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Abstract

Background: Most of the current biophysical models designed to address the large-scale distribution of malaria
assume that transmission of the disease is independent of the vector involved. Another common assumption in these
type of model is that the mortality rate of mosquitoes is constant over their life span and that their dispersion is
negligible. Mosquito models are important in the prediction of malaria and hence there is a need for a realistic
representation of the vectors involved.

Results: We construct a biophysical model including two competing species, Anopheles gambiae s.s. and Anopheles
arabiensis. Sensitivity analysis highlight the importance of relative humidity and mosquito size, the initial conditions
and dispersion, and a rarely used parameter, the probability of finding blood. We also show that the assumption of
exponential mortality of adult mosquitoes does not match the observed data, and suggest that an age dimension can
overcome this problem.

Conclusions: This study highlights some of the assumptions commonly used when constructing mosquito-malaria
models and presents a realistic model of An. gambiae s.s. and An. arabiensis and their interaction. This new mosquito
model, OMaWa, can improve our understanding of the dynamics of these vectors, which in turn can be used to
understand the dynamics of malaria.
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Background
This is the first of two papers describing a dynamic
model (Open Malaria Warning; OMaWa) of Anopheles
arabiensis and Anopheles gambiae s.s. Our aims in
this article are 1) to formulate recent research on the
Anopheles gambiae complex in a mathematical frame-
work, and 2) to show how the new formulations influence
the dynamics of malaria and mosquito populations.

In this paper, we describe a model of the dynamics
of the two species and then show how parameters can
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influence the success of the two species, and how temper-
ature, humidity and mosquito size can influence malaria
transmission.

Climate and malaria
Most of the 149-274 million cases and 537,000-907,000
deaths from malaria occur in sub-Saharan Africa [1,2].
Climate has been one of the main drivers of this dis-
ease [3], governing the spatial extent and year-to-year
variations. The pathway from climate to malaria goes
through the parasite and the mosquito. Although it is well
established [4] how parasite development is influenced by
temperature [5], the vector’s response to weather and cli-
mate is more complex. Mosquito density depends not only
on temperature but also on the abundance of breeding
sites (rainfall and evaporation) [6], desiccation (humidity)
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[7], and competition between mosquitoes [8]. In the past
20 years, a shift in the distribution of An. arabiensis and
An. gambiae s.s. has been observed in Kenya [9], show-
ing that the species composition is not static over time.
In the context of climate change [10], variability in vec-
tor populations is a factor that has not been considered
so far.

Malaria and mosquito models
At the turn of the 20th century the work of several
researchers, including Battista Grassi and Ronald Ross,
resulted in the discovery that mosquitoes of the Anopheles
genus transmit malaria [11,12]. Over the next 20 years,
Ross, and later Lotka and Waite, developed mathemati-
cal models that became central in malaria control [13-19].
In the 1950s, George MacDonald refined these models
and showed that DDT could be used to interrupt malaria
transmission [20]. Since then, several modelers have fol-
lowed in the footprints of Ross, Lotka, and MacDonald
[21-30]. Some have designed models to show how tem-
perature alone influences malaria transmission [31], while
others have focused on the theoretical effect of bed
nets [32], multiple interventions [33] or climate change
[34-36]. There is also a growing number of models that
address the dynamics of immunity within individuals [37]
and in communities [21,38].

In 2011, The malERA Consultative Group on Modeling
[39] provided a review of the current state of mathematical
models and pointed to the importance of good mosquito
models for assessing the impact of climate change on
malaria.

Many traditional models rely on a threshold principle.
The idea has been to find thresholds for longevity, num-
ber of bites or days to recovery that must be reduced
to interrupt the transmission. With increased computa-
tional power it is now possible to make more complex
models and hence explore a wider range for the dynam-
ics of malaria and mosquito survival. By integrating the
knowledge from simpler models into a complex system,
it is possible to test if the assumptions are true over
a wider geographical range. In addition, these complex
models can make quantitative predictions about strategies
for control [40].

Model summary and motivation
A model is mental copy that describes one possible rep-
resentation of a system. We present an alternative for-
mulation of the dynamics of An. gambiae s.s. and An.
arabiensis. The model is a system of ordinary differen-
tial equations (ODEs) with three compartments: eggs,
first to fourth instar larvae, and pupae; an age-structured
formulation of adult mosquitoes; and size prediction for
adult mosquitoes (measured as wing length in mm).
This can be considered the skeleton of the model. As

demonstrated later, the model structure can be simplified
when mosquito size can be neglected or when we assume
no births. The model can be run with a spatial structure in
which we include or exclude mosquito dispersion, or as an
idealized model in which the model is evaluated at a single
point.

The ODEs parametrize daily mortality rates, which are
size-dependent for adult mosquitoes; development rates
in the aquatic stages; biting rates; fecundity; the proba-
bility of finding a blood meal; and mortality related to
flushing of eggs, larva and pupa out of oviposition sites.
These parametrization schemes are driven by air tem-
perature, relative humidity, relative soil moisture, water
temperature, and runoff. As already mentioned, the model
can be applied in a spatial domain. In this case, tem-
perature and other environmental data are taken from a
regional climate model, the Weather Research and Fore-
casting Model (WRF) [41]. In the examples shown later,
we run the model at a resolution of approximately 50
km and a temporal resolution of 5-20 years in steps of
3 h. In addition to weather data, human [42] and cattle
[43,44] densities are introduced to estimate the probability
of feeding.

At this spatial resolution, the model should potentially
be able to define larger foci of mosquito productivity,
while the ability to identify hotspots will be limited [45].
However, 50 km is the standard for regional climate mod-
els addressing long-term changes in climate [46]. In addi-
tion, the true accuracy of historical cattle and human
population density estimates for Africa in general is not
likely to be greater than 50 km.

The mosquito model described here is designed to cap-
ture the spatial distribution and the time-dependent den-
sity of An. gambiae s.s. and An. arabiensis. If the model
can capture the current distribution and density of the
two species and how they are related to malaria, a future
version of this model, including infections, could be used
to explore the long-term impact of current interventions
under a changing climate. To have confidence that the
model has these abilities, several aspects not considered
here should be evaluated (papers under preparation). In
addition, if malaria modelers move towards the ensemble
thinking widely adopted in the climate community, this
model could be one representation of historical and future
changes for malaria. The aim of such an ensemble would
be to deal with uncertainties in the system. Ultimately,
the goal would be to produce policy-relevant information
including uncertainty.

We have chosen to represent the non-exponential mor-
tality of An. gambiae s.s. and An. arabiensis as observed
in laboratory settings [47], semi-field conditions [48], and
in the field [49]. A common assumption is that in the
field, mortality rates are constant with age because of
predation [31]. To date, few studies have confirmed this,
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while there is field-based evidence of age-dependent Ae.
aegypti mortality [49], which has implications for malaria
transmission [50]. In the model, we also describe how
mosquito size changes over the season. This might seem
to be an overcomplication of the model. The motivation,
however, is that we have observed substantial improve-
ments for arid regions such the Sahel when we included
mosquito size prediction. Fouet et al. reported that
mosquito size is an important adaptation strategy in arid
environments [51].

We do not claim that the additional complexity adds
any value. Stating this before the model has been fully
evaluated and compared to simpler models would be
dangerous. The model is thus one possible way of describ-
ing the dynamics of An. gambiae s.s. and An. ara-
biensis. It is under continuous development, and we
expect to add and alter components as new data become
available.

To highlight some of the components that contribute
to the dynamics of An. gambiae s.s. and An. arabiensis in
the model, five sensitivity experiments focus on the effect
of temperature, relative humidity and mosquito size on
malaria transmission. We also show how An. gambiae s.s.
and An. arabiensis respond to changes in the probability
of finding blood, carrying capacity, initial conditions, and
dispersion.

Material and methods: model description
Summary of the model
Figure 1 provides an overview of the model. In the follow-
ing sections we present the ideas behind the model and
its general structure, how a climate model is used to drive
the mosquito model, and the parametrization schemes
used in the model. It should be possible to read each part
independently; for example, data from a climate model
can be used to drive any malaria model; the parametriza-
tion scheme can be used in any malaria model; and the
malaria model described here can be used with differ-
ent parametrization schemes, with or without data from a
climate model.

As mentioned above, the model comprises a system of
ODEs for eggs, first to fourth instar larvae, and pupae;
an age-structured formulation for adult mosquitoes; and
size prediction for adult mosquitoes (measured as wing
length in mm). The first limitation in the aquatic stage is
the availability of ovipositing sites, which is parametrized
in terms of relative soil moisture and the potential for
puddle formation in a specific location. Once oviposit-
ing sites have been formed, adult female mosquitoes are
allowed to deposit eggs until the site is full, defined
as the biomass relative to the carrying capacity for the
location. To account for density-dependent mortality,
first instar larvae can be preyed on by fourth instar
larvae [52], and an extra density-dependent mortality

term is added to account for prey-independent mortal-
ity [53]. The numbers of eggs, larvae and pupae are
reduced when the precipitation rate exceeds the infil-
tration rate. The larval density in the aquatic habi-
tat influences the size of adult mosquitoes [53]. We
account for this by predicting mosquito size at emer-
gence as a function of larval density. In addition to
temperature and relative humidity [47], mosquito size
influences the daily adult survival probability [7,51,54,55]
([56], Aedes aegypti). We therefore describe an adult
survival model that takes temperature, relative humid-
ity and mosquito size into consideration. In addition,
adult mortality and fecundity can increase if there are
no or few sources of blood. This follows the idea that a
mosquito living in an environment where much energy
has to be used to find blood will do this at the cost of
survival.

We adopt these general ideas for two species, An.
gambiae s.s. and An. arabiensis. It should be noted that
we have less confidence in the model for the An. gambiae
s.s. M form, since aestivation (as documented by Lehmann
et al. [57] and Adamou et al. [58]) is not included.
In addition, there are some indications that the M
form breeds in larger pools [59] and hence the pud-
dle parametrization might have limited validity for this
form.

In addition to time, the model can include two (three,
since space is two-dimensional) additional dimensions,
namely age and space. The space dimension allows dis-
persion of mosquitoes, meaning that (re)establishment
through migration to areas that were previously free of
An. gambiae s.l. is possible. The gradual invasion of Brazil
by An. arabiensis in the 1930s [60] is one example of
dispersion.

The ODEs were solved using the ODE solver lsoda
[61-63]. The relative and absolute error tolerances were
not modified from the original lsoda implementation
(1e−6). The model can be run either as a spatial model
(with or without mosquito dispersion) or evaluated at a
single point at which movement is neglected. A detailed
overview of the possible model parameters can be found
in Table 1.

Differential equations for the aquatic compartment
The aquatic compartment consists of six stages: eggs
(E), four larval stages (L1, L2, L3, L4), and pupae (P).
Transitions between the different compartments can be
expressed in terms of delayed equations. To simplify the
solution and avoid numerical instabilities, we approximate
the model as ODEs [21]. Lunde et al. reported on the
errors introduced by this approximation [64].

New eggs added to the population depend on the num-
ber of adult mosquitoes (m), the size of adult mosquitoes
(msize), the inverse length of the gonotrophic cycle (G(T)),
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Figure 1 Overview of the mosquito model. A (regional) climate model is used to force the mosquito model. In addition, static and semi-static
fields are used as part of the parametrization schemes. Human and bovine densities limit the availability of blood meals.

how much water is available (SMr , dimensionless) and the
larval biomass already present in puddles (BL):

δE
δt

= ε
(
m, msizen

) · G(T) · SMr ·
(

1 − BL
K

)
− (

βN ,E(T) + βI,E + τE(T)
) · E,

(1)

where ε
(
m, msizen

)
represents potential new eggs from

each age group, G(T) is either constant or dependent on
temperature T, SMr is a function of the relative soil mois-
ture and the potential puddle formation area, K is the
maximum larval biomass a grid cell can hold, βN ,E(T) is
natural mortality rate for eggs [Eqs. (16) and (18)], βI,E is
the induced mortality rate for eggs (not specified) and τE
is the inverse of development time from eggs to first instar
larvae.

The term 1 − BL/K is used as a scaling factor to mod-
ify the growth rate. When the population is low compared
to the breeding sites available, its growth is high. As the
population grows, there is more competition for food,
predators become more abundant, and the growth slows.
In the egg compartment this represents the idea that the
mosquitoes will lay fewer eggs when breeding sites are
already occupied [65].

First instar larvae (L1) are added as eggs develop into lar-
vae. Additional mortality is added in the transition stage
in relation to how much biomass there already is in a given
location [53]. This approximation of increased (density-
dependent) mortality arises because of competition and
predators; if a puddle already is full, the number of eggs

developing to first instar larvae is reduced, whereas if a
puddle is empty (1−BL/K = 1), no extra mortality occurs.
Similar terms could have been added to the second, third
and fourth instar larvae, but we assume that earlier life
stages will be affected more by density-dependent compe-
tition and predation.

Shoukry looked at how fourth instar larvae of An.
pharoensis prey on first instar larvae during a 24-h exper-
iment [52]. Using these data, we add additional mortality
for first instar larvae according to the density of fourth
over first instar larvae. The constant Cpred is tunable to
both limit the predation on L1 and make it more spe-
cific to species in the future. At most temperatures, this
constant does not influence the density of mosquitoes
(Additional file 1).

The number of first instar larva is given by:

δL1
δt

= τE(T) · E ·
(

1 − BL
K

)
− (

βN ,L(T) + βI,L + τL1(T)
)

· L1 − 0.4465(
L4
L1

+ 1
)2.9891 · Cpred.

(2)

Second (L2), third (L3) and fourth instar larvae (L4) and
pupae (P) are controlled by the development rate τ and
mortality β :

δL2
δt

= τL1(T) · L1 − (
βN ,L(T) + βI,L + τL2(T)

) · L2 (3)
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Table 1 Model parameters

Variable Description Equation(s)/reference

Tindoor Indoor temperature 36

Tair Near surface
temperature (2 m)

25, 26, 30, 36

ε Potential number of
new eggs

13

mn Number of mosquitoes in
each age group

8

P(B) Daily probability of getting
a blood meal

41

Twater Water temperature 14, 16, 18

Tsoil 0-10 cm soil temperature [91-94]

βN,L(Twater) Natural mortiality rate,
eggs, larva, and pupa

14, 1, 2, 3, 4, 5, 6

τgamb An. gambiae s.s. develop-
ment rate, aquatic stages

20

τarab An. arabiensis develop-
ment rate, aquatic stages

22

τE An. gambiae s.l. develop-
ment rate, eggs

[97] 1

τL1−4 An. gambiae s.l. develop-
ment rate, instar 1-4

[97] 2, 3, 4, 5

τP An. gambiae s.l. develop-
ment rate, pupa

[97] 6

farab Aquatic development rate
modification An. arabiensis

[8]

fgamb Aquatic development rate
modification An. gambiae
s.s.

[8]

Ln Number of larvae 21, 19

Farab Mortality rate modification [72] 17

Fgamb Mortality rate modification [72] 15

Sf scaling factor for wind
dispersion

39

Frm Flight range 41

E Number of eggs 1

G(T) Biting rate/gonotrophic
cycle

26

t time

BL Larva biomass 1

βI,x Induced mortality
in aquatic and adult stages

1, 2, 3, 4, 5, 6,7, 8

SMr Dimensionless time vary-
ing water constant, or rate
at which ovipositing sites
are found

24

K Carrying capacity 24

L1 Number of 1st instar larva 2

L2 Number of 2nd instar larva 3

L3 Number of 3rd instar larva 4

L4 Number of 4th instar larva 5

P Number of pupa 6

Table 1 Model parameters (Continued)

Cpred Predation constant.
Currently set to 0

2

Fgonot part of gonotrophic cycle
formulation

26

Dd Degree days [108] , 26

Tc Critical temperature 26

βh,m Adult mortality related to
feeding

42

h Number of humans [42]

�ı ,j flux 39

n Dimension in age grid

msize Size of newly emerged
mosquitoes

9

msizen Size of mosquitoes in age
group n

12

Lsize Prediction of larva size 10

aspp Size constant [22]

bspp Size constant [22]

Rp Potential river length in km 23

� Equally spaced river
dataset resolution in
degrees

23

ER Earth radius in
km (6371.22)

23

ϕ latitude in radians 23

D Diffusion coefficient 39

LT Local time 37

κ Diurnal modification for
transport of mosquitoes

37

HBI Human blood index 41, 42

g
(

msizen

)
Size dependent mortality 28

βN,m Natural mortality of adult
mosquitoes

32, 7, 8

�N,m(α, ζ , a) Survival curve for adult
mosquitoes

35, 31

α Shape parameter for adult
survival

3330

Tmod Sub-function for
equation 33

34

ρbovine/cattle Probability of finding cattle 41

ρhuman Probability of finding
humans

41

Description of model components.

δL3
δt

= τL2(T) · L2 − (
βN ,L(T) + βI,L + τL3(T)

) · L3 (4)

δL4
δt

= τL3(T) · L3 − (
βN ,L(T) + βI,L + τL4(T)

) · L4 (5)

δP
δt

= τL4(T) · L4 − (
βN ,P(T) + βI,P + τP(T)

) · P, (6)
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where β is the daily mortality rate, with the first subscript
denoting natural (N) or induced (I) mortality and the sec-
ond subscript denoting the aquatic stage. The subscript
for the development rate, τ , corresponds to the aquatic
stage. The parametrization schemes and data sources used
to estimate the rate at which eggs are laid (G(T) and ε),
mortality (β) and the development rate (τ ) are discussed
later.

Differential equations for adult mosquitoes
The life history and mortality rate vary over the lifespan of
a mosquito population. We formulated a model to account
for this variation. Adult mosquitoes are denoted by mn,
where n indicates the age group; n = 1 is the youngest
group and n = 9 refers to the oldest mosquitoes. The
age groups in the model are m1 =[ 0, 1], m2 = (2, 4],
m3 = (5, 8], m4 = (9, 13], m5 = (14, 19], m6 = (20, 26],
m7 = (27, 34], m8 = (35, 43] and m9 = (44, ∞] days,
with ageing coefficients an of 1.000, 0.500, 0.333, 0.250,
0.200, 0.167, 0.143, 0.125 and 0.067 for n = 1, 2, . . . , 9,
respectively. Mosquito ageing is represented by �n,
where n denotes the age group. Ageing is time-invariant
and is thus not related to the number of gonotrophic
cycles.

Although there is no ageing from age group 9, the
term �9 is included to limit the concentration of old
mosquitoes. This is a user-specified variable and in the
model results shown here we set this to 1

15 day−1 for An.
arabiensis and An. gambiae s.s.; this value should be set
to ensure that mosquito populations can survive during
dry periods [66,67], but still hinder accumulation of old
mosquitoes. This can be particularly useful if the mortal-
ity model described later is replaced with a model in which
mortality is independent of age.

When m is written with subscripts ı and j in addition
to n, this denotes inclusion of mosquitoes from neigh-
boring areas. For example, subscript ı − 1 indicates that
mosquitoes to the west of the point of interest are interact-
ing with the point of interest. The formulation presented
here includes movement of mosquitoes, and where appro-
priate we denote mosquitoes by mn,ı,j .

Again, β denotes mortality, with the first subscript
denoting natural (N) or induced (I) mortality and the
second subscript denoting the age group (mn) of the
mosquitoes. � represents the mosquito flux (transport)
and subscripts ı and j define which boundaries are eval-
uated. This is discussed in the section “Movement of
mosquitoes”.

The number of adult mosquitoes of a specific age
in a grid point is controlled by new mosquitoes from
mn−1, as well as the flux to and from the point of inter-
est

(∑1
ı=−1

∑1
j=−1 �ı,j mn,ı,j

)
, natural mortality βN ,mn ,

induced mortality βI,mn , ageing to mn+1, and mortality

due to lack of food (P(B)). Parametrization schemes
related to mortality are discussed later.

This results in the following equation for the first age
group:

δm1
δt

= τP(T) · P +
1∑

ı=−1

1∑
j=−1

�ı,j m1,ı,j

− (
βN ,m1 + βI,m1 + �1

) · m1.

(7)

The equations for age groups n =[ 2, 9] are

δmn
δt

= �n−1 · mn−1 +
1∑

ı=−1

1∑
j=−1

�ı,j mn,ı,j

− (
βN ,mn + βI,mn + �n + βh,m

) · mn.

(8)

Differential equations predicting mosquito size
Mosquito size (msize) is important for the efficiency of
mosquito multiplication. There are also some indications
that increased body size is a strategy for survival in arid
environments [7]. In general, high larval density leads to
a smaller body size as adults, and vice verse [68]. Where
only one species is competing for a resource, such as in
a small puddle, mosquito size, and hence the number of
eggs laid by each mosquito, will be of less importance.
If two species are competing for the same resource (e.g.
An. arabiensis and An. gambiae s.s.), the trade off between
development time and size can be important in competi-
tion for breeding sites. An. gambiae s.s. generally develop
faster than An. arabiensis, but end up with a smaller
body size. An. arabiensis spends more time in the aquatic
stages and develops larger bodies, and can thus produce
more eggs. Since our model includes competition between
those species, we describe mosquito size as a function
of competition for breeding sites. In theory this should
improve our ability to separate geographical and seasonal
distributions of An. arabiensis and An. gambiae s.s.

Since the size of An. arabiensis and An. gambiae s.s.
stabilizes after approximately 4 days [7] and ovoposition
does not start before this, it is not necessary to differen-
tiate the maximum and minimum size depending on age
to mimic changes in the number of eggs per mosquito
with age. However, this may be required if mortality based
on desiccation [7,69] is used. Although mosquito size at
a given time can be approximated using finite differences,
we develop a different approach that is more efficient in
terms of computational time in our model framework.
Mosquito size for the first age group depends on larval
size. Since the pupation time is short, this assumption
is justified, although it might introduce minor errors. In
a future version of the model, we plan to predict lar-
val size dynamically. The limitations set on mosquito size
(described in “Parametrization schemes in the aquatic
stages”) in this model might lead to An. arabiensis that
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are slightly too small compared size in the field study of
Ye-Ebiyo et al. [70], but the size is in line with studies
by Huestis et al. [71] and Kirby et al. [72]. Kirby et al.
also noted that mixed populations of An. arabiensis and
An. gambiae s.s. had a negative effect on mosquito size
at some temperatures. This mechanism is not included
in the current work. However, the most important aspect
of modelling of mosquito size is to capture seasonal and
spatial variations.

For size prediction we use the symbol msizen , where n is
the age group as described above.

The size (wing length in mm)of newly emerged
mosquitoes is approximated according to the linear
relationship

msizee = 1.25 + 5 · Lsize, (9)

where larva size Lsize (in mg) is approximated as:

Lsize = aspp − bspp · min
(

BL
K

, 1
)

. (10)

The constants aspp and bspp are 0.45 and 0.12 for
An. arabiensis and 0.383 and 0.147 for An. gambiae s.s.,
respectively [22].

The size of mosquitoes in the first age group at any time
is given by

δmsize1

δt
= min

(
max

(
τP(T) · P

m1
, 0

)
, 1

)

· log
(

msizee

msize1

)
· msize1 .

(11)

Therefore, the size of newly emerged mosquitoes
(msize1 ) depends on the number of newly emerged pupae
and the relative density of larva at the breeding site.

For the remaining age groups, size msizen is estimated as

δmsizen

δt
= min

(
�n−1 · mn−1

mn
, 1

)
·log

(msizen−1

msizen

)
·msizen .

(12)

Therefore, the size in age groups 2-9 only depends on
the number of mosquitoes surviving from one age group
to the next (mn−1) and the size of mosquitoes in the
younger age group (msizen−1 ).

Model forcing
To drive a dynamic malaria model it is necessary to have
boundary conditions that are consistent over time and
space. Temperature, relative humidity, and rainfall data
from weather stations are point measures. Hence, they
might not be representative of larger areas over shorter

time scales. This is especially true in areas with varying
topography or where convective rainfall is dominant
[73-75]. Despite the limitations of rainfall stations, they
can provide a robust estimate of large-scale events. By
pooling data from several stations, the error for a sin-
gle station is reduced and the data can provide a good
estimate for dry and wet years, for example. Hence,
weather stations are useful tools for validating climate
models.

The problems of point measurements are described
later, and represent one of the reasons why OMaWa is
tightly linked to a climate model. As shown in sensitiv-
ity experiments, the model can also be run with con-
stant forcing (e.g. temperature) or with data from weather
stations.

Where we present results for Africa as a whole, OMaWa
is driven by data from WRF 3.3.1. This realization (TC50),
described in part two of this paper, has a tropical channel
set-up in which set-up, the domain consists of bound-
aries above and below a certain latitude and no side
boundaries. The model was run at 50-km resolution from
January 1, 1989 to January 1, 2009. At the northern (45°N)
and southern (-45°N) boundaries the model was driven
by Era Interim. The Kain Frisch cumulus parametriza-
tion scheme was used [76,77]. This experiment was not
designed to reproduce observed year-to-year weather
variability, but to assess the mean mosquito density and
distribution. The driving experiment is described in the
section on model validation.

Climate and weather models
Currently, our best guess of (future) climate at mul-
tidecadal time scales comes from general circula-
tion models (GCMs). These models are designed to
close the energy budget of the Earth and include an
interactive representation of the atmosphere, ocean, land,
and sea ice. A set of scenarios with different emissions
describes how sensitive the climate is to atmospheric
constituents (greenhouse gasses) [78]. While climate is
the average weather over time and space, weather can
change over minutes, hours, days and seasons. The same
equations used to predict climate are used to predict
weather. However, weather forecasts are more depen-
dent on current observations of the atmosphere. Hence,
weather predictions are initial value problems, whereas
climate simulations are rather boundary value problems.

Both climate and weather models are mostly structured
on a grid, with coordinates from west to east (x), north to
south (y) and bottom to top (z). In the grid, one square
(or polygon) represents the weather within that square.
While climate models often have a horizontal resolution
of more than 10000 km2, operational weather models such
as the European Centre for Medium-Range Weather Fore-
cast (ECMWF) model are run at approximately 160 km2.
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If the state of the atmosphere is observed correctly, higher
resolution can lead to better local skill in predicting the
weather. A hybrid between a weather model and a climate
model is a limited-area model (LAM), which relies on
initial and boundary conditions from a weather or cli-
mate model. Given these conditions (weather), the LAM
can be run at a higher resolution over a limited area,
which potentially improves the spatial accuracy of the
coarse model [79]. The WRF model is a widely used
LAM [41].

In tropical regions, most rainfall comes from convec-
tive clouds. This type of rainfall is generally intense and
of short duration. The geographical extent of such rain-
fall episodes may be limited. Therefore, rainfall measure-
ments in regions where convective rainfall is dominant
should be handled with care [74,75,80,81], especially when
extrapolating station data to areas with no data. While
station data are accurate at a specific point, climate mod-
els and satellite estimates give a more general descrip-
tion of the weather within a certain area; Chen and
Knutson reviewed how models compare to observations
at varying scales [82]. Since future climate is projected
using climate models and considering the limitations
of weather stations, construction of a mosquito/malaria
model around a LAM is a good choice. The LAM will
have higher resolution than most climate models, with
higher-resolution orography, coastlines, and land use, but
will still give a general description of the weather within a
certain area.

Parametrization schemes in the aquatic stages
To relate a variable such as mortality to the physical envi-
ronment, we need simplified equations that describe this
relationship. An equation in which temperature influ-
ences mortality only states that there is a relationship
between the two, but does not explain why temperature
modifies mortality. In this paper we use parametriza-
tion schemes to represent the influence of the environ-
ment on mosquitoes. This section describes the aquatic
parametrization schemes used, excluding water availabil-
ity, which is discussed later.

The aquatic stages comprise eggs, four instar stages,
and pupae. The number of eggs in a location at any time
is controlled by the number of potential new eggs laid
(ε), available water (K), natural and induced mortality(
βN/I,E/L/P

)
and movement from the E to the L1 com-

partment. In addition, 20% instant mortality is introduced
when rainfall exceeds the infiltration rate. This is in line
with observations by Paaijmans et al. [83]. The number
of new eggs is simplified to a function of the number of
gravid mosquitoes in each age group and their size (mea-
sured as wing length) based on observations [55,84-86].
The critical size is set to a wing length of 2.6 mm, which
is less than that observed by Lyimo and Takken [85] but

greater than observations by Yaro et al. [87]. Maximum
wing length is set to 3.3 mm for An. gambiae s.s. [88,89]
and 3.7 mm for An. arabiensis [70]. The relationship
between the number of eggs (ε) and wing length(
msizen

)
is then approximated according to the linear

relationship

ε=
9∑

n=1

{ (−433.3 + 166.7 · msizen

) · mn if msizen > 2.6 mm
0 otherwise

}
,

(13)

where mn is the number of mosquitoes in age group n.
Note that this limits the number of eggs laid by a sin-
gle mosquito per gonotrophic cycle to approximately 184,
which is somewhat less than the number observed by Yaro
et al. [87], but in line with that reported by Howard et al.
[90].

Estimation of water temperature
Using the 0-10-cm soil temperature (Tsoil) from the
NOAH land surface model [91-94] to approximate the
mean water temperature (Twater) in larval habitats, we
assume that evaporative cooling and heat fluxes at the
water boundaries are negligible. Hence, the water temper-
ature is equal to the top soil temperature. Paaijmans et
al. showed that the 5-cm soil temperature represents the
water temperature in small ponds reasonably well [95].
Therefore, the model will have limited validity in areas
where larger puddles are the main breeding sites. There is
also a chance that diurnal fluctuations will be slightly over-
or underestimated. When a grid cell covers several km2,
this effect should be negligible, although we do not have
data to support this. We hope to improve the prediction of
water temperature in the future, either by modelling this
explicitly or using a parametrized version based on data
from Huang et al. [96].

Parametrization of mortality
We used two approaches to calculate mortality in the
aquatic stages. In the simpler approach, we assume that
mortality and development time in the aquatic stages are
independent of the species. We also assume that the rela-
tionship between the mortality rate and temperature is the
same for eggs, instars and pupae. In this method we do not
consider competition effects as described by Paaijmans
et al. [8]. This type of parametrization is suitable when
the model is used for one species only (e.g. if the model
represents an area where only one of the two species is
present).

Species-independent mortality (BLL)
Data provided by Bayoh and Lindsay [97] were used to
describe the mortality rate according to Eq. (14) (p < 0.01,
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R2 = 0.81). We call this the BLL method. Mortality rate
data are plotted in Figure 2b.

βN ,L (Twater) =
(

k1

Tk2
water

+ ek3·Twater−k4

)

· k5 + k6
1 + k7 · ek8·(Twater−k9)

,

(14)

where βN ,L (Twater) = βN ,E (Twater) = βN ,P(Twater) is
the aquatic mortality rate per day and Twater is the water
temperature (°C). The constants kn are given in Table 2.

Species-dependent mortality (KBLL)
Kirby et al. reported that the mortality rate of An. gambiae
s.s. and An. arabiensis is modulated by the presence of
each other in the temperature range 25 − 35°C [72]. To
account for this we developed two mortality models, one
for An. gambiae s.s. and one for An. arabiensis. We call
this parametrization scheme KBLL. The mortality rates
are based on data from Bayoh and Lindsay [97] and from
Kirby et al. [72]. Although Holstein also reported larval
mortality for (An. gambiae s.s.) when exposed to extreme
low and high temperatures [98], we did not include these
data when estimating the mortality curves. However, the
data are plotted in Figure 2 for comparison. Accord-
ing to our curves, the An. arabiensis mortality rate will
increase in the range 25 − 35°C as the relative presence
of An. gambiae s.s. increases. Conversely, the mortality
rate of An. gambiae s.s. will decrease as the proportion of

Table 2 Constants for equation 14 and 33

Constant Value Equation

k1 700000 14

k2 8.4 14

k3 .126 14

k4 10.8 14

k5 150 14

k6 −.08 14

k7 .1 14

k8 −.61 14

k9 33 14

c1 0.1675256 33

c2 0.0121402 33

c3 0.1686 33

c4 1.991 33

c5 1.881 33

c6 4.641589e26 33

c7 250 33

c8 23 33

c9 12 33

c10 100 33

c11 3 33
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Figure 2 Water temperature and mortality rates (day−1) in the aquatic compartments. Blue points show data used to estimate the mortality
curves. Blue lines indicate mortality without competition, while light blue to red shows mortality as competition increases. For reference, red points
show data from Holstein [98].
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An. arabiensis increases. The mortality rate βN ,L is given
by

Farab = min
( ∑4

n=1 Ln,arab∑4
n=1 Ln,gamb

, 1
)

(15)

βN ,L,gamb (Twater) =
{

0.002404075 · T2
water − 0.1127944 · Twater + 1.337783

βN ,L (Twater) · (0.4 + 0.6 · (1 + sin (−10.9956 + 0.3142 · Twater)))
Farab if 25 ≤ Twater ≤ 35

(16)

and

Fgamb = min
(∑4

n=1 Ln,gamb∑4
n=1 Ln,arab

, 1
)

(17)

βN ,L,arab (Twater) =

⎧⎪⎪⎨
⎪⎪⎩

0.0006556736 · T2
water − 0.02980226 · Twater + 0.3587285

βN ,L (Twater) · (
(2 + cos (−18.8496 + 0.6283 · Twater))

0.9508002)Fgamb if 25 ≤ Twater ≤ 35
βN ,L,gamb (Twater) if Twater ≤ 21.91209.

(18)

Fgamb and Farab are the ratio of An. gambiae s.s. to An.
arabiensis larvae and An. arabiensis to An. gambiae s.s.
larvae, respectively. At each time step, Lsize is estimated as
a function of BL and K. As the density increases, there will
be more competition and hence less food for each larva,
which leads to smaller larvae.

Parametrization of the development rate
The rate of development between the different aquatic
stages follows the corrected version of Bayoh and Lindsay
[97]. Since these data are only valid for An. gambiae s.s.,
we made a small modification to prolong the develop-
ment times for An. arabiensis. Data from Kirby et al.
[72] and Paaijmans et al. [8] suggest that time for devel-
opment from a larva to an adult is approximately 5.5%
longer for An. arabiensis than for An. gambiae s.s. Hence,
we increased the development time for An. arabiensis
by 5.5%. The reason for this longer development time is
that An. arabiensis takes longer to develop a larger body.
Curves of the development rate are shown in Figure 3.

The two previous studies also suggest that the devel-
opment rate [8] and mortality [72] of the two species
are modulated by the presence of each other, so we take
account of this in out model. The development time for
An. arabiensis is prolonged in the presence of An. gam-
biae s.s., while the time is shortened for An. gambiae s.s. as
the relative proportion of An. arabiensis increases. Using
data from Paaijmans et al. [8], the development rate τ is
modified according to

farab = min
(

100 ·
∑4

n=1 Ln,arab∑4
n=1 Ln,gamb + ∑4

n=1 Ln,arab
, 75

)

(19)

τgamb = τgamb · (1 − farab · 0.0008421)−1 (20)
for An. gambiae s.s. and

fgamb = min
(

100 ·
∑4

n=1 Ln,gamb∑4
n=1 Ln,gamb + ∑4

n=1 Ln,arab
, 75

)

(21)

τarab = τarab · (
1 + fgamb · 0.002138

)−1 (22)
for An. arabiensis. farab and fgamb is the fraction of An.
arabiensis and An. gambiae s.s., respectively.

Parametrization of breeding sites
The formation of puddles can be described as a balance
of runoff, infiltration, evaporation, and rainfall entering
the puddle. The formulation of an idealized puddle can be
found in Additional file 2.

Modelling of every single breeding site requires high
enough resolution to resolve the puddle. In practice this is
not possible and the problem has to be simplified.

Mushinzimana et al. described typical breeding sites in
a Kenyan highland area [99]. Most of the puddles were
located at less than 100 m from rivers, which means
we can assume that semi-permanent puddles will mostly
form in the proximity of rivers and lakes. They also found
that the number of breeding sites was close to threefold
higher in the rainy season compared to the dry season, and
grouped breeding sites by surface area.

If we assume that breeding mainly occurs in the vicin-
ity of potential rivers and lakes, the availability of breeding
sites can be expressed as a function of potential river
length and soil saturation. At high resolution this might
not always be true [6], but since the model is designed
to be applied to coarser grids, we believe the assumption



Lunde et al. Malaria Journal 2013, 12:28 Page 11 of 29
http://www.malariajournal.com/content/12/1/28

°C

da
ys

10

15

20

25

15 20 25 30 35 40

arabiensis

15 20 25 30 35 40
gambiae

Ratio
0
0.25
0.5
0.75 <

Figure 3 Water temperature according to development time in days from first instar to adult. Left panel: ratio of An. gambiae s.s. to An.
arabiensis. When greater numbers of An. gambiae s.s. are present, An. arabiensis develop more slowly. Right panel: ratio of An. arabiensis to An.
gambiae s.s.. When greater numbers of An. arabiensis are present, An. gambiae s.s. develop more quickly.

is as reasonable as or more reasonable than the common
assumption that puddle formation is only dependent on
rainfall [29]. The newest version of the NOAH land sur-
face model in WRF 3.4 also includes groundwater and
dynamic vegetation, and future versions might change the
way in which puddles are parametrized. In OMaWa we
introduce a simple parametrization scheme to represent
breeding sites.

The Hydrological Data and Maps based on SHuttle
Elevation Derivatives at Multiple Scales (HydroSHEDS)
15s river data set from the US Geological Survey (USGS)
[100] was used to derive the total potential river length
within a grid cell. Since the algorithm used to develop this
data set describes where water would collect if it were
available within the catchment, it also represents a general
description of the potential for water aggregation within
an area. However, the validity might decrease on moving
to finer scales [6].

Here we divide rivers into three different classes: peren-
nial, intermittent and ephemeral streams. For each class,
potential river length (Rp, km) within a grid is defined as

Rp =
∑

� · 2πER
360

· cos ϕ, (23)

where � is the equally spaced river data-set resolution in
degrees, where �lon = �lat, ER is the radius of the Earth
(6371.22 km) and ϕ is latitude in radians.

In a simplified model we estimate puddle volume as
a function of river length and relative soil moisture.
Although this is a very crude estimate, we compared this

simple model with data from Mushinzimana et al. [99] and
derived a simple expression for the carrying capacity in a
grid cell:

K = BL,max
kmriver

· Rp · SMr , (24)

where BL,max
kmriver

is the maximum larval biomass per km of
river (2400 mg, estimated from data collected by Munga
et al. [101]) and SMr is the relative soil moisture content
(fraction).

In the current implementation we do not distinguish
between fast- and slow-flowing rivers. It should be noted
that this way of approximating breeding sites has limited
validity in areas with irrigation or around rivers where
breeding sites could form as rivers recede [66,67,102].
Some special cases, such as along the River Nile in Sudan,
where breeding sites form as a result of rainfall hundreds
of kilometers away, will not be captured at all [103].

Parametrization of the gonotrophic cycle
The gonotrophic cycle depends on temperature and
is important for the vectorial capacity of mosquitoes.
Lardeux et al. studied the gonotrophic cycle for An. pseu-
dopunctipennis [104]. We combine their data with other
published studies on anophelines to estimate the length
of the gonotropic cycle. There are few studies on An.
gambiae s.l., and hence we have to assume that other
anophelines share the same physiology and strategy with
respect to the gonotropic cycle. Ruiz et al. showed there
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are some differences [23], but until further evidence of the
reproductive strategies of different members of Anophe-
les genera becomes available, we will not consider this
effect. Studies used to develop the formula include those
by Guillermo et al. ([105], An. albimanus), Afrane et al.
([106], An. gambiae s.l.), and Maharaj ([107], An. arabi-
ensis). We also include the formula given by Hoshen and
Morse [108]. Their model is based on degree days and
is included according to Eq. (26). The gonotropic rate
(day−1) and data used to develop the formula are shown
in Figure 4.

Fgonot = min
(

max
(

−2
3

+ 1
30

· Tair , 0
)

, .5
)

(25)

G(T) =
(

1 + Dd
Tair − Tc

)−1

· Fgonot +
(

1.71 + 544347.6 · T−3.93
air

)−1 · (
1 − Fgonot

)
,

(26)

where Tair is the air temperature (°C), Dd is degree days,
and Tc is the critical temperature from Hoshen and Morse
[108], with Dd = 37, and Tc = 7.7.

Parametrization of the age-dependent mortality of adult
mosquitoes
The mortality of adult anophelines differs according to
age and species [7,107,109]. This has often been over-
looked in mosquito models [23,110]. To show how this
assumption can influence the stability of mosquito pop-
ulations and malaria transmission, we use the mortality
model of Martens [110] as a reference. We also plot Eq.
7 from Ermert [29] in Figure 5 to highlight the differ-
ences between this model and established models. For
convenience, we repeated Marten’s equation, as follows:

βN ,m(T) = 1 − e− 1
−4.4+1.31·T−.03·T2 . (27)

Our new survival curves are based on unpublished data
from Bayoh and Lindsay [47]. The validity ranges from
5 to 40°C by 5°C and 40 − 100% by 20% relative humid-
ity. We name the scheme BLLad (Bayoh-Lindsay-Lunde
adult mortality). The data set and the curves are valid
for An. gambiae s.s. The lowest agreement between the
model and the data is at 40% relative humidity and 40°C.
While the data suggest that all An. gambiae s.s. would
be dead after approximately 2 days, the survival curve
would result in no mosquitoes after approximately 4 days
at 40% relative humidity and 40°C. To correct for this
error, we include data from Kirby and Lindsay [111], who
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and the dashed line shows the formula given by Hoshen and Morse [108].
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Figure 5 Proportion of An. gambiae s.s. surviving at 60% relative humidity and mean temperature of 0, 10, 20, 30, and 40°C (selected for
clarity) according to time (in days). Dashed vertical lines indicate the different age groups in the model. The Survival curve panel shows Eq. 31,
while the Numerical solution panel shows survival in the model when the age groups are split into nine classes. For reference we also show survival
according to the Marten equation (27) and Eq. 7 from Ermert et al. (Bayoh scheme) [29]. The mean absolute error for all combinations of
temperature and relative humidity was 73 for our model, 171 for the Marten model, and 129 for the Bayoh scheme.

described the responses of An. gambiae s.s. and An. ara-
biensis to high temperatures. By assuming that maximum
survival is 480 min for An. gambiae s.s. and 1440 min
for An. arabiensis at temperatures greater than 40°C, we
can set the mortality rate to 3day−1 and 1day−1, inde-
pendent of age group. However, there are uncertainties at
relative humidity below 40%. The lack of studies in this
range is a limitation of this survival model, and could
make the model less accurate for An. gambiae s.l. in
some regions. The basic principle of these survival curves
is that mortality will be low in the first few days after
emergence. In addition, mosquitoes that survive up to a
certain age have a higher survival probability (depend-
ing on Tair and relative humidity). In Figure 5, survival
at 60% relative humidity and 0, 10, 20, 30, and 40°C
is plotted.

Size affects the survival of adult mosquitoes [7,51,54,55]
([56], Aedes aegypti). If we assume that the major differ-
ences in mortality between An. gambiae s.s. and An. ara-
biensis can be attributed to mosquito size, we can modify
α as a linear function of mosquito size. Here we subjec-
tively choose reasonable constants for h (msize). Tair may
be completely or partly replaced by indoor temperature
(Tindoor , described later), depending on the proportion of
mosquitoes indoors. In experiments covering the African
domain, we assumed that 80% of An. gambiae s.s. and 20%
of An. arabiensis are located indoors.

g
(
msizen

) = 2.1731 − 0.3846 · msize (28)

f (RH) = 6.48007 + 0.69570 · (1 − e−0.06·RH) (29)

α = g (msize)

× e
10+

(
1+ Tair+1

21

)(2/3)·
((

1+ (Tair+1)

21

)2−
(

1+ Tair+1
21

)
·2−f (RH)

)

(30)

�N ,m(α, ζ , a) =
a∑

i=0

⎛
⎜⎝

(
(α · a)

∑n=(ζ−1)
i=0 n

)
∑n=(ζ−1)

i=0 n!

⎞
⎟⎠ · e(−α·a),

(31)

where ζ = 6, g is a function of mosquito size, and RH is
relative humidity. The mortality rate for each age interval
can then be approximated as

βN ,mn =

⎧⎪⎪⎨
⎪⎪⎩

log
(

�N ,mt2
�N ,mt1

)
�t

if T < 40

3 otherwise

⎫⎪⎪⎬
⎪⎪⎭ . (32)

If we assume that differences in adult mortality for An.
gambiae s.s. and An. arabiensis can be explained by dif-
ferences in body size, these BLLad curves can be used for
both species. We explore this mortality model in [64].

AL adult mortality
A similar approach can be used for An. arabiensis. Using
survival curves reported by Afrane et al. ([112], Figure
two) (copyedited with g3data [113]), we can estimate mor-
tality based on the daily maximum temperature. Because
of the few data points, this approach is much more
uncertain and should be considered experimental. The
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advantage of this mortality model is that the data are not
estimated from a laboratory setting. The maximum tem-
perature reflects some aspects, such as radiation, albedo,
and humidity, of the environment in which mosquitoes
live. In some of the results presented in part two, we use
this model for adult survival.

α = c1 − c2

·
⎛
⎜⎝c9 + Tc3

mod · (
Tc4

mod − Tmod · c5 − c8
) − c7 · c

Tmax
c11

10
c6

⎞
⎟⎠

+ e−
(

Tmax
5

)
· c11

(33)

Tmod = 1 + Tmax + 18
11.10

. (34)

Constants c1,...,11 are listed in Table 2. By setting ζ = 2
we can simplify the survival curve for An. arabiensis to

�N ,m (α, ζ , a) =
a∑

i=0
(1 + α · a) · e−α·a. (35)

The corresponding curve is shown in Figure 6.

Parametrization of air temperature
Paaijmans et al. discussed the importance of using indoor
rather than outdoor temperature, to describe the environ-
ment for mosquitoes and parasites [114]. They included
two studies that showed the relationship between indoor
and outdoor temperature in Kenya [115] and Tanzania
[116]. Here we add two additional studies, one from Kenya
[48] and one describing the temperature in traditional
and low-cost modern housing in the Eastern Cape, South
Africa [117]. The data used to parametrize equation 36
came from; 1, Afrane et al. [48]; 2, Makaka and Meyer
[117]; and 3, Paaijmans et al. [114-116] (R2 = 0.89). It
is clear that temperatures inside a house are more stable
than outdoor temperatures. House type greatly influences
daily temperature fluctuations [117,118], and the model
used here might not be valid for all house types. While
some studies have assumed that houses are always hotter
than the surroundings [119], we approximate the indoor
temperature as

Tindoor = 10.33 + 0.58 · Tair . (36)

Since the data are based on maximum and minimum
temperatures, the timing of the indoor temperature might
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Figure 6 Proportion of An. arabiensis surviving at daily maximum temperatures. Estimated from Afrane et al. [112] (blue line). Dashed vertical
lines indicate the different age groups in the model (grey lines).
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be offset by a couple of hours. This is evident in a study
by Makaka and Meyer [117], who delayed the maximum
indoor temperature by a couple of hours compared to the
environmental temperature. At present we do not account
for this delay, since the diurnal temperature ranges will be
correct even if we do not. The data and regression line are
shown in Figure 7. Further studies on indoor compared to
outdoor temperatures are needed to make this correction
more accurate.

Hence, Tair can be partly or fully replaced by Tindoor ,
depending on the proportion of mosquitoes indoors.

It should be noted that we still do not include tem-
peratures in resting places described by Holstein, such as
holes in rocks and cracks in soil, covered pigsties, rabbit
hutches, hen coops and dry wells [98], and by de Meillon
([120], under stones).

Approximation of mosquito movement
The role of diffusion and advection in vector borne dis-
eases have been explored in several papers [102,121-127].
Considering the gradual invasion of Brazil in the 1930s
by An. arabiensis [60] it can be argued that move-
ment of mosquitoes is important over decades. Here we
include the active and passive transport of mosquitoes
as fluxes across grid boundaries. Passive transport is

movement of mosquitoes caused by wind, while active
transport is movement due to flying. On shorter time
scales the role of such movement will be limited.
However, on long time scales it is necessary to allow
mosquitoes to travel to allow them to establish in new
locations.

Transport of mosquitoes is defined by fluxes (s−1)
at the grid boundaries. In the model we allow fluxes
from the eight neighboring grid points. A special case
is implemented when a neighbouring cell is water. In
this case, fluxes to water are reduced to 0.1% of the
original flux to avoid large losses of mosquitoes along
the coastline. Given strong winds from land to the
ocean, such an assumption could lead to accumulation
of mosquitoes along the coast. Conversely, allowing free
movement to the ocean could lead to undesired loss of
mosquitoes.

Since the movement of mosquitoes has a high com-
putational cost, the spatial fluxes do not change the
size calculations. This will introduce some minor errors
when the movement of mosquitoes is low compared
to their density, with larger errors if many mosquitoes
are moved relative to their density. When a cell
free of mosquitoes is colonized, the size is set to
3.05 mm.
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The possible flight range of anophelines varies with food
availability [128]. We do not include vegetation types in
the model and hence it is hard to justify differences in
flight performance based on, for example, land use. The
dispersion coefficient describes how far mosquitoes can
move in a day. We assume that the dispersion coeffi-
cient D is constant, independent of geographical location.
For An. gambiae s.s. and An. arabiensis, real flight per-
formance outside the laboratory of only a few hundred
meters per day (approx. 300-700 m) has been reported
[102,129,130]. In this experiment we subjectively chose
D = 30mday−1 independent of age group. Anopheli-
nae also travel with humans [131], which adds to the
transport equation and makes the dispersion coefficient
uncertain. Gillies noted that wind direction mostly has a
minor effect on dispersal [129], while de Meillon [132] and
Adams [133] reported distances of 2-4.5 miles (3-7 km)
in the direction of the prevailing wind. Thus, it can-
not be ruled out that wind plays a role on longer time
scales. Hence, we express movement caused by wind as
a function of 10-m zonal (u) and meridional (v) wind
components (ms−1). This can be understood by consid-
ering the following example. For a constant u-wind of
10ms−1 and v-wind set to 0, mosquitoes will be moved
a distance related to a scale factor Sf , which is equal to
the distance travelled at 20ms−1 to the east. For exam-
ple, with Sf = 750mday−1, the eastward distance traveled
will be Sf · 10ms−1

20ms−1 375 m in 1 day, but since each mosquito
is not modelled individually, it would be more natural
to describe this as a fraction moving a certain distance.
Different wind directions and speeds will result in other
distances/fractions and directions. D and Sf are unknown
tunable constants.

Since the species considered here are most active at
night [22], movement will be suppressed between 06:00
and 18:00 h (local time) and amplified at night according
to

κ =
(
cos

(
LT · π

12
) + 1

)2

1.506925
, (37)

where LT is local time,
∫ 24

0 κ ≈ 1 and

LT=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

UTCtime+ longitude
15

−24 if UTCtime+ longitude
15

>=24

UTCtime+ longitude
15

+24 if UTCtime+ longitude
15

<=0

UTCtime + longitude
15

otherwise.

Transport of mosquitoes and mosquito sizes inside and
outside a grid are defined by

δmn
δt

=
1∑

ı=−1

1∑
j=−1

�ı,j mn,ı,j . (38)

More specifically, during a time �t, movement can be
calculated as follows. On a day with no wind, transport is
equal in all directions, D = 30mday−1, and the flux at a
boundary is defined as

�ı,j = κı,j�t· D
�dı,j · 24 · 60 · 60

, ı = {−1, 1}, j = {−1, 1}
(39)

and transport ηı,j n is then equal to

ηı,j n = mı,j n · �ı,j . (40)

In the presence of wind, we obtain additional trans-
port as a function of zonal and meridional wind
components.

Mortality related to feeding
One factor that is often overlooked in malaria (mosquito)
models is survival related to food availability (P(B)).
Ye-Ebiyo et al. reported that maize pollen availability has
a positive effect on larval (and hence mosquito) fitness
[70,134]. Creating maps of plant types is beyond the scope
of this study, and hence we chose not to account for
mortality related to crops. However, we performed initial
tests in which we included GlobCover Land Cover version
V2.2 (European Space Agency [135]) to give a rough esti-
mate of regions where increased fitness could be expected.
The other source of food for female anophelines is blood.
Compared to a starved mosquito, a mosquito that has
had access to blood on days 1-3 has a theoretical flight
distance that is increased by a factor of 6-7 [128]. There-
fore, it is plausible that the higher (lower) the probability
of finding a blood meal (P(B)), the higher (lower) is sur-
vival in the early life stages of adult mosquitoes. Bouma
and Rowland reported higher parasite prevalence among
children of families who kept cattle compared to those
who did not [136], which can indicate either higher sur-
vival (older mosquitoes) or simply that some anophelines
are attracted to cattle. If we assume that a newly emerged
mosquito has a flight range of Frm = 0.5km2day−1, the
daily probability of finding a blood meal can be calculated
as

P(B) =
{

HBI · ρhuman · Frm + (1 − HBI) · ρbovine · Frm if P(B) < 1
1 otherwise

}
, (41)
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where ρhuman and ρbovine is the probability of finding a
human and bovine source, respectively. ρhumans is defined
as the human population density per km2 multiplied by 0.1
(since a smaller area on a human is accessible) and ρbovine
is defined as the bovine density per km2, each with a user-
defined threshold at which the density is so low that P(B)

is virtually zero. Since P(B) is a conceptual parameter, it
can be tuned.

Since blood meals, besides sugar meals, are important
for the mobility [128] and survival of female anophe-
lines [137], the success of a species is likely to be linked
to the presence of the preferred host. The dominant
blood source for An. arabiensis is bovine and human
blood, while it is human blood for An. gambiae s.s. [138].
In reality there are strong indications that the human
blood index is a dynamic quantity rather than a constant
[139-142]. In the current implementation, HBI is a static
number and hence there are probably errors related to this
term. To find the probability of feeding on humans at each
time step, we combine two data sets. Between 2000 and
2010 we use population densities from the Gridded Popu-
lation of the World (GPW) [42], and for before 2000 and
after 2010 we use growth rates from the Population Divi-
sion of the Department of Economic, and Social Affairs
of the United Nations Secretariat [143]. Since there are
no projections of cattle densities, this quantity is time-
invariant and based on Food and Agriculture Organiza-
tion (FAO) 2005 estimates [44]. We are currently working
to include time-varying cattle densities.

In the model, mortality caused by food limitations is
a function of how many humans or cattle are available
per mosquito and the human blood index. We assume
that HBI is time- and space-invariant, and only depends
on the species. For simplicity we chose available humans
to be humans who are not sleeping under a bed net. In
the simulations presented here, we set bed net usage to
zero, and hence the results represent mosquito distribu-
tion without interventions. Bayoh et al. hypothesized that
the survival of the different species is related to the avail-
ability of the preferred host [9]. The daily mortality rate
caused by limited human blood is expressed as

βh,m = max
(

1 −
30

HBI
∑

h∑n=∞
n=2 mn

, 0
)

. (42)

The functional form of of equation 42 can be seen in
Additional file 3.

Figure 8 shows the probability of finding a blood meal
for the sibling species on January 1, 1999.

Results and discussion
Sensitivity experiments
Sensitivity experiments are useful in understanding which
parameters are important for the success of An. arabiensis

and An. gambiae s.s. and which are important for malaria
transmission. Classical sensitivity analysis investigates the
robustness of a study when parameters are estimated from
statistical modelling. Our model uses parametrization
schemes to represent the influence of the environment
on the two species. We show how the model responds
to changing temperature, humidity, mosquito size, disper-
sion and the probability of finding blood. This approach
does not allow us to directly measure the robustness of
each parametrization scheme, but gives us an insight into
which external factors influence the model and where
it is of importance to have improved parametrization
schemes. We use the term sensitivity experiments for this
analysis.

Settings
To demonstrate some of the capabilities of the model, we
set up a series of experiments. Some aspects are best visu-
alized as a one-dimensional model (time and age), while
other features are shown using a spatial domain (time,
age, and space). For the one-dimensional experiments, the
water temperature is set to the air temperature, except for
temperature greater than 33°C, for which we set temper-
ature to 33°C. This modification is required since pupae
and fourth instar larvae will not develop below 18°C or
above 34°C [144]. The results are therefore less robust
when temperature is greater than 33°C. Unless other-
wise stated, we use size-dependent mortality, correction
for indoor temperature, the KBLL method to estimate
mortality in the aquatic stages, correction for the develop-
ment rate in the aquatic stages depending on the ratio of
each species, and movement of mosquitoes (in the spatial
cases).

Sensitivity to temperature, relative humidity and
mosquito size (TempHumSize)

The age-dependent mortality is influenced by tempera-
ture, relative humidity and mosquito size [Eq. (32)]. This
experiment explores how the dynamics of malaria is sen-
sitive to temperature, relative humidity and mosquito size
(measured as mm). We assume that no births occur to
isolate the effect of the transmission process, and con-
sequently constant mosquito body size in the course of
integration, but include mortality and the biting rate.
In this experiment we assume that only one species is
present (since the main competition occurs in the aquatic
stages). This sensitivity test is designed to observe how
the proportion of mosquitoes becomes infected as a func-
tion of temperature, relative humidity and mosquito size,
given that we start with 1000 newly emerged mosquitoes,
with m1 = 1000 and m2−9 = 0 as the initial condi-
tions. In this experiment, 1% of the human population
is infectious for Plasmodium falciparum. Mosquitoes are
infected with an efficiency of 100%, meaning that biting
an infectious human results in gametocyte transmission to
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Figure 8 Probability of finding a blood meal for An. arabiensis (HBI = 0.4) and An. gambiae s.s. (HBI = 0.95) with zero bed net coverage.

the mosquito. In practice, this would be the same as say-
ing that 10% of humans were infectious and gametocyte
transmission had an efficiency of 10%. We also neglect
the effect of heterogeneous biting. This is the only exper-
iment in which we model the proportion of infectious
mosquitoes explicitly. The modified equations describing
the transmission process are described in [64].

The rate of sporozoite development within mosquitoes
is expressed as [5]

pf =
(

a + b
e(Tair)c−d

)−1
, (43)

where a = 9.5907, b = 0.0051029, c = 0.7349, and d =
17.0325. This expression was derived from the figure in
MacDonald page 119 [5] using g3data [113], and fitted
using non-linear least-squares [145].

The gonotrophic cycle and biting rate are defined in Eq.
(26).

The integrations are repeated with different combi-
nations of temperature and relative humidity. This is
a simple representation of gametocyte transmission to
mosquitoes and is an idealized approach for exploring
the proportion of mosquitoes (of the original 1000) that
would become infected under different temperature, RH
and mosquito size. Figure 9 shows how the percent-
age of infectious mosquitoes changes with temperature,
RH and mosquito size. Lyimo and Koella reported that
the largest mosquitoes were less likely to have sporo-
zoites, but had more oocysts than smaller mosquitoes

[54]. They attributed this to increased mortality in the
presence of many oocysts, an effect that is not included
in our model. Figure 9 shows that the potential per-
centage of infected mosquitoes is sensitive to all three
parameters in the model. Although higher survival has
been attributed to body size in dry [7,51] and semi-arid
environments [55], the advantage or disadvantage of a
larger body has been poorly described in saturated envi-
ronments. Therefore, the sensitivity to body size at 80%
RH should be interpreted with care. According to the
model, temperature is not the only factor that governs the
transmission of malaria (in areas with no interventions);
humidity and how mosquitoes adapt to dehydration stress
are also important factors. The most efficient transmis-
sion, expressed as the integral, with respect to days, occurs
at 25°C at 40% and 80% RH, and at 24.5°C at 10% RH,
independent of mosquito size.

These results should be viewed in light of recent find-
ings by Paaijmans et al. that optimal transmission occurs
at lower temperatures [4].

Sensitivity to temperature and carrying capacity
(TempCar)

The aim of this sensitivity test was to investigate how
carrying capacity and temperature determine the relative
proportion of An. arabiensis and An. gambiae s.s. We
set the relative humidity to 80% and the probability of
getting a blood meal to one. We assumed that the soil was
saturated and we varied the temperature between 16 and
38°C (with corrections over 33°C for water temperature)
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Figure 9 Percentage of 1000 mosquitoes that are infectious after x days. The y-axis represents temperature in degrees centigrade. The model
is integrated at two mosquito sizes (2.8 and 3.2 mm for wing length) and three relative humidity values.

and the carrying capacity between 0.0625 and
125 mgkm−2.

Carrying capacity in the aquatic stages influences larval
growth and adult survival. While An. arabiensis invests
more time in growth than An. gambiae s.s., the former
develops a larger body, and consequently has the poten-
tial to oviposit more eggs than the latter. If the two species
experience the same mortality rate in the aquatic stages,
more An. gambiae s.s. will emerge, but over time An. ara-
biensis can face this challenge by outnumbering the eggs
of An. gambiae s.s. in the habitat. Thus, we are interested
in testing how the carrying capacity in the aquatic stages
alters the relative proportion of each of the adult species.
In this model we only consider the competition between
these two species, and hence neglect other competing
species [146].

As observed in Figure 10, An. gambiae s.s. dominates
between 27 and 30°C. This is the effect of the develop-
ment rate modifications described by Kirby et al. [72]
and Paaijmans et al. [8] (Figure 2 and “Species-dependent
mortality (KBLL)”). Interestingly, the dominance of An.
arabiensis is most pronounced in the drier simulations,
meaning that high competition, compared to adult sur-
vival, is favourable for this species. This can be attributed
to the strategy of larger body size and higher egg produc-
tion. Lehmann et al. found that An. arabiensis dominated
during the dry season, while An. gambiae s.s. dominated in
the rainy season [57]. The advantage of An. arabiensis in
crowded breeding places might be one factor contributing

to the shift in species composition as the surface area of
puddles starts to shrink.

Sensitivity to temperature and the probability of finding
blood (pBlood1D)

This experiment shows how the model responds to
changes in the probability of finding a blood meal, which
influences the rate at which mosquitoes can oviposit and
increases energy consumption if hosts are hard to locate.
If, for example, cattle are easier to find compared to
humans, An. arabiensis will potentially use less energy
per batch of eggs and will also be able to utilize breeding
sites at a higher rate than An. gambiae s.s. It is also pos-
sible that An. arabiensis uses cattle for navigation [147].
Over time, such differences might lead to dominance by
one species. In this experiment, we varied the probabil-
ity of finding blood, P(B), for An. arabiensis from zero to
one, as well as varying the temperature as described for
TempCar.

We set the probability of finding blood to one for An.
gambiae s.s., independent of the probability of An. ara-
biensis finding a blood meal. This is a purely theoretical
experiment designed to demonstrate a concept. The prob-
ability of finding blood is varied between zero and one for
An. arabiensis. The scenario in which P(B) = 1 for An.
gambiae s.s. and zero for An. arabiensis is not a realistic
scenario, but the difference in P(B) is grounded in differ-
ences in their feeding behaviour, whereby An. arabiensis
can utilize cattle more efficiently than An. gambiae s.s., for
example.
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Figure 10 Fraction of An. arabiensis as a function of air temperature and carrying capacity. The water temperature is set to the same value as
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Figure 11 shows the relative fraction of An. arabiensis.
In addition to the pattern observed in Figure 10, it is also
evident that if P(B) is low for An. arabiensis, An. gambiae
s.s. dominates. P(B) can be interpreted as a parameter that
describes both the probability of finding blood for repro-
duction and survival, and the energy spent in the search
for a blood meal. For example, easy access to cattle might
give An. arabiensis an advantage in exploiting breeding
sites, which could lead to suppression of the number of
An. gambiae s.s. if increased use of bed nets reduces the
effective human population or causes higher mortality of
anthropophilic species. This mechanism might help to
explain the decline in An. gambiae s.s. observed by Bayoh
et al. [9].

Sensitivity to the probability of finding blood in a spatial
domain (pBlood2D)
This experiment is similar to pBlood1D, but this time we
integrate the model for 5 years over the African domain.
The experiment consists of two runs, for which the first
has P(B) similar to Figure 8 and the second has P(B) = 1

over all land areas for both species. The population den-
sity is space-invariant at 400 humans/km2 (remember that
the number of mosquitoes is limited by the number of
hosts). Thus, the only limitation in this experiment is the
physical environment (air and water temperatures, rela-
tive humidity, wind and run-off), which is updated every
3 h. The initial conditions for the mosquito populations
were the same for the two runs.

Even though we have stated that the probability of find-
ing blood P(B) is an expression of the cost of finding a
host, it might well be that P(B) also includes a compo-
nent that describes the environment shaped by cattle and
humans. Therefore, it should be noted that it is difficult to
distinguish between the true probability of finding blood
and the environmental changes caused by the presence of
humans or cattle.

Under the scenario of equal probability of finding blood
for the two species, An. gambiae s.s. loses the competi-
tion after 5 years (Figures 12 and 13), probably because of
the greater reproductive potential of An. arabiensis. The
only strongholds left for this species are DRC, Congo, and
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probability of finding blood, P(B), while in P1 the probability of finding blood was set to 1, independent of the location. See the text for further details.

Gabon. Hence, the strategy of An. arabiensis to develop
a larger body, produce more eggs, and possibly reduce
adult mortality at the cost of spending more time in the
aquatic stages is successful when access to blood is unlim-
ited. An. arabiensis has extended its distribution as far
north as the southern tip of Western Sahara. While the
original set-up of the model (P0) limits the distribution
of An. gambiae s.l. to approximately 17°N in the Sahel,
the experiment with P(B) = 1 (P1) has a distribution up
to 22°N in Mali, Niger, Chad and Sudan. This is in line
with observations of the northerly limit of An. gambiae
s.l. [148-150]. The lack of An. gambiae s.l. north of 17° in
the original set-up (P0) might be a result of the way the
model is formulated. The population density is calculated
within a box of approximately 50 km × 50 km. It might
well be the case that pockets of higher population/cattle
densities within this box could sustain a mosquito popu-
lation. This is not resolved in the model. It is also worth
mentioning the study by De Meillon [151] of the anophe-
lines of Namibia, which revealed that An. gambiae s.l. is
present in large parts of the country. The original set-up
(P0) allows sustainable mosquito populations in Namibia,
while the density of An. gambiae s.l. in P1 is more compa-
rable to the observations of De Meillon. The problems of
capturing the distribution of An. gambiae s.l. in Namibia
may originate from the problems of resolving pockets of
high host density or changes in cattle density and distri-
bution at the time of the study compared to the present
day [43,44,152].

It is also worth mentioning that the density of An.
gambiae s.l. in South Africa is not very sensitive to the
probability of finding a blood meal. Hence, the distribu-
tion of An. gambiae s.l. is mainly restricted by climate
according to the model.

Figures 12 and 13 show the distribution and density of
An. arabiensis and An. gambiae s.s. under realistic (P0)
and space-invariant (P1) P(B) after 6, 12, and 18 months.
The integration was started on January 1 and the model
was run for 5 years.

Mosquito transport (mosqTran)
The purpose of this experiment was to demonstrate
how the initial conditions and competition influence the
distribution of An. gambiae s.s. and An. arabiensis. To
explore the theoretical dispersion distance and the influ-
ence of the initial conditions, we set up a simple exper-
iment. In mosqTran(a) the model was initialized with
An. arabiensis at −4.494381°E, 14.0154°N (Sahel), and
An. gambiae s.s. at −4.494381°E, 6.502846°N (Cte d’Ivore,
Ivory Coast) on January 1, 1989. The second experi-
ment, mosqTran(b), had the same setup, but without
An. arabiensis.

The purpose of this demonstration was to show the
importance of mosquito movement and how new areas
can or cannot be colonized. In a model in which move-
ment is restricted, the vector range would also be
restricted by the initial model conditions. For example,
if only one point was specified for mosquitoes at the
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Figure 14 Relative change in dispersal (mean over 5 years) for An. gambiae s.s. with (mosqTran(a)) and without (mosqTran(b)) An.
arabiensis. The black solid circle and triangle indicate the initial position of An. arabiensis and An. gambiae s.s., respectively.

beginning of the integration, only the same point would
have mosquitoes after 100 years. With dynamic move-
ment the mosquitoes could colonize new areas if the
environmental conditions, or the probability of finding
blood, change over time.

Figure 14 shows the relative difference in An. gambiae
s.s. distribution in the two experiments. It is evident that
in the presence of An. arabiensis, An. gambiae s.s. fails to
colonize large parts of Mali and Burkina Faso. It can be
argued that this is not a result of the initial conditions,
but of competition. Additional file 4 illustrates why this
is indeed a result of the initial conditions, although the
initial conditions would not play a role in the absence of
competition.

Figure 15 shows the number of months required to
reach a density of 20 mosquitoes/km2. It is interesting to
note that dispersal occurs in pulses. The dispersal of An.
arabiensis is slower than that of An. gambiae s.s., prob-
ably because of the drier conditions in the Sahel and
An. gambiae s.s. reached the area before An. arabiensis

(Figure 15). The simulations show that establishment in
an already occupied area is a much slower process com-
pared to the case of no competition. From the simulations
we can also speculate on whether the dominance of one
species can act as a barrier to genetic flow, like a mountain
range or dessert. This also raises some questions regarding
whether hibernation or dispersal is the mechanism behind
the dominance of the An. gambiae s.s. M form in parts of
Mali. Although there are strong indications that the An.
gambiae s.s. M undergoes aestivation during the dry sea-
son [57,58,71], it is also possible that the persistence of
the An. gambiae s.s. M form in the Niono district in Mali
can serve as a refuge during the dry season [153]. In both
cases the M form receives a kick-start at the beginning
of the rainy season, and might slow down the dispersal
of An. arabiensis and the S form of An. gambiae s.s. A
similar mechanism could contribute to the dominance of
An. arabiensis in Ethiopia in the Turkana district, where
the presence of An. arabiensis prevents rapid invasion by
An. gambiae s.s.

Figure 15 Number of months required to reach a density of 20mosquitoes/km2. Panel 1 (left to right) represents An. arabiensis in experiment
mosqTran(a), panel 2, An. gambiae s.s. with the presence of An. arabiensis (mosqTran(a)), and panel 3, An. gambiae s.s. with no competition
(mosqTran(b)). The red solid circle and triangle indicate the initial position of An. arabiensis and An. gambiae s.s., respectively.
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Conclusions
We developed a model to predict the presence and abun-
dance of An. arabiensis and An. gambiae s.s. The model is
age-structured and includes mosquito dispersal.

Sensitivity tests showed that as well as temperature,
relative humidity and mosquito size are important fac-
tors in malaria transmission. The result for body size is
in line with several studies [7,51,54,55,88,154] and thus
the model captures some of the aspects related to higher
survival among larger individuals. Note that we have not
accounted for the higher metabolism in large mosquitoes
[71], which might reduce survival under warm and dry
conditions. There are also contrasting results with respect
to body size and egg production [155]. It is likely that
there is an optimum size that depends on the environment
and is a function of temperature and humidity. Currently
there are few results to back up this statement. However,
Sanford et al. found significant differences in Anopheles
gambiae s.s. wing length between Mali and Guinea-Bissau
[156].

We show that relative humidity can be important for
malaria transmission. Several models have neglected the
role of (relative) humidity [29,157] and it is true that des-
iccation might not be a driver of mortality at moderate
humidity (>70%?). The main argument for leaving out
this parameter is the corresponding reduction in model
complexity. As long as rainfall drive the carrying capac-
ity, mosquito numbers will be restricted at lower humidity
(no rain), and as a consequence the resulting number of
mosquitoes can be limited for the wrong reasons, but with
the correct result. For example, Ermert et al. [28] han-
dle this deficiency by reducing vector survival during dry
atmospheric conditions, defined as a function of 10-day
accumulated rainfall. More studies on the survival of An.
gambiae s.l. in relation to size and relative humidity in the
range 5-40% are needed for more confidence in the role of
humidity in the survival of An. gambiae s.l.

Assumption of exponential mortality has several advan-
tages (see Figure 5 for examples of models in which
exponential mortality is used). The model becomes fast to
solve and it is easier to analyse the equations analytically.
However, several studies have shown that mortality of An.
gambiae s.l. is not exponential, and that inclusion of an age
dimension alters the expected outcome of interventions
targeted to reduce the vector population [50]. Therefore,
we believe that models in which age-dependent mortal-
ity is assumed should be further explored. The sensitivity
tests also suggest that carrying capacity within a restricted
area plays a role in the distribution of An. arabiensis and
An. gambiae s.s. The true carrying capacity is hard to esti-
mate on a continental scale and thus relies on qualified
guesswork taking into account rainfall, groundwater and
soil saturation, for example. Carrying capacity influences
not only the relative distribution of the two species but

also the total number of mosquitoes. To correctly estimate
the biting rate, a correct estimate of carrying capacity is
required, and thus more work is needed to parametrize
puddle formation. It should also be noted that no current
large-scale models can describe the formation of puddles
as rivers retreat, as described by Animut et al. [158].

Experiment pBlood2D showed how the model responds
to the parameter P(B), the probability of finding a blood
meal. P(B) is important in describing a realistic distri-
bution of An. arabiensis and An. gambiae s.s. Thus, we
hypothesize that the large-scale distribution of bovines is
key to the success of An. arabiensis. Likewise, large-scale
human density favours the presence of An. gambiae s.s.

Finally, experiment mosqTran showed how the initial
conditions influence the dispersal of An. gambiae s.s.
(and An. arabiensis). The distribution of An. gambiae s.s.
changes dramatically with the presence of An. arabiensis,
and thus the initial model conditions are highly rele-
vant for correct description of the distribution of the two
species. When rainfall is highly seasonal, the first come,
first served principle seems to be important for the suc-
cess of a species in drier conditions. Whether or not this
plays a role in the evolution of aestivation in An. gam-
biae s.s. M form [57] is a question that should be further
investigated.

The strong influence of initial conditions on dispersal of
the An. gambiae complex is not irrelevant when assess-
ing the impact of climate change, since vectorial capacity
varies between species.

The availability of mosquito models allows researchers
to build on and improve our understanding of the role
of the An. gambiae complex in malaria transmission. We
hope to refine the model as new data on mosquito biol-
ogy become available, and to incorporate the effects of
interventions.

Additional files

Additional file 1: Density of mosquitoes under different predation
regimes and temperatures.

Additional file 2: Idealized puddle model.

Additional file 3: The functional form of of equation 42.

Additional file 4: A note on how initial conditions can influence the
spatial distribution of An. gambiae s.l.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The work presented here was carried out as a collaboration between all the
authors. BL and AS defined the research theme. TML designed methods and
mosquito experiments, performed the model runs, analysed the data,
interpreted the results and wrote the paper. DK, AS and TML designed and
evaluated the regional climate simulations. EL provided input with respect to
the malaria situation in Ethiopia, which in turn was used in the model
formulation. All the authors have contributed to, seen and approved the
manuscript.

http://www.biomedcentral.com/content/supplementary/1475-2875-12-28-S1.pdf
http://www.biomedcentral.com/content/supplementary/1475-2875-12-28-S2.pdf
http://www.biomedcentral.com/content/supplementary/1475-2875-12-28-S3.pdf
http://www.biomedcentral.com/content/supplementary/1475-2875-12-28-S4.pdf


Lunde et al. Malaria Journal 2013, 12:28 Page 25 of 29
http://www.malariajournal.com/content/12/1/28

Acknowledgements
We are grateful to the National Center for Atmospheric Research (NCAR) for
making their WRF model available in the public domain. We also thank the
Bergen Centre for Computational Science for computational and other
resources provided during this study. This work was made possible by grants
from The Norwegian Programme for Development, Research and Education
(NUFU) and the University of Bergen. We thank Steve Lindsay for providing
data on the survival of An. gambiae s.s. under different temperatures and
relative humidities. We thank two anonymous reviewers for their constructive
comments, which helped us to improve the manuscript.

Author details
1Centre for International Health, University of Bergen, Bergen, Norway.
2Bjerknes Centre for Climate Research, University of Bergen/Uni Research,
Bergen, Norway. 3Hawassa University, Hawassa, Ethiopia. 4National
Meteorological Agency of Ethiopia, Addis Ababa, Ethiopia. 5Geophysical
Institute, University of Bergen, Bergen, Norway.

Received: 21 September 2012 Accepted: 7 January 2013
Published: 23 January 2013

References
1. Greenwood B, Mutabingwa T: Malaria in 2002. Nature 2002,

415:670–672. [http://www.ncbi.nlm.nih.gov/pubmed/11832954]
2. World Health Organization: World Malaria Report 2011. Switzerland:

World Health Organization; 2011.
3. Rogers DJ, Randolph SE: The global spread of malaria in a future,

warmer world. Science 2000, 289:1763–1766. [http://www.ncbi.nlm.
nih.gov/pubmed/10976072]

4. Paaijmans KP, Blanford S, Chan BHK, Thomas MB: Warmer temperatures
reduce the vectorial capacity of malaria mosquitoes. Biol Lett 2012,
8:465–468. [http://www.ncbi.nlm.nih.gov/pubmed/22188673]

5. MacDonald G: Dynamics of Tropical Disease. London: Oxford University
Press; 1973.

6. Bomblies A, Duchemin JB, Eltahir EAB: Hydrology of malaria: Model
development and application to a Sahelian village. Water Resour Res
2008, 44:W12445.

7. Gray EM, Bradley TJ: Physiology of desiccation resistance in
Anopheles gambiae and Anopheles arabiensis. Am J Trop Med Hyg
2005, 73:553–559. [http://www.ajtmh.org/cgi/content/abstract/73/3/
553]

8. Paaijmans KP, Huijben S, Githeko AK, Takken W: Competitive
interactions between larvae of the malaria mosquitoes Anopheles
arabiensis and Anopheles gambiae under semi-field conditions in
western Kenya. Acta Trop 2009, 109:124–130. [http://www.ncbi.nlm.
nih.gov/pubmed/18760989]

9. Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE,
Vulule JM, Hawley WA, Hamel MJ, Walker ED: Anopheles gambiae:
historical population decline associated with regional distribution
of insecticide-treated bed nets in western Nyanza Province, Kenya.
Malar J 2010, 9:62. [http://www.ncbi.nlm.nih.gov/pubmed/20187956]

10. Intergovernmental Panel on Climate Change: Fourth Assessment Report:
Climate Change 2007: Working Group I Report: The Physical Science Basis.
Geneva: IPCC; 2007. [http://www.ipcc.ch/ipccreports/ar4-wg1.htm]

11. Capanna E: Grassi versus Ross: who solved the riddle of malaria?
Int Microbiol 2006, 9:69–74. [http://www.ncbi.nlm.nih.gov/pubmed/
16636993]

12. Ross R: Life-History of the parasites of malaria. Nature 1899,
60:322–324.

13. Waite H: Mosquitoes and malaria. A study of the relation between
the number of mosquitoes in a locality and the malaria rate.
Biometrika 1910, 7:421–436. [http://www.jstor.org/stable/2345376]

14. Lotka AJ: Contribution to the analysis of malaria epidemiology.
I. General part. Am J Epidemiol 1923, 3:1–36. [http://aje.oxfordjournals.
org]

15. Lotka AJ: Contribution to the analysis of malaria epidemiology.
II. General part (continued). Comparison of two formulae given by
sir Ronald Ross. Am J Epidemiol 1923, 3:38–54. [http://aje.
oxfordjournals.org]

16. Lotka AJ: Contribution to the analysis of malaria epidemiology.
III. Numerical part. Am J Epidemiol 1923, 3:55–95. [http://aje.
oxfordjournals.org]

17. Lotka AJ, Sharpe FR: Contribution to the analysis of malaria
epidemiology. IV. Incubation lag. Am J Epidemiol 1923, 3:96–112.
[http://aje.oxfordjournals.org]

18. Ross R: Report on the Prevention of Malaria in Mauritius. London: Waterlow
and Sons Limited; 1908.

19. Ross R: The Prevention of Malaria. London: Murray; 1911.
20. MacDonald G: The Epidemiology and Control of Malaria. London: Oxford

University Press; 1957.
21. Yang HM: Malaria transmission model for different levels of

acquired immunity and temperature-dependent parameters
(vector). Rev Saude Publica 2000, 34:223–231. [http://www.ncbi.nlm.nih.
gov/pubmed/10920443]

22. Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, Dushoff J,
Billingsley P, Mwambi H, Githure J, Toure AM, McKenzie FE: A
simulation model of African Anopheles ecology and population
dynamics for the analysis of malaria transmission. Malar J 2004,
3:29. [http://www.ncbi.nlm.nih.gov/pubmed/15285781]

23. Ruiz D, Poveda G, Velez ID, Quinones ML, Rua GL, Velasquez LE, Zuluaga
JS: Modelling entomological-climatic interactions of Plasmodium
falciparum malaria transmission in two Colombian endemic-
regions: contributions to a National Malaria Early Warning System.
Malar J 2006, 5:66. [http://www.ncbi.nlm.nih.gov/pubmed/16882349]

24. Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M: Malaria
resurgence in the East African highlands: temperature trends
revisited. Proc Natl Acad Sci U S A 2006, 103:5829–5834. [http://www.
ncbi.nlm.nih.gov/pubmed/16571662]

25. Bomblies A, Duchemin JB, Eltahir EAB: A mechanistic approach for
accurate simulation of village scale malaria transmission. Malar J
2009, 8:223. [http://www.ncbi.nlm.nih.gov/pubmed/19799793]

26. Parham PE, Michael E: Modeling the effects of weather and climate
change on malaria transmission. Environ Health Perspect 2010,
118:620–626. [http://www.ncbi.nlm.nih.gov/pubmed/20435552]

27. Hoshen MB, Morse AP: A weather-driven model of malaria
transmission. Malar J 2004, 3:32. [http://www.ncbi.nlm.nih.gov/
pubmed/15350206]

28. Ermert V, Fink AH, Jones AE, Morse AP: Development of a new version
of the Liverpool Malaria Model. II. Calibration and validation for
West Africa. Malar J 2011, 10:62. [http://www.ncbi.nlm.nih.gov/
pubmed/21410939]

29. Ermert V, Fink AH, Jones AE, Morse AP: Development of a new version
of the Liverpool Malaria Model. I. Refining the parameter settings
and mathematical formulation of basic processes based on a
literature review. Malar J 2011, 10:35. [http://www.ncbi.nlm.nih.gov/
pubmed/21314922]

30. White LJ, Maude RJ, Pongtavornpinyo W, Saralamba S, Aguas R,
Van Effelterre T, Day NPJ, White NJ: The role of simple mathematical
models in malaria elimination strategy design. Malar J 2009, 8:212.
[http://www.ncbi.nlm.nih.gov/pubmed/19747403]

31. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor
E, McNally A, Pawar S, Ryan SJ, Smith TC, Lafferty KD, Thrall P: Optimal
temperature for malaria transmission is dramatically lower than previously
predicted; 2012. [http://www.ncbi.nlm.nih.gov/pubmed/23050931]

32. Smith DL, Hay SI, Noor AM, Snow RW: Predicting changing malaria
risk after expanded insecticide-treated net coverage in Africa.
Trends Parasitol 2009, 25(11):511–516. [http://www.ncbi.nlm.nih.gov/
pubmed/19744887]

33. Eckhoff PA: A malaria transmission-directed model of mosquito life
cycle and ecology. Malar J 2011, 10:303. [http://www.ncbi.nlm.nih.
gov/pubmed/21999664]

34. Parham PE, Michael E: Modeling the effects of weather and climate
change on malaria transmission. Environ Health Perspect 2010,
118:620–626. [http://www.ncbi.nlm.nih.gov/pubmed/20435552]

35. Ermert V, Fink AH, Morse AP, Paeth H: The impact of regional climate
change on malaria risk due to greenhouse forcing and land-use
changes in tropical Africa. Environ Health Perspect 2012, 120:77–84.
[http://www.ncbi.nlm.nih.gov/pubmed/21900078]

http://www.ncbi.nlm.nih.gov/pubmed/11832954
http://www.ncbi.nlm.nih.gov/pubmed/10976072
http://www.ncbi.nlm.nih.gov/pubmed/10976072
http://www.ncbi.nlm.nih.gov/pubmed/22188673
http://www.ajtmh.org/cgi/content/abstract/73/3/553
http://www.ajtmh.org/cgi/content/abstract/73/3/553
http://www.ncbi.nlm.nih.gov/pubmed/18760989
http://www.ncbi.nlm.nih.gov/pubmed/18760989
http://www.ncbi.nlm.nih.gov/pubmed/20187956
http://www.ipcc.ch/ipccreports/ar4-wg1.htm
http://www.ncbi.nlm.nih.gov/pubmed/16636993
http://www.ncbi.nlm.nih.gov/pubmed/16636993
http://www.jstor.org/stable/2345376
http://aje.oxfordjournals.org
http://aje.oxfordjournals.org
http://aje.oxfordjournals.org
http://aje.oxfordjournals.org
http://aje.oxfordjournals.org
http://aje.oxfordjournals.org
http://aje.oxfordjournals.org
http://www.ncbi.nlm.nih.gov/pubmed/10920443
http://www.ncbi.nlm.nih.gov/pubmed/10920443
http://www.ncbi.nlm.nih.gov/pubmed/15285781
http://www.ncbi.nlm.nih.gov/pubmed/16882349
http://www.ncbi.nlm.nih.gov/pubmed/16571662
http://www.ncbi.nlm.nih.gov/pubmed/16571662
http://www.ncbi.nlm.nih.gov/pubmed/19799793
http://www.ncbi.nlm.nih.gov/pubmed/20435552
http://www.ncbi.nlm.nih.gov/pubmed/15350206
http://www.ncbi.nlm.nih.gov/pubmed/15350206
http://www.ncbi.nlm.nih.gov/pubmed/21410939
http://www.ncbi.nlm.nih.gov/pubmed/21410939
http://www.ncbi.nlm.nih.gov/pubmed/21314922
http://www.ncbi.nlm.nih.gov/pubmed/21314922
http://www.ncbi.nlm.nih.gov/pubmed/19747403
http://www.ncbi.nlm.nih.gov/pubmed/23050931
http://www.ncbi.nlm.nih.gov/pubmed/19744887
http://www.ncbi.nlm.nih.gov/pubmed/19744887
http://www.ncbi.nlm.nih.gov/pubmed/21999664
http://www.ncbi.nlm.nih.gov/pubmed/21999664
http://www.ncbi.nlm.nih.gov/pubmed/20435552
http://www.ncbi.nlm.nih.gov/pubmed/21900078


Lunde et al. Malaria Journal 2013, 12:28 Page 26 of 29
http://www.malariajournal.com/content/12/1/28

36. Tanser F, Sharp B: Global climate change and malaria. Lancet Infect Dis
2005, 5:256–258. [http://www.ncbi.nlm.nih.gov/pubmed/15854877]

37. Gurarie D, Karl S, Zimmerman PA, King CH, St Pierre TG, Davis TME:
Mathematical modelling of malaria infection with innate and
adaptive immunity in individuals and agent-based communities.
PLoS One 2012, 7(3):e34040. [http://www.ncbi.nlm.nih.gov/pubmed/
22470511]

38. Ducrot A, Sirima SB, Somé B, Zongo P: A mathematical model for
malaria involving differential susceptibility, exposedness and
infectivity of human host. J Biol Dyn 2009, 3:574–598. [http://www.
ncbi.nlm.nih.gov/pubmed/22880962]

39. malERA Consultative Group on Modeling: A research agenda for
malaria eradication: modelling. PLoS Med 2011, 8:e1000403.
[http://www.ncbi.nlm.nih.gov/pubmed/21283605]

40. Boni MF, Buckee CO, White NJ: Mathematical models for a new era of
malaria eradication. PLoS Med 2008, 5:e231. [http://www.ncbi.nlm.nih.
gov/pubmed/19067482]

41. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers
JG: A Description of the Advanced Research WRF Version 2.
Tech. rep., The National Center for Atmospheric Research 2005.

42. Center for International Earth Science Information Network (CIESIN) -
Columbia University; and Centro Internacional de Agricultura Tropical
(CIAT): Gridded Population of the World Version 3 (GPWv3):
population density grids. [http://sedac.ciesin.columbia.edu/gpw]

43. Robinson T, Fao’s Animal Production and Health Division: Observed
livestock densities. 2011. [http://www.fao.org/AG/againfo/resources/
en/glw/GLW dens.html]

44. Wint W, Robinson T: Gridded livestock of the world - 2007. Tech. rep
Food and agriculture organization of the United Nations, Rome 2007.

45. Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W,
Ghani A, Drakeley C, Gosling R: Hitting hotspots: spatial targeting of
malaria for control and elimination. PLoS Med 2012, 9:e1001165.
[http://www.ncbi.nlm.nih.gov/pubmed/22303287]

46. World Climate Research Programme: Cordex. 2012. [http://wcrp.ipsl.
jussieu.fr/cordex/about.html]

47. Bayoh N: Studies on the development and survival of Anopheles
gambiae sensu stricto at various temperatures and relative
humidities. PhD thesis, University of Durham 2001.

48. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G: Effects of
microclimatic changes caused by deforestation on the
survivorship and reproductive fitness of Anopheles gambiae in
western Kenya highlands. Am J Trop Med Hyg 2006, 74:772–778.
[http://www.ncbi.nlm.nih.gov/pubmed/16687679]

49. Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R,
Edman JD, Scott TW: Age-dependent survival of the dengue vector
Aedes aegypti (Diptera: Culicidae) demonstrated by simultaneous
release-recapture of different age cohorts. J Med Entomol 2008,
45:307–313. [http://www.ncbi.nlm.nih.gov/pubmed/18402147]

50. Bellan SE: The importance of age dependent mortality and the
extrinsic incubation period in models of mosquito-borne disease
transmission and control. PLoS One 2010, 5:e10165. [http://www.ncbi.
nlm.nih.gov/pubmed/20405010]

51. Fouet C, Gray E, Besansky NJ, Costantini C: Adaptation to aridity in the
malaria mosquito Anopheles gambiae: chromosomal inversion
polymorphism and body size influence resistance to desiccation.
PLoS One 2012, 7:e34841. [http://www.ncbi.nlm.nih.gov/pubmed/
22514674]

52. Shoukry A: Cannibalism in Anopheles-Pharoensis Theo.
Experientia 1980, 36:308–309.

53. Muriu SM, Coulson T, Mbogo CM, Godfray HCJ: Larval density
dependence in Anopheles gambiae s.s., the major African vector of
malaria. J Anim Ecol 2012.
[http://www.ncbi.nlm.nih.gov/pubmed/23163565]

54. Lyimo EO, Koella JC: Relationship between body size of adult
Anopheles gambiae s.l. and infection with the malaria parasite
Plasmodium falciparum. Parasitology 1992, 104(t 2):233–237. [http://
www.ncbi.nlm.nih.gov/pubmed/1594289]

55. Ameneshewa B, Service MW: The relationship between female body
size and survival rate of the malaria vector Anopheles arabiensis in
Ethiopia. Med Vet Entomol 1996, 10:170–172. [http://www.ncbi.nlm.nih.
gov/pubmed/8744710]

56. Maciel-De-Freitas R, Codeco CT, Lourenco-De-Oliveira R:
Body size-associated survival and dispersal rates of Aedes aegypti
in Rio de Janeiro. Med Vet Entomol 2007, 21:284–292. [http://www.
ncbi.nlm.nih.gov/pubmed/17897370]

57. Lehmann T, Dao A, Yaro AS, Adamou A, Kassogue Y, Diallo M, Sékou T,
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Larval habitat segregation between the molecular forms of the mosquito
Anopheles gambiae in a rice field area of Burkina Faso, West Africa; 2011.
[http://www.ncbi.nlm.nih.gov/pubmed/21501199]

60. Parmakelis A, Russello MA, Caccone A, Marcondes CB, Costa J, Forattini
OP, Sallum MAM, Wilkerson RC, Powell JR: Historical analysis of a near
disaster: Anopheles gambiae in Brazil. Am J Trop Med Hyg 2008,
78:176–178. [http://www.ncbi.nlm.nih.gov/pubmed/18187802]

61. Soetaert K, Petzoldt T, Setzer RW: Solving Differential Equations in R:
Package deSolve. J Stat Software 2010, 33:1–25. [http://www.jstatsoft.
org/v33/i09]

62. Hindmarsh AC: ODEPACK, A Systematized Collection of ODE Solvers.
Amsterdam: Scientific Computing, North-Holland; 1983.

63. Petzold LR: Automatic selection of methods for solving stiff and
nonstiff systems of ordinary differential equations. SIAM J Sci Stat
Comput 1983, 4:136–148.

64. Lunde TM, Bayoh MN, Lindtjørn B: How malaria models relate
temperature to malaria transmission. Parasit Vectors 2012, 6:20.

65. Munga S, Minakawa N, Zhou G, Barrack OOJ, Githeko AK, Yan G: Effects
of larval competitors and predators on oviposition site selection of
Anopheles gambiae sensu stricto. J Med Entomol 2006, 43:221–224.
[http://www.ncbi.nlm.nih.gov/pubmed/16619602]

66. Omer SM, Cloudsley-Thompson JL: Survival of female Anopheles
gambiae Giles through a 9-month dry season in Sudan. Bull World
Health Organ 1970, 42:319–330. [http://www.ncbi.nlm.nih.gov/
pubmed/5310144]

67. Jawara M, Pinder M, Drakeley CJ, Nwakanma DC, Jallow E, Bogh C,
Lindsay SW, Conway DJ: Dry season ecology of Anopheles gambiae
complex mosquitoes in The Gambia. Malar J 2008, 7:156.
[http://www.ncbi.nlm.nih.gov/pubmed/18710559]

68. Gilles JRL, Lees RS, Soliban SM, Benedict MQ: Density-dependent
effects in experimental larval populations of Anopheles arabiensis
(Diptera: Culicidae) can be negative, neutral, or overcompensatory
depending on density and diet levels. J Med Entomol 2011,
48:296–304. [http://www.ncbi.nlm.nih.gov/pubmed/21485365]

69. Lindsay SW, Parson L, Thomas CJ: Mapping the ranges and relative
abundance of the two principal African malaria vectors, Anopheles
gambiae sensu stricto and An. arabiensis, using climate data.
Proc Biol Sci 1998, 265:847–854. [http://www.ncbi.nlm.nih.gov/pubmed/
9633110]

70. Ye-Ebiyo Y, Pollack RJ, Kiszewski A, Spielman A: Enhancement of
development of larval Anopheles arabiensis by proximity to
flowering maize (Zea mays) in turbid water and when crowded.
Am J Trop Med Hyg 2003, 68:748–752. [http://www.ncbi.nlm.nih.gov/
pubmed/12887038]

71. Huestis DL, Yaro AS, Traore AI, Adamou A, Kassogue Y, Diallo M,
Timbine S, Dao A, Lehmann T: Variation in metabolic rate of
Anopheles gambiae and A. arabiensis in a Sahelian village. J Exp Biol
2011, 214:2345–2353. [http://www.ncbi.nlm.nih.gov/pubmed/
21697426]

72. Kirby MJ, Lindsay SW: Effect of temperature and inter-specific
competition on the development and survival of Anopheles
gambiae sensu stricto and An. arabiensis larvae. Acta Trop 2009,
109:118–123. [http://www.ncbi.nlm.nih.gov/pubmed/19013420]

73. Reichardt K, Angelocci LR, Bacchi OOS, Pilotto JE: Daily rainfall
variability at a local scale (1,000 ha), in Piracicaba, SP , Brazil, and
its implications on soil water recharge. Scientia Agricola 1995,
52:43–49. [http://www.scielo.br/scielo.php?script=sci arttext&pid=
S0103-90161995000100008&nrm=iso]

http://www.ncbi.nlm.nih.gov/pubmed/15854877
http://www.ncbi.nlm.nih.gov/pubmed/22470511
http://www.ncbi.nlm.nih.gov/pubmed/22470511
http://www.ncbi.nlm.nih.gov/pubmed/22880962
http://www.ncbi.nlm.nih.gov/pubmed/22880962
http://www.ncbi.nlm.nih.gov/pubmed/21283605
http://www.ncbi.nlm.nih.gov/pubmed/19067482
http://www.ncbi.nlm.nih.gov/pubmed/19067482
http://sedac.ciesin.columbia.edu/gpw
http://www.fao.org/AG/againfo/resources/en/glw/GLW_dens.html
http://www.fao.org/AG/againfo/resources/en/glw/GLW_dens.html
http://www.ncbi.nlm.nih.gov/pubmed/22303287
http://wcrp.ipsl.jussieu.fr/cordex/about.html
http://wcrp.ipsl.jussieu.fr/cordex/about.html
http://www.ncbi.nlm.nih.gov/pubmed/16687679
http://www.ncbi.nlm.nih.gov/pubmed/18402147
http://www.ncbi.nlm.nih.gov/pubmed/20405010
http://www.ncbi.nlm.nih.gov/pubmed/20405010
http://www.ncbi.nlm.nih.gov/pubmed/22514674
http://www.ncbi.nlm.nih.gov/pubmed/22514674
http://www.ncbi.nlm.nih.gov/pubmed/23163565
http://www.ncbi.nlm.nih.gov/pubmed/1594289
http://www.ncbi.nlm.nih.gov/pubmed/1594289
http://www.ncbi.nlm.nih.gov/pubmed/8744710
http://www.ncbi.nlm.nih.gov/pubmed/8744710
http://www.ncbi.nlm.nih.gov/pubmed/17897370
http://www.ncbi.nlm.nih.gov/pubmed/17897370
http://www.ncbi.nlm.nih.gov/pubmed/20810827
http://www.ncbi.nlm.nih.gov/pubmed/21645385
http://www.ncbi.nlm.nih.gov/pubmed/21501199
http://www.ncbi.nlm.nih.gov/pubmed/18187802
http://www.jstatsoft.org/v33/i09
http://www.jstatsoft.org/v33/i09
http://www.ncbi.nlm.nih.gov/pubmed/16619602
http://www.ncbi.nlm.nih.gov/pubmed/5310144
http://www.ncbi.nlm.nih.gov/pubmed/5310144
http://www.ncbi.nlm.nih.gov/pubmed/18710559
http://www.ncbi.nlm.nih.gov/pubmed/21485365
http://www.ncbi.nlm.nih.gov/pubmed/9633110
http://www.ncbi.nlm.nih.gov/pubmed/9633110
http://www.ncbi.nlm.nih.gov/pubmed/12887038
http://www.ncbi.nlm.nih.gov/pubmed/12887038
http://www.ncbi.nlm.nih.gov/pubmed/21697426
http://www.ncbi.nlm.nih.gov/pubmed/21697426
http://www.ncbi.nlm.nih.gov/pubmed/19013420
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90161995000100008&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90161995000100008&nrm=iso


Lunde et al. Malaria Journal 2013, 12:28 Page 27 of 29
http://www.malariajournal.com/content/12/1/28

74. Bitew MM, Gebremichael M: Spatial variability of daily summer
rainfall at a local-scale in a mountainous terrain and humid tropical
region. Atmospheric Research 2010, 98:347–352. [http://www.
sciencedirect.com/science/article/pii/S0169809510001833].
[International Conference on Nucleation and Atmospheric Aerosols
(Part 1) - ICNAA 2009].

75. Sivakumar MVK, Hatfield JL: Spatial variability of rainfall at an
experimental station in Niger, West Africa. Theor Appl Climatology
1990, 42:33–39. [http://dx.doi.org/10.1007/BF00865524]

76. Kain J, Fritsch J: Convective parameterization for mesoscale models:
The Kain–Fritsch scheme. Representation Cumulus Convection
Numerical Models Metor Monogr, Am Meteor Soc 1993, 46:165–170.

77. Kain J: The Kain–Fritsch convective parameterization: An update.
J Appl Meteorolgy 2004, 43:170–181.

78. Taylor KE, Stouffer RJ, Meehl GA: An overview of CMIP5 and the
experiment design. Bull Am Meteor Soc 2011, 93:485–498
doi:10.1175/BAMS-D-11-00094.1.

79. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M: Regional climate
models add value to global model data: a review and selected
examples. Bull Am Meteor Soc 2011, 92:1181–1192
doi:10.1175/2011BAMS3061.1.

80. Sharon D: The spatial pattern of convective rainfall in Sukumaland,
Tanzania – a statistical analysis. Theoretical Appl Climatology 1974,
22:201–218. [http://dx.doi.org/10.1007/BF02243468]

81. Fiener P, Auerswald K: Spatial variability of rainfall on a
sub-kilometre scale. Earth Surf Processes Landforms 2009, 34:848–859.
[http://dx.doi.org/10.1002/esp.1779]

82. Chen CT, Knutson T: On the verification and comparison of extreme
rainfall indices from climate models. J Climate 2008, 21:1605–1621.
[http://journals.ametsoc.org/doi/abs/10.1175/2007JCLI1494.1]

83. Paaijmans KP, Wandago MO, Githeko AK, Takken W: Unexpected high
losses of Anopheles gambiae larvae due to rainfall. PLoS One 2007,
2:e1146. [http://www.ncbi.nlm.nih.gov/pubmed/17987125]

84. Ramasamy, Srikrishnaraj, Hadjirin, Perera: Ramasamy: Physiological
aspects of multiple blood feeding in the malaria vector Anopheles
tessellatus. J Insect Physiol 2000, 46:1051–1059. [http://www.ncbi.nlm.
nih.gov/pubmed/10802118]

85. Lyimo EO, Takken W: Effects of adult body size on fecundity and the
pre-gravid rate of Anopheles gambiae females in Tanzania.
Med Vet Entomol 1993, 7:328–332. [http://www.ncbi.nlm.nih.gov/
pubmed/8268486]

86. Russell TL, Lwetoijera DW, Knols BGJ, Takken W, Killeen GF, Ferguson HM:
Linking individual phenotype to density-dependent population
growth: the influence of body size on the population dynamics of
malaria vectors. Proc Biol Sci 2011, 278:3142–3151. [http://www.ncbi.
nlm.nih.gov/pubmed/21389034]

87. Yaro AS, Dao A, Adamou A, Crawford JE, Traore SF, Toure AM, Gwadz R,
Lehmann T: Reproductive output of female Anopheles gambiae
(Diptera: Culicidae): comparison of molecular forms. J Med Entomol
2006, 43:833–839. [http://www.ncbi.nlm.nih.gov/pubmed/17017216]

88. Koella JC, Lyimo EO: Variability in the relationship between weight
and wing length of Anopheles gambiae (Diptera: Culicidae).
J Med Entomol 1996, 33:261–264. [http://www.ncbi.nlm.nih.gov/
pubmed/8742532]

89. Lehmann T, Dalton R, Kim EH, Dahl E, Diabate A, Dabire R, Dujardin JP:
Genetic contribution to variation in larval development time, adult
size, and longevity of starved adults of Anopheles gambiae. Infect
Genet Evol 2006, 6:410–416. [http://www.ncbi.nlm.nih.gov/pubmed/
16524787]

90. Howard A, Adongo E, Vulule J, Githure J: Effects of a botanical
larvicide derived from Azadirachta indica (the neem tree) on
oviposition behaviour in Anopheles gambiae ss mosquitoes.
J Med Plants Res 2011, 5:1948–1954.

91. Chen F, Mitchell K, Schaake J, Xue Y, Pan H, Koren V, Duan Q, Ek M,
Betts A: Modeling of land surface evaporation by four schemes and
comparison with FIFE observations. J Geophysical Res-Atmospheres
1996, 101:7251–7268.

92. Koren V, Schaake J, Mitchell K, Duan Q, Chen F, Baker J: A
parameterization of snowpack and frozen ground intended for
NCEP weather and climate models. J Geophysical Res-Atmospheres
1999, 104:19569–19585.

93. Betts A, Chen F, Mitchell K, Janjic Z: Assessment of the land surface
and boundary layer models in two operational versions of the NCEP
Eta Model using FIFE data. Mon Weather Rev 1997, 125:2896–2916.

94. Ek M, Mitchell K, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley
J: Implementation of Noah land surface model advances in the
national centers for environmental prediction operational
mesoscale Eta model. J Geophysical Res-Atmospheres 2003,
108:GCP 12 1–16.

95. Paaijmans KP, Heusinkveld BG, Jacobs AFG: A simplified model to
predict diurnal water temperature dynamics in a shallow tropical
water pool. Int J Biometeorol 2008, 52:797–803.

96. Huang J, Walker ED, Vulule J, Miller JR: Daily temperature profiles in
and around Western Kenyan larval habitats of Anopheles gambiae
as related to egg mortality. Malar J 2006, 5:87. [http://www.ncbi.nlm.
nih.gov/pubmed/17038186]

97. Bayoh MN, Lindsay SW: Temperature-related duration of aquatic
stages of the Afrotropical malaria vector mosquito Anopheles
gambiae in the laboratory. Med Vet Entomol 2004, 18:174–179.
[http://www.ncbi.nlm.nih.gov/pubmed/15189243]

98. Holstein M: Biology of Anopheles gambiae: Research in French West Africa,
Volume 9. Monograph Series: World Health Organization; 1954.

99. Mushinzimana E, Munga S, Minakawa N, Li L, Feng CC, Bian L, Kitron U,
Schmidt C, Beck L, Zhou G, Githeko AK, Yan G: Landscape
determinants and remote sensing of anopheline mosquito larval
habitats in the western Kenya highlands. Malar J 2006, 5:13.
[http://www.ncbi.nlm.nih.gov/pubmed/16480523]

100. Lehner B, Verdin K, Jarvis A: New global hydrography derived from
spaceborne elevation data. Eos, Trans, Am Geophysical Union 2008,
89:93–94.

101. Munga S, Yakob L, Mushinzimana E, Zhou G, Ouna T, Minakawa N,
Githeko A, Yan G: Land use and land cover changes and
spatiotemporal dynamics of anopheline larval habitats during a
four-year period in a highland community of Africa. Am J Trop Med
Hyg 2009, 81:1079–84. [http://www.ncbi.nlm.nih.gov/pubmed/
19996440]

102. Baber I, Keita M, Sogoba N, Konate M, Diallo M, Doumbia S, Traore S,
Ribeiro J, Manoukis NC: Population size and migration of Anopheles
gambiae in the Bancoumana Region of Mali and their significance
for efficient vector control. PLoS One 2010, 5:e10270. [http://www.
ncbi.nlm.nih.gov/pubmed/20422013]

103. Ageep TB, Cox J, Hassan MM, Knols BGJ, Benedict MQ, Malcolm CA,
Babiker A, El Sayed BB: Spatial and temporal distribution of the
malaria mosquito Anopheles arabiensis in northern Sudan:
influence of environmental factors and implications for vector
control. Malar J 2009, 8:123. [http://www.ncbi.nlm.nih.gov/pubmed/
19500425]

104. Lardeux FJ, Tejerina RH, Quispe V, Chavez TK: A physiological time
analysis of the duration of the gonotrophic cycle of Anopheles
pseudopunctipennis and its implications for malaria transmission in
Bolivia. Malar J 2008, 7:141. [http://www.ncbi.nlm.nih.gov/pubmed/
18655724]

105. Rua GL, Quinones ML, Velez ID, Zuluaga JS, Rojas W, Poveda G, Ruiz D:
Laboratory estimation of the effects of increasing temperatures on
the duration of gonotrophic cycle of Anopheles albimanus (Diptera:
Culicidae). Mem Inst Oswaldo Cruz 2005, 100:515–520. [http://www.
ncbi.nlm.nih.gov/pubmed/16184229]

106. Afrane YA, Lawson BW, Githeko AK, Yan G: Effects of microclimatic
changes caused by land use and land cover on duration of
gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in
western Kenya highlands. J Med Entomol 2005, 42:974–980.
[http://www.ncbi.nlm.nih.gov/pubmed/16465737]

107. Maharaj R: Life table characteristics of Anopheles arabiensis (Diptera:
Culicidae) under simulated seasonal conditions. J Med Entomol 2003,
40:737–742. [http://www.ncbi.nlm.nih.gov/pubmed/14765646]

108. Hoshen M, Morse A: A model structure for estimating malaria risk. In
Environmental Change and Malaria Risk: Global and Local Implications,
Volume 9. Edited by Takken W, Martens P, Bogers RJ; 2005:10.

109. Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basanez MG: Anopheles
mortality is both age- and Plasmodium-density dependent:
implications for malaria transmission. Malar J 2009, 8:228.
[http://www.ncbi.nlm.nih.gov/pubmed/19822012]

http://www.sciencedirect.com/science/article/pii/S0169809510001833
http://www.sciencedirect.com/science/article/pii/S0169809510001833
http://dx.doi.org/10.1007/BF00865524
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1175/2011BAMS3061.1
http://dx.doi.org/10.1007/BF02243468
http://dx.doi.org/10.1002/esp.1779
http://journals.ametsoc.org/doi/abs/10.1175/2007JCLI1494.1
http://www.ncbi.nlm.nih.gov/pubmed/17987125
http://www.ncbi.nlm.nih.gov/pubmed/10802118
http://www.ncbi.nlm.nih.gov/pubmed/10802118
http://www.ncbi.nlm.nih.gov/pubmed/8268486
http://www.ncbi.nlm.nih.gov/pubmed/8268486
http://www.ncbi.nlm.nih.gov/pubmed/21389034
http://www.ncbi.nlm.nih.gov/pubmed/21389034
http://www.ncbi.nlm.nih.gov/pubmed/17017216
http://www.ncbi.nlm.nih.gov/pubmed/8742532
http://www.ncbi.nlm.nih.gov/pubmed/8742532
http://www.ncbi.nlm.nih.gov/pubmed/16524787
http://www.ncbi.nlm.nih.gov/pubmed/16524787
http://www.ncbi.nlm.nih.gov/pubmed/17038186
http://www.ncbi.nlm.nih.gov/pubmed/17038186
http://www.ncbi.nlm.nih.gov/pubmed/15189243
http://www.ncbi.nlm.nih.gov/pubmed/16480523
http://www.ncbi.nlm.nih.gov/pubmed/19996440
http://www.ncbi.nlm.nih.gov/pubmed/19996440
http://www.ncbi.nlm.nih.gov/pubmed/20422013
http://www.ncbi.nlm.nih.gov/pubmed/20422013
http://www.ncbi.nlm.nih.gov/pubmed/19500425
http://www.ncbi.nlm.nih.gov/pubmed/19500425
http://www.ncbi.nlm.nih.gov/pubmed/18655724
http://www.ncbi.nlm.nih.gov/pubmed/18655724
http://www.ncbi.nlm.nih.gov/pubmed/16184229
http://www.ncbi.nlm.nih.gov/pubmed/16184229
http://www.ncbi.nlm.nih.gov/pubmed/16465737
http://www.ncbi.nlm.nih.gov/pubmed/14765646
http://www.ncbi.nlm.nih.gov/pubmed/19822012


Lunde et al. Malaria Journal 2013, 12:28 Page 28 of 29
http://www.malariajournal.com/content/12/1/28

110. Martens W: Health Impacts of Climate Change and Ozone depletion. An
Eco-Epidemiological Modelling Approach. The Netherlands: Maastricht
University Press; 1997.

111. Kirby MJ, Lindsay SW: Responses of adult mosquitoes of two sibling
species, Anopheles arabiensis and A. gambiae s.s. (Diptera:
Culicidae), to high temperatures. Bull Entomol Res 2004, 94:441–448.
[http://www.ncbi.nlm.nih.gov/pubmed/15385063]

112. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G: Life-table analysis
of Anopheles arabiensis in western Kenya highlands: effects of land
covers on larval and adult survivorship. Am J Trop Med Hyg 2007,
77:660–666. [http://www.ncbi.nlm.nih.gov/pubmed/17978067]

113. Frantz J: g3data. [http://www.frantz.fi/software/g3data.php]
114. Paaijmans KP, Thomas MB: The influence of mosquito resting

behaviour and associated microclimate for malaria risk. Malar J
2011, 10:183. [http://www.ncbi.nlm.nih.gov/pubmed/21736735]

115. Bodker R, Akida J, Shayo D, Kisinza W, Msangeni HA, Pedersen EM,
Lindsay SW: Relationship between altitude and intensity of malaria
transmission in the Usambara Mountains, Tanzania. J Med Entomol
2003, 40:706–717. [http://www.ncbi.nlm.nih.gov/pubmed/14596287]

116. Minakawa N, Omukunda E, Zhou G, Githeko A, Yan G: Malaria vector
productivity in relation to the highland environment in Kenya.
Am J Trop Med Hyg 2006, 75:448–453. [http://www.ncbi.nlm.nih.gov/
pubmed/16968920]

117. Makaka G, Meyer E: Temperature stability of traditional and low-cost
modern housing in the Eastern Cape, South Africa. J Build Phys 2006,
30:71.

118. Okech BA, Gouagna LC, Knols BGJ, Kabiru EW, Killeen GF, Beier JC, Yan G,
Githure JI: Influence of indoor microclimate and diet on survival of
Anopheles gambiae s.s. (Diptera: Culicidae) in village house
conditions in western Kenya. Int J Trop Insect Sci 2004, 24(3):207–212.

119. Worrall E, Connor SJ, Thomson MC: A model to simulate the impact of
timing, coverage and transmission intensity on the effectiveness of
indoor residual spraying (IRS) for malaria control. Trop Med Int Health
2007, 12:75–88. [http://www.ncbi.nlm.nih.gov/pubmed/17207151]

120. de Meillon B: Observations on Anopheles funestus and Anopheles
gambiae in the Transvaal. South Afr Inst Med Res 1934, 32:195.

121. Lou Y, Zhao XQ: The periodic Ross–Macdonald model with diffusion
and advection. Applicable Anal Int J 2010, 89:1067–1089.

122. Gourley SA, Liu R, Wu J: Some vector borne diseases with structured
host populations: Extinction and spatial spread. Siam J Appl Math
2006, 67:408–433.

123. Lewis M, Renclawowicz J, Van den Driessche P: Traveling waves and
spread rates for a West Nile virus model. Bull Math Biol 2006,
68:3–23.

124. Thomson MC, Connor SJ, Quinones ML, Jawara M, Todd J, Greenwood
BM: Movement of Anopheles gambiae s.l. malaria vectors between
villages in The Gambia. Med Vet Entomol 1995, 9:413–419.
[http://www.ncbi.nlm.nih.gov/pubmed/8541594]

125. Garrett-Jones C: A dispersion of mosquitoes by wind. Nature 1950,
165:285. [http://www.ncbi.nlm.nih.gov/pubmed/15405802]

126. Ming JG, Jin H, Riley JR, Reynolds DR, Smith AD, Wang RL, Cheng JY,
Cheng XN: Autumn southward ‘return’ migration of the mosquito
Culex tritaeniorhynchus in China. Med Vet Entomol 1993, 7(4):323–327.
[http://www.ncbi.nlm.nih.gov/pubmed/8268485]

127. Garrett-Jones C: The possibility of active long-distance migrations
by Anopheles pharoensis Theobald. Bull World Health Organ 1962,
27:299–302.

128. Kaufmann C, Briegel H: Flight performance of the malaria vectors
Anopheles gambiae and Anopheles atroparvus. J Vector Ecol 2004,
29:140–153. [http://www.ncbi.nlm.nih.gov/pubmed/15266751]

129. Gillies MT: Studies on the dispersion and survival of Anopheles
gambiae Giles in East Africa, by means of marking and release
experiments. Bull Entomol Res 1961, 52:99–127. [http://dx.doi.org/10.
1017/S0007485300055309]

130. Costantini C, Li SG, Della Torre A, Sagnon N, Coluzzi M, Taylor CE: Density,
survival and dispersal of Anopheles gambiae complex mosquitoes
in a west African Sudan savanna village. Med Vet Entomol 1996,
10:203–219. [http://www.ncbi.nlm.nih.gov/pubmed/8887330]

131. Gillies MT, Meillon BD: The Anophelinae of Africa South of the Sahara
(Ethiopian zoogeographical region). Johannesburg: The South African
Institute for Medical Research; 1968.

132. de Meillon B: A note on Anopheles gambiae and Anopheles funestus
in Northern Rhodesia. South Afr Ins Med Res 1937, 40:306–317.

133. Adams P: Some observations on the flight of stained anophelines at
Nkana, Northern Rhodesia. Ann Trop Med Parasitol 1940, 34:35–43.

134. Ye-Ebiyo Y, Pollack RJ, Spielman A: Enhanced development in nature
of larval Anopheles arabiensis mosquitoes feeding on maize pollen.
Am J Trop Med Hyg 2000, 63:90–93. [http://www.ncbi.nlm.nih.gov/
pubmed/11358003]

135. Bicheron P, Defourny P, Brockmann C, Schouten L, Vancutsem C, Huc M,
Bontemps S, Leroy M, Achard F, Herold M, Ranera F, Arino O:
GLOBCOVER: Products Description and Validation Report. Tech. rep.,
MEDIAS France, Toulouse 2008.

136. Bouma M, Rowland M: Failure of passive zooprophylaxis: cattle
ownership in Pakistan is associated with a higher prevalence of
malaria. Trans R Soc Trop Med Hyg 1995, 89:351–353. [http://www.ncbi.
nlm.nih.gov/pubmed/7570859]

137. Okech BA, Gouagna LC, Killeen GF, Knols BGJ, Kabiru EW, Beier JC, Yan G,
Githure JI: Influence of sugar availability and indoor microclimate
on survival of Anopheles gambiae (Diptera: Culicidae) under
semifield conditions in western Kenya. J Med Entomol 2003,
40:657–663. [http://www.ncbi.nlm.nih.gov/pubmed/14596279]

138. Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J:
A global index representing the stability of malaria transmission.
Am J Trop Med Hyg 2004, 70:486–498. [http://www.ncbi.nlm.nih.gov/
pubmed/15155980]

139. Mahande A, Mosha F, Mahande J, Kweka E: Feeding and resting
behaviour of malaria vector, Anopheles arabiensis with reference to
zooprophylaxis. Malar J 2007, 6:100. [http://www.ncbi.nlm.nih.gov/
pubmed/17663787]

140. Muriu SM, Muturi EJ, Shililu JI, Mbogo CM, Mwangangi JM, Jacob BG,
Irungu LW, Mukabana RW, Githure JI, Novak RJ: Host choice and
multiple blood feeding behaviour of malaria vectors and other
anophelines in Mwea rice scheme, Kenya. Malar J 2008, 7:43.
[http://www.ncbi.nlm.nih.gov/pubmed/18312667]

141. Kibret S, Alemu Y, Boelee E, Tekie H, Alemu D, Petros B: The impact of a
small-scale irrigation scheme on malaria transmission in Ziway
area, Central Ethiopia. Trop Med Int Health 2010, 15:41–50.
[http://www.ncbi.nlm.nih.gov/pubmed/19917039]

142. Caputo B, Nwakanma D, Jawara M, Adiamoh M, Dia I, Konate L, Petrarca
V, Conway DJ, della Torre A: Anopheles gambiae complex along The
Gambia river, with particular reference to the molecular forms of
An. gambiae s.s. Malar J 2008, 7:182. [http://www.ncbi.nlm.nih.gov/
pubmed/18803885]

143. Population Division of the Department of Economic and Social Affairs of
the United Nations Secretariat: World Population Prospects: The 2004
Revision. Tech. rep., United Nations 2004.

144. Bayoh MN, Lindsay SW: Effect of temperature on the development of
the aquatic stages of Anopheles gambiae sensu stricto (Diptera:
Culicidae). Bull Entomol Res 2003, 93:375–381. [http://www.ncbi.nlm.
nih.gov/pubmed/14641976]

145. R Development Core Team: R: A Language and Environment for
Statistical Computing. 2011. [http://www.R-project.org/]. [ISBN
3-900051-07-0].

146. Kweka EJ, Zhou G, Beilhe LB, Dixit A, Afrane Y, Gilbreath TM, Munga S,
Nyindo M, Githeko AK, Yan G: Effects of co-habitation between
Anopheles gambiae s.s. and Culex quinquefasciatus aquatic stages
on life history traits. Parasit Vectors 2012, 5:33. [http://www.ncbi.nlm.
nih.gov/pubmed/22321562]

147. Tirados I, Gibson G, Young S, Torr SJ: Are herders protected by their
herds? An experimental analysis of zooprophylaxis against the
malaria vector Anopheles arabiensis. Malar J 2011, 10:68.
[http://www.ncbi.nlm.nih.gov/pubmed/21435266]

148. Lewis D: The anopheline mosquitoes of Sudan. Bull Entomol Res 1956,
47:475–494.

149. Rioux JA: Contribution a l’etude des culicides (Diptera-Culicidae) du
Nord-Tchad. Mission Epidemiologique au Nord Tchad 1960:53–92.

150. Coetzee M, Craig M, le Sueur D: Mapping the distribution of
members of the Anopheles gambiae complex in Africa and
adjacent islands. Parasitol Today 2000, 16:74–77.

151. Meillon BD: Malaria survey of South-West Africa. Bull World Health
Organ 1951, 4:333–417.

http://www.ncbi.nlm.nih.gov/pubmed/15385063
http://www.ncbi.nlm.nih.gov/pubmed/17978067
http://www.frantz.fi/software/g3data.php
http://www.ncbi.nlm.nih.gov/pubmed/21736735
http://www.ncbi.nlm.nih.gov/pubmed/14596287
http://www.ncbi.nlm.nih.gov/pubmed/16968920
http://www.ncbi.nlm.nih.gov/pubmed/16968920
http://www.ncbi.nlm.nih.gov/pubmed/17207151
http://www.ncbi.nlm.nih.gov/pubmed/8541594
http://www.ncbi.nlm.nih.gov/pubmed/15405802
http://www.ncbi.nlm.nih.gov/pubmed/8268485
http://www.ncbi.nlm.nih.gov/pubmed/15266751
http://dx.doi.org/10.1017/S0007485300055309
http://dx.doi.org/10.1017/S0007485300055309
http://www.ncbi.nlm.nih.gov/pubmed/8887330
http://www.ncbi.nlm.nih.gov/pubmed/11358003
http://www.ncbi.nlm.nih.gov/pubmed/11358003
http://www.ncbi.nlm.nih.gov/pubmed/7570859
http://www.ncbi.nlm.nih.gov/pubmed/7570859
http://www.ncbi.nlm.nih.gov/pubmed/14596279
http://www.ncbi.nlm.nih.gov/pubmed/15155980
http://www.ncbi.nlm.nih.gov/pubmed/15155980
http://www.ncbi.nlm.nih.gov/pubmed/17663787
http://www.ncbi.nlm.nih.gov/pubmed/17663787
http://www.ncbi.nlm.nih.gov/pubmed/18312667
http://www.ncbi.nlm.nih.gov/pubmed/19917039
http://www.ncbi.nlm.nih.gov/pubmed/18803885
http://www.ncbi.nlm.nih.gov/pubmed/18803885
http://www.ncbi.nlm.nih.gov/pubmed/14641976
http://www.ncbi.nlm.nih.gov/pubmed/14641976
http://www.R-project.org/
http://www.ncbi.nlm.nih.gov/pubmed/22321562
http://www.ncbi.nlm.nih.gov/pubmed/22321562
http://www.ncbi.nlm.nih.gov/pubmed/21435266


Lunde et al. Malaria Journal 2013, 12:28 Page 29 of 29
http://www.malariajournal.com/content/12/1/28

152. Deshler W: Cattle in Africa: distribution, types, and problems.
Geogr Rev 1963, 53:52–58.

153. Diuk-Wasser MA, Toure MB, Dolo G, Bagayoko M, Sogoba N, Traore SF,
Manoukis N, Taylor CE: Vector abundance and malaria transmission
in rice-growing villages in Mali. Am J Trop Med Hyg 2005, 72:725–731.
[http://www.ncbi.nlm.nih.gov/pubmed/15964957]

154. Charlwood JD, Pinto J, Sousa CA, Ferreira C, Petrarca V, do E Rosario V:
’A mate or a meal’–pre-gravid behaviour of female Anopheles
gambiae from the islands of São Tomé and Prı́ncipe, West Africa.
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