

The distinction between the cases where m1 = m2 and m1 6= m2 is due to one occurrence not being a
clear reference for the phase when the types are the same. It can be noted that for motifs ma and mb and
a same/opposite strand nPair2D feature, if all pairs of occurrences of motifs have the same pairing phase,
then the length of the resulting vector will be the corresponding motif pair occurrence frequency. Also, motif
occurrences with very variable phases could cancel each other out.

6.4 Other motif occurrence features

One interesting potential feature set would be one in which actual motif occurrence positions are used in
such a way that the number of features is minimized, but the positional distribution of motifs in PREs could
be modelled, and the integration of this information would be left up to the training of the Support Vector
Machine. One potential way of doing this might be to use a sliding window when generating training vectors,
to use one side of the window as a positional reference, and to find the mean distance of occurrences of each
motif from this reference position. Additionally, the deviation from the mean position could be used to model
the spreading of motif occurrences.

A problem comes if one wishes for this to generalize to the reverse complement of the sequence. For the
reverse complement, the other side of the window will correspond to the positional reference point. This could
be solved by also training on the reverse complement of the sequence. Alternatively, one might try to establish
some landmark by which the strandedness could be checked. Unfortunately, it is not clear what a good land-
mark would be, and training on twice the amount of windows would computationally be considerably more
expensive, as well as potentially increase the amount of noise. This has been considered, but not implemented.

Another potential feature set could be constructed by training a separate classifier on motif pairs them-
selves, including features such as distances, and sum the output values to generate final features. This could
give an indication of how typical each individual pair is of a PRE versus non-PRE. This has been considered,
but not been implemented.
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6.5 Other sequence features

The PRE prediction method developed by Zeng et al. [2], the EpiPredictor, makes use of the GC content in
addition to sequence motifs. The GC content is the ratio of nucleotides in the sequence that are G or C.

GC(s) =
1

λ(s)

λ(s)∑
i=1

GCnt(si)

where GCnt(si) for nucleotide si is 1 if si is G or C. The EpiPredictor uses GC content for filtering predictions.
It applies the rule that PREs should have a GC content of at least 44% to be predicted. In PRESVM, GC
content is implemented as a feature.
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Chapter 7

Configuration optimization

A particular machine learning method may have parameters that need to be set by the user. There may
also be multiple potential feature sets, where not all features would be relevant. Depending on how many
parameters there are and whether they are continuous or discrete, the search space may be too large for it to
be practical to search manually for optimal parameter values. This chapter explores automated approaches
to searching for optimal parameter values by optimizing a classifier quality measure. The chapter concludes
with a brief discussion of feature selection.

7.1 Configuration vectors

If the parameters are real values, a vector space can be defined, here referred to as the configuration space,
where each vector corresponds to a configuration, and each vector component corresponds to a parameter.
Finding an optimal configuration then corresponds to searching in this space using some measure of quality
as a guidance.

In the case of Support Vector Machines and LibSVM, the number of parameters to set depends on the
kernel and SVM formulation used. If, for example, the ε-SVR formulation is used with a cubic kernel (poly-
nomial with parameter d = 3), one needs to set C, γ, c0 and ε, all of which are continuous. However, these
parameters have different ranges. Also, it may vary what sequence of values would be worth testing. In the
case of C and γ, it has been suggested that parameter values may be tested growing exponentially [23]. For
the rest of the parameters, linearly growing parameter values have been considered in PRESVM.

Configuration vectors can be transformed to vectors in another space, here referred to as a unit space,
where values can be tested in linear increments. Any additional range restrictions can be applied when
transforming vectors back from the unit space to the configuration space. It is also useful to have the trans-
formations between the configuration space and unit space scaled, such that values in the unit space can be
tested with the same stepping in all dimensions.

7.2 Grid search

A hyper-dimensional grid can be defined in the unit space. To do this, a set of evenly spaced values Pi ⊂ R is
chosen for each parameter i. Vectors for configurations are then made by combining these values into vectors.
These configuration vectors constitute a set P = P1 × ... × Pn. If each such configuration is compared, this
forms a grid search.

One way to implement this search is to nest loops, with one loop for each parameter. In each iteration of
the innermost loop, one tests how well the classifier performs with the configuration. The best configuration
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observed so far is kept track of, and the final best observed configuration gives the found optimum. Another
way of implementing this search is to keep one count ci for each parameter i. The counter c1 is incremented
in each iteration, and when it exceeds its limit, it is reset and c2 is incremented. If c2 exceeds its limit, it
is reset and c3 is incremented, etc. The search then ends when the final parameter exceeds its limit. This
formulation of the search generalizes to a variable number of parameters, and is illustrated in Algorithm 7.

Algorithm 7 Grid search, generalized

Input:
Q(~x): Gives the quality of configuration vector ~x.
n: Number of configuration parameters.
~c(i1, ..., in): Gives a configuration vector for indices i1, ..., in.
m1, ...,mn: The maximum indices for each parameter.

i1, ..., in ← 0 . Initialize the indices.
~cbest ← 0 . Best observed configuration.
qbest ← −∞ . Quality of best observed configuration.
loop

~cc ← ~c(i1, ..., in) . Get configuration ...
qc ← Q(~cc) . ... and quality of it.
if qc > qbest then . If best observed so far, note it.

qbest ← qc
~cbest ← ~cc

end if
for x ∈ [1, n] do . Update indices.

ix ← ix + 1
if ix ≤ mx then . If it did not exceed the index maximum ...

break . ... then stop incrementing.
else

if x 6= n then . Reached the maximum, but this was not the last index ...
ix ← 0 . ... so reset it and continue incrementing.

else . Reached the maximum of the last index ...
return ~cbest . ... so return the best configuration that was found.

end if
end if

end for
end loop

A tool for grid search written in Python is included in LibSVM version 3.11, and grid search has been
recommended by the LibSVM authors [23]. An internal implementation of grid search has been made for
PRESVM.

A drawback of the grid search approach to selecting parameters is that as the number of parameters
increase, it can become computationally very expensive. For example, if there are four parameters and one
wants to check 100 values for each parameter, one needs to check 1004 = 100, 000, 000 configurations. The
LibSVM authors, however, suggest that one starts with a coarse grid, and then iteratively zoom in on the
grid around the best region found [23]. This has not been implemented in PRESVM.

7.3 Approximated gradient search

For a particular configuration, ~p = (p1, ..., pn), small changes in each parameter may affect classifier perfor-
mance. Because of this, a greedy search can be performed by treating a configuration as a moving point,



Chapter 7. Configuration optimization 42

measuring the classifier performance for small variations of the parameters, and moving towards more op-
timal configurations. Random parameter values can be selected for the starting configuration. To perform
this search, an extra axis can be added for classification error, where the configuration is attracted to points
of lower error by moving along the slope of the error surface (corresponding to gravity along the error axis).
This leads to gradient descent.

If one has a function E(~p) that gives the error when using configuration ~p, the error gradient is defined
as [22]

∇E(~p) =

(
∂E

∂p1
, ...,

∂E

∂pn

)
.

Gradient descent can then be defined by the rule [22]

~pi+1 = ~pi − η∇E(~pi),

where ~pi is the current configuration and η is a learning rate.

The formulations of Support Vector Machines are complex, and it is easier to try to estimate the gradient
than it is to derive it mathematically. The partial derivative takes the derivative with respect to the specified
variable and treats the other variables as constants. The partial derivative thus gives a tangent line for one
parameter. The tangent of a continuous function f(x) can be formally defined as [33]

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
.

Instead of using the actual derivative, the limit, an approximation may be attempted by choosing a small
value for ∆x. Doing this for every parameter pi gives an approximation of the gradient:

∇̂E(~p) =

(
E(~p+ ~v1∆p)− E(~p)

∆p
, ...,

E(~p+ ~vn∆p)− E(~p)

∆p

)
,

where ~v1 = (1, 0, ..., 0, 0) and ~vn = (0, 0, ..., 0, 1).

This is implemented in PRESVM, with the change that the gradient is approximated based on both
positive and negative parameter value changes. The reason for doing this is the assumption that a small step
in the positive direction may not have as big of an impact as a small step in the negative direction, or vice
versa.

∇̂E(~p) =

(
E(~p+ ~v1∆p)− E(~p− ~v1∆p)

2∆p
, ...,

E(~p+ ~vn∆p)− E(~p− ~vn∆p)

2∆p

)
,

Also, in PRESVM a quality measure is used instead of an error function. Thus, the update rule becomes
gradient ascent, defined as

~pi+1 = ~pi + η∇̂Q(~pi),

for quality measure Q. Additionally, given the potential for very steep approximated gradients, PRESVM
incorporates a terminal velocity to reduce speeds along the quality gradient. This is illustrated in Algorithm 8.

There are multiple drawbacks to this approach. First, the approach to estimating the gradient uses a
specified ∆p, and the approach is not guaranteed to give the correct tangents based on ∆p. Second, a quality
measure used should be differentiable. Measures such as Accuracy and AUC(x) can still be used if ∆p is
large enough to significantly affect scores for incorrectly classified instances, but otherwise it is possible that
these measures will not be affected by the parameter changes. Third, the search is greedy, and the randomly
selected starting point may largely influence how good the optimum found is, depending on whether or not
there are local optima. Fourth, it may require many training cycles due to the approach to estimation.
However, if the used performance measure is continuous, small changes in parameters have a positive effect
on classification performance and the starting point is in proximity of the global optimum, this procedure
enables fine tuning of these parameters.
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Algorithm 8 Approximated gradient search

Input:
Q(~x): Gives the quality of configuration vector ~x.
n: Number of configuration parameters.
~r(): Gives a random vector of dimensionality n.
∆p: A small increment to use for tangent approximation.
∆(i): Gives a vector in n dimensions with component i equal to ∆p, and all others as zero.
l: Number of iterations to run.
η: Learning rate.
vterminal: Terminal velocity for gradient approximation.

~c← ~r()

∇̂Q = (Q̂1, ..., Q̂n) . Gradient approximation
~cbest ← 0 . Best observed configuration.
qbest ← −∞ . Quality of best observed configuration.
for i ∈ [1, l] do

for x ∈ [1, n] do . Find gradient approximation components

∇̂Qx ← ηQ(~c+∆(x))−Q(~c−∆(x))
2∆p

end for
if |∇̂Q| > vterminal then . Restrict velocity.

∇̂Q← ∇̂Q ∗ vterminal
|∇̂Q|

end if
~c← ~c+ ∇̂Q
q ← Q(~c)
if q > qbest then

qbest ← q
~cbest ← ~c

end if
end for
return ~cbest
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7.4 Particle Swarm Optimization

Another way to optimize parameters is to treat multiple parameters as moving vectors. The technique of
Particle Swarm Optimization (PSO) [34] uses a set of m points (”particles”) ~p1, ..., ~pm starting at random

positions, each with an initially random velocity ∆~pi and best observed position ~Pi (i.e. the observed position

of the particle ~pi where the measured quality was largest). The overall best observed position ~P∀ is also kept
track of.

In each iteration, the velocity of each vector is updated according to the rule [34]

∆pjid = ∆pj−1
id + c1r1

(
P j−1
i − pj−1

id

)
+ c2r2

(
P j−1
i∀ − pj−1

id

)
,

where i denotes the particle index, d denotes the vector component and j denotes the iteration. c1 determines
the attraction towards an earlier observed optimum by the particle, called the cognition learning rate [34].
c2 determines the attraction towards the globally observed optimum, called the social learning rate [34]. r1

and r2 are randomly generated, real values from 0 to 1, and these values are generated anew in each iteration
and for each component.

The vector update rule is given by [34]

~pj+1
i = ~pji + ∆~pi

where i denotes the particle index and j denotes the iteration.

This method has been reported to give favourable classification accuracy [34] and has been implemented
in PRESVM (see Algorithm 9). The randomization can be expected to lead to variable results, and it may
not be obvious what parameter values of the method will lead to the best results. However, given randomized
initial particle positions and velocities, it is possible that the particles will spread across the search space
and test a large range of parameter values. Also, only one quality measurement is needed for each particle
in each iteration.

7.5 Feature selection

There may be many potential features to use, and it may not be obvious which features will be relevant for a
given prediction task. Using many potentially redundant features may be problematic, increasing the com-
putational cost without a return in classification accuracy. There is also a possibility that using redundant
features adversely affects the quality of the resulting classifier. Feature selection uses a base set of features,
and tries to determine a subset of relevant features for the prediction task.

As with searching for parameters, features may be selected by various methods. One approach is to
consider a boolean vector, where each component corresponds to whether or not a feature is used. A greedy
search might iteratively try to add one feature at a time, choosing the best combination found. This can be
time consuming, and it could reach a locally optimal solution. Also, if this is based on measuring classification
quality, SVM parameters will need to be selected prior to feature selection or in each iteration.

Alternatively, feature selection can be incorporated into the search for optimal SVM parameters. Feature
selection combined with SVM parameter search has been attempted for Particle Swarm Optimization, where
favourable results were reported [34]. This has not been implemented in PRESVM.

Alternatively, only the feature values may be considered when choosing a feature set. Minimum Redun-
dancy, Maximum Relevance (mRMR) feature selection uses information theoretical properties of the feature
values to select an optimal feature set of a requested size. This approach to feature selection has been com-
bined with Support Vector Machines and bioinformatics, albeit in a different field, but with favourable results
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Algorithm 9 Particle Swarm Optimization

Input:
d: Dimensionality of the configuration space.
n: Number of iterations the Particle Swarm Optimization should run.
m: The number of particles.
Q(~c): Gives the quality of configuration ~c.
~r(): Gives a random vector of dimensionality d with value ranges [0, 1]. Each call to ~r() gives a new random
vector.
~a ∗~b: Makes a vector with components being products of the components of ~a with those of ~b.
c1: Cognition learning rate.
c2: Social learning rate.

~p1, ..., ~pm . Particle positions
∆~p1, ...,∆~pm . Particle velocities
~P1, ..., ~Pm . Best observed positions for the particles
Q1, ..., Qm . Quality of the best observed particle positions
~P∀ . Best observed position overall
Q∀ = −∞ . Quality of best observed position overall
for all j ∈ [1,m] do . Initialize particles

~pj ← (~r()− ~r()) ∗ 8
∆~pj ← ~r()− ~r()
~Pj ← ~pj
Qj ← Q(~Pj)
if Qj > Q∀ then

Q∀ ← Qj
~P∀ ← ~Pj

end if
end for
for all i ∈ [1, n] do . Run through cycles

for all j ∈ [1,m] do . Update particles

∆~pj ← ∆~pj + c1~r() ∗ (~Pj − ~pj) + c2~r() ∗ (~P∀ − ~pj) . Update velocity
~pj ← ~pj + ∆~pj . Move the particle
q ← Q(~pj) . Measure quality
if q > Qj then . Update best observed position for the particle

Qj ← q
~Pj ← ~pj
if q > Q∀ then . Update best overall observed position

Q∀ ← q
~P∀ ← ~Pj

end if
end if

end for
end for
return ~P∀
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[30]. mRMR feature selection is supported in PRESVM.
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Chapter 8

Validation of Polycomb/Trithorax
Response Element predictions

After having predicted PREs genome-wide, it is desirable to get an idea of how good the predictions are. To
this end, a dedicated software application has been implemented, called PREsent. This will be discussed in
this chapter.

After threshold calibration, PRESVM outputs a table of an approximated score E-value distribution.
During genome-wide prediction, PRESVM outputs a score profile and predicted PRE coordinates for each
chromosome. An approximated E-value distribution, score profiles and predicted PRE coordinates can also
be output by jPREdictor, enabling comparisons. For investigating the quality of predictions, it makes sense
to compare them with experimental data from genome-wide studies. Experimental data investigated in the
work with this thesis takes three forms: 1) Experimentally determined PREs, 2) PcG target genes and 3)
score profiles and PcG/TrxG protein and histone methylation enrichment profiles.

8.1 Validating predicted PRE regions

For comparing predicted PREs with experimentally determined regions, their overlaps can be considered. If
lengths of experimentally determined regions and predictions vary, considering the size in base pairs of each
overlap could bias measurements, and so it seems reasonable to only consider if there is any or no overlap
between each pair of regions. Confusion matrix values can then be defined in terms of the overlaps.

Definition 60 (Genomic region) For a genome sequence G, a chromosome will be taken to be a sequence
C ∈ Snt, such that C : A...B refers to a region in C from A up to and including B.

Definition 61 (Region overlap function) For regions r1 = C1 : A1...B1 and r2 = C2 : A2...B2, o(r1, r2)
denotes the overlap function. It is equal to 1 when r1 and r2 overlap, or 0 otherwise.

o(r1, r2) =

{
0 ifC1 6= C2 ∨B1 < A2 ∨B2 < A1

1 otherwise

Consider two sets of regions, R1 and R2. Sensitivity is defined as TP/P , where P is the total number
of positives and TP the portion of these that are predicted as positives. Taking R1 as a set of predictions
and R2 as a set of positives, it makes sense to take P = |R2| as the number of positives, and TP to be the
number of regions in R2 that overlap with one or more regions in R1 (the maximum Sensitivity should be 1).
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Figure 8.1: Illustration of the gene set overlaps for constructing a confusion matrix. G is the set of all
annotated genes, G⊕ is the set of validation genes and Gĉ is the set of predicted target genes. TP , TN , FP
and FN are confusion matrix values.

Definition 62 (Region Set Sensitivity) For sets R1 = {Ci : Ai...Bi} and R2 = {Cj : Aj ...Bj} of regions,
the sensitivity of R1 to R2 is defined as

Sensitivity(R1, R2) =
|{r2|r1 ∈ R1 ∧ r2 ∈ R2 ∧ o(r1, r2) = 1}|

|R2|
.

Similarly, PPV = TP/(TP+FP ) = TP/P ′, where P ′ is the number of predictions. For a set of predicted
regions R1, and a set of positive regions R2, it thus makes sense to let P ′ = |R1| and to let TP be the number
of regions in R1 that overlap with regions in R2 (because the maximum PPV should be 1).

Definition 63 (Region Set Positive Predictive Value) For sets R1 = {Ci : Ai...Bi} and R2 = {Cj :
Aj ...Bj} of regions, the Positive Predictive Value of R1 to R2 is defined as

PPV (R1, R2) =
|{r1|r1 ∈ R1 ∧ r2 ∈ R2 ∧ o(r1, r2) = 1}|

|R1|

The number of regions from one set that overlap with regions in another set is used to define TP , and the
roles of the sets are opposite for Region Set Sensitivity and Region Set Positive Predictive Value, leading to
two definitions of TP due to the potential of multiple overlaps with single regions. Having defined Sensitivity
and PPV for sets of regions, which use TP , FP and FN (albeit here with two definitions of TP ), what
is missing to form a confusion matrix is TN . Although TN could be defined as all possible regions in the
genome that neither overlap with predictions nor with positives, different potential lengths of regions would
likely make this number difficult to calculate and too large to be informative.

However, performance measurements may still be made without defining TN . Given that thresholds of
considered classifiers have been calibrated for the same E-value, the relative differences in Sensitivity and
PPV should still be informative. Given that Sensitivity and PPV have been defined, the F1 measure can
be calculated and Precision/Recall curves can be constructed.

8.2 Predicting and validating PcG target genes

For the experimental data sets considered in this thesis, PcG target genes have been given [12, 14, 15]. If
all annotated genes are taken to be in a set G, the genes for a given validation set can be collected in a
subset G⊕ ⊂ G. If, furthermore, PcG target genes are predicted from predicted PREs and collected in a set
Gĉ ⊂ G, the sets can be used to construct a confusion matrix: TP = |G⊕ ∩ Gĉ|, FP = |(G − G⊕) ∩ Gĉ|,
FN = |G⊕ ∩ (G−Gĉ)| and TN = |(G−G⊕) ∩ (G−Gĉ)|. This is illustrated in Figure 8.1.

It is not obvious how PcG target genes should be predicted based on predicted PREs. There are, however,
approaches that may be attempted. One way to predict target genes is to predict the closest annotated gene
to each predicted PRE. This approach has been used by Ringrose et al., although they note that they cannot
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be sure that the predicted target genes are regulated by the corresponding predicted PREs [1].

An alternative approach is to predict target genes in both directions from a predicted PRE. This approach
has been used by Zeng et al. [2], with the additional condition that the second closest gene should be within
4kb from the predicted PRE to be predicted as a target gene. In this thesis, the latter approach will be used
for predicting target genes.

8.3 PREsent

For comparing predictions and experimental data, a software application called PREsent has been imple-
mented. The goal when designing PREsent was for it to be able to compare multiple classifier runs with
multiple experimental data sets, and to output informative statistics. The output should also be in a format
that is easy to use. PREsent takes the following arguments: 1) classifier run XML-profiles (such as output
by PRESVM), 2) genomic validation regions in GFF format (such as experimentally determined PREs), lists
of validation genes and Wiggle format profiles.

The tasks of PREsent can be summarized as follows:

• Load classifier profiles and associated files (predicted regions, score profiles and score E-value table).

• Output information about the configuration of each classifier run compared.

• Output classifier validation statistics and curves based on the profiles.

• Compare classifier score profiles and any validation profiles.

• Compare predicted regions with validation regions

– at the threshold used,

– at thresholds varied over the genome-wide score range, and

– at thresholds corresponding to different E-values.

• Predict target genes from predicted regions and compare these with validation genes

– at the threshold used,

– at thresholds varied over the genome-wide score range, and

– at thresholds corresponding to different E-values.

• Compile report.

8.4 Genome-wide validation plots

For visualizing the performance of multiple classifiers, validation plots can be useful. For a score profile S,
a set of validation regions V and a threshold t, regions can be predicted based on the threshold, and the
Sensitivity, PPV and F1-measure can be calculated. One way to visualize prediction results then is to
construct a histogram for each measure, lining up classifiers for different validation data sets. This is useful,
as having relative differences in the measures visualized with a common scale makes it easier to see the overall
outcome. Venn-diagrams can also be constructed, which can be helpful as they will show both the relative
set sizes and the size of the overlap.

If t is varied over the score range in S, a Precision/Recall curve can be constructed. Doing this for mul-
tiple classifier score profiles against the same set of validation regions, the performance of multiple classifiers
can be compared. Alternatively, the threshold t can be varied over the scores in the E-value table for the
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classifier, and approximated E-values can thus be plotted against the Sensitivity and PPV .

The same types of plots can be made for target gene predictions. However, as TN can be defined for
genes, ROC curves can also be constructed. For the ROC and PR plots, it makes sense to find the predicted
genomic regions for different thresholds, and predict target genes for each of these sets of regions, such that
complete ROC and PR plots can be constructed.

Additionally, it can be interesting to investigate how the scores of one classifier relate to the scores of
another classifier, or to ChIP enrichment profiles. For a pair of profiles a and b, one way to do this is to
get the ranges over a and b, and to divide each range into buckets. This, in turn, enables the construction
of a grid, where for each window in a and an overlapping window in b, a count is added to the grid point
corresponding to their profile value combination. The final grid is normalized to have some desired range
and is visualized by drawing blocks with colour intensities indicating values. In case there are extreme profile
values, it can be useful to first transform the profile values.

8.5 Comparing against multiple data sets

There are multiple types of validation data that are considered in this thesis, and multiple data sets. If
classifiers ĉ1, ..., ĉn are compared, and a classifier ĉi clearly dominates in all cases, then it makes sense to
assume that ĉi is superior. Typically, however, results are less clear cut. Some classifiers may perform better
on some data sets and worse on others, making the interpretation of results more difficult.

To get an overall Sensitivity against multiple validation data sets, it can make sense to consider the
consensus between the considered data sets. If there is a set of elements that all data sets agree on, these
elements may correspond to strong examples, and it would thus be desirable to predict these. If the consensus
of all the considered data sets is empty, another possibility is to find the consensus between pairs of data
sets and take the union of these. A set of paired consensus will also consist of elements agreed upon by more
than one data set, and these elements could also represent strong examples.

For an overall PPV against multiple validation data sets, it can be taken over the union of the considered
data sets. The PPV indicates how many of the positive predictions correspond to validation data elements,
and if more of the positive predictions agree with at least some validation data set, that may indicate better
classification performance.

It may be that these overall Sensitivity and PPV values already are informative enough. Otherwise, to
get an overall score for a classifier, one possibility is to calculate an F -score based on these overall sensitivities
and Positive Predictive Values.

There is a potential issue with interpreting predictions that do not overlap with any regions in the exper-
imental data sets. Experimental data from multiple genome-wide studies is used for evaluation in this thesis.
It is possible that these studies have covered a large portion of the actual Polycomb/Trithorax Response El-
ements in the Drosophila melanogaster genome. However, there may also be many PREs that have not been
covered by these studies. It seems safest to consider how well a classifier predicts experimentally determined
PREs, and to take this as an indication of how good any novel predictions may be. Ideally, novel predictions
of the best classifier found should be tested experimentally at a later point in time.



Chapter 9. Results 51

Chapter 9

Results

There are many possible configurations for PRESVM. Focus was on a subset of configurations that seemed
reasonable. In this chapter, the results obtained will be presented and discussed.

9.1 Tests of PRESVM configurations

There are many potential configurations that could be investigated, resulting from selecting different SVM
formulations, kernels, feature sets, parameter optimization methods and quality measurements used during
parameter optimization. Some of these also have different parameters that could be varied. There are also
different sets of motifs that could be used, and also potential different training sets. Due to the number of
possibilities, it makes sense to find a reasonable base configuration to start from, and based on this investigate
variations.

The training data used by Ringrose et al. [1] is based on known PREs, and it makes sense to start the
investigation using this training set. It also makes sense to start the investigation using their set of mo-
tifs. The Particle Swarm Optimization method can investigate many different configurations as the particles
spread over the search space. For the SVM formulation, the ε-Support Vector Regression formulation does
not restrict the range of output values, and only requires two parameters in addition to the kernel parameters.
Feature values should be scaled to be in the same range.

An issue is measuring the quality for parameter optimization. The training set is small, consisting of
12 PRE sequences and 16 non-PRE sequences, so there is a risk of over-fitting. Balanced cross-validation
can be used when measuring quality during optimization to reduce this risk. For the quality measure, the
Area Under the Curve would be affected by the small size of the training set, and smaller changes in quality
may probably not be captured. Thus, it may be better to use a continuous measure, so instead the Pearson
Correlation Coefficient was used. The chosen base configuration is summarized in Table 9.1.

This base configuration was tested both with the nOcc feature set and nPair feature set. For sampling of
the training data to construct training vectors, three methods were attempted: 1) using the full sequences,
normalizing frequencies according to sequence length, 2) sampling windows from the training sequences with
a step size of 250bp (so as to keep the number of training vectors manageable) and 3) sampling windows
from the negative training sequences with a step size of 250bp, and sampling the windows with the highest
number of motif occurrences from the positive training sequences. Note that 3) is similar to the approach
used by Zeng et al. [2], but here it was tested also with the nPair feature set.

For deciding the outcome of these tests, a separate quality measurement needs to be made. The training
data is fairly small, so instead of cross-validating the whole procedure to measure the overall quality of each
run, a separate validation set was used. For the positive validation set, 60 intergenic regions overlapping with
windows with at least 10 occurrences of the motifs considered were randomly selected from the Enderle et al.
[15] data. For the negative validation set, 60 sequences of length 10kb were randomly generated based on the
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Random number generator seed: 123456.
Training set: The same as used by Ringrose et al. [1] with

the PREdictor.
Motif set: The same as used by Ringrose et al. [1] with

the PREdictor.
Window size: 500bp.
Window step size: 10bp.
Feature value scaling: To the interval [−1, 1].
SVM formulation: ε-Support Vector Regression.
Parameter optimization method: Particle Swarm Optimization, with c1 = c2 = 0.5,

100 iterations
and using 7 particles.

Parameter optimization quality measure: Pearson Correlation Coefficient based on 5-fold
balanced cross-validation with two repeats.

Table 9.1: Base configuration used when testing different kernels.

nucleotide distribution of the Drosophila melanogaster genome. This validation set should give an indication
of how well the classifier distinguishes the positive regions from noise. It is also useful to consider how well
the classifier has learned to generalize to the training data, so the Area Under the Curve over a final training
data cross-validation was also considered.

Sampling mode Kernel CVB5x10 AUC(1.0) VR AUC(1.0) C
Full Linear 0.866818 0.629722 745.271

Quadratic 0.842045 0.584444 0.742821
Cubic 0.835341 0.428889 0.387655
RBF 0.844261 0.449028 1.41842

Windows Linear 0.795341 0.417917 1.44569
Quadratic 0.757528 0.0666667 0.866076
Cubic 0.876847 0.540556 6.76265
RBF 0.861989 0.361944 2.72602

Max. motifs/Windows Linear 0.882812 0.570417 448.023
Quadratic 0.912727 0.487917 0.552703
Cubic 0.926534 0.54375 0.471798
RBF 0.902443 0.486806 1.55038

Table 9.2: Tests of the nOcc feature set with different kernels and different approaches to sampling training
sequence regions to construct training vectors. Full means the full training sequences were used to construct
the training vectors, with normalization by sequence length. Windows means that windows were sampled
from the training sequences with a step size of 250bp. Max. motifs/Windows means that for the positive
training sequences the windows with the maximum number of motif occurrences were used, and for the
negative training sequences windows were sampled with a step size of 250bp. CVB5x10 AUC(1.0) is the
Area Under the Curve on the training data based on 5-fold cross-validation of training, with 10 repeats. VR
AUC(1.0) is the Area Under the Curve against the validation data. The maximum value for each quality
measure for each sampling mode is underlined. The cost parameter C is also shown.

The results of using the nOcc feature set are summarized in Table 9.2. The Area Under the Curve values
for the validation set are generally low. It may be that the chosen positive examples are hard to learn to
distinguish from noise when training on the used training sequences. The cost parameter C is largest when
using linear kernels in two sampling modes, which may be due to difficulties with fitting a linear decision sur-
face. It seems possible that a good parameter combination is not found by Particle Swarm Optimization and
cross-validated correlation, given the modest size of the training set. When considering the measurements
for moderate values of C, the combination of a cubic kernel and training with the positive sequence windows
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with the highest number of motif occurrences gives the best Area Under the Curve values.

Sampling mode Kernel CVB5x10 AUC(1.0) VR AUC(1.0) C
Full Linear 0.935 0.590278 0.0348511

Quadratic 0.939034 0.569444 4.43325
Cubic 0.941705 0.573611 1.3227
RBF 0.943295 0.571111 17.9308

Windows Linear 0.914545 0.589167 2.30119
Quadratic 0.878182 0.465278 2.02631
Cubic 0.895568 0.474722 5.57897
RBF 0.876591 0.478056 69.9747

Max. motifs/Windows Linear 0.891477 0.600556 1.00347
Quadratic 0.93608 0.481111 0.00190558
Cubic 0.929943 0.486111 1.60879
RBF 0.938239 0.4875 1.80039

Table 9.3: Tests of the nPair feature set with different kernels and different approaches to sampling training
sequence regions to construct training vectors. The cutoff distance was set to 220bp. The meaning of the
names are the same as in Table 9.2.

The results of using the nPair feature set are summarized in Table 9.3. This feature set gives better
separation of the training data, but validation Area Under the Curve values are still low. However, the C
values are moderate. The use of a linear kernel gives the highest Area Under the Curve values for the vali-
dation set. This may indicate that the use of non-linear kernels with the nPair feature set will not improve
classification when training with the training data used, or that optimal SVM parameter values are not found
for the non-linear kernels.

Considering that the number of features in the nPair feature set with 7 motifs is already equal to the
number of training sequences (28), and since it seems that using a linear kernel with the nPair feature set
gives the best separation of the validation set, it does not seem reasonable to extend the number of features
with this training set.

Assuming that the original training data is too small to both search for optimal parameter values and to
generalize, it is interesting to try using a new, larger training set. For the positive training examples, 60 new
intergenic, motif-enriched regions were randomly selected from the Enderle et al. [15] data (not overlapping
with the ones selected for validation). For the negative training examples, 60 motif-enriched, intergenic re-
gions were randomly selected. Also, ideally, the classifier should learn to separate the original training data
without it being used for training, so the Area Under the Curve against the original training data was also
considered. Results of tests training with this data are summarized in Tables 9.4 and 9.5. Here, other feature
sets were also tested.

Interestingly, when using this larger training set and the nOcc or nPair feature sets, the non-linear
kernels give better separation than the linear kernels both of the validation sequences and of the original
training data. The nPair feature set separates the larger training data more poorly than the nOcc feature
set does, even when the nOcc feature set has a linear kernel. However, the nPair feature set separates
the validation set and original training data better. This may indicate that non-linear kernels improve the
generalization to unobserved instances for both of these feature sets when the training set is sufficiently large.

9.2 Genome-wide prediction with PRESVM

The aim of the PREdictor and of PRESVM is to predict PREs genome-wide. Focus was on training with
the original PREdictor training data and on the nOcc and nPair feature sets.
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Figure 9.1: Snapshot from the Integrated Genome Browser [31] of the score profile curves of the two nPair
runs on chromosome 3R. Full means that the classifier was trained using the full training sequences with
normalization by length. Max. motifs/Windows means that for the positive training sequences the windows
with the largest number of motif occurrences was used, and for the negative training sequences windows were
samples with a step size of 250bp. There seem to be cleaner peaks for the Max. motifs/Windows run.

For the nOcc feature set, PRESVM was trained with a cubic kernel, using the positive training sequence
windows with the highest number of motif occurrences for constructing the positive training vectors, and
windows sampled with a step size of 250bp from the negative training sequences (i.e. the second to last
configuration in Table 9.2).

For the nPair feature set, two configurations were tested. For both configurations, a linear kernel was
used. For the first configuration, the whole training sequences were used with length normalization. For the
second configuration, the positive training sequence windows with the highest number of motif occurrences
were used, and negative training sequence windows were sampled with a step size of 250bp.

For all three configurations, the classifier threshold was calibrated for an E-value of 1, based on a ran-
domly generated sequence 100 times the size of the Drosophila melanogaster genome, based on its nucleotide
distribution. The results are summarized in Table 9.6. There is a large difference in the number of predictions
made using each configuration. In the study by Ringrose et al. [1], the PREdictor predicted 167 candidate
PREs genome-wide. For the comparison here, jPREdictor was trained again, using a step size of 10bp, which
resulted in the prediction of 179 candidate PREs. As the use of a linear kernel and the nPair feature set
should be similar to the PREdictor, the larger number of predictions compared to the PREdictor is likely
due to the way the decision surface of the Support Vector Machine was constructed.

With the nPair feature set, when sampling the positive training sequence windows with the highest num-
ber of motif occurrences and negative training sequence windows with a step size of 250bp, PRESVM makes
a much larger number of predictions than when training using the full sequences with length normalization.
Three potential explanations for this are: 1) important features of some training sequences are normalized
away when training using the full sequences and length normalization, due to different sequence lengths; 2)
as multiple windows are sampled from the negative training sequences in the last approach listed, the clas-
sifier becomes more selective, which impacts predictions made in the randomly generated sequence during
threshold calibration; 3) parameter optimization is noisy, and the difference in the number of predictions is
caused by this.

The score curves for the nPair runs are shown in Figure 9.1 for chromosome 3R, visualized with the In-
tegrated Genome Browser [31]. The peaks seem to be cleaner when having trained with the positive training
sequence windows with the maximum number of motif occurrences and negative training sequence windows
with a step size of 250bp. Thus, it appears that the classifier trained with this configuration is more specific.
This also agrees with the higher VR AUC(1.0) for this run, as seen in Table 9.6.

The PRESVM predictions made in the Max. motifs/Windows nPair run were compared with the predic-
tions made by the jPREdictor, as well as experimental data. The experimentally determined sets of regions
considered are listed in Table 9.7. As is seen in Figure 9.2(a), the regions predicted by PRESVM overlap
with slightly fewer than half of the regions predicted by jPREdictor. Figures 9.2(c) and 9.2(d) show that
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Figure 9.2: 9.2(a): Venn diagram illustrating the number of predictions of and overlap between predictions
made by jPREdictor and PRESVM at an E-value of 1. 9.2(b): Numbers of predictions versus E-values. In
each plot, the solid line corresponds to PRESVM and the dotted line corresponds to jPREdictor. 9.2(c):
Sensitivities against the consensus regions of the considered data sets for different E-values. 9.2(d): Positive
Predictive Values against the merged regions of the considered data sets for different E-values.
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Oktaba et al. [12]
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Figure 9.3: Sensitivities against the considered sets of experimentally determined regions. In each plot, the
solid line corresponds to PRESVM and the dotted line corresponds to jPREdictor. 9.3(a): Schwartz et al.
[14] regions. 9.3(b): Enderle et al. [15] regions. 9.3(c): Oktaba et al. [12] regions.
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Figure 9.4: Histograms of Sensitivities and Positive Predictive Values for regions predicted by PRESVM
(black bars) and jPREdictor (grey bars) at an E-value of 1. The considered experimentally determined
regions are separated by whether or not they overlap with promoter regions, denoted Promoter and Non-
promoter respectively. Promoter regions were defined as the Transcription Start Site (TSS) of annotated
genes -2kb/+0.5kb.
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PRESVM predicts only few additional regions that overlap with the consensus regions, and the Positive
Predictive Values for the merged regions are similar, but slightly lower for PRESVM, indicating that the ten-
dency to predict regions overlapping with the sets of experimentally determined regions considered is similar.
Figure 9.3 shows the Sensitivities of PRESVM and jPREdictor against the considered sets of experimentally
determined regions. The Sensitivities and Positive Predictive Values for an E-value of 1 are summarized in
Figure 9.4.

Target genes may be predicted from predicted regions. The results of predicting target genes from pre-
dicted regions were investigated. An overview of the results is given in Figure 9.5. PRESVM is more sensitive
to the gene intersection, but has a lower PPV than jPREdictor against the union of target genes.

Combined F1-scores were calculated for PRESVM and jPREdictor. These are based on the sensitivities
against consensus regions and PPV against merged regions for bands, and sensitivities against the intersection
and PPV against the union for genes. The combined F1-scores are listed in Table 9.9.

9.3 Comparison with the jPREdictor

The PRESVM configuration for which genome-wide prediction was investigated used a linear kernel and the
nPair feature set. Thus, the trained classifier may be compared with jPREdictor in terms of the support
vectors.

To find weights for motif pairs based on a PRESVM classifier trained with the nPair feature set and a
linear kernel, the reformulation of the decision function into a weighted sum described earlier can be used.

ĉ(~x) =

l∑
i=1

(cik(~yi, s(~x)))− ρ

=
∑
j

wjxj + d

where

wj =

l∑
i=1

rjciyi,j

and

d =
∑
j

(
l∑
i=1

(rjciyi,j) qj

)
− ρ.

where the ~yi are support vectors, and the ci are coefficients. xj denotes the j’th component of ~x, and yi,j
denotes the j’th component of ~yi. qi is the shifting of feature i and ri is the scaling factor.

The weights for the PRESVM classifier used for genome-wide prediction were calculated. These weights,
as well as the weights assigned by jPREdictor to motif pairs are listed in Table 9.10. Whereas jPREdictor
assigns negative weights to three motif pairs, PRESVM assigns negative weights to 11 pairs. Two of the
pairs are assigned the weight 0 by PRESVM.

9.4 Interpretations of results

When using the original PREdictor [1] training data, the nOcc feature set seems to benefit from a non-linear
kernel, but not the nPair feature set, which might be due to the modest size of the training set. When using
a larger training set, where the positive training examples are based on ChIP data, both of these feature sets
seem to benefit from non-linear kernels, as summarized in Table 9.4.
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Figure 9.5: 9.5(a): Venn diagram illustrating the number of target gene predictions based on regions
predicted by PRESVM and jPREdictor at an E-value of 1 and their overlap. 9.5(b): Numbers of predicted
target genes versus E-values. The solid line corresponds to PRESVM and the dotted line corresponds to
jPREdictor. 9.5(c): Sensitivities against the intersection of the considered target gene sets for different
E-values. 9.5(d): Positive Predictive Values against the union of the considered target gene sets for different
E-values.
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Figure 9.6: Histograms of Sensitivities and Positive Predictive Values for target genes predicted based on
PRESVM (black bars) and jPREdictor (grey bars) predicted regions at an E-value of 1.
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As for the other feature sets that have been considered in this thesis, considering the results summarized
in Table 9.4, some feature sets show promising results. For example nPair+MDP and nOccPair give good
Area Under the Curve values for some kernels. For the periodic motif occurrence frequency feature sets,
results are not as impressive. This could be due to periodic occurrence of these motifs not being predictive
of PREs, that the considered phases are not optimal, or that perhaps other frequencies would have been
more predictive. As focus was kept on the original PREdictor [1] training set, the new feature sets were not
considered for genome-wide runs.

Regarding the genome-wide PRESVM run that was investigated, when training PRESVM with the orig-
inal PREdictor training data [1], a linear kernel, sampling the positive training sequence windows with the
highest numbers of motif occurrences, and negative training sequence windows with a step size of 250bp,
also calibrating the threshold for an E-value of 1, 1275 regions were predicted as candidate PREs. This is
1275
179 ≈ 7.2 times as many predictions as were made by jPREdictor for a similar configuration. However,

the sensitivities against the validation region consensus and Positive Predictive Values against the merged
validation regions were similar. The sensitivities against the validation region sets were generally higher for
PRESVM. This could indicate that the way the SVM assigns weights to the features, when sampling the
training data in this way, enables increased sensitivities overall, while not making it much less specific. It
should be noted that the largest increase in sensitivity for PRESVM was seen on the Enderle et al. [15]
regions, and this set is much larger than the other considered data sets. Also, the combined F1 scores (see
Table 9.9) are sufficiently similar that it is difficult to conclude that one classifier is superior.
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CVB5x10 VR VO
Feature set Kernel AUC(1.0) AUC(1.0) AUC(1.0) C
nOcc Linear 0.699383 0.424583 0.666667 2.19978

Quadratic 0.701031 0.505417 0.677083 3.21686
Cubic 0.700833 0.479583 0.6875 13.7148
RBF 0.701911 0.492083 0.666667 0.300478

nPair Linear 0.656664 0.659722 0.713542 0.0133011
Quadratic 0.653158 0.672917 0.822917 4.53643
Cubic 0.598004 0.394028 0.697917 1.56859
RBF 0.658914 0.595139 0.776042 0.264751

PEDI Linear 0.666081 0.624167 0.677083 0.010201
Quadratic 0.655475 0.644167 0.666667 40.5446
Cubic 0.664117 0.528889 0.708333 0.409522
RBF 0.67605 0.597222 0.708333 0.203865

nPairDH Linear 0.655236 0.728611 0.677083 1e-05
Quadratic 0.655694 0.586667 0.742188 0.145617
Cubic 0.666103 0.576111 0.723958 0.000388748
RBF 0.652753 0.581667 0.752604 0.249097

nOcc+MDP Linear 0.717572 0.466667 0.723958 0.0274017
Quadratic 0.724003 0.561667 0.765625 6.06882
Cubic 0.720178 0.475556 0.739583 1.93316
RBF 0.729153 0.551667 0.729167 0.0520131

nPair +MDP Linear 0.705578 0.669167 0.78125 0.00605001
Quadratic 0.697669 0.690556 0.796875 1.25972
Cubic 0.695842 0.704722 0.802083 2.34015
RBF 0.711331 0.525278 0.75 0.123289

nOccPair Linear 0.675633 0.748333 0.8125 0.0293423
Quadratic 0.687433 0.654722 0.65625 2.21382
Cubic 0.675711 0.745556 0.8125 5.7479
RBF 0.692388 0.186528 0.570312 8.59597

nPairCosi (mRMR 30) Linear 0.568675 0.684167 0.799479 2.83436
Quadratic 0.622078 0.703611 0.609375 56.8753
Cubic 0.622017 0.703889 0.609375 7.70055
RBF 0.675086 0.613889 0.643229 0.254287

nPair2D Linear 0.521264 0.315833 0.869792 4.87805
Quadratic 0.581803 0.290278 0.84375 0.316633
Cubic 0.575117 0.409444 0.78125 2.34948
RBF 0.582686 0.287778 0.770833 1.94428

Table 9.4: Test results of using different feature sets and kernels while training on ChIP-based positive regions
and general motif-enriched negative regions. Most values mean the same as in Table 9.2. VO AUC(1.0) is
the Area Under the Curve for the original PREdictor [1] training data. In all cases, training was done using
the full sequences with length normalization.
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CVB5x10 VR VO
Feature set Kernel AUC(1.0) AUC(1.0) AUC(1.0) C
nOcc Linear 0.604608 0.691944 0.75 0.507584

Quadratic 0.468426 0.145972 0.934896 262.477
Cubic 0.617692 0.704722 0.84375 169.529
RBF 0.578867 0.188611 0.731771 3.5352

nPair Linear 0.585178 0.695694 0.776042 0.142415
Quadratic 0.614217 0.220556 0.760417 0.0304963
Cubic 0.555761 0.3875 0.78125 1.43644
RBF 0.587881 0.408056 0.802083 0.846935

PEDI Linear 0.554475 0.622222 0.791667 0.580142
Quadratic 0.618903 0.665833 0.890625 0.0191771
Cubic 0.582611 0.764167 0.822917 3.10135
RBF 0.577194 0.769444 0.807292 0.453361

nPairDH Linear 0.574644 0.484722 0.807292 1.86601
Quadratic 0.587886 0.528333 0.8125 1.45742
Cubic 0.573561 0.401389 0.817708 0.437373
RBF 0.580014 0.463056 0.885417 0.040138

nOcc+MDP Linear 0.625939 0.370278 0.739583 0.151875
Quadratic 0.610614 0.373889 0.776042 2.0951
Cubic 0.691667 0.462778 0.942708 2.62215
RBF 0.621406 0.255972 0.817708 0.296532

nPair +MDP Linear 0.625928 0.309444 0.802083 0.639738
Quadratic 0.61545 0.289444 0.880208 0.796035
Cubic 0.695517 0.482361 0.901042 0.129159
RBF 0.634572 0.221806 0.760417 1.72311

nOccPair Linear 0.652858 0.567778 0.869792 2.67249
Quadratic 0.656928 0.584722 0.901042 0.459459
Cubic 0.648886 0.556667 0.880208 48.7238
RBF 0.655014 0.5875 0.854167 4.14149

nPairCosi (mRMR 30) Linear 0.563488 0.495 0.927083 3.27594
Quadratic 0.393911 0.649167 0.880208 1.00529
Cubic 0.586544 0.534722 0.921875 1.06533
RBF 0.61786 0.504167 0.947917 1.18963

nPair2D Linear 0.471525 0.506667 0.755208 0.191621
Quadratic 0.508333 0.439167 0.65625 1.52428
Cubic 0.548936 0.445278 0.828125 0.0584171
RBF 0.522369 0.424444 0.645833 0.280761

Table 9.5: Test results of using different feature sets and kernels while training on ChIP-based positive regions
and general motif-enriched negative regions. Most values mean the same as in Table 9.2. VO AUC(1.0) is
the Area Under the Curve for the original PREdictor [1] training data. In all cases, training was done using
the the positive training sequence windows with the largest number of motif occurrences and windows from
the negative training sequences sampled with a step size of 250bp.
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CVB5x10 VR
Feature set Sampling mode Kernel AUC(1.0) AUC(1.0) Train TP Predictions
nOcc Max. motifs/Windows Cubic 0.921932 0.54375 1 209
nPair Full Linear 0.939602 0.590278 2 394
nPair Max. motifs/Windows Linear 0.898466 0.600556 3 1275
jPREdictor 179

Table 9.6: Overview of results of training PRESVM on the original PREdictor [1] training data, calibrating
the classifier threshold for an E-value of 1 and applying each classifier genome-wide for prediction. CVB5x2
AUC(1.0) and VR have the same meanings as in Table 9.2. Train TP is the number of positive training
sequences that are classified as positive after calibrating the threshold for an E-value of 1. Predictions is
the number of predictions made genome-wide. The number of predictions made by jPREdictor when trained
using a step size of 10bp is also shown.

Authors Method Size
Enderle et al. [15] ChIP-Seq 2265
Schwartz et al. [14] ChIP-chip 170
Oktaba et al. [12] ChIP-chip 196
Merged 2251
Consensus 82

Table 9.7: Sets of experimentally determined regions considered. For the merged set, overlapping regions in
the different sets are merged into larger regions. For the consensus set, the merged regions that overlap with
all sets of regions are used.

Authors Method Size
Enderle et al. [15] ChIP-Seq 1365
Schwartz et al. [14] ChIP-chip 337
Oktaba et al. [12] ChIP-chip 184
Union 1417
Intersection 77

Table 9.8: Sets of experimentally determined PcG target genes considered.

Bands:
Classifier Consensus sensitivity Merged PPV Combined F1 score
PRESVM 21.951220 % 17.118513 % 0.192359771
jPREdictor 17.073171 % 20.111732 % 0.184683036

Genes:
Classifier Intersection sensitivity Union PPV Combined F1 score
PRESVM 48.051948 % 24.242424 % 0.32226456
jPREdictor 27.272727 % 31.363636 % 0.291754754

Table 9.9: Combined F1-scores for PRESVM and the jPREdictor.
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Motif a Motif b jPREdictor weight PRESVM weight
En En 0.4844 0
G10 En 1.1902 -27.2969443963334
G10 G10 -1.9585 15.2765051128981
GAF En 1.5476 38.2290657971049
GAF G10 -0.8176 -0.0451424507851569
GAF GAF -0.5668 -1.62808256575056
PF En 2.0314 -21.1215020716622
PF G10 2.9524 28.1916576961376
PF GAF 3.0782 5.29855040007117
PF PF 2.7144 -1.37346152969305e-13
PM En 1.0182 0
PM G10 3.0405 16.2795843997754
PM GAF 1.6248 0.609360273423749
PM PF 3.3341 13.564644415107
PM PM 1.5849 -4.05432631911395e-13
PS En 2.1917 -39.9567205108171
PS G10 0.9423 -15.9005217074748
PS GAF 0.7052 3.26551486991582
PS PF 2.0339 3.11064525888481
PS PM 3.0454 6.10448495909537
PS PS 1.8341 -6.13350429382364
Z En 2.2569 20.178348888145
Z G10 1.1588 -1.48157035777308
Z GAF 1.5001 2.29584692845266
Z PF 0.9795 0.859655642652733
Z PM 2.6204 2.56286529994112
Z PS 1.3609 7.95097369527364
Z Z 1.1226 -17.5524791615663

Table 9.10: Motif pair weights of jPREdictor compared with those of PRESVM.
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Chapter 10

Implementation

The implementations of PRESVM and PREsent are described in this chapter. This includes a series of design
choices and algorithms.

10.1 PRESVM implementation

PRESVM has been implemented in C++. For the Support Vector Machine implementation, LibSVM [24] is
used. For the specification of sequence motifs and the genome, XML is used. For XML parsing, RapidXml
[35] is used. Feature selection via mRMR has been added by calling on the statistics application R [36], for
which mRMR feature selection is provided with the mRMRe package [37].

As there are many possible configurations for PRESVM, it has been desirable to run many tests. The
implemented methods for searching for Support Vector Machine parameters can require many training cycles.
Also, during threshold calibration, the trained classifier is applied to a large, randomly generated sequence
(typically 100 times the size of the genome). As both PRESVM and LibSVM have been implemented in
C++, PRESVM is statically linked with LibSVM, giving PRESVM efficient access to the Support Vector
Machine implementation. In addition, motifs are central for the PRESVM feature sets, and efficient parsing
and handling of motifs has therefore been desirable. Sequence parsing will be discussed in the following
sections.

10.2 Sequence reading

Reading sequences in PRESVM has been implemented by defining a general base class with an operation
to read a certain number of nucleotides. The implementations of this base class are referred to as sequence
stream classes. This base class is implemented in multiple variants: reading from a buffer, generating a
random sequence for a given nucleotide distribution, streaming from a raw sequence file and streaming from
a FASTA file.

This base sequence reading class set is augmented by a FASTA batch reader, which generates a sequence
stream for each batch sequence. Also, since mainly sequence windows are used, a class has been implemented
that takes a sequence stream and reads windows, taking care of any needed buffering needed and keeping
track of coordinates, as well as edge effects.

For a genome annotation, an XML file is used, in which paths to chromosome sequence files are given.
Loading of a genome annotation is implemented as its own class. For chromosome sequence files, both raw
and FASTA format files are supported. This class contains a method by which a chromosome sequence stream
can be requested, as well as general information about the genome, such as the nucleotide distribution and
the length in base pairs. In addition to providing chromosome sequence streams, this class also includes
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loading of annotated genes. For annotated genes, annotations were downloaded from FlyBase [4] in FASTA
format, and the sequence headers were used to extract information, such as gene coordinates, strand and
names (including synonyms).

10.3 Motif occurrence parsing

A simple method for parsing motif occurrences is as follows: 1) Step through nucleotides of an input sequence.
2) From the current nucleotide, try to match all motifs used. 3) Note any matches found. This method has
been implemented in PRESVM under the name ”näıve parsing”. It is illustrated in Algorithm 10. Although
this method for parsing motif occurrences works, it is inefficient.

Algorithm 10 Näıve motif occurrence parsing

Input:
S : A...B ∈ Snt: Input sequence.
Motifs ⊂ Snt: Set of motifs.
Match(S1, S2): Compares S1, S2 ∈ Snt. Returns the number of differing nucleotides.
ReverseComplement(m): Gives the reverse complement of m ∈Motifs.
AllowedMismatches(m): Returns the number of allowed mismatches for motif m ∈Motifs.

i← A
while i ≤ B do

for all m : ma...mb ∈Motifs do
if Match(S : i...i+ λ(m),m) ≤ AllowedMismatches(m) then

Register occurrence of m on the plus strand, starting at nucleotide i.
else if Match(S : i...i+ λ(m), ReverseComplement(m)) ≤ AllowedMismatches(m) then

Register occurrence of m on the minus strand, starting at nucleotide i.
end if

end for
i← i+ 1

end while

To get a more efficient motif occurrence parser, it can instead be considered that the parsed motif oc-
currences will cover up to multiple nucleotides, and thus every nucleotide of the input sequence corresponds
to some state of parsing up to multiple motif occurrences. This can be noted more abstractly as a set of
motif occurrence parsing states. Starting with a start state of parsing no motif occurrences, reading a par-
ticular nucleotide may initiate the parsing of one or more motif occurrences. This gives a transition from
the start state for the considered nucleotide. This can be done for A, C, G and T, marking the transitions
with the corresponding nucleotides, which covers the possibilities for the first read nucleotide. This pro-
cess can be continued for the resulting states, also ensuring that equal states are re-used, and continuing
until no new states are constructed. This results in a graph called a Finite State Machine (FSM), which cov-
ers the complete parsing of the considered motifs. The construction of the FSM is illustrated in Algorithm 11.

When parsing a sequence using a Finite State Machine, one starts from the starting state, and for each
nucleotide read one moves along the corresponding transition in the graph. For some states, the ends of
parsing some motif occurrences are reached, and for these states the corresponding motif occurrences are
registered. This is illustrated in Algorithm 12.

For the resulting Finite State Machine graph, the states of parsing up to multiple motif occurrences are
implicit to each node. Thus, for each read nucleotide, one only needs to transition to the appropriate node,
and potentially register some motif occurrences.
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Algorithm 11 Motif occurrence parsing Finite State Machine construction

Input:
StartParseState(): Gives the state of parsing no motif occurrences.
Extend(s, n): Creates a parsing state based on state s extended by nucleotide n.
Transition(s1, s2, n): Creates a transition from s1 to s2 for nucleotide n.

(Parsing states contain nucleotide indices of motifs being parsed, the strands they are being parsed on as
well as registered mismatches so far)

S ← {StartParseState()} . Set of states.
T ← ∅ . Set of transitions.
Q← S . Queue for states to extend.
while Q 6= ∅ do

sb ∈ Q
Q← Q/sb
for all n ∈ {A, T, G, C} do

sn ← Extend(sb, n)
if sn 6∈ S then . Add to queue if it is a new state.

Q← Q ∪ {sn}
S ← S ∪ {sn} . Also add to the states.

end if
T ← T ∪ {Transition(sb, sn, n)} . Add a transition (unless already present).

end for
end while

Algorithm 12 Motif occurrence parsing with a Finite State Machine

Input:
S : A...B ∈ Snt: An input sequence.
StartParseState(): Gives the state of parsing no motif occurrences.
Transition(s, n): Gives the state for transitioning from state s for nucleotide n.
MotifOccurrences(s): Gives the set of motif occurrences that have finished parsing in state s.

i← A
s← StartParseState()
while i ≤ B do

s← Transition(s, S : i...i)
for all o ∈MotifOccurrences(s) do

Register occurrence o (with strand and starting position based on state).
end for
i← i+ 1

end while
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10.4 Motif occurrence handling

Motif occurrences are added and removed frequently when moving across sequences in windows. Thus it is
desirable to have an efficient data structure for managing motif occurrences. This data structure should also
give efficient access to occurrences of a particular motif, as such access will help for feature sets making use
of occurrences of particular motifs.

The data structure implemented in PRESVM keeps track of motif occurrences in a table. This table is
expanded when needed, by doubling its size. Additionally, the following lists of motif occurrences are kept:

1) A doubly linked list of all motif occurrences,

2) doubly linked lists of occurrences of particular motifs, and

3) a singly linked list of free motif occurrences.

These lists are implemented using indices for the motif occurrence table.

As the motif occurrence table is expanded, unused motif occurrences are added to 3). As new motif occur-
rences are registered, free occurrences are removed from 3), updated with information about the particular
occurrences and added to lists 1) and 2). As motif occurrences are removed, memory is not freed, but instead
the occurrences are removed from 1) and 2) and added to 3).

There are multiple arguments for why this data structure was chosen for handling motif occurrences:

1) As linked lists are used (with links relating the motif occurrences themselves, rather than by an auxiliary
data structure), motif occurrences can be removed in linear time, and added in close to linear time
(except for when the table needs to be expanded). This is useful, as motif occurrences will be registered
and removed often.

2) Using memory from a single table to keep track of motif occurrences should keep them close in memory,
potentially improving memory access times.

3) Since motif occurrences index the motif occurrence table for their lists (instead of keeping pointers),
the need for updating pointers upon reallocation of the table is avoided.

4) Using a list of free motif occurrences, instead of freeing memory, reduces the need for reallocation.

This data structure is illustrated in Figure 10.1. In addition to the points mentioned, the container data
structure also contains a Flush() method, which removes all motif occurrences (moving them to the free
list). This is useful for when moving from one sequence to another.

10.5 PREsent implementation

PREsent has been implemented in C++. RapidXml [35] is used for parsing XML files. PREsent calls LATEX
to generate reports in PDF format. Plots are generated by calling the statistics software R [36]. R in turn
outputs the plots as PDF files, which are incorporated into the reports. For generating Venn diagrams, the
VennDiagram package for R is used [38].

As R is used for constructing many different plots, a class was implemented for convenient calling of R. It
has been constructed such that a script may be constructed by using the << operator upon an instance, and
after the script has been constructed, R can be called by calling a class method. Handling the interaction
with R in this way reduces the amount of code for the construction of each R script. Using the << operator
also keeps syntax in the style of the C++ standard library.



Chapter 10. Implementation 70

Motif occurrence
+Motif
+Coordinates
+Strand
+Next (same motif)
+Previous (same motif)
+Next (all motifs)
+Previous (all motifs)
+Next (free)

Motif occurrence container
+Motif occurrence table
+First free motif occurrence
+First motif occurrence (any motif)
+Last motif occurrence (any motif)
+First motif occurrence (motif specific table)
+Last motif occurrence (motif specific table)

+Register motif occurrence()
+Remove motif occurrence()
+Next motif occurrence()
+Previous motif ocurrence()
+Next motif occurrence, same motif()
+Previous motif occurrence, same motif()
+Flush()

Motif
+Sequence
+Name
+Allowed mismatches

Figure 10.1: Overview of the motif occurrence container data structure.
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In PREsent, parsing of GFF files, gene list files, E-value table files and Wiggle files has been implemented.
For loading genome annotations, the code from the PRESVM implementation is used.

For handling genomic regions (such as from GFF files), a data structure is used to represent each region,
a class is used for each chromosome to contain genomic regions, and a class contains the chromosome region
containers. This will be referred to as a band database. The implemented operations for band databases
include:

• find genes from bands;

• find the intersection between two band databases;

• get confusion matrix values based on overlaps of one band database with a secondary band database;

• separate regions according to whether they overlap with a secondary band database or not;

• load regions (from a GFF file, output by jPREdictor, from a tabulated list or from a list of the format
C:A...B, where C is the chromosome, A is the start and B is the end of the region).

Gene lists are handled by referring to genes in the annotation data structure implemented for PRESVM,
where one class handles genes for each chromosome and a class handles chromosome gene containers. This
is referred to as a gene database. Implemented operations include:

• get the top N scored genes;

• find the intersection of two gene databases;

• find the union of two gene databases;

• get confusion matrix values based on overlap with a secondary gene database;

• load a gene list.

Wiggle files are handled by a class in which profile data is kept for each chromosome, and a class to
contain chromosome profiles. The following operations are supported:

• get the highest profile value for each band in a band database;

• get confusion matrix values against a band database based on applying a threshold to the score profile
and finding bands;

• get number of bands resulting from applying a threshold to the profile;

• load profile from a Wiggle file;

• get a band database based on applying a threshold to the profile.

E-value tables are handled by one data structure containing each threshold and corresponding E-value,
and a class for handling the E-values. The supported operations are:

• load an E-value table;

• get threshold corresponding to the closest E-value in the table to a specified E-value.

There is a dedicated class for XML profiles. During creation, any GFF files, Wiggle files and E-value
table specified in the profile are loaded. Output of the configuration specified in the profile, as well as any
specified validation information, is output in TEX format by class methods.
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10.6 Other implementations

As the class for handling genomic regions grew in functionality due to requirements in PREsent, this function-
ality has been made usable by itself through a separate implemented software application, called auxBand-
Tool. The features of this tool are:

• loading of coordinate lists (C:A...B), tabulated lists and General Feature Format files;

• output of coordinate lists, tabulated lists, General Feature Format and FASTA format (with regions
sequences taken from a specified genome);

• separation of regions in one set based on overlap with regions in a separate set;

• random selection of a specified number of regions;

• finding gene promoter regions based on a genome annotation and specified relative coordinates to each
gene Transcription Start Site (TSS);

• merging of regions in specified sets of regions.

This software has been used for treating experimental data, such as separating genic and intergenic regions,
as well as for constructing ChIP-based training data.

jPREdictor outputs genome-wide scores in its own format. Thus, a tool was also written for converting
genome-wide jPREdictor scores to the Wiggle format.
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Chapter 11

Discussion

In this chapter, the thesis ends with a discussion of what has been learned from this work, and a discussion
of some possibilities that are left for future work, as there was not time to investigate them.

11.1 Conclusion

A Support Vector Machine can learn to classify sequences based on a number of potential feature sets. One
such feature set, the frequencies with which motifs occur, has previously been used for genome-wide pre-
diction of PREs by use of Support Vector Machines [2]. The use of Support Vector Machines also includes
considerations such as selecting the Support Vector Machine formulation and parameters, and deciding on
how to construct vectors from the training sequences.

In this thesis, additional feature sets based on motif occurrences have been explored. These features make
use of relative distances of motifs as well as periodic occurrence of the motifs. As these feature sets were
typically larger than the number of training sequences in the original PREdictor [1] training set, and focus
was mainly on this training set, they were not considered for genome-wide prediction. Tests of genome-wide
prediction using these feature sets and larger training sets will have to be run in the future to determine their
effectiveness. The selection of Support Vector Machine parameters has also been considered. The method of
using Particle Swarm Optimization for searching for optimal SVM parameters, as was proposed by Lin et al.
[34], can explore many configurations with a manageable number of training cycles.

The results show that Support Vector Machines can be used with a linear kernel and the nPair feature
set to predict a larger number of PREs genome-wide than the jPREdictor does with a similar configuration.
The decision function of the Support Vector Machine in this case can be reformulated into a sum of weighted
feature values, which is similar to that of the PREdictor. Thus, the difference in the number of predictions
should be due to a difference in learning from the training sequences when using Support Vector Machines.
The results also indicate that the way training vectors are constructed from training sequences can impact
generalization and the number of genome-wide predictions made for an E-value of 1.

For moderate values of the SVM cost parameter C and training with the training sequences used by
Ringrose et al. [1], use of the nOcc feature set showed improved generalization to a separate test set when
using non-linear kernels. For using the nPair feature set, generalization to a separate test set was better
with a linear kernel. Noting that the nPair feature set with 7 motifs gives 28 features, which is equal to the
number of training sequences, this may make sense. The training set may be too small to fully make use of
non-linear kernels in this case.

PRESVM has also demonstrated use of the continuous classification value produced by a trained Support
Vector Machine, with the addition of a threshold calibrated for a desired E-value, for the genome-wide pre-
diction of PREs. This separates PRESVM from the method developed by Zeng et al. [2], the EpiPredictor,
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where regions are scored by the number of motif occurrences.

11.2 Future work

During the work of this thesis, multiple potential feature sets have been considered, and a selection of these
have been implemented and tested. These feature sets may be interesting to test for genome-wide prediction.
There are also feature sets that have been considered but that have not been implemented. This has partly
been due to lacking a sufficiently large, carefully constructed training set. The MDP (Mean Distance Prox-
imal) and similar feature sets could be combined with corresponding standard deviation feature sets. Motif
occurrence clusters could be considered by making features based on mean positions and standard deviations
of positions, and training both on sequence windows and their reverse complements. It could also be inter-
esting to train a secondary SVM to try to distinguish motif occurrence pairs from PRE training sequences
from those in non-PRE training sequences, where a feature set may be generated by summing output values
for each motif pair and used with a primary SVM.

There is also potential for tuning feature parameters. For periodic feature sets, combinations of different
phase shifts and periodicities could be investigated. The work by Lin et al. [34] showed that features can be
selected at the same time as the Support Vector Machine parameters when using Particle Swarm Optimiza-
tion. However, parameters of individual features, such as distance cutoffs and the frequencies and phases of
periodic feature sets could also be tuned using Particle Swarm Optimization. Even high-level parameters,
such as the kernels and the approach to sampling training sequence vectors could potentially be combined
with Particle Swarm Optimization.

Some aspects of training could be investigated by use of simulation, such as the impact of varying train-
ing sequence lengths. PRESVM could be trained using a larger set of motifs. The use of k-mers could be
interesting for larger training data. Motifs defined as Position-Specific Scoring Matrices, as is supported by
the jPREdictor [18], could be interesting to test with Support Vector Machines. It may be interesting to
apply PRESVM to the prediction of PREs in other species. It may also be interesting to apply PRESVM
to other genome-wide prediction tasks in which sequence motifs may be used. Finally, there is also room for
further refinement of the software.
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Notation overview

• |x|: Absolute of a real value x.

• A ∧B: Logical conjunction.

• A ∨B: Logical disjunction.

• A ∩B: Intersection of sets A and B.

• A ∪B: Union of sets A and B.

• A×B: Cartesian product of sets A and B.

• minS: Gives the minimum value in a set S.

• maxS: Gives the maximum value in a set S.

• S/x: A set S with the element x excluded.

• |S|: Cardinality of a set S.

• ~a = (a1, ..., an): Vector.

• ~a ·~b: Dot product.

• f : A→ B: Function mapping elements of A to elements of B.

• ĉ(x): Approximation of function c(x).

• ⊕: Positive label.

• 	: Negative label.

• B = {⊕,	}: Binary label set.

• [x]±: Assignment of binary label. If x > 0 then [x]± = ⊕. Otherwise, [x]± = 	.

• TP , TN , FP , FN : True Positives, True Negatives, False Positives and False Negatives, respectively.

• bp: Base pair unit.

• Snt: Set of all nucleotide sequences.

• S : A...B: Substring of S ∈ Snt from nucleotide index A up to and including nucleotide index B.

• λ(S): Length of sequence S.

• O(s): Set of all motif occurrences in sequence s.

• τ(o): Type of motif occurrence o.

• Om(s): Set of all occurrences of motif m in sequence s.



Notation overview 83

• πα(o): Index of first nucleotide of motif occurrence o.

• πβ(o): Index of nucleotide after the last of motif occurrence o.

• πγ(o): Position of center nucleotide of motif occurrence o. πγ(o) =
πα(o)+πβ(o)

2 . πγ(o) ∈ R.

• δα(o1, o2): Distance between ends of motif occurrences o1 and o2.

• δγ(o1, o2): Distance between centers of motif occurrences o1 and o2.

• f ′(x): Derivative of function f(x).

• ∂f
∂x : Partial derivative of f with respect to x.

• ∇f(~x): Gradient of f(~x).
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