

Using Agent Technology for Exception Monitoring
The Case of Fraud Detection in Conference Management Systems

MASTER THESIS

Sedef Z. Sicakkan

Department of Information Science and Media Studies
University of Bergen

 Fall 2010

i

Acknowledgements

I owe special thanks to my adviser, Weiqin Chen, for her through readings of the manuscript,

her detailed critical remarks and crucial suggestions, and her kind support. Her AI and

programming courses have been an inspiration source in the formulation of the main research

questions of this project.

I would like to express my gratitude to my former colleagues at Unifob Global, IMER-

UiB and the EUROSPHERE-program where I had the opportunity to observe the specific

business problems associated with the organization of academic conferences in an

intellectually stimulating international academic milieu.

My interview subjects also deserve thanks for participation and their useful feedback

during the testing of MONA.

I would also like to thank my dearest ones: Hakan, Cengiz , Selina, Bilgen, Ismail and

Ayse for their support in the process of completing this thesis. Their presence and the loving

memory of Kadriye and Tului have always been an inspiration.

The process of writing this thesis had to be extended due to the birth of my wonderful

Selina, and it is completed while I am working at a full position. I believe that every input

helped me to improve the project. However, the responsibility for any erroneous result

remains mine.

ii

iii

Abstract

Exception monitoring involves solutions to overcome the fatality of exceptions. The general

idea behind this concept is that exceptions should be monitored, and as soon as they occur,

they should be eliminated in one way or another so that the systems keep on working without

being impacted by the potential harm of these unusual situations present. Misuse or fraud is

one of such exceptional situations. In this thesis, a monitoring agent application, MONA, is

designed, developed and evaluated in order to support business processes for capturing

fraudulent activities with an empirical focus on the case of conference management systems.

With the help of this prototype, also the time and quality impact of agent technology, and if

agent technology creates an increase in time effectiveness and enhances the quality of work,

are investigated. Another focal point of the project is to find out if the results of collaborating

with the monitoring agent are reliable, and whether they are convincing enough for further

collaboration. In the evaluation process usability test is conducted through observations and

interviews with the potential users. The results indicate that there are gains in time, time-

effectiveness increases, and the quality of fraud detection work is enhanced. Another

important result is that the test participants are likely to trust MONA.

iv

v

Table of Contents

ACKNOWLEDGEMENTS ... I

ABSTRACT ... III

TABLE OF CONTENTS ... V

LIST OF TABLES .. VII

LIST OF FIGURES ... VII

PROTOTYPE .. IX

OPEN CONFERENCE SYSTEMS .. IX

1 INTRODUCTION ... 1

1.1 The Possibility of Fraud in Conference Management Systems ... 1

1.2 Scenario .. 2

1.3 Proposed Solution .. 3

1.4 Research Questions ... 4

1.5 Research Design ... 5

1.6 Organization of the Thesis .. 5

2 CONSTRUCTING THE THEORETICAL AND CONCEPTUAL FRAMEWORK 7

2.1 Approaches to Agent Definition in Previous Literature .. 7

2.2 Monitoring Agents ... 12

2.3 Software Process and Agent-Oriented Development ... 14

2.4 Evaluation of the Monitoring Agent .. 18

2.5 Summary .. 20

3 DESIGN AND DEVELOPMENT .. 22

3.1 The Agent-Oriented Approach .. 22

3.2 Agent Domain: Open Conference Systems ... 23

3.3 Modelling the Monitoring Agent .. 26

3.4 Analysis .. 33

3.5 Design ... 36

3.6 Integration of MONA with OCS Environment .. 44

3.7 Implementation Details: Iterations .. 45

vi

4 EVALUATION AND FINDINGS .. 49

4.1 Usability Testing .. 49

4.2 Findings .. 55

5 CONCLUSIONS AND FUTURE WORK .. 60

Conclusions .. 60

Future Work .. 61

REFERENCES ... 62

APPENDIX 1 .. 1

A1 1 Evaluation forms .. 1

A1 2 Interview Questions .. 8

APPENDIX 2 .. 1

A2 1 User Manual for MONA .. 1

vii

List of Tables

Table 1: Functional Requirements ... 27

Table 2: Non-Functional Requirements ... 28

Table 3: Programs/Programming Tools ... 32

List of Figures

Figure 1: Autonomous Agent Taxonomy .. 10

Figure 2: Finding Fraudulent Activities: Workflow Diagram of Conference Manager 25

Figure 3: Use Case Diagram for Monitoring Agent .. 26

Figure 4: Agent Class Diagram ... 33

Figure 5: Class Diagram for Monitoring Agent ... 34

Figure 6: Agent Class Diagram with Capability Description Notation 38

Figure 7: Statecharts for Different Roles of MONA ... 41

Figure 8: Sequence Diagram .. 44

Figure 9: Integration of MONA with the OCS environment ... 45

Figure 10: MonaUtils is a part of MONA .. 47

Figure 11: Content of package Mona (scripts) .. 48

Figure 12: Configuration of MONA .. 52

Figure 13: Configuration of MONA’s email service ... 52

viii

ix

Prototype

MONA: http://www.ocs.uib.no/Mona/index.php

Source code: http://sourceforge.net/projects/monitoringagent/

Open Conference Systems

MONA uses OCS version 2.1.1-2: http://www.ocs.uib.no/thesis/ocs/

More information about OCS: http://pkp.sfu.ca/?q=ocs

x

1

1 Introduction

Earlier research has indicated that using information systems with well-represented business

needs is a key factor in successful business. Such systems improve or dramatically alter the

work organization, production and almost every process that is connected to the business

itself. Briefly, investments on technological capital yield a return in the form of improved

business processes and thus help boost revenues.

This ideal picture, however, has some (vital) exceptions in the real world. The most

prominent ones are mostly connected to the human factor: users of the information systems.

Although business needs are well-represented in information systems and systems work

effectively and efficiently, it is seldom possible to perfectly shield a system from misuse or

fraud. Besides, most such systems need monitoring tools. Thus, it is very important that

misuse and fraud are captured in an early phase of development processes and represented in

the information systems (Wilhelm, 2004).

The claim of this thesis is that fraud is an exception in the sense I have sketched out

above. First, I want to show how it is possible for even well-established information systems

to allow fraudulent actions through those systems’ own set of business rules and workflow

processes. Second, I want to investigate whether an agent application will be useful in

supporting business processes for capturing such fraud, with an empirical focus on the case of

conference management systems.

1.1 The Possibility of Fraud in Conference Management Systems

Most conferences use conference management systems (CMSs), which are used for two main

purposes: to disseminate information about conferences and calls for papers and to collect

information about registrants, abstracts, papers etc. In other words, any information related to

a conference can be disseminated or collected with the help of such web-based systems.

CMSs provide easy-to-use tools for conference attendees and conference managers so that an

attendee can register him- or herself to a conference or a conference manager can follow the

embedded workflow1 processes, which consist of e.g. tasks and activities that should be

completed by conference attendees. The conference attendees benefit by being able to skip

1 Huhns and Singh (1998) define workflow as “a composite activity consisting of tasks involving a number of
humans, databases, and specialized applications”.

2

most of the processes that need extra attention and communication with different

organizations since all these communication and cooperation demands are somehow supplied

by the system (e.g. sending personal information, fee payment, accommodation etc.). As for

the conference managers, their business processes become more seamless and less costly.

Rather than having to take on certain sub-processes themselves, such as collecting registration

details manually, they can monitor the status of processes with the available tools and retrieve

the necessary information they need from the system.

However, the seamlessness of processes in a conference management environment has

some disadvantages as well. Business processes in CMSs can be misused as a cover for shady

activities if there are no safeguards against this. It is assumed that the rules embedded in a

system are legal and, when the process is completed, the results will be legal as well. In some

cases, even legal processes can open up the possibility for illegal acts. As a result, it is

necessary to have tools that enable systems to monitor and detect fraud attempts effectively.

The function of such tools should be to extract relevant information from the database,

and present the results to organizers in an accurate, structured and intelligible way, so as to

enable them to detect fraud immediately and take decisions effectively in the event of fraud.

For conference managers, it is important to know what kind of information the

conference database contains and how comprehensive and consistent the information is.

CMSs come with some reporting options that are usually good enough to provide reports of

aggregate information stored in the database. Although the information is already stored in the

database, such systems lack tools that can be useful to detect fraud immediately and

effectively. It is not always the case that conference managers have hands-on experience with

their respective databases. Furthermore, it is time- and resource-demanding to check the

records manually. As the scale of the conference expands and the number of attendees grows,

so does the difficulty of detecting fraudulent activities. This makes manual checks even

harder and less realistic.

1.2 Scenario

For the purposes of this introduction, it will suffice to illustrate this difficulty with a single

example. In international academic conferences, it is expected that there will be registrants

from all over the world. In order to travel across international borders, it is necessary to have

the proper documentation, i.e. a valid passport and visa. According to the regulations in

3

Norway, for instance, foreigners who want to get a visa should apply to the Norwegian

embassies in their own countries. Usually, they are asked to present an invitation letter,

proving that they are going to do what they claim to do in Norway. At this point, the

possibility of fraud enters the picture: some conference managers have experienced that there

are people who claim to be attendees in order to obtain an official invitation letter, which in

turn will be used to obtain a visa to enter the country. Based on the interviews I have

conducted with some conference managers, this is a known case, and managers of

international conferences have to work especially hard to eliminate such fraud attempts by

having extra checks. Therefore, data collection is very crucial in registration processes since

these processes supply the raw material for extra checks.

I will here focus on payment information, since among the data that gets stored in

CMSs; payment information provides useful hints for discovering possible fraud attempts.

The normal practice is that everybody pays for him- or herself, and not on behalf of another

person. In the event that (as a result of insufficient resources) one person pays the conference

fee on behalf of several others, these attendees are expected to get in touch with the

conference organization committee in one way or another, and the CMS should also notify the

conference manager. If these attendees do not get in touch with the conference manager, then

two possible scenarios (among others) can occur. In the first, which is a hypothetical

situation, a person (perhaps a human trafficker) pays the full conference fee for several

people. The second scenario, which has been observed, involves a hacker creating several

“dummy” registration data at a time close to the registration deadline of an international

conference. In both of these cases, the conference management system lacks monitoring tools;

rooting out fraudulent attempts manually becomes a huge task to accomplish since (at the

very least) account details should be checked against the conference registrations, and it might

take some days to clean the registration data and unearth the real attendees of the conference.

1.3 Proposed Solution

The concept of fraud includes the improper use of systems to make an illegal asset. The

solutions and research encompass a wide range of business and fraud types such as insurance

payments for car repairs (Aart & Tamma, 2008), money laundering (Liu & Zhang, 2007),

electronic fraud (Prodromidis & Stolfo, 1999), and credit card fraud (Chan, Fan, Prodromidis,

& Stalfo, 1999).

4

Based on the scenario sketched above, a system which monitors possible fraudulent

activities is necessary to support this kind of conference management system, which lacks

tools for monitoring. It is important that this system fulfils the relevant tasks without human

intervention so that conference managers are able to focus on the results generated by the

system, rather than using time doing the job manually. Therefore, “the system to be developed

requires its components to show a high degree of autonomy” (Caire, Coulier, Garijo, Gomez,

Pavon, Leal, et al., 2002).

Another aspect is related to the functions this system will perform. Finding possible

fraudulent activities is actually composed of several tasks. The system to be developed should

do the necessary checks on behalf of the conference manager by taking on his or her

workflow items and flagging the possible fraud attempts. The conference manager should

make decisions on whether actions needed to be taken. Thus, this system should work as an

assistant to the conference manager to help label possible fraud attempts in a registration

process. Since there are different tasks and there is a hierarchy in the division of labour,

“goal-oriented behaviour will be needed” (Caire, et al., 2002).

As a result, a monitoring agent can be useful in obtaining information about fraud. The

agent will take an active part in highlighting the attendees, who might be using the conference

in order to enter the host country illegally rather than attending the conference. In short, the

monitoring agent will accept task(s) and produce easy-to-understand outputs that can support

the manager’s work in rooting out the possible fraud attempts in the registration process.

1.4 Research Questions

This project seeks to answer the following research questions:

- Can a monitoring agent tool be useful in supporting conference managers’ efforts

to detect fraud in CMSs?

- What is the impact of agent technology integration on time and quality in medium-

scale conference management systems? Does agent technology increase time

effectiveness and enhance quality?

- Are the results of collaborating with the monitoring agent reliable? Are they

convincing enough for further collaboration?

5

1.5 Research Design

This project’s research design is based on the design-science paradigm, which “is

fundamentally a problem-solving paradigm” (Hevner, March, Park, & Ram, 2004). In this

paradigm, “knowledge and understanding of a problem domain and its solution are achieved

in the building and application of the designed artefact” (Hevner, et al., 2004).

This thesis centres on the design and development of a monitoring agent that will

support workflow processes in detecting fraud in a conference management system. In order

to achieve this, four different research activities are conducted:

1. Identification of the core manifestations of fraud based on the observed and

hypothetical cases of fraud attempts (interviews with experienced conference

managers)

2. Design and implementation of a prototype

3. Evaluation of the working-prototype through usability testing

4. Identification of the benefits of using agent technology for monitoring fraudulent

activities in CMSs (based on usability testing)

1.6 Organization of the Thesis

This thesis is organized as follows:

Chapter 1 gives a brief introduction to the problem and introduces the scope of the

project by defining problem scenarios, proposed solutions, associated research questions, and

a research design.

Chapter 2 focuses on the construction of the project’s theoretical and conceptual

framework. There are four major issues taken up in this chapter. The first is “Agent

definition”, where the concept of “agent” is discussed. Particular focus is placed on

monitoring agents and related work. Then, the core information about software processes and

agent-oriented development methodology is given, and there are short discussions on the

chosen techniques. In the last section of this chapter, the evaluation of monitoring agents is

explained briefly with a discussion of evaluation techniques.

Chapter 3 explains and discusses topics related to design and development. This

chapter departs from the agent-oriented approach and introduces the notion of agent domain,

6

before focusing on the modelling of the monitoring agent for Open Conference Systems

(OCS). The analysis of the problem domain is followed by the actual design of the MONA

(MONitoring Agent for fraud detection in OCS). The topics that are related to the

development of the prototype include the integration of MONA with OCS environment,

architecture, and software development that is organized in iterations.

Chapter 4 is dedicated to the evaluation of the prototype and research findings. It

details how the usability test is conducted and the results, along with the answers to the

research questions.

The final chapter of this thesis is devoted to conclusions and future work.

The thesis has two appendices. The first appendix includes all the documents

(informational texts, survey forms, test data and interview questions) used in the usability test.

The second appendix presents the user manual for MONA.

7

2 Constructing the Theoretical and Conceptual Framework

Agent technology and exceptions in the workflow in information systems are the two central

concepts of this research project. What connects them is the idea of integrating an exception

monitoring agent into a conference management domain.

In this chapter, I will give brief presentations of different conceptual approaches to

agents and agent development. Here the aim is to introduce the design approach adopted in

this project in a theoretically well-situated context by positioning it within existing

approaches.

In the following, the focus will be on agent technologies, covering central issues from

the concept of an agent to the classification of agents. In particular, I will describe monitoring

agents, and I will give some examples of currently existing monitoring agents and exception

monitoring agents. Moreover, a framework for software development approaches and agent-

oriented development will be given briefly. Finally, I will discuss evaluation methods.

2.1 Approaches to Agent Definition in Previous Literature

2.1.1 What is an agent?

Nwana (1996, cited in Bradshaw, 1997) makes a distinction between two strands of agent

research based on the history of the field, “the first beginning about 1977, and the second

around 1990.” The former can be considered to have roots in distributed artificial intelligence

(DAI), and “has concentrated mainly on deliberative-type agents with symbolic internal

models.” This line of research mainly works on “macro issues such as the interaction and

communication between agents, the decomposition and distribution of tasks, coordination and

cooperation, conflict resolution via negotiation, etc.” The latter focuses mainly on “doing”

and “remote action”. In this project, I will follow the latter course which was established in

the 90s2 since my project’s research questions are based upon what the agent is “doing” and

how it is “done”.

Although “one of the key concepts of agent-based computing” (Jennings, 2001) is an

agent, there is not “a single universally accepted definition” (Wooldridge & Jennings, 1995)

2 Wooldridge (2009:393–404) mentions this period in his work on the history of intelligent agent research.

8

for this term. However, various definitions intersect at some core features which have shaped

the general understanding of the concept. As mentioned in Padgham and Winikoff (2004: 1),

the following definitions are adapted from Wooldridge and Jennings (1995):

An agent is a computer system that is situated in some environment, and that is capable of

autonomous action in this environment in order to meet its design objectives.

Agent-systems have the following properties:3

Autonomous: Agents have control both over their internal state and behaviour.

Situated in a particular environment: Agents have partial control and observability in

this partial environment.4

Having a specific role: Agents are designed to fulfil a specific role; that is, they have

particular objectives to achieve.

Flexible problem-solving ability: Agents have the capacity to solve problems with

well-defined boundaries and interfaces. What lies behind the need for being flexible is

that “agents must be robust” (Padgham & Winikoff, 2004: 3) enough to recover from

various failures.

Reactivity: Agents are able to respond to changes in their particular environment.

Proactivity: Agents can take initiatives according to their predefined goals.

Social ability: Agents interact with other agents, including humans, via some kind of

agent-communication language (Genesereth & Ketchpel, 1994, cited in Wooldridge &

Jennings, 1995).

Wooldridge and Jennings (1995) consider the above-mentioned features to be a “weak notion

of agency.”5 They claim that a “stronger notion of agency” comes with having mentalistic

3 There is broad agreement in the literature about what agent properties are: Binder, Mori, Portabella, Tamma,
and Wooldridge (2005:1-4), Grau, Cares, Franch, and Navarrete (2006), Jennings (1999, 2001), Jennings,
Faratin, Norman, O’Brien, and Odgers (2000), Kishore, Zhang, and Ramesh (2006), Luck, McBurney, and Preist
(2003:10), Tveit (2001), Wooldridge (1997, 2002), Wooldridge and Jennings (1995), and Wooldridge and
Ciancarini (2001).
4 In Giorgini and Henderson-Sellers (2005), this is called “situatedness”. There is literature that deals with
situation awareness and proactivity, such as So and Sonenberg (2004) and Urlings, Tweedale, Sioutis, and
Ichalkaranje (2003). Padgham and Winikoff (2004:1) define a typical agent environment as being dynamic in
that “they change rapidly”, unpredictable in that “it is not possible to predict the future states of the
environment” and unreliable in that “the actions that an agent can perform may fail for reasons that are beyond
an agent’s knowledge and influence.”

9

notions such as “knowledge, belief, intention, and obligation” (Bates, Loyall, & Reilly, 1992;

Bates, 1994, cited in Wooldridge & Jennings, 1995) and add the further criterion of having

human-like emotions. Shoham (1997) defines an agent precisely as “an entity whose state is

viewed as consisting of mental components such as beliefs, capabilities, choices, and

commitments.”. Among other features of agency, the following features are listed in

Wooldridge and Jennings (1995):

Mobility: Agents can move around an electronic network (White, 1994, cited in

Wooldridge & Jennings, 1995).

Veracity: Agents will not knowingly communicate false information (Galliers,

1988:159-164, cited in Wooldridge & Jennings, 1995).

Benevolence: Agents do not have conflicting goals, and every agent will therefore

always try to do what is asked of it (Rosenschein & Genesereth, 1985, cited in

Wooldridge & Jennings, 1995).

Rationality: Agents will act in order to achieve their goals. As far as their beliefs

permit, they will not act in such a way as to prevent their goals (Galliers, 1988:49-54,

cited in Wooldridge & Jennings, 1995).

In recent works (e.g. Bernon et al., 2005a), the essential properties of agents are listed as:

autonomy, proactivity, the ability to communicate with other agents and the ability to

perceive its environment.6 In such definitions, continuity over time is also included either

explicitly or implicitly; that is, the agent will be functioning continuously as long as there is a

reason for it to do so “without requiring constant human guidance or intervention” (Bradshaw,

1997).

The usefulness of the agents is testified by the success of implementing the above-mentioned

features. In Padgham and Winikoff (2004:4–6), these features are defined as follows:

autonomy, agents’ having control over their goals and states, reactivity, proactivity, flexibility

and the ability to deal with changing environments effectively. In the view of Padgam and

Winikof (2004:4-6), this is why agents fit better in wrapping legacy software. They claim that

5 Menzies, Pearce, Heinze, and Goss (2002) use “weak agents” and claim that “weak agents maps neatly into
object technology.”
6 As mentioned in this work, these “properties were defined during the second meeting of the AgentLink3 AOSE
TFG (Ljubljana, February 2005).”

10

agents are proactive and reactive so that they have the ability to solve the problems just like

humans do.

 There are many different agent

taxonomies in the existing

literature. Here, I will focus on

Franklin and Graesser’s (1997)

taxonomy. They classify agents

according to their properties such

as reactivity, autonomy, goal-

orientation, temporal continuity,

communication, learning, mobility,

flexibility, and having a character.

Thereby, they suggest the taxonomy of autonomous agents as shown in Figure 1.

2.1.3 Agents vs. Objects

As stated in Shoham (1997), “a computational framework called Agent-Oriented

Programming (AOP)”, which “can be seen as a specialization of the Object-Oriented

Programming (OOP) paradigm”, has been proposed to highlight the “cognitive and societal

view of computation”.

What makes agents different from objects? Or, as some researchers have asked, “may

agents be considered as an extension of objects and then classical object-oriented software

engineering can be used as well to build agent-based applications?” (Bernon, Cossentino, &

Pavón, 2005b).

Although agents and objects are alike in some aspects (“there are clearly close links

between agents and objects” [Wooldridge & Ciancarini, 2001]), it is these same aspects that

make them different from each other and put agents a step ahead7.

There are two main notions that draw a clear line between agents and objects (Bernon

et al., 2005b; Wooldridge & Ciancarini, 2001): autonomy and interaction. Autonomy is tightly

connected to the idea of “having a state”. Here, it is assumed that “having a state” implies

7 Bernon et al. (2005b) support this idea, and claim that “the use of object-oriented software engineering
techniques can be applied for the development of MAS [Multi Agent Systems]”; on the other hand, some
extensions are necessary to support the essential properties of agents (Wooldridge & Ciancarini, 2001).

Figure 1: Autonomous Agent Taxonomy

Source: Franklin and Gaesser (1997)

Autonomous Agents

Biological
Agents

Robotic Agents Computational
Agents

Software Agents Artificial Life
Agents

Tasks Specific
Agents

Entertainment
Agents

Viruses

11

having control over one’s own state. An object’s state is reflected by its attributes or methods,

where it has limited control over its own state or “behaviour” (Wooldridge, 2009:29).

Regarding an agent, its state includes more than having attributes or methods, such as its

beliefs, goals and tasks are embedded in its state—which also adds flexibility into the notion

of autonomy. That is why it has been frequently mentioned that agents have mental states.

“This distinction between objects and agents has been nicely summarized in the following

slogan: ‘Objects do it for free; agents do it because they want to’” (Wooldridge & Ciancarini,

2001; Wooldridge, 2009:29). Another important point is that agents “have their own thread of

control” (Wooldridge & Ciancarini, 2001; Wooldridge, 2009:29-30); that is, objects are

passive while agents are active (Bigus & Bigus, 2001:8)8 and agents are capable of

controlling their own states. This separation is based on how they behave: Objects should be

called by an external actor, but agents can be “engaged in an infinite loop of observing their

environment, updating their internal state, and selecting and executing an action to perform”

(Wooldridge & Ciancarini, 2001). The “notion of autonomy is stronger in agents” (Bernon et

al., 2005b; Wooldridge & Ciancarini, 2001): because agents have ability to determine their

behaviour according to their states, including their mental states. Agents are active entities

(reactive) and can take initiatives (proactive) “depending on its goals, its internal state and its

knowledge from the environment” (Bernon et al., 2005b).

Another major difference between agents and objects is that of interaction. The

interaction between objects is limited to messages, which invoke methods. However, in an

agent world, interaction includes co-ordination, organization, negotiation and cooperation, all

of which amounts to the agent's being interactive within its environment. Agents are

considered to be “social entities [which] communicate and interact with other entities that

share a common environment” (Bernon et al., 2005b; Wooldridge & Ciancarini, 2001), and

“agents have conversations” (Bigus & Bigus, 2001:8). In other words, agents are alive in

their environments. However, “the standard object model has nothing to say about such types

of behaviour [reactive, proactive, and social]” (Wooldridge, 2009:30).

8 “[A]n event is anything that happens to change the environment or anything of which the agent should be
aware.…[W]hen an event does occur, the agent has to recognize and evaluate what the event means and then
respond to it.”

12

2.2 Monitoring Agents

In the classification of Franklin and Graesser (1997), monitoring agents are “task specific

agents”. Lee (2000) takes this classification a step further by classifying them as reactive

systems based on their specific behaviour in dynamic environments. This classification is

based on the properties of the environment, which is often dynamic, unpredictable and

unreliable, and the behaviour that these agent systems represent.

Since agents are situated in a particular dynamic environment, it is important that they

react effectively to this rapidly changing environment. By being in an unpredictable

environment, it is assumed that agents do not have control over their environments; in other

words, they cannot predict the future states of their environment. Being unreliable indicates

that agents can fail for reasons beyond their own control. However, it is also expected that

they should be flexible enough to exhibit different solutions to the same problem, and that

perhaps the recovery should be obtained automatically so that the changes in the environment

do not keep agents from reaching their goals. Besides, agents have the ability to communicate

with human (agents) via an agent language or well-designed GUI (Graphical User Interface),

where they might be perceived as having humanlike responses. In some cases, agent systems

are considered to be human-substitutes. Unlike humans, however, they have the advantage of

not becoming bored of doing the same job as many times as necessary without losing

effectiveness or increasing error rates. Thus, the features of an agent are well suited for

automated monitoring or controlling systems which demand “dynamic movement of time-

critical tasks among software and human agents” (Lee, 2000).

2.2.1 Existing Monitoring Agents

Various kinds of monitoring agents are presented in the existing literature. They are mainly

used in monitoring processes in different areas such as power plants (Heo & Lee, 2005),

complex chemical processes (Bunch, Breedy, Bradshaw, Carvalho, Suri, Uszok, et al., 2004),

online diagnostics, i.e. condition/patient monitoring diagnostics (McArthur, Booth,

McDonald, & McFadyen, 2005; Mabry, Schneringer, Etters, & Edwards, 2003; Uckun, 1994),

voice quality management (Imai, Yamada, Ueno, Nakamichi, & Chugo, 2006), academic

management (Jami & Shaikh, 2007), transport (Jedermann & Lang, 2006), detecting money

laundering (Wang, Xu, Wang, Ye, & Gao, 2007), and workflow monitoring (Wang, Wang, &

Xu, 2005; Ehrler, Fleurke, Purvis, & Savarimuthu, 2006). Monitoring agents “help in these

13

types of tasks because they do not get bored when nothing is happening, and during crises

they can help to manage information overlaid” (Hayes, 1999).

An interesting notion is related to their ability to take part not only in particular

processes but also in monitoring intelligent multi-agent systems. In Kaminka, Pynadath, and

Tambe (2001), these agents are used to monitor the existing intelligent systems, such as “on-

line monitoring of deployed distributed teams of cooperation agents, e.g., for visualization, or

performance tracking”.

The earlier research contains different names for monitoring agents: “user agents”,

“assistant agents” or “interface agents”. These agents have slightly different roles, but they all

do some kind of monitoring activity. For example, Lashkari, Metral, and Maes (1998) and

Maes (1994, 1997) describe a single-user interface agent (Wooldridge, 1997) which filters

emails on behalf of the user. Basically, the user agent’s mission is to interact with the

application, communicate with the human agent, monitor the user’s actions and learn from

them so that the agent can imitate these actions. Luck, McBurney, and Preist (2003:26)

describe an assistant agent as one that is “engaged in gathering information or executing

transactions on behalf of their human principals on the Internet”.

2.2.2 Exception Monitoring Agents

Exceptions can be defined as unusual situations which can be “special cases or error

conditions”.9 Special cases are those that somehow do not fit the logic of the processes,

although such exceptional cases might be a part of the processes. On the other hand, error

conditions might occur due to the interruption of the flow of the programs. It is important that

the system have the capacity to deal with them, since otherwise, the system may break down

when exceptions occur.

Exception monitoring involves solutions to overcome the fatality of exceptions. The

general idea behind this concept is that exceptions should be monitored, and as soon as they

occur, they should be eliminated in one way or another so that the systems keep on working

without being impacted by the potential harm these unusual situations present.

In the previous literature, there are many examples of agent systems that can

successfully deal with exceptions.

9 www.stanford.edu/class/cs242/readings/vocabulary.html (Last accessed 9.february.2010)

14

When business processes are the sources of exceptions, it is necessary “to predict and

prevent business process exceptions as early as possible before they occur, and detect and

resolve exceptions as soon as possible after they occur” (Kim, Choi, & Park, 2010). This

approach is known as proactive exception handling. Another option, reactive exception

handling, involves dealing with the “unexpected output of the tasks” (Wang & Wang, 2004).

It is also possible to classify exception monitoring together with “anomaly detection”.

For example, McArthur, Booth, McDonald, and McFadyen (2005) demonstrate “an agent-

based architecture [which] can support anomaly detection for condition monitoring of [an]

electrical plant”.

Another case worth mentioning is that of enhancing the monitoring system’s

flexibility in order to deal with exceptions. For example, Wang and Wang (2002) propose a

flexible workflow monitoring system which allows for exception management.

With respect to error cases, one solution might be monitoring the target system, which

might be impaired because of exceptional situations. Hu, Zhang, Zhang, Zhao, Chen, and

Fang (2008) give an example of “an agents group-based approach” for exception handling in

which an “agents group is dispatched to find out the status of running processes in the system

to keep track and troubleshoot them when necessary”. Another example is the proposal in

Yang, Chan and Xu (2005) of “a mobile agent-based approach to handling exceptions in

distributed workflow management systems”.

2.3 Software Process and Agent-Oriented Development

In building an exception monitoring agent, it is important to follow an agent-oriented

development methodology “which explicitly model[s] agent-oriented aspects” (Bussmann,

Jennings, & Wooldridge, 2004:80). In this section, I will review the current software

development approaches, before focusing on agent-oriented development methodology. As

mentioned above, the aim of this exercise is to explicate and theoretically situate the approach

that is adopted in this project.

2.3.1 Software Process Approaches

There are two widely used software process approaches in the literature: the waterfall model

and iterative and evolutionary development.

15

2.3.1.1 The Waterfall Model

This approach departs from the idea that the software development process is composed of

distinct stages. It “follows a logical progression of defining requirements, designing the

system, building the system, testing the system, and placing the system into operation” (Perry,

2006:587). Each of these stages has its own type of activities, and it is necessary to produce

documentation at the end of each stage. As a result of this necessity, the number of iterations

is limited in this model, since every iteration comes with a higher level of costs that are

related in particular to “the cost of producing and approving documents” (Sommerville,

2004:66-68) as well as the fact that every iteration involves “significant rework”

(Sommerville, 2004:66-68). On the other hand, the lifeline in this model is linear, “but there

are often backflows” (Fowler, 2004:20). These backflows are not part of the routine; they are

considered “exceptions and should be minimized as much as possible” (Fowler, 2004:20).

Moreover, waterfall methodology “assumes that at the end of the requirements phase,

requirements for development are known” (Perry, 2006:587). Therefore, “the commitments

must be made at an early stage” (Sommerville, 2004:66-68). This leads to the fact that its

response to changing customer needs is poor.

2.3.1.2 Iterative and Evolutionary Development Approach

The iterative and evolutionary development approach “breaks down a project by subsets of

functionality” (Fowler, 2004:20). It “is based on the idea of developing an initial

implementation, exposing this to user comment and refining it through many versions until an

adequate system has been developed” (Sommerville, 2004:68-69). Its chief advantage is “the

specification [that] can be developed incrementally” (Sommerville, 2004:68-69); this means

that, it responds to changes in customer requirements in a better and faster way. This

approach supports several releases, and each of these releases can be divided into several

iterations. It is expected that each iteration produces “production-ready integrated software”

(Fowler, 2004:20). In this way, the value from the system is received as early as the first

iteration, and the feedbacks that are obtained are of a higher quality.

The nature of this development approach works well with projects’ time constraints.

Backflows between stages are allowed and the software production is organized in different

releases and iterations. Changes can be implemented as soon as possible and it is not

necessary to make commitments early in the project timeline. This allows for working

16

according to the priorities of the projects, and it also helps to identify the “real requirements

priorities” (Fowler, 2004:20).

Since the system is produced incrementally in a feature-by-feature fashion, the

development model requires the participation of the customer until the product is completed.

It is assumed that “the user does not have a rigid definition of requirements” (Perry,

2006:587); the model instead takes its set of requirements from the final system in order to

“provide feedback on its suitability and acceptability” (Sommerville, 2004:69). As a result,

this type of software development approach is categorized as exploratory and throwaway or

fast prototyping.

Even though the iterative and evolutionary development approach has many advantages over

the waterfall model, Sommerville (2004:69) lists some of its disadvantages.

First of all, the software development in this approach happens so quickly that it might

have a negative impact on the measurement of progress. Quick development processes can

result in poorly structured systems, so that “incorporating further software changes becomes

increasingly difficult and costly” (Sommerville, 2004:69).

Moreover, Sommerville (2004:69) claims that this approach is better suited to small

and medium-sized systems; for large systems, he recommends a mixed process that

“incorporates the best features of” both approaches.

Finally, Liskov and Guttag (2001:258) state that fast prototyping is suitable for simple

systems, and it can be disadvantageous for complex systems. This is because such prototypes

include a set of requirements that might not adequately reflect a system’s complexity. In

addition, fast prototyping can lead to a system which is not robust. Furthermore, the

production costs might run so high that the prototype “can be too valuable to throw away”

(Liskov & Guttag, 2001:258).

2.3.1.3 The Choice of Software Process Approach

The iterative and evolutionary development approach will best serve the specific objectives of

this project. This is a research project of an exploratory nature. The project’s research design

is based on design-science paradigm, in which the solution to a problem includes the design

and development of a working prototype which constitutes a proof of concept. The project’s

exploratory nature is further bolstered in that by allowing changes in the requirements, the

development process becomes self-enriching so that the findings can also be adapted to the

17

prototype if necessary; that is, the feedback provided from iterations can be used in

refactoring the prototype. This approach also allows for gradual development, so that the

working prototype will verify the functional needs and business objectives will be

implemented based on priority. Moreover, it better fosters the elimination of risks, since

flexibility is embedded in the process. In building this prototype, it is expected that any

problems (associated with the chosen tools, programming languages etc) can be eliminated

relatively faster and more effectively.

2.3.2 Agent-Oriented Design and the Choice of Development Methodology

Agent-oriented development methodologies are “intended to assist first in gaining an

understanding of a particular system, and, secondly, in designing it” (Wooldridge, 2009:184).

There are well-known agent-oriented development methodologies such as AIII (the Australian

AI Institute), Gaia, Tropos and Prometheus (Wooldridge, 2009:184-188).

Given the development tasks at hand, the role-based methodology is best suited to the

scope of this thesis. Kendall (1998, 2001, cited in Bussmann et al., 2004:88) defines role as

“an abstraction of agent behaviour based on responsibilities, possible collaborators, required

expertise and cooperation mechanisms used”. According to this methodology, as represented

in GAIA, the analysis moves from abstract conceptualizations to concrete concepts

(Wooldridge, 2009:186). Kendall states that the agent system is understood “as a process of

organizational design”. Therefore, the hierarchy can be represented with the concept of role,

which is defined by “responsibilities, permissions, activities, and protocols” in GAIA

(Wooldridge, 2009:187). These are precisely the features this project requires, for the

following reasons:

First, the exception monitoring agent should provide different roles that support the

monitoring capabilities based on the nature of its environment.

Second, in this particular conference management environment, exceptions emerge

from the gap between the existing business processes and the implemented versions of these

processes. To deal with it, the agent should have the capability to behave according to goals

and communicate with human agents.

Third, it is important to emphasise the necessity of establishing a hierarchy between

the monitoring agent and the human agent: The monitoring agent should gather information

from the software environment to support the human agent’s decision processes. This implies

18

that the human agent is the one responsible for taking decisions regarding fraudulent

activities.

Finally, the monitoring agent should have certain properties such as autonomy,

reactivity and proactivity. By being autonomous, the monitoring agent should reach her goal

and complete her tasks without human intervention, and she should be aware of her state. By

being reactive, the agent has the ability to respond to the changes in her environment. Since

there should be a hierarchy between agents (human and exception monitoring), the

monitoring agent can also be assigned some tasks. This means that the agent should respond

positively to the human agent’s task allocation. She should act proactively; that is, she should

take some initiatives that also support the monitoring activities in a rapidly changing

environment.

2.4 Evaluation of the Monitoring Agent

According to the design-science paradigm, “IT artefacts can be evaluated in terms of

functionality, completeness, consistency, accuracy, performance, reliability, usability, fit with

the organization, and other relevant quality attributes” (Hevner, March, Park, & Ram, 2004).

In this thesis, the implemented prototype’s usability will be evaluated. The main

evaluation objective is to show whether a monitoring agent tool can be useful in supporting

the workflow processes for capturing fraud for conference management systems.

2.4.1 Usability Testing

There are two aspects related to usability in this project: how to support usability in the design

process and how to evaluate usability.

According to Dix, Finlay, Abowd, and Beale (2004:258), “designing for maximum

usability is the goal of interactive systems.” In this work, the principles to support usability

are as follows:

Learnability: It should be easy for new users to learn how to use the system so that

they can perform and interact effectively.

Flexibility: the various ways of exchanging information between the users and the

system.

Robustness: Users should get a minimum level of support, which leads to

effectiveness.

19

The evaluation of usability “is any analysis or empirical study of the usability of a prototype

or system” (Rosson & Carroll, 2002:227). Rubin (2008:21) defines usability testing as “a

process that employs people as testing participants who are representative of the target

[audience to] evaluate the degree to which a product meets specific usability criteria”.

The evaluation goals of usability testing are “to assess the extent and accessibility of

the system’s functionality, to assess users’ experience of the interaction, and to identify any

specific problems with the system” (Dix et al., 2004:319-320). It is expected that the usability

evaluation provides feedback that can be used in different stages of the software development.

Thus, there is a close connection between usability design and prototyping (Dix et al.,

2004:319).

2.4.2 Usability Types and Techniques

In this project, one of the objectives is to design and develop a prototype, which also includes

a user interface. “A crucial part of making a good user interface is to… test [user interfaces]

for usability” (Lauesen, 2005:41). In order to conduct usability testing, it is necessary to use

some usability types and techniques. The ones that are relevant to this project will now be

explained briefly.

2.4.2.1 Laboratory Studies vs. Field Studies

There are two different types of usability evaluation: laboratory studies and field studies. This

distinction is based on the environment in which the tests are conducted. The laboratory

environment is a relatively “sterile” place in the sense that it is possible to control some of the

features of the environment, for example the lights, noise, temperature etc. Field studies are

held in the actual/original working environment, which “allows us to study the interaction as

it occurs in actual use” (Dix et al., 2004:327-329).

The office environment and the workload of the conference manager have an obvious

impact on the detection of fraudulent activities, since this task requires a certain amount of

attention. That is why it is important to test the prototype in the working environment of the

conference manager. Consequently, this project will employ the field study for the usability

evaluation of the prototype.

20

2.4.2.2 Usability Techniques

There are a variety of evaluation techniques that can be employed to achieve usability goals

(Dix et al., 2004: Chapter 9; Rosson & Carroll, 2002: Chapter 7). Observation is the main

kind of evaluation in the evaluation process; data about the actual use of the prototype is

collected by observing users interacting with it (Dix et al., 2004: 343). The focus should be

on finding a set of observational techniques that best suit the requirements. Interviewing and

think aloud protocols are the relevant evaluation techniques for this project:

Interviewing is a query technique that “relies on asking the user about the interface

directly” (Dix et al., 2004:348). It gives an opportunity to gather the user’s viewpoint. Dix et

al. (2004:348) defines interviews as follows:

An interview will usually follow a top-down approach, starting with a general question about a

task and progressing to more leading questions (often of the form “why?” or “what if?”) to

elaborate the aspects of the user’s response.

Planning is an important element of the interview; the core questions should be prepared in

advance. It is also possible to adapt the form of the interview to each user since it is not a

controlled experimental technique.

Think aloud protocol (TAP) is an observational technique that is based on the

cooperation of the user. It is also a way to observe the interaction between the user and the

system. Basically, “the user is asked to talk through what s/he is doing as s/he is being

observed” (Dix et al., 2004:343). It is an easy-to-learn method, but its effectiveness depends

on the choice of recording, e.g. paper and pencil, audio recording or video recording.

2.5 Summary

This chapter gives an overview of the theoretical, conceptual and methodological landscapes

that inform this thesis. A target-oriented literature review enabled me to make conscious

choices concerning the conceptual and methodological approaches. In brief, my choices as a

result of the above discussion are:

1. A monitoring agent who is autonomous, reactive and proactive, developed based on

its roles. Details of the development of the agent can be found in Chapter 3.

2. Agent-oriented methodology and iterative software development as the main

software development approaches.

21

3. Usability testing as the evaluation method and a field study that includes

observational techniques such as interviewing and think aloud protocols. The

interview is planned to be semi-structured; that is, the answers of the participants are

used in questions for detail. Evaluation and findings are presented in Chapter 4 and

evaluation documents are included in Appendix 1.

22

3 Design and Development

Russell and Norvig (1995:33) state that “the notion of an agent is meant to be a tool for

analyzing systems, not an absolute characterization that divides the world into agents and

non-agents.”10 The nature of agency leads to some differences in practice that produce a

distinction between the design and development of agents and objects or object-oriented

systems.

In this chapter, the objective is to follow agent-oriented modelling and development

practices in the creation of the monitoring agent.

3.1 The Agent-Oriented Approach

“Most recent software engineering methodologies are designed for an object oriented

approach” (Caire et al., 2002). However, agents are different from objects, and although

object-oriented methodologies are used to construct agent systems, there still exists an agent

orientation in such efforts. Caire et al. (2002) claim that “agent orientation is … a paradigm

for analysis, design and system organization” and add:

…[Agent Oriented Software Engineering] AOSE can be divided into two broad categories.

The first category aims to apply existing software engineering methodologies to AOSE…. The

second category of work aims at developing a methodology from agent theory, mainly

covering analysis and design…

The concept of agent lies at the centre of the design and development of the monitoring agent

prototype, MONA.11 First of all, an agent will be “one [that] acts” (Franklin & Graesser,

1997) by overtaking some parts of the Conference Manager’s tasks in the workflow, which

are related to the identification of possible fraud attempts.

A higher importance is placed on being reactive (Depke, Heckel, & Kuster, 2001) and

autonomous (Depke et al., 2001) in the design process: MONA perceives its environment via

GUI (communication with the conference manager), and MONA is designed to overtake

some parts of the conference manager’s workflow items; that is, MONA will be assigned

tasks by the conference manager. The use of GUI can be considered to be a message passing

10 The same statement is also mentioned in Franklin & Graesser (1997).
11 I will refer to MONA as “she” from now on, simply because Mona is a female name.

23

from/to human and software agents, and MONA will perform the given task autonomously,

i.e. without human intervention.

3.2 Agent Domain: Open Conference Systems

The conference management system12 that will be used in this project is Open Conference

Systems (OCS), which is developed as a part of the Public Knowledge Project.13 It is a free

web publishing tool that is provided for scholarly conferences with the GNU public licence,

and is therefore used widely in different conferences,14 which increases the use value of this

research. OCS has many features, such as aiding the creation of a conference website,

conference participant registration, online submission for abstracts and papers, a multiple-

round review system and credit-card payment for registrations.

In this project, the emphasis is on the registration and payment processes of this web

tool. The operational process is as follows: The attendee submits his or her own personal

contact information. According to the given fee, the OCS prepares a bill and delivers this bill

over to the online payment tool. By using a credit card or PayPal account, the attendee pays

the fee. (The conference organization should establish a seller account in advance of using

this tool in conference fee payments.) By default, an attendee who pays his or her fee may

participate in the conference; however, the conference manager has a right to refuse any

registration based on rules and regulations.

3.2.1. Current Situation in OCS

In OCS 2.0, there is no available check in the system to capture or gather information about

fraud attempts.

The system comprises two aggregate reporting possibilities: list of registrations and

the total number of registrations. The administrator can obtain a list of all registrations in an

MS Excel file by using “Registrant Report”, which is stored in the “Reports” section under a

12 There are various different Conference Management Systems on the market, such as EasyChair, OpenConf,
EDAS Conference Manager, ConfTool, ConfMaster, IAPR Commence Conference System, COMS, Confious,
Open Conference Systems etc. Some of them are commercial and others are open-source products. These have
different features including registration, online submission, reviewing, payment support, data export and
reporting.
13 More information on this project can be obtained at http://pkp.sfu.ca/ (Last accessed 25th.November.2010).
14 For a list of conferences where OCS has been used as a primary tool, see http://pkp.sfu.ca/ocs-conferences
(Last accessed 25th.November.2010).

24

“Conference Site Management/Stats & Reports” link. However, detecting fraudulent

registrations manually is not an easy task when there are many registrants.

In the registration/payment process, the paypal_transactions table is updated

when a payment event is completed. One drawback is that there is no interface in the system

that shows the stored payment events; the payment information exists but is hidden to the end

user. In addition, the data stored on this table is not user-friendly. Every event is defined with

a 17-digit alphanumerical payment reference. It is not always easy to compare the stored

information with the information from the payment account manually because of these

cumbersome payment references.

In short, this lack of reporting and investigation possibilities impedes the conference

manager’s work.

3.2.2 Finding Fraudulent Activities: User’s Workflow Details

As a result of missing reports and functions, the conference manager15 has to collect

information about possible fraudulent activities manually. The workflow of the conference

manager in identifying such potential fraudulent activities in the registration process is

presented in the following paragraph as well as Figure 2.

The conference manager collects as much information about the registrants as possible

in order to make a decision about accepting their registrations. In this process, one of the main

tasks is to obtain a list of registrants who have already paid the conference fee. After receiving

the lists of registrants and payments, the manager compares the items in these files by using

the name, email address and country of the registrant, fee type, fee amount and date of

registration. Registrants from some visa-required countries are checked additionally by using

other kinds of information given at registration, such as country, affiliation, email address etc.

Search engines such as google.com and pipl.com are other options for finding out more about

the registrant and the registrant’s affiliation. If there is still some suspicion about the

registrant’s intentions (whether the aim is to attend the conference or not), it is possible to ask

for his or her CV to find more information about the registrant. After the conference manager

accepts the registrations, he or she must update the records in the conference management

system, and the process ends.

15 The “conference manager” and “user” will be used interchangeably from now on.

25

Figure 2: Finding Fraudulent Activities: Workflow Diagram of Conference Manager

The leading disadvantage of this manual work is that it is highly time-consuming and

open to human error, which might lower the quality of the output. Furthermore, in order to

improve this process by getting processed data from the OCS environment and the payment

system, it is necessary to have programming skills and this is not a common ability among

conference managers.

26

3.3 Modelling the Monitoring Agent

The agent-oriented modelling process comprises the activities of “requirements specification,

analysis and design” (Depke et al., 2001). The aim is to find out “the key abstractions of roles

and responsibilities” (Bussmann et al., 2004: 90). Therefore, I have followed Depke et al.

(2001) in the organisation of this section. In “Requirements Specification”, a detailed picture

of the monitoring agent system in terms of system functionality is given. In the “Analysis”

part, the fraud indicators are analysed. Lastly, in “Design”, the agent model is presented with

its roles and tasks.

3.3.1 Requirements Specification

The purpose of this project is to develop an exception monitoring agent prototype to support

conference managers in detecting fraud attempts in an OCS environment. In order to achieve

this objective, the requirements have been carefully analysed. The system requirements

specification is outlined below.

3.3.1.1 System Context of the Prototype

MONA, Monitoring Agent for Open Conference Systems, is a web-based automated

monitoring agent system, which is integrated into the OCS environment.

Figure 3: Use Case Diagram for Monitoring Agent

Source: Adapted from Depke et al., 2001

When MONA is set on duty by the user, it monitors the registration process of a

particular conference. Its tasks include generating different kinds of reports in runtime, and

presenting them either on the web or sending them via email. Figure 3, the use case diagram

27

(which is adapted from Depke et al., 2001) gives an informal description of the functional and

architectural requirements of MONA, where “Conference Manager” is presented as the main

actor.

3.3.1.2 Major System Capabilities

This subsection lists functional and non-functional requirements. Functional requirements

give a functional picture of the system, i.e. an overview of “how the system should react to

particular inputs and how the system should behave in particular situations” (Sommerville,

2004:119). On the other hand, non-functional requirements are “the qualities” (Robertson &

Robertson, 2006:10) and “the constraints on the services or functions offered by the system”

(Sommerville, 2004:119). Table 1 and Table 2 (adapted from IEEE.Std.1233, 1998 Edition)

list the functional and non-functional requirements, respectively.

3.3.1.3 Functional Requirements

Table 1: Functional Requirements

No. Type Functional Requirement

1 Must - MONA is a web-based monitoring agent application.

2 Must - User sets MONA On Duty or Off Duty.

3 Must - User configures MONA.

4 Must
TASK 1:
- MONA presents a summary of registrations on the web.
- Includes country list

4a Must
- Connects to OCS database and obtains statistical information.
- Includes country list.

4b Must - Generates a report and presents it on the web.

5 Must
TASK 2:
- MONA presents a list of its own actions on the web.

5a Must - Connects to OCS database, and obtains its activity information.

5b Must - Generates a report and presents it on the web.

6 Must
TASK 3:
- MONA presents a list of registrations based on payment transactions on the web.

Continued on the next page

28

No.

Type

continued
Functional Requirement

6a Must - Reads payments file and makes a list of payments.

6b Must - Connects to OCS database, reads paypal_payments table and makes a list of
payments.

6c Must - Connects to OCS database, reads users.registrations, user_sched_conf
tables and makes a list of registrants.

6d Must
- Compares the lists of payments (the one from the database with the one from the

payments file).
- The records that satisfy the comparison condition should be kept in a separate list.

6e Must
- Compares the database-list with the payment-file-list.
- Marks the items in the list with: full match, missing name/email, person does not

exist.

6f Must - Produces a report that includes the findings.

6g Can - This report might include further investigation possibilities: Pipl/Google search for
participants name and/or institute and/or country.

7 Must
TASK 4:
- MONA presents a short summary of registrations and sends them to the user by

email upon request.

8 Must
TASK 5:
- MONA presents a short summary of registrations and sends them to the user by

email every day at 08:00.

8a Must - Connects to OCS database, and obtains statistical information.

8b Must - Presents statistical information in an email which is sent automatically every day at
08:00.

3.3.1.4 Non-functional Requirements

Table 2: Non-Functional Requirements

No. Non-functional Requirement Description

1 Accessibility Accessible to the user

2 Availability Available as long as the partner systems (conference
management and payment) are available.

3 Dependence on other parties Depends upon the information that is going to come from
OCS and payment systems.

4 Efficiency (resource
consumption for given load)

OCS should continue to work without having performance
problems while MONA is set on duty.

6 Extensibility Not necessary to have an “application programming
interface”.

7 Performance and response
time

Produces the result report as soon as possible. Report
producing time more than 3 seconds is not affordable.

Continued on the next page

29

No.

Non-functional Requirement

continued
Description

8 Maintainability Easy to maintain.

9 Open Source Not a commercial program, freely available to the public.

10 Quality Delivers a high quality result—reliable.

11 Robustness Program should not get runtime errors during the intended
execution of the program.

12 Stability Program should deal with errors so that it will not crash
during the execution of the program.

13 Visualisation and usability
User-friendly GUI.
Produces easy-to-use result-report.

3.3.1.5 User Characteristics

Single User: Conference Manager. The user should have a valid id and password in the OCS

environment, and this id should have the role of administrator in the conference system.

3.3.1.6 Operational Scenario

- User logs on to MONA’s website.

- User configures MONA and sets it on duty. As soon as the user has done so, it will

send automated emails that include a short summary of registrations every day at

08:00.

- User can assign different tasks to MONA. It presents different reports according to

the chosen tasks.

- User can set MONA off duty. It stops sending automated emails, if it has been

configured to do it, and cannot be assigned to tasks.

3.3.1.7 Prototype Environment

Everything needs an environment which to exist; “[a]n environment provides the conditions

under which an entity (agent or object) exists” (FIPA, 2003). I will now describe the different

parts of MONA’s environment.

30

OCS System Operating Environment:

1. Server Environment

The server where OCS is located uses the following programs for OCS: PHP 5.1.6, MySQL

5.0.45, Apache 2.2, and the operating system Red Hat Enterprise Linux.

2. Payment Plug-in

The OCS uses PayPal Plug-in, which enables users “to use all major credit cards ... when

paying through the system.”16 To use this plug-in, it is necessary to get an account from

PayPal via a web-based interface in which customers can log on and monitor their accounts.

Here, there is the opportunity to obtain the history of an account as a text file. This file will be

used as an input by the prototype.

Agent Environment:17

The quotes in this section are taken from Weiss (1999, cited in FIPA, 2003) and Russell

(1995, cited in FIPA, 2003). The basic characteristics of MONA’s environment will include

the following:

“Accessibility—To what extent is the environment known and available to the agent?”

The monitoring agent has access to the OCS database and to the file space. In the database, its

rights are limited to reading and updating payment dates only, and it can read the files under

the “uploaded” map.

“Determinism—To what extent can the agent predict events in the environment?” The

agent predicts the possible fraudulent registrations.

 “Diversity—How homogeneous or heterogeneous are the entities in the

environment?” The OCS database is a relational database, and MONA has access to several

tables in this RDBMS. MONA also reads the PayPal account summary file, which is located

in the OCS file space under the “uploaded” map.

16 From the actual OCS, http://www.ocs.uib.no/thesis/ocs/ (Last accessed 25th.November.2010). The information
is under Home > Open Conference Systems > User > Conference Site Management > Plugin Management on
this webpage.
17 Adapted from FIPA (2003).

31

“Controllability—To what extent can the agent modify its environment?” MONA

modifies its own tables, agent and agent_events, in the OCS database.

“Volatility—How much can the environment change while the agent is deliberating?”

Until the registration deadline is reached, there might/will be some changes in the OCS

database (attendees will register for the conference) while the monitoring agent is on.

“Temporality—Is time divided in a clearly defined manner?” The tasks are defined

clearly. The actions happen synchronously.

“Locality—Does the agent have a distinct location in the environment which may or

may not be the same as the location of other agents sharing the same environment?” This

prototype works with one agent, and the monitoring agent is located in the same place as the

OCS environment.

3.3.1.8 Prototype Architecture

MONA is designed as a reactive system18 in which the data is processed. It processes the

stored data in the OCS database and the payment file according to the inputs from the monitor

(the chosen task). It completes its tasks and generates reports which are presented on the web

and/or sent via email.

3.3.1.9 Documentation Requirements

The program is supported with information about MONA and its tasks. Completed tasks

include information about MONA’s header information. Coding is supported with JavaDoc-

type documentation.

3.3.1.10 Programmatic Requirements

The Java programming language is chosen as the programming language to develop a desktop

application. Since this programming language can be used on different platforms, it is an

advantage to use Java on this project. Eclipse Ganymede is used as the programming tool.

Eclipse Ganymede has also good tutorial coverage on its website. Moreover, my BA included

18 Lee (2000) gives an overview of reactive-system approaches to agent architectures. He categorises reactive
systems based on their tasks and environment properties. According to this categorisation, MONA can be seen as
an “Automated Monitoring and Controlling System”.

32

two courses on Java programming: an introduction to programming and a specialisation

course in Java programming.

On the server side, the latest version of MySQL (version 5.0) is in use. The PC I am

using to develop this project runs on Windows Vista. The driver (v. 5.0 and v. 5.1) which will

support the connection between the MySQL database and the desktop application is not

mature yet. This might create some problems during development.

The second programming language choice is PHP. Programming with PHP is similar

to Java, which is an advantage. Moreover, php.net has good documentation available on the

Internet. The tool needed to program with PHP is a source code editor. For this, Eclipse

Ganymede with PHP plug-ins19 is used.

For server file operations, the chosen tool is SSH Secure File Transfer Client (3.2.9)

which will be used in the installation process for OCS, as well.

For database operations, phpMyAdmin is the main tool. It “is a free software tool

written in PHP intended to handle the administration of MySQL over the World Wide

Web”.20 An overview of the programs used in the development process is given below in

Table 3.

Table 3: Programs/Programming Tools

Programs/Programming Tools Description

Eclipse Ganymede Eclipse development platform for Java
Source Code

Eclipse Ganymede/PDT Eclipse development platform for PHP

SSH Secure File Transfer Client Secure transfer of the files; installation of
OCS

phpMyAdmin Administration of the OCS database

3.3.1.11 Other Requirements

The program will be delivered with a GNU license (non-commercial, open source).

19 More information can be found at http://www.eclipse.org/pdt/ (Last accessed 25th.November.2010).
20 http://www.phpmyadmin.net/home_page/index.php (Last accessed 25th.November.2010).

33

3.4 Analysis

The process of analysis is intended to show what the agent system does. The structure of

MONA is presented in Figure 4 in an agent class diagram with “generic agent notation”

(FIPA, 2000), and in Figure 5 it is presented in a structural model which is a “class diagram”

(Depke et al., 2001).

In the diagram in Figure 5, there are two main files which hold the

agent system classes: agent.php and agentUtils.php. The history of

the payment account, which presents the information about

payments, is placed in the payments.txt file in the upload

directory. The DB_read class is responsible for communication

with the OCS database, in which tables that are used in

registration process and the ones that are used by the agent are

stored.

Figure 4: Agent Class Diagram
Source: Adapted from FIPA
(2003)

<<agent>>
Monitoring Agent

Role
Observer
Adviser

Organization
OCS Monitoring

Protocol
doTask

34

Figure 5: Class Diagram for Monitoring
Agent

35

3.4.1 Definition of Fraud

Fraudulent activity is defined as a registrant’s using the conference as a way of entering the

country rather than attending an academic event. It is very hard to evaluate the registrant’s

intentions; however, the stored data in OCS gives us some details, which makes a kind of

evaluation possible.

An analysis of the conference manager’s workflow for finding fraud attempts shows

that it is necessary to compare the data that is stored in the payment account with the data that

is stored in the Conference Management System (CMS). The result of this comparison allows

for an opinion about whether further investigation is necessary. For example, if the payer is

different than the actual attendee, it is a potential warning signal.

MONA classifies the intentions of the registrants based on the information given in the

registration process. The fraud indicators that are used in this project are the registrant’s

payment data, full name and email address.

There are also certain assumptions here, as the interviews with experienced conference

managers have made clear. These assumptions support the interpretation of stored data in the

CMS, and they are implemented in the prototype. They can be listed as follows:

- Payment is personal; every registrant has the intention to pay only for him- or

herself and not on behalf of somebody else.

- The registrant uses the same full name and email address both in the registration

process and the online payment process.

- There will be few exceptions to the aforementioned assumptions. In such cases, the

registrants will need to get in touch with the conference manager so that it will be

relatively easier to deal with these cases.

- The conference manager will use internet search engines such as pipl.com and/or

google.com to gather information about the registrant in a possible case of fraud by

searching with the full name and country information.

There are also some assumptions related to the CMS and use of payment account:

- There is only one conference defined in the system.

36

- The payment account, in which the conference fees are collected, is/can be used

for several purposes, e.g. to collect fees for several conferences or other types of

payments; i.e. it includes both the relevant and non-relevant payment records.

3.5 Design

The process of design “concentrates on the question of how the system will function” (Depke

et al., 2001). I will now explain briefly how MONA will work as a monitoring and single

user’s agent, before describing MONA’s roles.

3.5.1 Monitoring Agent

The ways in which the system functions should satisfy the criteria for being an agent:

autonomy, reactivity and proactivity.

First of all, MONA should fulfil its tasks autonomously, i.e. without human

intervention. Nevertheless, autonomy is not the only feature an agent should have. It should

also be “capable of flexible autonomous action in order to meet [its] design objectives”

(Jennings & Wooldridge, 1998:4). This can be achieved by being reactive, responding to

environment in a timely fashion; it perceives its environment and responds to any changes.

On the one hand, it responds to the user via the interface: MONA is configured, gets tasks

from the user, communicates with the OCS database and payment file and collects necessary

information to create and deliver reports. However, MONA does not have to react to the

changes in the OCS environment in real-time, since its role is that of an assistant which

contributes whenever needed.

Another important feature MONA should have is proactivity. It is important to

mention that this feature has to be shaped according to the limits of the technology used to

create the agent. PHP, the main programming language, does not support the necessary

tools/functions as event handlers that work in line with the MySQL database. As a result of

this disadvantage, I design MONA’s (limited) proactivity feature as follows. Using the

resources of the server, I set a crontab-job on the server so that it will work at 08:00 every

day. MONA checks the registration data, prepares an overall report and emails it to the user.

The user has the option of using/accepting this feature. If the user does not want it, he or she

can configure MONA to turn this feature off.

37

3.5.2 Single User Agent:21

MONA is designed to automate some parts of the conference manager’s tasks primarily in

order to detect possible fraudulent activities in the registration process. MONA will work as a

single user agent,22 as a personal assistant to the conference manager (human agent).

Collaboration between these two agents will occur in order to complete the task of detecting

fraud attempts in the OCS environment.

MONA will assist the user by supplying necessary information and possibilities for

investigation. In other words, MONA’s purpose is not that of taking decisions but supplying

necessary information to the user about registrant intentions based on the above-mentioned

specific rules and assumptions.

MONA will also act as an interface between the OCS and the user. The user can set

MONA on duty, upon which it will do the chosen tasks immediately. It collects any available

information about the registration process, such as the conference, registrants, payments, fees,

OCS registrants, and itself. It then evaluates and reformulates this information in different

ways in order to assist the user’s responsibilities.

3.5.3 MONA’s Roles23

MONA is designed to have two distinct roles: It is both an observer and an adviser in

detecting possible fraudulent activities. In Figure 6, adapted from FIPA (2000) and Caire et

al. (2002), these roles are presented as an agent class diagram with “capability description

notation” (FIPA, 2000).

Observer Role:

MONA presents the stored information in the OCS database so that the user can follow the

registration process easily. This is shown as an agent class diagram in Figure 6. The goals

MONA wants to achieve are as follows:

21 Lashkari, Metral, and Maes (1998) describe a single user email agent in their work.
22 In Jennings and Wooldridge (1998:5), such kinds of agent systems are called “expert assistants”.
23 See also Chen, Dolonen, and Wasson (2003) and Chen and Wasson (2002) for “monitoring agent”
implementations. This section is adapted from these sources.

38

Statistical information about the registration process: How many registrants are there

in the database? How many of them have a status of accepted, pending or rejected? How

many registrants have or have not paid their fees? (This function is implemented in Task 1

and Task 3 in Table 1.)

Historical information about MONA’s actions: Which of the tasks has it completed,

and when? (This function is implemented in Task 2.)

Advisor Role

MONA monitors the registration process and uncovers the possible fraud attempts, generating

a report that includes the evaluation results. The objective is to allow the user to maintain

broader information about the registration process. MONA’s goal is to encourage and support

the user’s awareness by doing necessary routine checks, and supplying necessary and

adequate information. (This function is implemented in Task 3.)

Figure 6: Agent Class Diagram with Capability Description Notation

Source: Adapted from FIPA (2003)

39

3.5.4 MONA’s Tasks

MONA’s basic goal is to collect necessary information from the OCS environment

(registrations and payments) and from payment data (payment file), process the information,

and present the results in a report to the user in a timely fashion. A brief description of

MONA’s tasks categorised according to its roles is given below:

3.5.4.1 Operation Details for Detecting Possible Fraud Attempts

As an adviser, MONA detects the matching payments in the database and in the file by using

the transaction id24 which is an alphanumeric 17-digit reference created at the actual time of

the payment. After finding the records of registrants who have not paid their fees, MONA

checks whether the name and email address of the payer matches that of the registrant in the

system, and flags the record in the following cases:

Full Match: The payer and the registrant are the same person. This record is labelled

as “Accept!”.

Not Matching Name/Email: The payment information matches, but the name/email of

the payer is different than that of the registrant. This record is labelled “Check!” with a

comment showing the data that does not match.

Unfound Registrant: The payment information matches, but neither the email nor the

name of the payer is found in the database. This record is labelled “Fraud?” with the

comment “Missing record in OCS”.

Lastly, MONA presents the findings in a user-friendly report. This report includes a

link with further possibilities for investigation, such as the information in the registrants base

and payment file, and a link that brings up a browser window where the full name of the

registrant has been searched for at google.com (Task 3).

3.5.4.2 Other Tasks

Other tasks are defined for MONA as an observer so that it can assist the user by supplying

different kinds of information about the registration process.

24 Transaction id is stored in the Paypal_Transactions table in the OCS database. However, none
of the available reports in the OCS environment presents this very important piece of information. The only way
to reach this information is to have the skills to use a database management system or any tool that searches the
MySQL database, such as phpMyAdmin.

40

These tasks are:

1. User sets MONA on duty or off duty.

2. User can configure MONA to send an automatic email to the user every day at

08:00 while it is on duty. This task ends as soon as MONA is set to off duty (Task

5).

3. Mona can be assigned to perform the following tasks:

a) Presenting a summary of registrations (Task 1),

b) Presenting a list of its actions (Task 2),

c) Presenting a list of registrations based on payment transactions and fraud

check (Task 3),

d) Sending an email to the user with a short summary of registrations (Task

4).

3.5.6 DoTask Protocol

Depke et al. (2001) define protocols as follows:

In the analysis of the scenarios from requirements specification protocols can be derived that

agent roles have to execute. The interaction of pairs of roles is examined in order to find

protocol steps and protocol alternatives. Basic interactions between two roles are projections

of more complex interactions… A set of graph transformation rules forms a protocol. It should

be possible to derive all scenarios from requirements specification by the application of rules

of a protocol.

MONA has two distinct roles which do not overlap. Thus, the level of complexity is

low. It is possible to create a protocol for each task, but as a result of the low complexity, I

prefer using just one protocol, doTask, where MONA is assigned to do a monitoring task on

behalf of the user.

Roles can be represented in statecharts, which show the different states a role has to

accomplish. The statecharts (adapted from Depke et al. [2001]) for MONA’s different roles

are presented below in Figure 7.

41

Figure 7: Statecharts for Different Roles of MONA

Source: Adapted from Depke et al. (2001)

3.5.7 Challenges Related to Designing Agents

In the modelling and construction of agents, Meas (1997) mentions two important problems

related to competence and trust:

1. The competence problem has to do with how the agent can be competent enough to

achieve a task; as Meas puts it, “How does an agent acquire the knowledge it needs to decide

when to help the user, what to help the user with, and how to help the user?”

In this project, the abilities of the agent are explicitly defined. The rules which will be

used in fraud detection and evaluation come directly from the conference manager’s

workflow for this special task. Secondly, when modelling MONA, it is necessary to set a

hierarchy between the software agent (MONA) and human agent (conference manager) as a

result of the domain. The conference manager (user) has a higher rank in the hierarchy than

the monitoring agent, and the role of the user has a broader responsibility in the organisation

of the conference. It should be the human agent who starts up the monitoring agent by using

the agent interface. Thirdly, the scope of “help” is clearly defined in the modelling process:

the output will be a report detailing the possible fraud based on the stored data. This report

will be processed by the user, since the user is the one responsible in the organisation for such

cases.

2. The trust problem, in Meas’ words, is associated with the question of “How can we

guarantee that the user feels comfortable delegating tasks to an agent?”

This question is especially important for this project, since “the degree to which

people are willing to delegate duties to monitoring agents depends on how much they trust the

capabilities of that agent” (Hayes, 1999).

42

Here, the hypothesis is that if it is possible to show what MONA does exactly what it

is asked to do and that it does not make mistakes, the user will be convinced to use the result

report created by the monitoring agent. This is related to the research question I mentioned

previously: Is the outcome of collaboration with the monitoring agent reliable? Is it

convincing enough for further collaboration? Some aspects of this hypothesis are addressed in

Chapter 4.

3.5.8 Collaboration between MONA and the User

Considering the agent domain and the fact that MONA is a prototype, it is necessary to

convince the user that Mona will be both capable of executing tasks and secure enough so that

he or she can delegate some of his or her tasks to MONA. These issues are related to the

above-mentioned challenges of competence and trust.

I believe that it is possible to overcome these challenges by carrying MONA’s feature

of autonomy to a different level, which is referred to as “adjustable autonomy” (Scerri,

Pynadath, & Tambe, 2003 cited in Wooldridge, 2009: 23; Maheswaran, Tambe,

Varakantham, & Myers, 2004). According to this idea,

… the control of decision-making is transferred from agent to a person wherever certain

conditions are met, for example:

- when the agent believes that the human will make a decision with a substantially

higher benefit

- when there is a degree of uncertainty about the environment

- when the decision might cause harm, or

- when the agent lacks the capability to make a decision itself. (Scerri, Pynadath, &

Tambe, 2003, cited in Wooldridge, 2009:23).

As a result of the nature of the domain, the conference manager is/should be the

person who is responsible for taking actions in fraud situations. Secondly, it is not possible for

a monitoring agent to gather all the information (e.g. CVs) necessary to decide whether a

registrant is committing fraud. Thirdly, if Mona decides which activities are fraudulent

instead of which activities might be fraudulent, a lack of experience on the part of the user

might lead to harmful decisions for the organisation.

43

Therefore, MONA will assist the Conference Manager:25

- By sharing the complexity of possible fraud detection tasks with the

conference manager

- By performing search and evaluation based on specific rules on behalf of the

conference manager

- By giving hints about exceptions (fraud) that might occur in the workflow, in

which the conference manager is the one responsible for detecting such

situations

- By helping different users (for example, the conference manager and the

financial officer) collaborate in fraud detection. In such cases, the information

supplied by the agent will also be useful in creating a common language which

will be used to express information about the fraud. This will be achieved by

both the performance of the program and the result report.

- By monitoring exceptional events/activities that happen in a workflow.

 In Figure 8, the interaction between the user and MONA is presented in a sequence diagram,

which is adapted from Odell, Parunak, and Bauer (2000). Here, conference manager is the

main actor and communication between him or her and MONA happens with the help of an

interface. When the user assigns tasks to MONA (task specification), MONA automatically

changes its roles from one to another according to the chosen tasks. After it has completed the

task, it delivers a result report to the user via GUI.

25 Adapted from Maes (1997).

44

Figure 8: Sequence Diagram

Source: Adapted from Odell et al. (2000)

3.6 Integration of MONA with OCS Environment

3.6.1 Architecture26

MONA is integrated into the OCS environment where the agent application is also located.

In Figure 9 (adapted from Chen and Wasson [2002]), the integration of the monitoring

agent with the OCS environment is shown. Regarding the database, MONA has access to the

OCS database and the file space, which are located on the same server. MONA’s own

application tables are stored in the OCS database.

26 This section is adapted from Chen and Wasson (2002).

Object1

Conference Manager

x

Mona/Role:Observer-Statistics

Mona/Role:Observer-Historical Activities

Mona/Role:Adviser

:Mona - Observer

Result Report

:Mona - Adviser

Result:Report

<<role change>>

Task
Specification

45

Figure 9: Integration of MONA with the OCS environment

Source: Adapted from Chen and Wasson (2002)

3.7 Implementation Details: Iterations

The implementation process is organised in different iterations according to the principles of

iterative and evolutionary development, which was outlined in Chapter 2. The aim here is to

present a working and release-ready version of the prototype after each iteration.

3.7.1 Iteration 1

In this first iteration, I began coding with Java and used Eclipse Ganymede as the

programming tool.

This first version of the prototype is considered to be a desktop application. The

reason behind choosing a desktop application is that working with Java presents an

46

opportunity to evaluate the functional objectives very quickly; in addition, the server

configuration does not support some other kinds of development, such as C# and Java

servlets.

Another important point in this iteration is to thoroughly learn how the payment

account works, what kind of development possibilities it has, and how I can create test data

for my project.

3.7.1.1 Test Driven Development

I have followed the basic steps of test-driven development (TDD) (Ambler, 2002-2009). This

type of development is a combination of the test first principle and refactoring. In TDD, the

test code is written first, and then the functional code is written. Running the test code is

sufficient to determine whether the code fails. This can be done with a test suite, or subsets of

the test suite can be run separately. If the tests fail, then it is obvious that changes in the

functional code are necessary. Otherwise, it passes, and the next step in development can be

taken up.

Following TDD gives me a chance to follow the working parts of the prototype, which

indirectly helps me to focus on the parts of the prototype that are not working and not

implemented. An advantage of using TDD is that eclipse.org has good documentation on how

to do TDD, which both helps me and shortens the development process, as it enables

granularity in the development process. The Unit Test extension, which supports the above-

mentioned details, is used in this process.

3.7.1.2 Challenges

It is necessary to use a driver to connect to a remote database on the Internet. I used two

different versions of this driver: MySQL Connector/J 5.0 and MySQL Connector/J 5.1.

However, when I tried this, I got error messages and it was not possible to connect to the

remote OCS database.27 Moreover, a desktop application was not a good choice, even though

this prototype would serve just one use: conference management. This implies a

disadvantage: If the conference manager wants to present details by using MONA, having the

27 I did some research on this problem and found that some other researchers have had the same problem. I tried
the solutions they mentioned, but these did not help. I believe that the problem was related to the network so that
the connect timeout of the database was not enough to establish a healthy connection.

47

application on a (stationary) computer might be a burden in some cases. The prototype should

preferably have greater flexibility in its availability, for example, in a web-based application.

As a result, it was necessary to change the application’s implementation route to a web

application.

3.7.2 Iteration 2

In this iteration, web-based prototype is implemented by using PHP.28 This choice helped in

overcoming the above-mentioned challenges.

 I choose to work on the most important functions, such as reading the OCS database

for payments and registrations, reading the payment file, comparing them and presenting the

result on a webpage. All these functions are tested both separately and together (functional

and system testing). Test cases are designed based on requirements. This is called

“requirement-based testing” (Sommerville, 2004:552). According to the findings, the

prototype is refactored.

The object classes are combined under the

AgentUtils class so that they will be used only by

the Agent class. This is shown in Figure 10

(adapted from Bauer [2002]).

3.7.3 Iteration 3

I focus on the usability details in this iteration. It is important that the output should not only

give the precise result, but also be understandable and look elegant.

Some other features were added in order to reach this objective, such as some new

functions and a redesign of the webpage and MONA’s picture shown in the webpage.

The content of the package Mona (scripts) and how it interacts with the OCS

environment is shown in Figure 11. As an advantage of web-based programming, as soon as

MONA’s system files are copied to the server, MONA can be considered to be “live”.

However, in order to assign it “monitoring tasks”, MONA has to be set On Duty. The user

manual of MONA is included in Appendix 2.

28 While writing code with PHP, I used mostly internet resources, especially www.php.net (Last accessed
25th.November.2010) and Vaswani (2005).

Figure 10: MonaUtils is a part of MONA

Source: Bauer (2002)

48

Figure 11: Content of package Mona (scripts)

49

4 Evaluation and Findings

The main goals of the evaluation are to assess the usability of the prototype and to answer the

research questions.

4.1 Usability Testing

The theoretical background for usability testing is covered in Chapter 2. In the following, the

process of usability testing will be presented at the operational level.

4.1.1 Test Participants

The test user group that is best suited for the usability testing in this project is the actual users

of this prototype. Seven participants, who represent “the population the system [OCS and the

prototype] is designed to support” (Rosson & Carroll, 2002:254), are chosen to perform the

usability testing. Their characteristics can be listed as follows:

- They have experience in conference participation and/or as a conference manager;

two of them have also experience in using OCS.

- They are in the age group 30–55.

- They have higher education (BA or MA degrees in social sciences).

- They form a multicultural user group (Norwegian, Spanish, Sudanese and

Turkish).

- Five of them are female and two of them are male.

- None of the participants has prior personal experience working with an agent

system.

It is important to note that the selection method I apply here is not “sample

representativeness” in a statistical sense, but rather a target-oriented selection of test

participants in a qualitative sense (Ragin, 1994: 113). By selecting and comparing a small

number of people who are different from each other in age, education level, cultural

background and professional experience, I intentionally and systematically increase the

probability of detecting usability errors and thus increase the “reliability” (Ragin, 1994: 142-

3) of the usability test. This selection helps decreasing the probability of randomness in the

50

answers given by the participants in the interviews. Moreover, the group’s small number

gives me the chance to do in-depth interviews and analyses.

4.1.2 Test Plan

The test is organized in two parts. The first part begins with the researcher’s verbal and

written dissemination of information about the prototype and the test process, and the

participants are asked to complete a set of tasks. In the second part, I conduct an interview

session to collect data about both the usability of the prototype and the research questions (see

Chapter 1).

4.1.2.1 Context

The test is held during working hours at the workplace (office) of the participants in order to

observe the use of the prototype in their natural working environment. While the test is

conducted, the participants are left alone to fulfil the tasks; they receive no help from their

colleagues.

4.1.2.2 Data Collection Methods

In the first part of the test, a short survey is used to collect data about the participants. While

they are working with the various tasks, they are also asked to think aloud. The participants

are being observed in this process, and notes are taken. In the second part of the test, a semi-

structured interview technique is the major data collection method. The interview questions

are prepared in advance29 and these questions are used to guide the interview process. As

much as possible, the participants’ comments and answers are written down with paper and

pencil. These notes, comments and answers are then further utilised in the preparation of more

detailed questions in the interviews.

4.1.2.3 General Procedure

At the beginning of the test, all the participants are given written information about the

evaluation process. This includes a brief definition of the systems (the conference

management and payment systems) used in the test, and how these systems interact with each

other. I also mention verbally that they are free to ask questions, or I will intervene if

29 See Appendix 1 for the set of interview questions.

51

necessary. Afterwards, they are asked to fill out a short survey form about their backgrounds.

This is followed by general instructions about this test. Within the framework of the think

aloud technique, the participants are given a set of tasks to complete and are asked to talk

through what they are experiencing when using the prototype. Their comments and my

observations are used in the creation of more detailed questions for the interview, or are used

as examples in the interview. After the tasks are completed, the participants are interviewed.

Before beginning the interview session, I ask the participants to remember the story line (see

Appendix 1) given at the beginning of the test process, and answer the interview questions as

if they are in the situation related in the story.

The prerequisite information delivered to participants—the user background survey,

task set, reports and interview questions—can be found in Appendix 1.

4.1.2.4 User Tasks

The user tasks are organized as a set of seven questions, and they are introduced with a story

line that describes their role as conference manager and the situation they are in.

These tasks include the basic usage of the prototype: The participants are asked to find

MONA’s website, configure MONA and take out the reports. It is also asked whether the

content of the reports is understandable, usable and relevant for their work.

The objective of these tasks is that when they are completed, the participants will be

able to configure and navigate the prototype’s capabilities perfectly and they will have all the

necessary information about how MONA achieves its tasks on behalf of the user.

4.1.2.5 Configuration

Both the conference manager and the developer configure MONA.

Conference Manager:

The conference manager submits his or her name and email address, and decides whether he

or she wants to get an email from MONA at the same time each day.

By clicking the “SetMonaOnDuty” button on the page, MONA is configured. This is

shown in Figure 12.

52

Figure 12: Configuration of MONA

Developer:

From a technical standpoint, in order to let MONA send an email, the developer of MONA

has to configure MONA by setting a crontab-job, which is used to let the server execute a

particular PHP code file at the given time. Therefore, before each test, this configuration has

been set to a convenient point in time so that the participants can receive the emails that are

sent automatically by MONA. A sample crontab-job is shown in Figure 13.

Figure 13: Configuration of MONA’s email service

53

4.1.2.6 Interview Questions

Ten general questions are asked in the interview, which are also presented in Appendix 1. The

questions are organized into four different categories to obtain data on usability and to help

answer the research questions.

- Questions30 1 to 7 are designed to collect data in order to evaluate the usability of

the prototype:

o Q1: Overall, what do you think about using this prototype?

o Q2: Do you find the prototype’s basic functionalities valuable?

o Q3: Is it easy for you to use the prototype and navigate between pages or

assign different tasks to MONA?

o Q4: How easily do you make inferences about how to use this interface

(prototype), based on your previous experience?

o Q5: Is the prerequisite information about the prototype (given at the

beginning of this test and on the website) enough for you? What kind of

prerequisite information do you need to use the product?

o Q6: Which of the functions/tasks of MONA are easy to use and which will

probably require either help or written documentation?

o Q7: Do you think this prototype needs additional functions/ways of making

it more user-friendly?

- Question 8 is designed to answer research question 1:

o Q8: Do you believe the fraud monitoring function of the prototype will be

useful in your conference organization work? In which ways?

- Question 9 is used to answer research question 2:

o Q9: How much time do you think you will save by using MONA? (The

registration list from the OCS and payment list are presented to the

participants. These can be found in Appendix 1.)

30 Questions 1–6 are adapted from Rubin and Chisnell (2008:30).

54

 Q9a. If you had to check everything manually, without using MONA,

how much time would you have to spend looking for possible fraud in

the OCS?

In the question 9, the goal is to determine the effect of the prototype on the conference

managers’ work. After asking this question, I deliver the “registration report” from the

OCS and the “transaction history” from the payment account to the participants. After

they have read these reports, they are asked to estimate the time that would be needed

if they had to do the same work manually. Time constraints necessitate this

hypothetical question, as opposed to asking them to do the work manually. As a

second step in this question, I present a printed copy of the “registration report” and

the “fraud check report” taken from the prototype, before asking sub-question (9a),

which is about detecting possible fraudulent activities in the system. The aim is to let

participants evaluate the prototype in terms of both time use and efficiency. I expect

that the participants comment on the changes regarding the quality of the completed

work since time usage is an important parameter in their work.

- Question 10, regarding the reliability of the prototype, is used to answer research

question 3.

o Q10: Do you think you can rely upon MONA to deliver the correct

information? Do you have confidence in the information MONA provides?

(The objectives of the test data and the results obtained by MONA are

presented to the participants. These can be found in Appendix 1.)

Here, I equate the reliability of the prototype with the robustness of the

program. The system should not be prone to “central points of failure” (Ehrler,

Fleurke, Purvis, & Savarimuthu, 2006); the prototype should work properly and

deliver the results of the tasks without failure.

With Question 10, the test data sheet is delivered to the participants. This sheet

contains information about how the test data is constructed. After they have checked

the test data sheet, I ask them to repeat task 5 (the fraud check) to check whether

MONA’s answers match the test data. This comparison lets participants evaluate the

precision of MONA’s results.

55

The interview questions overlap with each other. The aim is to keep the participants’ work

and situation awareness at a specific level, so that their understanding of the usability of this

prototype increases over the course of the test.

4.2 Findings

In the following, the findings from the usability test will be presented in two main parts. First,

I will focus on the usability of MONA, and then I will present the answers to the research

questions.

4.2.1 Evaluation of the Developed Prototype’s Usability

The participants were asked interview questions 1 to 7. Their answers indicate the following:

All the participants think that

- this prototype is useful, easy to learn and easy to use

- MONA’s tasks are relevant for their jobs

- MONA works very fast and efficiently (in comparison to manual work)

- working with MONA will reduce the amount of time managers spend on the kinds

of activities MONA performs automatically

- the preliminary information about MONA, given in the beginning of the test, is

adequate for using this prototype

- MONA’s tasks are relevant and adequate with respect to the scope of the prototype

- MONA should not take decisions, but is best used as a way of uncovering

fraudulent activities

Comments:

- One of the participants wanted to know more about how MONA understands

“fraud” situations, and one of the participants thinks that it would be better to have

a written explanation of MONA’s roles (as an adviser and observer). Two of the

participants would like more functions which cover the whole conference process

(e.g. online paper submission).

- Some of the reports come with links to searches on Google and Pipl. The

participants unanimously agree that this is useful for their job.

56

- One of the participants noted that she likes to work with a “person” rather than a

program, so she likes the name MONA.

- One participant thinks that a program to detect possible fraudulent activities will

be very useful in her work. She gives an example from her own experience in

managing a conference: In an international conference in Africa, the conference

management system was attacked by a hacker to create many dummy records. She

had to use a lot of time to clean the data and distinguish the real conference

attendees from the fake ones. She thinks that if they had had MONA, it would

have made this work much easier.

- One of the participants who has experience with OCS enthusiastically states that

“this [is] the missing link!” MONA fills the gap between the payment system and

the conference management system. She also thinks that MONA will be useful to

her and her colleagues, such as the financial officer who deals with the payments.

- One of the participants thinks that without such tools, the conference cannot be

fully under control.

Criticism:

The participants also offer comments on how to improve MONA:

- MONA should gain the ability to detect possible fraudulent activities not only in

social sciences (academic) but also other kinds of conferences. One participant

says that MONA should support international non-academic conferences (e.g.

conferences to announce new products) as well as academic ones.

- All aspects of a conference should be embedded in MONA’s activities. Two of the

participants want MONA to act in all phases of a conference so that it will take on

recurrent jobs.

- MONA should support not only conferences but also other kinds of international

events that involve registrations. One of the participants wants to configure

MONA in a way that it can support registrations at events such as summer

schools/courses that accept international students.

- MONA should automatically connect to the account to get the account details.

However, another participant claims that this is not a good idea, since the

57

account’s id and password combination is kept by the financial officer, and they do

not want to put it in a program.

Observations:

All the participants are able to configure and use MONA without any intervention. They all

complete the first part of the test quickly, within 5–13 minutes. They make comments more

than they ask questions. It is interesting to see how some of the participants accept MONA as

a “partner” rather than a program.

4.2.1.1 Discussion

The participants’ answers indicate that they consider MONA to be usable according to the

following usability principles:

Learnability principle: The participants think that it is easy to learn how MONA

works, set it on duty and assign it tasks.

Flexibility principle: The participants are satisfied with information that MONA

carries from the systems (conference management and payment). They find the

presented information understandable, helpful and usable.

Robustness principle: MONA does what it is built for and works efficiently.

It has been mentioned that MONA’s functional capabilities and functional flexibility

could be enhanced so that it can support different kinds of registrations (e.g. school/university

registrations) and different kinds of checks, such as when a person uses more than one email

address. It has also been mentioned that all the processes of conference management should

be checked by the agent one way or another—not merely fraud management—but since the

agent does not become bored with doing the same thing over and over, and its work is not

open to human error, some of the participants think that it would be better to use an agent for

such tasks.

An important reflection is that most of the participants respond to the first interview

question most comprehensively. With the other questions, they do not have much to add. As a

result of this fact, it is better to refine the interview questions for future use.

58

4.2.2 Answering the Research Questions

4.2.2.1 Research Question 1: Can a monitoring agent tool be useful in supporting
conference managers’ efforts to detect fraud in CMSs?

In order to answer this research question, the participants were asked interview question 8

(Do you believe the fraud monitoring function of the prototype will be useful in your

conference organization work? In which ways?).

All the participants think that the monitoring agent, MONA, will be useful to their

work since it produces reliable reports and does the work immediately so that they can act

against fraudulent activities rather than losing time by doing the job manually. Three of the

participants commented that MONA is reliable based on the test data, and two of them would

like to test this prototype by themselves in order to give a final answer to this question.

The participants agree that there is a need for such tool to help detect possible fraud,

and they also mention that they want a tool that does not take decisions itself, but merely

supports their (conference managers’) work—just as MONA does.

One of the participants thinks that it is necessary to enhance MONA’s capabilities so

that it can cover all aspects of a conference.

All in all, the participants accept MONA as a reliable and useful tool to support

conference managers’ work in detecting possible fraud committed by conference registrants.

4.2.2.2 Research Question 2: What is the impact of agent technology integration on
time and quality in medium-scale conference management systems? Does agent
technology increase time effectiveness and enhance quality?

In order to answer this research question, the participants were asked interview question 9

(How much time do you think you will save by using MONA?) and question 9a (If you had to

check everything manually, without using MONA, how much time would you have to spend

looking for possible fraud in the OCS?).

All the participants think that MONA saves a lot of time compared with doing the

same task manually. Most of the participants think that doing the task manually might take at

least two hours and up to half a day. However, some of them claim that it might take much

longer in an office environment, since interruptions are inevitable in the workplace. One of

the participants even refuses to venture a guess because she is so often interrupted in her

office.

59

One of the participants thinks that the list MONA produces is more reliable than the

list that might be produced by a human being, adding that such a job, which demands a lot of

time and attention, is vulnerable to human error. Another participant thinks that this task

should not be done manually because the vital importance of finding fraudulent activities in

conference registrations simply does not permit mistakes.

As a result, the participants think that working with a monitoring agent, MONA, saves

time and energy in a work environment; it helps maximise time effectiveness since the

participants use less time on the same work. As MONA presents the necessary information

that can be gathered from the system, the managers can focus on the crucial parts of their

work rather than spending their precious time collecting information. The participants also

appreciate MONA’s contribution to quality; doing the tasks manually opens the process to

human error, but MONA is able to produce reliable outputs. In other words, by using MONA,

the managers can improve in their work efficiency and ensure a higher degree of quality.

4.2.2.3 Research Question 3: Are the results of collaborating with the monitoring agent
reliable? Are they convincing enough for further collaboration?

In order to answer this research question, the participants were asked interview question 10

(Do you think you can rely upon MONA to deliver the correct information? Do you have

confidence in the information MONA provides?).

All of the participants find MONA reliable since they understand what it does (based

on the test data) and they have experience/knowledge about the task.

The two participants who have the most experience in organizing conferences think

that there is some chance for error (of MONA making a mistake), but they also want to spend

more time on MONA to find out if they can trust its conclusions. As a point of departure,

however, they find MONA reliable as well.

 All in all, the participants have positive impressions of MONA’s ability to detect

fraudulent activities. They all say that they can trust MONA. Two of them have already asked

whether they can use it in their upcoming conferences.

60

5 Conclusions and Future Work

Conclusions

Software systems are constructed according to, among other things, the business needs of a

customer. However, it is not always the case that these systems are capable of fully meeting

those needs. As Liskov and Guttag (2001:256) suggest, “More often customers do not fully

understand what they want the program to do.” To this we might add that business needs can

change and/or new business needs can emerge over time.

When the business is such that it is not well-represented in the current market for

information systems, the business is more likely to be fragile and suffer as a result. Although

it may not create problems on a daily basis, the available information systems carry the

potential risk of failure or may be incapable of supporting the business.

The case of detecting fraudulent activities has a special importance because it is a

critical task in any work environment. An example of this situation can be seen in conference

management systems which do not have controls against fraudulent activities. Detecting such

activities manually is time-consuming, and leads to an overload in the manager’s workflow.

In this project, a monitoring agent, MONA, is designed and developed to meet this

need. The results of the evaluation show that this agent is useful in flagging possible cases of

fraud so that the conference manager, who would otherwise have had to do the work

manually, gains time and is able to take better decisions on such important cases. In addition,

MONA is easy-to-use monitoring agent, which is an attractive feature to its potential users.

Although almost all of the participants are sceptic to MONA in the beginning of the

evaluation, they have changed their attitude towards the end of the test. They are all interested

in MONA and how she does the work. Besides, most of them are willing to use the agent in

their work. They ask for new capabilities. One of the participants liked the name, MONA, and

she accepted MONA as a part of her social-office life.

Moreover, this prototype is a good example of the thought that “some jobs should be

done by the agents” (Chen, 2004). MONA never becomes bored of doing the same thing

repeatedly, and it delivers reliable results according to its configuration and the data it

reaches/uses in its environment.

61

Future Work

There are many design and development possibilities for MONA.

The logic of finding fraudulent activities can be enhanced with the feedback that is

produced by possible and observed cases. The fraud indicators can be designed and

formulated as a part of configuration that allows that the user might have a chance to choose

the type of monitoring in the environment.

More automated skills can be added to the agent’s set of functionalities. For example,

MONA can be integrated with the payment system so that it collects all the payment data

itself, or it can be integrated with the webpages of e.g. UDI (the Norwegian Directorate of

Immigration) so that it can obtain a list of the countries whose citizens need a visa to enter

Norway. These integrations will lead to the use of up-to-date data in the process of detecting

fraudulent activities.

Future work might also include an effort to decompose MONA into several specialised

agents so that this prototype can be converted or rewritten into a multi-agent system (MAS)

by redesigning the agents’ roles and tasks. These agents might include an interface agent

(Wang, Wang, & Xu, 2005; Huhns & Singh, 1998), a resource agent (Huhns & Singh, 1998)

and a monitoring agent to the model in which features such as learning capabilities may also

included.

Another option can be to support MONA with mobile technologies so that it can be at

the service of the coordinator and conference participants anywhere and at any time.

Moreover, users are often curious to understand how the agent arrives at its

conclusions. Therefore, another possible improvement is to produce an explanation of the

agent’s activities in a way that the agent will be accepted by its users at an increased level of

trust.

Lastly, MONA’s flexibility can be enhanced, so that it can support not only

conferences but also registrations in a broader sense.

62

References
Aart, C. v., & Tamma, V. (2008). Agent mediated provision of insurance services. Two case

studies: fraud and repairs. Paper presented at the Proceedings of the 10th
international conference on Electronic commerce.

Ambler, S. W. (2002-2009). Introduction to Test Driven Design (TDD). Techniques for
Successful Evolutionary/Agile Database Development.

Bauer, B. (2002). UML Class Diagrams Revisited in the Context of Agent-Based Systems.
Agent-Oriented Software Engineering II pp. 101-118.

Bernon, C., Cossentino, M., & Pavón, J. (2005a). Agent-oriented software engineering. The
Knowledge Engineering Review, 20(2), pp. 99-116.

Bernon, C., Cossentino, M., & Pavón, J. (2005b). An Overview of Current Trends in
European AOSE Research. Informatica, 29, pp. 379-390.

Bigus, J. P., & Bigus, J. (2001). Constructing Intelligent Agents Using Java (2nd ed.). New
York, USA: Wiley Publisher.

Binder, W., Mori, J., Portabella, D., Tamma, V., & Wooldridge, M. (2005). State-of-the-art in
Agent-based Services. EU-IST Network of Excellence (NoE) IST-2004-
507482KWEB, Deliverable D2.4.3 (KWEB/2004/D2.4.3/v1.0).

Bradshaw, J. M. (1997). Introduction. In J. M. Bradshaw (Ed.), Software agents (pp. 3-46):
Menlo Park, Calif.: AAAI Press.

Bunch, L., Breedy, M., Bradshaw, J. M., Carvalho, M., Suri, N., Uszok, A., Hansen, J.,
Pechoucek, M., & Marik, V. (2004). Software agents for process monitoring and
notification. Paper presented at the Proceedings of the 2004 ACM Symposium on
Applied Computing.

Bussmann, S., Jennings, N. R., & Wooldridge, M. J. (2004). Multiagent systems for
manufacturing control: a design methodology. Berlin: Springer.

Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P.,
Stark, J., Evans, R., & Massonet, P. (2002). Agent Oriented Analysis Using
Message/UML. In M. J. Wooldridge, G. Weiß & P. Ciancarini (Eds.), Lecture Notes in
Computer Science: Agent-Oriented Software Engineering II (Vol. 2222, pp. 119-135).
Berlin: Springer.

Cao, J., Yang, J., Chan, W. T., & Xu, C. (2005). Exception handling in distributed workflow
systems using mobile agents. Paper presented at the ICEBE 2005. IEEE
International Conference on e-Business Engineering, 2005.

Chan, P. K., Fan, W., Prodromidis, A. L., & Stolfo, S. J. (1999). Distributed data mining in
credit card fraud detection. Intelligent Systems and their Applications, IEEE, 14(6),
pp. 67-74.

Chen, W. (2004). INFO282: Artificial Intelligence - Lecture notes.

Chen, W., Dolonen, J., & Wasson, B. (2003). Supporting Collaborative Knowledge Building
with Intelligent Agents. Knowledge-Based Intelligent Information and Engineering
Systems (pp. 238-244).

Chen, W., & Wasson, B. (2002). An Instructional Assistant Agent for Distributed
Collaborative Learning. Intelligent Tutoring Systems.

Depke, R., Heckel, R., & Kuster, J. M. (2001). Improving the agent-oriented modeling
process by roles. Paper presented at the Proceedings of the Fifth International
Conference on Autonomous Agents.

63

Dix, A., Finlay, J., Abowd, G. D., & Beale, R. (2004). Human-Computer Interaction (3rd ed.).
Essex, England: Pearson/Prentice Hall.

Ehrler, L., Fleurke, M., Purvis, M., & Savarimuthu, B. (2006). Agent-based workflow
management systems (WfMSs). Information Systems and E-Business Management,
4(1), pp. 5-23.

FIPA: Foundation.for.Intelligent.Physical.Agents (2000). FIPA Modelling Area: Agent Class
Diagrams, www.fipa.org, Geneva, Switzerland.

FIPA: Foundation.for.Intelligent.Physical.Agents (2003). FIPA Modelling Area: Environment,
Version: 030412 15:00EST, www.fipa.org, Geneva, Switzerland.

Fowler, M. (2004). UML distilled: A brief guide to the standard object modeling language (3rd
ed. ed.). Boston, Mass. USA: Addison-Wesley.

Franklin, S., & Graesser, A. (1997). Is It an agent, or just a program? A taxonomy for
autonomous agents. Intelligent Agents III: Agent Theories, Architectures, and
Languages (pp. 31-35).

Giorgini, P., & Henderson-Sellers, B. (2005). Agent-Oriented Methodologies: An Introduction.
In B. Henderson-Sellers & P. Giorgini (Eds.), Agent-Oriented Methodologies (pp. 1-
18). London: Idea Group Publishing.

Grau, G., Cares, C., Franch, X., & Navarrete, F. J. (2006). A Comparative Analysis of
i*Agent-Oriented Modelling Techniques. Paper presented at the Eighteenth
International Conference on Software Engineering and Knowledge Engineering
(SEKE'06).

Hayes, C. C. (1999 Jan-Feb). Agents in a Nutshell: A Very Brief Introduction. IEEE
Transactions on Knowledge and Data Engineering. 11(1), pp.127-132.

Heo, J. S., & Lee, K. Y. (2005). A multi-agent system-based intelligent control system for a
power plant. Paper presented at the Power Engineering Society General Meeting,
2005. IEEE.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. MIS Quarterly, 28(1), pp. 75-105.

Hu, J., Zhang, C., Zhang, Y., Zhao, D., Chen, J., & Fang, C. (2008). Research of Exception
Handling in Workflow Management System Based on Agents Group. Paper
presented at the ICICIC '08. 3rd International Conference on Innovative Computing
Information and Control, 2008.

Huhns, M. N., & Singh, M. P. (1998). All agents are not created equal. IEEE Internet
Computing, 2(3), pp. 94-96.

IEEE.Std.1233 (1998 Edition). IEEE Guide for Developing System Requirements
Specifications, NY, USA.

Imai, S., Yamada, A., Ueno, H., Nakamichi, K., & Chugo, A. (2006). Voice Quality
Management for IP Networks Based on Automatic Change Detection of Monitoring
Data. Management of Convergence Networks and Services (pp. 451-460).

Jami, S. I., & Shaikh, Z. A. (2007). A workflow based academic management system using
multi agent approach. Paper presented at the Proceedings of the 11th WSEAS
International Conference on Computers.

Jedermann, R., & Lang, W. (2006). Mobile Java Code for Embedded Transport Monitoring
Systems. Paper presented at the Proceedings of the Embedded World Conference
2006, February 14-16, Nuremberg, Germany.

Jennings, N. R. (1999). Agent-Oriented Software Engineering. In F. J. Garijo & M. Boman
(Eds.), Multi-Agent System Engineering (pp. 1-7).

64

Jennings, N. R. (2001). An Agent-based Approach for Building Complex Software Systems.
Commun. ACM 44(4), pp. 35-41.

Jennings, N. R., Faratin, P., Norman, T. J., O’Brien, P., & Odgers, B. (2000). Autonomous
agents for business process management. Int. Journal of Applied Artificial
Intelligence, 14(2), pp. 145-189.

Jennings, N. R., & Wooldridge, M. (1998). Applications of Intelligent Agents. In N. R.
Jennings & M. Wooldridge (Eds.), Agent Technology: Foundations, Applications, and
Markets (pp. 3-28). London: Springler.

Kaminka, G. A., Pynadath, D. V., & Tambe, M. (2001). Monitoring deployed agent teams.
Paper presented at the Proceedings of the Fifth International Conference on
Autonomous agents.

Kim, K., Choi, I., & Park, C. (2010). A rule-based approach to proactive exception handling in
business processes. Expert Systems with Applications, 38(1), pp. 394-409.

Kishore, R., Zhang, H., & Ramesh, R. (2006). Enterprise integration using the agent
paradigm: foundations of multi-agent-based integrative business information systems.
Decision Support Systems, 42(1), pp. 48-78.

Lashkari, Y., Metral, M., & Maes, P. (Eds.). (1998). Collaborative Interface Agents. San
Francisco, CA, USA: Morgan Kaufmann Publishers, Inc.

Lauesen, S. (2005). User interface design: a software engineering perspective. Harlow:
Pearson/Addison-Wesley.

Lee, J. (2000). Reactive-System Approaches to Agent Architectures Intelligent Agents VI.
Agent Theories Architectures, and Languages (Vol. Volume 1757/2000, pp. 132-146):
Springer Berlin/Heidelberg.

Liskov, B., & Guttag, J. (2001). Program Development in Java: Abstraction, Specification,
and Object-Oriented Design: Addison-Wesley.

Liu, X., & Zhang, P. (2007). An Agent Based Anti-Money Laundering System Architecture for
Financial Supervision. Paper presented at the WiCom 2007. International Conference
on Wireless Communications, Networking and Mobile Computing, 2007.

Luck, M., McBurney, P., & Preist, C. (2003). Agent Technology: Enabling Next Generation
Computing: A Roadmap for Agent-Based Computing Version 1.0; AgentLink II.

Mabry, S. L., Schneringer, T., Etters, T., & Edwards, N. (2003). Intelligent agents for patient
monitoring and diagnostics. Paper presented at the Proceedings of the 2003 ACM
Symposium on Applied Computing.

Maes, P. (1994). Agents that reduce work and information overload. Commun. ACM, 37(7),
pp. 30-40.

Maes, P. (1997). Agents that Reduce Work and Information Overload. In J. M. Bradshaw
(Ed.), Software Agents (pp. 145-164): Menlo Park, Calif.: AAAI Press.

Maheswaran, R. T., Tambe, M., Varakantham, P., & Myers, K. (2004). Adjustable Autonomy
Challenges in Personal Assistant Agents: A Position Paper. Agents and
Computational Autonomy (pp. 187-194).

McArthur, S. D. J., Booth, C. D., McDonald, J. R., & McFadyen, I. T. (2005). An agent-based
anomaly detection architecture for condition monitoring. IEEE Transactions on Power
Systems, 20(4), pp.1675-1682.

Menzies, T., Pearce, A., Heinze, C., & Goss, S. (2002). “What Is an Agent and Why Should I
Care?” Formal Approaches to Agent-Based Systems (pp. 1-14).

65

Odell, J., Parunak, H. V. D., & Bauer, B. (2000). Extending UML for Agents. Paper presented
at the Proc. of the Agent-Oriented Information Systems Workshop at the 17th
National Conference on Artificial Intelligence, AOIS Workshop at AAAI 2000 Austin,
TX.

Padgham, L., & Winikoff, M. (2004). Developing intelligent agent systems: A practical guide.
Chichester: Wiley.

Perry, W. E. (2006). Effective Methods for Software Testing (3rd. ed.). Indianapolis, IN, USA:
Wiley Publishing, Inc.

Prodromidis, A. L., & Stolfo, S. J. (1999). Agent-based distributed learning applied to fraud
detection. Paper presented at the Sixteenth National Conference on Artificial
Intelligence.

Ragin, C. C. (1994). Constructing social research: The unity and diversity of method.
Thousand Oaks, Calif.: Pine Forge Press.

Robertson, S., & Robertson, J. (2006). Mastering the requirements process (2nd ed.). Upper
Saddle River, N.J.: Addison-Wesley.

Rosson, M. B., & Carroll, J. M. (2002). Usability engineering: scenario-based development of
human-computer interaction. San Francisco, Calif.: Morgan Kaufmann Publishers.

Rubin, J., & Chisnell, D. (2008). Handbook of Usability Testing (2nd ed.). Indianapolis, IN,
USA: Wiley Publishing, Inc.

Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach. Englewood Cliffs,
N.J.: Prentice Hall.

Shoham, Y. (1997). An Overview of Agent-Oriented Programming. In J. M. Bradshaw (Ed.),
Software Agents (pp. 271-290): Menlo Park, Calif.: AAAI Press.

So, R., & Sonenberg, L. (2004). Situation Awareness in Intelligent Agents: Foundations for a
Theory of Proactive Agent Behaviour. Paper presented at the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT'04).

Sommerville, I. I. (2004). Software Engineering (7th ed.). Boston: Pearson/Addison-Wesley.

Tveit, A. (2001). A Survey of Agent-Oriented Software Engineering. Paper presented at the
NTNU Computer Science Graduate Student Conference.

Uckun, S. (1994). Intelligent system in patient monitoring and therapy management.
International Journal of Clinical Monitoring and Computing, 11(4), pp. 241-253.

Urlings, P., Tweedale, J., Sioutis, C., & Ichalkaranje, N. (2003). Intelligent Agents and
Situation Awareness. In V. Palade, R. J. Howlett & L. C. Jain (Eds.), Knowledge-
Based Intelligent Information and Engineering Systems (pp. 723-733). Berlin
Heidelberg: Springler-Verlag.

Vaswani, V. (2005). How to Do Everything with PHP and MySQL. Blacklick, Oh, USA:
McGraw-Hill Companies.

Wang, M., & Wang, H. (2002). Intelligent Agent Supported Flexible Workflow Monitoring
System. In A. Banks, P. J. Mylopoulos, C. C. Woo & M. T. Ozsu (Eds.), Advanced
Information Systems Engineering (Vol. Volume 2348/2002, pp. 787-791): Springer
Berlin Heidelberg.

Wang, M., & Wang, H. (2004). Agents and Web Services Supported Business Exception
Management. In C. Zhang, H. W. Guesgen & W. K. Yeap (Eds.), PRICAI 2004:
Trends in Artificial Intelligence (Vol. 3157, pp. 615-624): Springer Berlin/Heidelberg.

Wang, M., Wang, H., & Xu, D. (2005). The design of intelligent workflow monitoring with
agent technology. Knowledge-Based Systems, 18(6), pp. 257-266.

66

Wang, Y., Xu, D., Wang, H., Ye, K., & Gao, S. (2007). Agent-oriented ontology for monitoring
and detecting money laundering process. Paper presented at the Proceedings of the
2nd International Conference on Scalable Information Systems.

Wilhelm, W. K. (2004). The Fraud Management Lifecycle Theory: A Holistic Approach to
Fraud Management. Journal of Economic Crime Management 2(2).

Wooldridge, M. (1997). Agent-based Software Engineering. Software Engineering. IEE
Proceedings, 144(1), pp. 26-37.

Wooldridge, M. (1998). Agent-Based Computing. Baltzer Journals.

Wooldridge, M. (2002). Intelligent Agents: The Key Concepts Multi-Agent Systems and
Applications II (pp. 151-190).

Wooldridge, M., & Jennings, N. R. (1995). Intelligent Agents: Theory and Practice.
Knowledge Engineering Review.

Wooldridge, M., & Jennings, N. R. (1999a). The Cooperative Problem-Solving Process. The
Journal of Logic and Computation, Oxford University Press, 9(4), pp. 563-592

Wooldridge, M., & Jennings, N. R. (1999b). Software Engineering with Agents: Pitfalls and
Pratfalls. IEEE Internet Computing, 3(3), pp. 20-27.

Wooldridge, M. J. (2009). An introduction to multiagent systems. Chichester: Wiley.

Wooldridge, M. J., & Ciancarini, P. (2001). Agent-Oriented Software Engineering: The State
of the Art. In P. Ciancarini & M. J. Wooldridge (Eds.), Agent-Oriented Software
Engineering (pp. 1-28). Berlin Heidelberg: Springer-Verlag.

A1-1

APPENDIX 1

A1 1 Evaluation forms

The forms that are used in the evaluation are listed below.

A1 1.1 General Information about the Evaluation Process

Open Conference Systems (OCS) is a free web publishing tool that will create a complete

web presence for scholarly conferences. OCS allows you to:

- create a conference website

- compose and send a call for papers

- electronically accept paper and abstract submissions

- allow paper submitters to edit their work

- post conference proceedings and papers in a searchable format

- post, if you wish, the original data sets

- register participants

- integrate post-conference online discussions

In this master thesis, the focus is on registrations. In the registration process, it is also possible

to collect fees via online payment (PayPal). In order to use PayPal, it is necessary to open a

business account at this company.

MONA is an exception monitoring agent which is developed to detect (possible) fraudulent

activities in the registration process. MONA’s main goal is to collect necessary information in

order to assist conference managers.

MONA checks both the information stored in OCS and the payments. Payment

information is stored in a file, which includes all the transactions of the PayPal account.

Moreover, MONA can perform different tasks such as sending emails and performing

searches on the names of registrants via google.com and pipl.com.

A1-2

A1 1.2 User Background Survey31

Thank you for agreeing to participate in this study. Before we begin, it will be useful for me

to know more about your background—your experience with conference management tools

and internet technologies. This will help me better understand your interactions with and

reactions to the system. Remember that all personal data will be treated confidentially, and the

results will be reported with no identifying information.

Name: ___

Occupation: ___

Age: ___

Gender: F M

Education: BA MA PhD Other: ______________________________________

Field: Natural Sci. Social Sci. Humanities Other: _____________________

Have you used a conference management system...

as a conference attendee? YES NO

scope of the conference(s): Local National International

as a conference manager? YES NO

scope of the conference(s): Local National International

Have you ever used PayPal? YES NO

Is there anything else I should know about your interests or background? Please describe

briefly:___

31 This part is adapted from Rosson & Carroll (2002:259).

A1-3

A1 1.3 General Instructions for Usability Testing for Monitoring Agent
Prototype32

- In the next 30 minutes or so, you will be carrying out seven tasks.

- The tasks will be introduced with a story line that describes your role and the

situation you are in.

- Note that I have intentionally omitted some details about the task steps so that I

can determine how well the system guides your interactions with it.

- If you are confused at any point, please just make your best guess about how to

proceed, using the information that you have been given. I will intervene if

necessary to help you make progress.

- At the start of each task, please say out loud, “Beginning task,” followed by the

number of the task. When you are done, please say, “Task complete.”

- Also, please remember to think out loud as you work. It is very important for me

to understand your goals, expectations, and reactions as you work through the

tasks.

- Any questions?

32 This part is adapted from Rosson & Carroll (2002:259).

A1-4

A1 1.4 Specific Task Instructions for Monitoring Agent Prototype33

Background to tasks 1 through 7

- Imagine that you are a conference manager of an international conference being

held in Bergen.

- The conference management system is OCS, and it is expected that there will be

more than 100 attendees at this conference.

- You are both very busy and have an important meeting about this conference

tomorrow where you will be presenting an overview of the attendees and

payments. At tomorrow’s meeting, you know that you will have to report any

fraudulent activities that might have occurred in the registration process.

- You know that you can use MONA to monitor OCS.

Task 1:

Go to MONA’s website, www.ocs.uib.no/Mona/, and read about what it can perform for you.

Task 2:

Set MONA On Duty by registering your name and email address. Assign MONA the task of

sending you an email about every day at ________.

Task 3:

Get MONA to bring up a summary of all registrations.

Task 4:

Get MONA to send you an email with a summary of all registrations. Check to see if you

have received this email.

Is the content of the email understandable and useful?

33 This part is adapted from Rosson & Carroll (2002:259).

A1-5

Task 5:

Get MONA to bring up a list of registrations based on payment transactions. This report will

include fraud attempts if there are any.

Task 6:

Get MONA to bring up the list of actions it has performed.

Task 7:

Check to see if you have received the email, which is scheduled to be sent at ________.

Is the content of the email understandable and useful?

A1-6

A1 1.5 Data Collection Form for Monitoring Agent Prototype34

Date: ___

Participant Id: ___

Task No: ___

Start time: ___

End time: ___

Comments made by the participant

__

Errors or problems observed (including assistance offered)

__

Other relevant observations

34 This part is adapted from Rosson & Carroll (2002:259).

A1-7

A1 1.6 Test Data

Objectives:

It is assumed that every conference attendee pays for him- or herself. Based on this

assumption, if the payer is different than the attendee, this might indicate fraudulent activity.

This is reflected in the stored data in OCS and payments in three different ways:

CASE 1: The payer’s email address is different than the attendee’s email address.

Data: “Cathrine Ling” from China uses a different email address than the one she uses

in OCS. It is possible that her fee has been paid by someone else. The email address

has a key importance in the payment process.

Expected error message: Fraud?

CASE 2: The payer’s full name is different than the attendee’s full name.

Data: “John Smith” from Nepal uses “Sanjeev Parar” as the full name to pay the

conference fee, although he uses the same email address.

Expected error message: Check!

CASE 3: The payer’s full name and email address are different that the attendee’s full name

and email address.

Data: “Ama Dayo” from Sudan uses “Astray Novakantu” as the full name and a

different email address to pay the conference fee.

Expected error message: Fraud?

Summary of Registrations:

Total number of registered attendees: 42 (Paid: 36, Not paid: 6)

Total number of fraud possibilities: 2

Total number of registrations that have to be checked: 1

A1-8

A1 2 Interview Questions35

Questions 1–6 are adapted from Rubin and Chisnell (2008:30).

1. Overall, what do you think about using this prototype?

2. Do you find the prototype’s basic functionalities valuable?

3. Is it easy for you to use the prototype and navigate between pages or assign different

tasks to MONA?

4. How easily do you make inferences about how to use this interface (prototype), based

on your previous experience?

5. Is the prerequisite information about the prototype (given at the beginning of this test

and on the website) enough for you? What kind of prerequisite information do you

need to use the product?

6. Which of the functions/tasks of MONA are easy to use and which will probably

require either help or written documentation?

7. Do you think this prototype needs additional functions/ways of making it more user-

friendly?

8. Do you believe the fraud monitoring function of the prototype will be useful in your

conference organization work? In which ways? (research question 1)

9. How much time do you think you will save by using MONA? (research question 2)

The registration list from the OCS and the payment list are presented to the

participants.

a. If you had to check everything manually, without using MONA, how much

time would you have to spend looking for possible fraud in the OCS?

10. Do you think you can rely upon MONA to deliver the correct information? Do you

have confidence in the information MONA provides? (research question 3)

The objectives of the test data and the results obtained by MONA are presented to the

participants.

35 Questions 1–6 are adapted from Rubin and Chisnell (2008:30).

A2-1

APPENDIX 2

A2 1 User Manual for MONA

MONA, an exception monitoring agent, has been designed and developed as a part of

master’s thesis at the University of Bergen. It works as a personal assistant and helps to detect

possible fraudulent registrations at conferences. For more information about MONA, visit

www.ocs.uib.no/Mona.In order to use this agent, it is necessary to use OCS (Open

Conference Systems) as the main conference management tool. For more information about

OCS, visit the PKP web site at http://pkp.sfu.ca/?q=ocs.

A2 1.1 Installation

Download the installation package from http://sourceforge.net/projects/monitoringagent/ and

extract the MONA archive to the desired location in your web documents directory. Review

config.php and readme.txt for additional configuration settings.

A2 1.2 Log into MONA

Mona is now live at your website. In order to reach it, use www.yourwebsite.com/Mona.This

first page of the application is shown below:

A2-2

A2 1.3 Configuration

By clicking ON DUTY or Set MONA On Duty, the configuration page will be shown.

Fill out the name and email fields.

If the user wants to get an email from MONA every day, the Send me email option should be

ticked. This email includes the summary of registrations as of 08:00 AM.

When the SetMonaOnDuty button is clicked, MONA is at the user’s service and can be

assigned to different tasks.

IMPORTANT NOTE: All the names that are used in registrations are either the product of

the author’s imagination or, if real, used fictitiously without any intent to describe their actual

conduct. This has one exception, and it is my adviser: Weiqin Chen

A2-3

A2 1.4 Assigning Tasks

In order to assign MONA to different tasks, click on the links on this page.

A2 1.4.1 Summary of registrations

With this task, MONA presents a report containing all the registrations in the conference

management system. The report includes the country and full name of the attendees. It is

A2-4

possible to search the names of the attendees on pipl.com by clicking the name links in this

report.

A2 1.4.2 List of MONA’s actions

With this report, MONA shows the task history with details of what it has done, when it

started each task, how long it has taken, whether it has been successfully completed or not,

the protocol name it has used, its role is in each task and which agent has been assigned to

each task.

A2 1.4.3 List of registrations based on payment transactions

NB! In order to get a result in this report, the payment file should be uploaded to the upload

folder on the server.

Continues on the next page

A2-5

Contiuned

MONA presents a detailed report about the registration process. The report begins with an

overview of registrations, which is followed by details concerning whether the person should

be accepted as an attendee or checked before acceptance. The records that should be checked

are written in red font and they are marked with an explanatory comment about how the check

can be done. It is also possible to launch a Google search of the person by clicking the name

link.

A2 1.4.4 Email a summary of registrations

With this task, MONA presents a summary of registrations and the content is sent to the user

by email.

A2-6

A2 1.4.5 Set MONA Off Duty

By clicking the Set MONA Off Duty button on the agent’s home page, the user can stop

MONA from accepting tasks.

If user wants to work with MONA, it can be reactivated with the SET ME ON button.

A2 1.4.6 Agent Header Information

Every report includes the agent header information at the end of the report. This shows

information about the state of MONA at the actual time of delivery.

