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Abstract 

Question: How does abandoned management affect species assemblages of shade sensitive 

bryophytes and lichens residing on old trees in traditionally light- open environments? 

Method: I examined compositional change over 20 years in the epiphytic vegetation of old 

pollarded trees of Fraxinus excelsior in a cultural landscape of western Norway through re- 

sampling. The nature of changes in the epiphytic composition in relation to environment was 

identified through 1) Quantifying temporal turnover in species compositions along DCA axes; 

2) Calculation of relative changes in Ellenberg indicator values for gradients of light and 

moisture through a weighted average technique and 3) Testing the effect of  aspect, stem 

inclination/ height and the historical management regime on the rate of temporal turnover. 

This was done by mixed effect models with forward selection. 

Results: Species composition of the epiphytic vegetation has changed significantly during the 

last 20 years. Species with lower indicator values for light (shade tolerant species) and higher 

indicator values for moisture (draught sensitive species) increased in relative abundance. An 

environmental trend towards more shady and moist conditions was detected. Among other 

shade sensitive species, shade and draught sensitive cyanolichens are negatively affected, 

whereas the shade and draught tolerant chlorolichens and liverworts residing throughout the 

stem within sheltered local environments, like Lepraria spp, Phlyctis argena and Metzgeria 

conjugata gain advantage. 

Synthesis: The results imply a negative impact of abandoned management on temporal trends 

in assemblages of shade sensitive epiphyte bryophytes and lichens. The results demonstrated 

that the combination of approaches employed is operational and conceptually relevant for 

detecting temporal trends in cryptogam epiphytic communities in relation to environment at 

the scale of the landscape. 

 

  



 
 

  



 
 

Acknowledgements 

 

My deepest gratitude goes to my main supervisor John- Arvid Grytnes for his creative 

suggestions, excellent supervising, critical comments and positive, encouraging attitude. I am 

also grateful to Tor Tønsberg and Hans Blom for valuable help in field, identification of 

species and writing corrections. 

A special thanks to Astrid Botnen and Bjørn Moe who made this study possible through their 

original study in 1997. They were also of great help in the search for the original data and for 

identification of the pollards.  

Help from employees at Havrå was crucial for detection of the pollards and time since last 

pollarding: Thank you Kjetil Monstad, Marit Adelsten Jensen and Tove Mostrøm! 

Thanks Olav for your skills in editing and for taking good care of Ella and Ingvill. Without 

the impressive support from both pairs of grandparents I would not have been able to achieve 

this work: I am so grateful to you all! Finally thanks to Ella and Ingvill for cheerful and 

supportive company and patience with a busy, boring mother. 

 

 

 

Anette Gundersen 

August 2013 

 

 

  



 
 

  



 
 

Contents  

 
Chapter 1. Introduction ........................................................................................................................... 1 

Chapter 2. Materials and methods.......................................................................................................... 3 

Investigation area ................................................................................................................................ 3 

Sampling .............................................................................................................................................. 4 

Detrended Correspondence Analysis (DCA) ........................................................................................ 7 

Strength of relation between variables ............................................................................................... 8 

Temporal turnover .............................................................................................................................. 8 

DCA axes .......................................................................................................................................... 8 

Light and moisture gradients .......................................................................................................... 8 

Direction of temporal turnover ........................................................................................................... 9 

Rate of temporal turnover .................................................................................................................... 10 

Chapter 3. Results.................................................................................................................................. 12 

DCA .................................................................................................................................................... 12 

Ecological interpretation of DCA axes ............................................................................................... 12 

Temporal turnover in species composition ....................................................................................... 15 

Importance of Aspect, Height and Management to temporal turnover rate ................................... 16 

Chapter 4. Discussion ............................................................................................................................ 23 

Main results ....................................................................................................................................... 23 

Interpretation of DCA axes ................................................................................................................ 24 

DCA axis 1 ...................................................................................................................................... 24 

DCA axis 2 ...................................................................................................................................... 24 

DCA axis 3 ...................................................................................................................................... 25 

DCA axis 4 ...................................................................................................................................... 26 

Direction of temporal turnover. ........................................................................................................ 26 

Temporal trends revealed along gradients in light and moisture ................................................. 26 

Temporal trends revealed along DCA axis 2 .................................................................................. 27 

Temporal trends revealed along DCA axis 4 .................................................................................. 27 

Variation in temporal turnover rates along DCA axis 4 ..................................................................... 28 

Variation in temporal turnover rates along DCA axis 2 ..................................................................... 28 

Uncertainties ..................................................................................................................................... 29 

Management implications ................................................................................................................. 30 



 
 

Chapter 5. Concluding remarks ............................................................................................................. 31 

References ............................................................................................................................................. 33 

Figures ................................................................................................................................................... 39 

Tables .................................................................................................................................................... 39 

Appendix 1. Species list with Ellenberg indicator values ...................................................................... 40 

Appendix 2. UTM positions ................................................................................................................... 44 

Appendix 3. Ecological interpretation of DCA axes. .............................................................................. 45 

DCA Axis 1. ......................................................................................................................................... 45 

DCA Axis 2 .......................................................................................................................................... 46 

DCA Axis 3 .......................................................................................................................................... 48 

DCA Axis 4 .......................................................................................................................................... 51 

Appendix 4. Importance of Height, Aspect and Management .............................................................. 52 

 

 

 



1 
 

Chapter 1. Introduction 
 

The additive effects of agricultural change and silvicultural practices is expected to reduce the 

future viability of shade sensitive old- forest epiphytes throughout Europe (Ellis 2012; 

Johansson et al. 2013). Old pollarded trees are traditionally managed trees historically 

residing in different kinds of light- open wooded grasslands. High variation in ecological 

niches throughout the pollarded trunk provides habitats for many groups of organisms. Old 

pollards in open meadows are as such important to the survival of old growth, rare or 

endangered epiphytes adapted to light- open environments, like Agonimia Allobata, Lobaria 

scrobiculata and Thelopsis rubella (Rose 1992; Nilsson et al. 1994; Tønsberg et al. 1996, 

Gauslaa & Ohlson 1997; Moe & Botnen 1997, 2000; Bendiksen et al. 2008; Timdal et al. 

2010).  

Ceased pollarding and development of secondary woodland, followed by reduction in 

openness represent a main threat to many red- listed epiphytes (Jüriado et al. 2003; Johanson 

2006). The degree of current openness is however conditioned by habitat history, and change 

in openness alters habitat conditions in terms of moisture, temperature and ventilation (Ranius 

et al. 2008). Humidity and shading is important to epiphytic composition (Leppik et al. 2011), 

and lichen assemblages are supposed to be more limited by light and less sensitive to 

desiccation than bryophytes (Kiraly et al. 2013). Low light availability limits lichen growth, 

but excessive light can however cause photoinhibition and quicken the dehydration of thalli 

(Green et al. 2008, Palmqvist et al. 2008). Studies on the photosynthetic activity of lichens 

claim that chlorolichens, as many other poikilohydric organisms like bryophytes, need 

nothing but humidity for initiation of their active period, as compared to cyanolichens who 

need liquid water (Lange et al. 1986; Büdel et al. 2013). 

Several recent studies have addressed the impact of overgrowth to epiphytic diversity in 

European wooded grasslands (Leppik & Jüriado 2008; Juriado et al. 2009; Jönsson et al. 

2011; Leppik et al. 2011; Jüriado et al. 2012; Johansson 2012; Marmor et al. 2012; Johanson 

et al. 2013; Ódor et al. 2013). In studies like these concerned with factors structuring 

epiphytic richness and composition, most often the spatial component of change in 

community structure from one sampling unit to another (turnover) and the levels of tree and 

stand are addressed (cf. Johansson 2006; Ellis 2012). To my knowledge, no study has ever 

measured temporal turnover in epiphytic communities of bryophytes and lichens at the fine 
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scale and along environmental gradients, what might provide insights into the specific nature 

of epiphytic community development in relation to environment.  

 

Old pollarded trees of Fraxinus excelsior and Ulmus glabra reside in the heterogeneous 

landscape of the cultural environment of Havrå. Moe & Botnen (1997) found that the species 

compositions of epiphytic bryophytes and lichens residing on the pollarded ash trees varied 

among trunks within local stands of variable openness across the landscape of Havrå. The 

high age (several hundred years) of the pollarded ash trees at Havrå, followed by slow vertical 

growth, provides high similarities in bark structure and consequently pH throughout the stem 

(even though fine- scale variations in bark chemistry may occur among discrete areas of the 

bole and along the height of the stem due to differences in stem- flow (Marmor et al. 2010)). 

High lateral and vertical heterogeneity in environments of light and moisture throughout the 

pollarded bole corresponds to a high within- tree variability in epiphytic composition along 

gradients of height/ stem inclination and aspect (Moe & Botnen 1997, 2000; Nordbakken & 

Austad 2010).  

The combination of relatively high within- bole similarity in bark pH and high heterogeneity 

in environments of light and moisture throughout the pollarded stems provide favourable 

conditions for quantification of temporal turnover at the fine scale in relation to availability of 

light and moisture. Turnover requires one to define a specific gradient of interest with 

directionality (Andersson et al. 2011). In this study the community data on relative species 

abundances and associated environmental data of Moe & Botnen (1997) is re- sampled with 

the aim of answering the following questions: 1) Has there been any directional change in the 

species composition of the epiphytic communities on the pollarded trees at Havrå, with 

emphasis on the role of light and moisture availability? 2) Does the observed changes vary 

with the historical management regime of the pollards and surrounding meadows? 3) Is aspect 

and height important to within- tree variability in the observed changes? This approach may 

provide insight into the role of abandoned management to the future viability of assemblages 

of shade sensitive bryophytes and lichens residing on old trees in traditionally light- open 

landscapes. 
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Chapter 2. Materials and methods 
 

Investigation area 

 

The fieldwork of this study was performed at the southern side of the island Osterøy in 

western Norway, in the cultural landscape of the farm Havrå (Figure 1). Situated 

approximately 35 km from the coastline of Hordaland County, the area belongs to the 

boreonemoral vegetation zone (BN), within the markedly oceanic vegetation section, sub 

section humid (03h) (Moen et al. 1999). Mean temperature for the warmest month of July is 

14 degrees, 0 degrees for the coldest month of January, and mean annual precipitation is 

approximately 2500 mm (Jordal & Gaarder 2009). A favourable local climate provides longer 

growth season as compared to other areas of the region (Austad & Skogen 1990). The 

bedrock of the area consists of a mica-schistzone in the major Bergen arc system and the soil 

in the area is fairly nutrient rich (Austad & Skogen 1988). The 31 farm buildings at Havrå, 

and the surrounding fields within which the pollards of investigation reside, are situated 

within an area of approximately 0.2 km2 rising from sea- level to 220 m. The steep south-

facing slope of the area provide maximum insolation. During winter however, insolation is 

reduced due to shadow from the high mountains on the opposite side of Sørfjorden.  

 

Figure 1: Map indicating the study area Havrå with a yellow arrow. The map is taken from norgeskart.no/ Norwegian 
national mapping authority. 
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Abandonment of the traditional management with pollarding, haymaking, grazing, and 

manuring at Havrå started in 1960, and overgrowth characterizes large parts of the outfield. 

Havrå was however the first cultural environment to be protected under section 20 of the 

Norwegian Cultural Heritage Act, and parts of the infield are still kept open through 

traditional management. In other areas, the secondary woodland developed during the last 50 

years has recently been removed. This human- induced modification of canopy cover has 

created a gradient from open wooded meadows (tresatt slåttemark = lauveng) to semi-open 

wooded pastures (gjengrodd hagemark) to dense deciduous wood (gjengrodd slåttemark og 

høstingsskog) (Marit A. Jensen, personal communication 05.05.2012) across the landscape 

and through time.  

 

Sampling 

 

The most widespread pollarded tree species at Havrå is Fraxinus excelsior, whereas Ulmus 

glabra is more scattered. In order to eliminate floristic variations caused by different bark 

substrates, Moe & Botnen (1997) selected only one phorophyte species, Fraxinus excelsior, 

for investigation. The authors chose 19 pollarded ash trunks within grasslands varying in 

degree of canopy cover. This choice was also based in the structural characteristics of the tree, 

where easily distinguishable differences in stem inclination and aspect throughout the bole 

provides structural boundaries on which to base the selection of species compositions. The 

division of the within- tree epiphytic vegetation into 12 sampling units thus corresponds to the 

division of the tree into a basal zone (the lowest part nearest the ground), a middle zone (the 

central part of the trunk), and a top zone (the part just below the pollarded branches) to each 

of the four aspects (see fig. 2.1). The 3 heights on the tree thus correspond to differences in 

stem inclination among which the variation from 35 to 135 degrees makes it difficult to 

include stem inclination per se as a discrete environmental variable in the analysis. 

Consequently, the basal, middle and top zone of the trees correspond respectively to classes of 

< 90 degrees, 90 degrees and > 90 degrees (see fig. 2.1). 
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Figure 2: Stem inclination interacts with height on the trunk. The drawing is taken from Moe & Botnen (1997). 

 

I detected the pollards primarily through interpretation of photos taken at the time of sampling 

of Moe & Botnen (1997) by the authors. Also conversations with the authors of the original 

study, locals and employees at Havrå, as well as MGRS coordinates, were useful in tracking 

the sites. Altitudes, locations and shapes of the analysed pollarded trunks can be found in 

Figure 1 in Moe & Botnen (1997), and see Appendix 2 in this present study for UTM 

positions of the trees, as well as values for h.a.s.l. (height above sea level) and DBH (diameter 

at breast height). 

The trunks are pollarded at a level ranging from 1.5 and 3.0 m above the ground. Branches are 

chopped close to the main trunk. Some of the basal zones was left un- sampled by Moe & 

Botnen (1997) due to disturbances by stone walls or heaps of grass. Of the total 225 species 

compositions sampled by Moe & Botnen (1997), some were removed in this study due to high 

percentage of rotten wood and death of 2 of the 19 trunks. 17 detected trunks provided 187 

species compositions. Detection of the 12 species compositions for each tree was achieved 

through employing the data on stem inclination/ height (degrees), aspect and area (cm2) from 

Moe & Botnen (1997). An expected increase in area, more due to increase in stem diameter 

than to vertical growth, was calculated into the measures framing the species compositions. 

For each of the 12 species compositions per tree, the relative abundance of all bryophytes and 

lichen species were recorded along with area (cm2) and percentage cover of total bryophytes; 

rotten openings as well as open bark substrate including or deprived of microlichens. Species 
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covering less than 5 % of the area of the species composition were registered according to the 

number of individuals, with value classes from 1 to 4. Due to variability in shape and height 

of the trunks, the squares of the sampling units are irregular. The middle zone normally 

represents the narrowest part of the pollarded trunks, and the girth of the trees varied at the 

time of Moe & Botnen (1997) from 1.0 m to 3.8 m.  

 

Identification of species was primarily performed in situ, but singular exemplars of which 

identification was problematic to execute in field were collected for determination ex situ. 

The nomenclature follows Santesson (1993) and Smith et al. (2009) for lichens, Frisvoll et al. 

(1995) for bryophytes and Lid & Lid (1994) for vascular plants. Species of the genera 

Agonimia, Arthonia, Arthopyrenia (with exeption of Arthopyrenia punctiformis), Cladonia, 

Lecanora, Lecidella (with exception of Lecidella eleaeochroma), Lepraria, Opegrapha (with 

exception of Opegrapha rufescens), Pertusaria, Placynthiella and Porina were identified only 

to generic level and hence registered as sp(p) in the species data sets of both sampling times. 

See appendix 1 for species list with Latin names and corresponding Ellenberg indicator values 

for light and moisture (Hill et al. 1999, Hill et al. 2004, Hill et al. 2007). 

 

The species compositions was in this present study classified into two levels of a management 

factor according to the management history of the pollard and the site in which it reside: 

“Increase in canopy cover” and “Reduction in canopy cover”. Information on the variable 

historical management regimes across the landscape ascribes from Moe & Botnen 

(unpublished data) as well as from conversations with employees and local inhabitants of the 

cultural environment Havrå. The category of “Reduction in canopy cover” comprises the trees 

exposed to reduction in canopy cover within the last 20 years due to management of the close 

surrounding fields and/ or pollarding of the tree. Trees no. 1, 2, 3 and 4 reside in sites where 

surrounding vegetation has changed from relative dense forest to semi- open meadow. Tree 

no. 4 was pollarded in 2009. The following trees of residence within continuously managed 

surrounding meadows until present time have also been pollarded within the last 10 years: 

tree no. 8 (pollarded 2007); no. 10 (pollarded 2001); no. 11 (pollarded 2003); no. 12 

(pollarded 2007) and no. 16 (pollarded 2003). 

The category of “Increase in canopy cover” comprises the trees exposed to increase in canopy 

cover within the last 20 years due both to lack of pollarding as well as to canopy closure at the 

stand scale: tree no. 5, 6, 7, 9 (pollarded 2012), 13, 17, 18 and 19. Pollards no. 17 and 18 are 
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however surrounded with scattered openings followed by more light due to stochastic felling 

of old trees. Besides the variable historical management regimes, the management factor 

described above is likely to capture much of the variation in local climate, height above sea 

level and site quality. Trees classified into the level of “Reduction in canopy cover” 

correspond to trees located within close distance to the sea and to the farm buildings, where 

site quality is higher than in the uppermost area withstanding trees within the level of 

“Increase in canopy cover” (Appendix 3, DCA axis 1). 

  

Figure 3: Pictures of pollards no. 13- west to the left and no. 10- south to the right. 

 

 Detrended Correspondence Analysis (DCA) 

 

In order to reveal the structure of multivariate data sets, ordination methods seek to represent 

the data along a reduced number of orthogonal axes. In decreasing order these axes represent 

the main trends of the data. DCA ordination (Hill 1979, Hill & Gauch 1980) is a multivariate 

indirect ordination technique based on a unimodal relation between species and environment, 

i.e. based on the assumption of a unique set of optimal conditions for a species at which the 

species has maximal abundance. A DCA ordination was performed on the two species 

datasets from different sampling times employed in this study. Species situated close to each 

other along the DCA ordination axis are similar in species abilities towards particular 
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environmental conditions. Environmental gradients in the species data are thereby revealed 

from interpretation of the arrangement of species scores along each of the axes.  

Strength of relation between variables 

 

DCA axes, the moisture gradient and the light gradient were regressed on various predictor 

variables (Table 2) and tested with Anova with F- test. The value of adjusted R- square from 

the summary output signifies the strength of the relations. The moisture gradient is termed 

“Moisture” and the light gradient is termed “Light”. “Height” and “Aspect” signifies 

respectively gradients in height/ stem inclination and aspect. “Management” signifies 

variation in historical management regime. “Sea” and “Moss Cover” means respectively 

height above sea level/ distance from sea and total percentage of moss cover. The plots from 

these regressions, indicating the correspondence between the environmental gradients in the 

species data and predictor variables, were used as a support in the interpretation of the 

quantified temporal trends in the species compositions as distributed along each axis and 

gradients of light and moisture values. 

Temporal turnover 

 

DCA axes  

The site scores of the sampling of Moe and Botnen (1997) were extracted from the site scores 

of the sampling of this present study along each DCA axis. For each of the DCA axes, the 

procedure for calculation of the mean temporal turnover can be illustrated through the 

following expression: DCA change = Site ScoresT1 - SiteScoresT0  

In order to evaluate whether the change is larger than what can be expected by random, the 

significance of difference in time to the 4 different DCA change was tested through paired t- 

tests.  

Light and moisture gradients 

The Null hypothesis of no difference in species optima values for light and moisture between 

the sampling time of the original study and the sampling time of this study was tested through 

applying a weighted average technique. Weighted averaging is a form of direct gradient 

analysis. It shows only one axis and is useful for situations where only one primary 

environmental gradient (at the time) is under consideration. The weighted average for light 

was calculated for each species composition by multiplying the abundance of each species 
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times the Ellenberg light value for that species, whereby these values were summarized and 

subsequently divided by the sum of species abundances. The resulting light ranking for the 

species composition reflects its position along a light gradient. High light values correspond 

to shade sensitive species, whereas low light values correspond to shade tolerant species.  

Extracting the weighted light ranking of time 1 from that of time 2 for a species composition 

provides a value for the temporal change in its weighted light ranking, corresponding to a 

change in the position along the ordination gradient of light for that sample. The procedure 

was repeated for Ellenberg moisture values. High moisture values correspond to draught 

sensitive species, whereas low moisture values correspond to draught resistant species. 

Measurements for obtaining the mean temporal change in the weighted light and moisture 

ranking for all species compositions can be illustrated through the following expressions: 

Lightchange = waEllenbergLightT1 - waEllenbergLightT0   

Moisturechange = waEllenbergMoistureT1 - waEllenbergMoistureT0   

Subsequently the significance of difference in time to the Lightchange and Moisturechange was 

tested through paired t- tests.  

 

Direction of temporal turnover 

 

Positive Average Change value from the t- tests of DCA change (Table 3) indicates a 

temporal compositional change towards increase in relative abundances of species with high 

positive score along the DCA axis in question, in turn revealing temporal environmental 

trends within the metacommunity at the scale of the landscape. Negative value signifies a 

temporal trend in the epiphytic vegetation of increase in relative abundances of species 

positioned at the negative end of the axis.  

 

Positive Average Change value from the paired t- test of Lightchange indicates that the mean 

temporal change in weighted light ranking along the gradient of light is positive. Such a 

change would correspond to a temporal compositional change in direction of increase in 

relative abundances of shade sensitive species and hence indicate an environmental trend of 

increase in the availability of light. Negative value for Average Change corresponds to a 

temporal change along the gradient towards an increase in relative abundances of shade 
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tolerant species and hence more shady conditions. Likewise, positive Average Change value 

for Moisturechange indicates a temporal compositional change in direction of an increase in 

relative abundances of draught sensitive species and more moist conditions, whereas negative 

value implies a temporal increase in relative abundances of draught tolerant species and 

reduced availability of moisture. 

 

Rate of temporal turnover   
 

Beta diversity can be conceived of as a measure of the degree of dissimilarity among sample 

units as distributed along a gradient. Axes of DCA ordination are scaled in units of beta 

diversity. The significance of a variable to variation in temporal turnover rate along a DCA 

axis thus indicates the importance of that variable not only to the distribution of species 

compositions along the axis, but also in structuring community response to temporal 

environmental modification. The significance of the predictor variables of Aspect, Height and 

Management to temporal turnover rates along DCA axes and to temporal change in weighted 

light and moisture ranking was tested through mixed effect models with forward selection. 

For all models fit to the data, AIC comparisons were performed in order to reveal whether or 

not models including the tree factor as random factor in mixed effect models performed better 

as compared to general linear models where the tree factor as random factor was omitted. 

Based on these AIC comparisons, the tree factor was treated as random effect factor in the 

linear mixed effect models employed, whereas Aspect, Height and Management were treated 

as fixed effect factors. Below follows the model expression employed, with x representing the 

predictor variables and “tree” representing the random factor: 

Fit.x.lme <-lme (DCA change ~x, random=~1|tree) 

Fit.x.lme <-lme (Light change ~x, random=~1|tree) 

Fit.x.lme <-lme (Moisture change ~x, random=~1|tree) 

 

Testing of the null hypotheses of no variation in temporal turnover rates along the different 

variables was performed through Anova.  I used forward selection to obtain the values for 

each step of inclusion of variables in the model building. Graphical explorations were carried 

out between response and predictor variables, and all predictors got into the selection 
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procedure of regression models. Full models included interaction terms. Akaike’s Information 

Criterion (AIC; Burnham and Anderson 1998) was employed to obtain the most parsimonious 

model (the minimal adequate linear mixed effect models; Zuur et al. 2009). Prior to 

modelling, preliminary data exploration were performed. Editing and transforming of data 

was performed in Microsoft Office Excel (Anonymous 2013). The data analyses were carried 

out by R 2.15.3 (The R Development Core Team 2013) and by the R package “nlme” 

(Pinheiro et al. 2011)  
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Chapter 3. Results 

DCA  

The seventeen trees detected (2 probably dead) provided 374 species compositions, 

comprising 159 species of which 80 bryophytes, 61 lichens and 18 vascular plants. DCA axes 

1 to 4, based on 374 species compositions had eigenvalues of 0.47, 0.42, 0.34 and 0.36, 

respectively (Table 1). Even though the eigenvalues of the third and fourth DCA axes are 

quite similar (0.34 and 0.36 respectively), and much smaller than the second axis, all axes are 

considered in the interpretation. Figure 4 shows distribution of site scores along axis 1 and 2 

Table 1:  Summary of DCA ordination. 

 

 

                        Figure 4: DCA ordination plot of site scores along axis 1 and 2. 

 

 

Ecological interpretation of DCA axes  
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Four major gradients were revealed through interpretation of the species scores of the DCA 

ordination. A brief description of the revealed gradients is given in the discussion part of this 

study, whereas a more detailed ecological interpretation of the DCA axes can be found in 

Appendix 3. Figure 5 show the arrangement of species scores along axis 1 and 2, whereas 

Figure 6 show the arrangement of species scores along axis 3 and 4. 

 

                                  Figure 5: DCA ordination plot of species scores along axis 1 and 2. 

-3 -2 -1 0 1 2

-3
-2

-1
0

1
2

3

DCA Species Scores/ Names

DCA axis 1

D
C

A
 a

x
is

 2

Anomodon_longifolius

Anomodon_sp.

Antitrichia_curtipendula

Atrichum_undulatum

Barbilophoza_barbata

Bartramia_ityphyllaBazzania_tricrenata

Brachythecium_plumosum

Brachythecium_rutabulum
Brachythecium_sp.

Bryum_capillare

Cephaloziella_divaricata

Cirriphyllum_piliferum

Climacium_dendroides

Conocephalum_conicum

Dicranum_fuscescens

Dicranum_scoparium

Drepanocladus_uncinatus

Eurynchium_praelongum

Eurynchium_schleicheri

Eurynchium_striatum

Eurynchium_swartzii

Frullania_dilatata

Frullania_fragilifolia

Frullania_tamarisci

Grimmia_hartmannii

Herzogiella_seligeri

Homalia_trichomanoides

Homalothecium_sericeum
Hylocomium_splendens

Hypnum_cupressiforme

Isothecium_alopecuroides

Isothecium_myosuroides

Lejeunea_cavifolia

Leucodon_sciuroides

Loeskobryum_breviostre

Lophocolea_heterophylla

Lophozia_ventricosa

Marsupella_emarginata

Metzgeria_conjugata

Metzgeria_furcata

Mnium_hornum

Neckera_complanata

Neckera_pumila

Orthotrichum_sp.

Orthotrichum_lyelliiOrthotrichum_pulchellum

Orthotrichum_speciosum

Orthotrichum_stramineum

Orthotrichum_striatum

Oxystegus_tenuirostris

Paraleucobryum_longifolium

Plagiochila_asplenioides

Plagiomnium_cuspidatum

Plagiomnium_undulatum

Plagiothecium_denticulatum

Plagiothecium_laetum

Plagiothecium_succulentum

Pohlia_nutans

Porella_cordeana

Porella_platyphylla

Pseudoleskeella_nervosa

Pterigonium_gracile

Pterigynandrum_filiforme

Racomitrium_aciculare

Radula_complanata

Rizomnium_pseudopunctatum

Rytidiadelphus_loreus

Rytidiadelphus_squarrosus

Sanionia_uncinata

Scapania_umbrosa

Schistidium_apocarpum

Thuidium_delicatulum.assim.

Thuidium_tamariscinum

Ulota_bruchii

Ulota_crispa

Ulota_drummondi

Ulota_sp.

Zygodon_baumgartneri

Zygodon_virid..conoid.

Anisomeridium_nyssaegenum

Agonimia_sp.
Arthonia_sp.

Arthonia_radiata

Arthopyrenia_punctiformis

Arthopyrenia_sp.

Biatora_vernalis

Buellia_griseovirens

Candelariella_xanthostigma

Cladonia_sp.

Collema_flaccidum

Collema_occultatum

Collema_subflaccidum

Collema_sp.

Degelia_plumbea

Dimerella_pineti

Gyalecta_flotowii

Lecanora_sp.

Lecidella_eleaeochroma

Lecidella_sp.

Lepraria_sp.

Leptogium_cyanescens

Leptogium_lichenoides.teretius.

Leptogium_saturninum

Lobaria_scrobiculata

Lobaria_virens

Melanelixia_fuliginosa

Melanelixia_subaurifera

Micarea_prasina_s.lat.

Nephroma_bellumNephroma_laevigatum

Nephroma_parile

Nephroma_resupinatum

Nephroma_sp.

Normandina_pulchella

Ochrolechia_androgyna

Opegrapha_sp.

Opegrapha_rufescens

Pachyphiale_fagicola

Pannaria_conopleaParmelia_saxatilis

Parmelia_sulcata

Parmelia_sp.

Parmeliella_triptophylla

Peltigera_collina

Peltigera_canina

Peltigera_praetextata

Pertusaria_sp.

Phlyctis_argena

Placynthiella_sp.

Porina_sp.

Ramonia_subspaeroides

Rin_con

Rin_fla

Sco_umb

Sti_ful

Sticta_sp.

The_fla

The_rub

Tra_pse
Ant_syl

Ath_fil

Cam_rot

Des_ces

Des_fle Dry_fil Epi_mon

Fra_ves

Ger_syl
Oxa_ace

Pol_vul

Pru_pad

Rum_ace

Sil_dio

Sor_auc

Vac_myr

Val_sam

Veronica

Sp.nova



14 
 

 

 

 

 

-2 -1 0 1 2 3

-4
-2

0
2

4

DCA Species Scores/ Names

DCA axis 3

D
C

A
 a

x
is

 4 Anomodon_longifolius

Anomodon_sp.

Antitrichia_curtipendula

Atrichum_undulatum

Barbilophoza_barbata

Bartramia_ityphylla

Bazzania_tricrenata

Brachythecium_plumosum

Brachythecium_rutabulum

Brachythecium_sp.

Bryum_capillare

Cephaloziella_divaricata

Cirriphyllum_piliferum

Climacium_dendroides

Conocephalum_conicum
Dicranum_fuscescens

Dicranum_scoparium

Drepanocladus_uncinatus

Eurynchium_praelongum

Eurynchium_schleicheri

Eurynchium_striatum

Eurynchium_swartzii

Frullania_dilatata

Frullania_fragilifolia

Frullania_tamarisci

Grimmia_hartmannii

Herzogiella_seligeri

Homalia_trichomanoides

Homalothecium_sericeum

Hylocomium_splendens
Hypnum_cupressiforme

Isothecium_alopecuroides

Isothecium_myosuroides

Lejeunea_cavifoliaLeucodon_sciuroides

Loeskobryum_breviostre

Lophocolea_heterophylla

Lophozia_ventricosa

Marsupella_emarginata

Metzgeria_conjugata

Metzgeria_furcata

Mnium_hornum

Neckera_complanata

Neckera_pumila

Orthotrichum_sp.

Orthotrichum_lyellii

Orthotrichum_pulchellum

Orthotrichum_speciosum

Orthotrichum_stramineum

Orthotrichum_striatum
Oxystegus_tenuirostris

Paraleucobryum_longifolium

Plagiochila_asplenioides

Plagiomnium_cuspidatum

Plagiomnium_undulatum

Plagiothecium_denticulatum

Plagiothecium_laetum

Plagiothecium_succulentum

Pohlia_nutans

Porella_cordeana

Porella_platyphylla

Pseudoleskeella_nervosa

Pterigonium_gracile

Pterigynandrum_filiforme

Racomitrium_aciculare

Radula_complanata

Rizomnium_pseudopunctatum

Rytidiadelphus_loreus

Rytidiadelphus_squarrosus

Sanionia_uncinata

Scapania_umbrosa

Schistidium_apocarpum

Thuidium_delicatulum.assim.
Thuidium_tamariscinum

Ulota_bruchii

Ulota_crispa

Ulota_drummondi

Ulota_sp.

Zygodon_baumgartneri

Zygodon_virid..conoid.
Anisomeridium_nyssaegenum

Agonimia_sp.

Arthonia_sp.

Arthonia_radiata

Arthopyrenia_punctiformis

Arthopyrenia_sp.

Biatora_vernalis
Buellia_griseovirens

Candelariella_xanthostigma

Cladonia_sp.

Collema_flaccidum

Collema_occultatum
Collema_subflaccidum

Collema_sp.

Degelia_plumbea

Dimerella_pinetiGyalecta_flotowii

Lecanora_sp.

Lecidella_eleaeochroma

Lecidella_sp.

Lepraria_sp.

Leptogium_cyanescens

Leptogium_lichenoides.teretius.

Leptogium_saturninum

Lobaria_scrobiculata

Lobaria_virens

Melanelixia_fuliginosa

Melanelixia_subaurifera

Micarea_prasina_s.lat.

Nephroma_bellum

Nephroma_laevigatum

Nephroma_parile

Nephroma_resupinatum

Nephroma_sp.

Normandina_pulchella
Ochrolechia_androgyna

Opegrapha_sp.

Opegrapha_rufescens

Pachyphiale_fagicola
Pannaria_conoplea

Parmelia_saxatilis

Parmelia_sulcata

Parmelia_sp.

Parmeliella_triptophylla

Peltigera_collina

Peltigera_canina

Peltigera_praetextata

Pertusaria_sp.

Phlyctis_argena

Placynthiella_sp.Porina_sp.

Ramonia_subspaeroides

Rin_con

Rin_fla

Sco_umb

Sti_ful

Sticta_sp.

The_fla
The_rub

Tra_pse

Ant_syl
Ath_fil

Cam_rot
Des_ces

Des_fle

Dry_fil

Epi_mon

Fra_ves

Ger_syl

Oxa_ace

Pol_vul

Pru_pad

Rum_ace

Sil_dio

Sor_auc

Vac_myr

Val_sam

Veronica

Sp.nova

 

Figure 6: DCA ordination plot of species scores along axis 3 and 4. 
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Table 2 shows the adjusted R square values from the summaries of the regressions of response 

variables against predictor variables. High values indicate strong relation. The strength of the 

relation between DCA axis 1 and the explanatory variables was highest for Sea (0.368), 

followed by management history (0.111). For DCA axis 2, Management provides the highest 

adjusted R- square value (0.09), closely followed by Height (0.081) and Aspect (0.080). 

Aspect is the variable most strongly related to DCA axis 3, even though the strength of the 

relation is very low (0.032). Among the strength of the relations pertaining to DCA axis 4, the 

one to Management is the highest (0.144). Moisture is slightly correlated with Height (0.096) 

and more so with Management (0.173). Light corresponds relatively highly with Aspect 

(0.127). The strength of the relation between Moisture and Light is relatively high (0.411). 

  

Table 2: Adjusted R square values from test of strength of relation between variables. 

 

 

Temporal turnover in species composition 

 

The p- values from the t- tests of temporal change (Table 3) show that the difference in time is 

significant to the temporal turnover as distributed along each of the DCA axes as well as to 

the temporal change in weighted light and moisture ranking of the samples along the light and 

moisture gradients. A negative Average Change value in Table 3 signifies that the mean 

direction of the temporal turnover along the DCA axis or gradient of light and moisture is 

towards the negative end of the axis or gradient. A positive value signifies a temporal change 

towards the positive end. The significant temporal change in position of species compositions 

along DCA axes 2 and 3, as well as the significant temporal change in the weighted light 

ranking along the gradient of light, shows a negative direction. The compositions as arranged 

along DCA axis 1 and 4, as well as the weighted moisture ranking, changed significantly 

through time towards the positive end of respectively the DCA axes and the moisture 

gradient. 
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Table 3: Values from t- tests of significance of time to temporal change. 

 

 

Importance of Aspect, Height and Management to temporal turnover rate 

 

For all models fit to the data of variation in temporal turnover as well as to variation in 

temporal change in weighted average for light and moisture values, AIC comparison revealed 

that the models including the tree factor as random factor in mixed effect model perform 

better as compared to the general linear model where the tree factor as random factor is 

omitted. Both Aspect and Height was measured to be significant to rate of temporal turnover 

along axis 2 and axis 3, whereas these variables were found to be insignificant in relation to 

axis 1 and 4. Management was insignificant in relation to all axes. The model with Height as 

the only fixed effect factor represented however the most parsimonious model for axis 3, 

whereas the null model was found to be best for the axes 1, 2 and 4. The regressions showed 

that neither Aspect nor Height or Management was significant to the variation in temporal 

change in weighted light and moisture ranking along the gradients of light and moisture. The 

null model was thus the most parsimonious model in relation to both gradients of light and 

moisture. See Table 5 – 16 for values for anova tests and AIC comparisons for all models. 

Table 4 provides an overview of the most parsimonious models. 
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Table 4: Most parsimonious models. 

 

 

 

Table 5: Output from anova tests of models for temporal change in weighted moisture ranking. 

 
 

 

 

 
Table 6: AIC test- models of temporal change in weighted moisture ranking. 
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Table 7: Output from anova tests of models for temporal change in weighted light ranking. 

 

 

 
 
Table 8: AIC test- models of temporal change in weighted light ranking. 

 
 

  



19 
 

Table 9. Output from anova tests of models for temporal turnover rates along DCA axis 1. 

 
 
 
 
 
Table 10: Output from AIC test of most parsimonious model- DCA axis 1. 
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Table 11: Output from AIC test of most parsimonious model- DCA axis 2. 

 
 
 
 
 
 
Table 12: Output from anova tests of models for temporal turnover rates along DCA axis 2. 
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Table 13: Output from anova tests of models for temporal turnover rates along DCA axis 3. 

 

 

 

 

Table 14: Output from AIC test of most parsimonious model- DCA axis 3. 
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Table 15: Output from anova tests of models for temporal turnover rates along DCA axis 4. 

 

 

 

 

Table 16: Output from AIC test of most parsimonious model- DCA axis 4. 
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Chapter 4. Discussion 
 

Main results 

 

The results from the paired t- tests (Table 3) demonstrate the significance of time to change in 

species composition from the sampling time of the original study to the sampling time of this 

present study along all DCA axes, as well as to change in the weighted light and moisture 

ranking. Consequently, during the last 20 years, the composition of the epiphytic communities 

on pollarded trunks of Fraxinus excelsior at Havrå has changed significantly in relation to 

availability of light and moisture.  

Interpretation of species scores along DCA axis 2 and DCA axis 4 indicates that these axes 

explain much of the directional spatial change in community structure in the species data of 

this study. The direction of the temporal turnover as interpreted along these axes are therefore 

likely to indicate the overall direction of the change in composition of the epiphytic 

metacommunity of this study through time. Both DCA axis 2 and DCA axis 4 seems to 

represent a distribution trend along the stem. Species similar in abilities towards moisture as 

well as light correspond to a particular height and aspect along DCA axis 2, whereas DCA 

axis 4 separates species differing in their morphological adaptations towards retention of 

water. The direction of temporal turnover as distributed along DCA axis 2 and 4, as well as 

along the gradients in light and moisture, indicates a trend in the epiphytic vegetation towards 

homogenization of the within- tree variation in species composition at the expense of shade 

sensitive species. This trend in the epiphytic metacommunity corresponds to an environmental 

trend towards more shady and humid conditions at the scale of the landscape.  

Historical management regime of the pollards and surrounding meadows has no significant 

effect on the rate of the compositional change through time, whereas temporal turnover rates 

along axis 2 vary significantly with Height and Aspect. The corresponding regression plots 

indicate a relatively higher rate of temporal turnover in the top zone and to the aspect of south 

where assemblages of shade sensitive species reside, as compared to the basal zone and the 

aspect of north. This result indicates that the temporal turnover in large is driven by a higher 

species response to change in availability of light and moisture within assemblages of shade 

sensitive species tolerant or sensitive to draught, as compared to assemblages of shade 

tolerant species more or less sensitive to draught.  
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The results from the testing of the effect of Aspect, Height and Management on the rates of 

temporal turnover thus support the indication from the measured direction of temporal 

turnover that abandoned management is a driver of compositional change through time in the 

epiphytic communities of this study, at the expense of shade sensitive species. 

 

Before discussing the direction and nature of temporal turnover as distributed along DCA 

axes and gradients in light and moisture, in the following I describe the different DCA axes 

briefly (see Appendix 3 for a complete interpretation of species scores along each DCA axis). 

Interpretation of DCA axes 

 

DCA axis 1 

At the positive end of axis 1 reside species found within the lowermost sites of the study area, 

e.g. Gyalecta flotowii, Thelopsis rubella, Leucodon sciuroides, Homalothecium sericeum, 

Degelia plumbea and Lobaria virens. Ochrolechia androgyna, Scapania umbrosa and 

Lophozia ventricosa have high negative score on axis 1 and are restricted to one or two trunks 

at 185 m altitude (Moe & Botnen 1997). The arrangement of species along axis 1 (Appendix 

3) thus suggests a (non- directional) variance in community structure between sites within the 

lowermost situated areas of high site quality and short distance to the sea/ farm buildings, and 

sites within the uppermost areas of poorer site quality with longer distance to the sea. The 

kind of beta diversity along DCA axis 1 seems thus to reflect variation in the identities of 

species among species compositions within the study area, and not beta diversity as turnover 

in species composition (cf. Legendre et al. 2005; Anderson et al. 2011). The plots from the 

regression of DCA axis 1 on Sea and Management (highest R2, see table 2) show that the 

negative end of the axis corresponds to the uppermost level of the study area and sites of 

increase in canopy cover. These results from the test of strength of relation between variables 

thus support the ecological interpretation of the species scores along axis 1. 

DCA axis 2  

At the positive end of DCA axis 2 reside shade sensitive and draught tolerant species like 

Antitrichia curtipendula, Orthotrichum pulchellum, Orthotrichum lyelli, Orthotrichum 

striatum, Parmelia sulcata, Lobaria scrobiculata, and Pseudoleeskella nervosa (Figure 5). 

Species typical of the lower, negative end of the axis are shade resistant/ draught sensitive 

species like Loeskobryum breviostre, Plagiochila asplenioides, Plagiothecium denticulatum, 
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Collema flaccidum and Eurynchium striatum. DCA axis 2 seems thus to represent a 

distribution trend along the stem, with species similar in abilities towards moisture as well as 

light corresponding to a particular Height (Appendix 3). This arrangement of species might as 

well represent a gradient of aspect, with the positive end corresponding to the aspects of south 

and west were irradiation and evaporation is likely to be higher than to the north and east.  

 

Plots of the regressions of DCA axis 2 on explanatory variables and gradients of light and 

moisture show that the basal part, the aspect of north, low light values (shade tolerant species) 

and high moisture values (draught sensitive species) correspond to the negative end of DCA 

axis 2. These plots also show that the top zone, south, high light values (shade sensitive 

species) and low moisture values (draught tolerant species) correspond to the positive end of 

axis 2. Results from tests of strength of relation between variables (Table 2) thus support the 

ecological interpretation of the arrangement of species scores along axis 2. 

 

DCA axis 3 

The arrangement of species along DCA axis 3 (Appendix 3) seems to reflect a non- 

directional gradient that may be explained by different substrate conditions on the trunk, what 

suggests that DCA axis 3 represent conditions related to the cyclical successive stages of the 

epiphytic vegetation. The difference in substrate conditions seem however to correspond to 

different heights along the trunk, what suggests differences in peeling- off rates along the 

gradient of height (Appendix 4). The strengths of all the relation between DCA axis 3 and 

predictor variables are low, and no clear trend of moisture or light availability was revealed 

along DCA axis 3. 

 

Due to more windy environments in the upper parts of the trunk and to the aspect of south in 

open meadows (Appendix 3), re- colonization of the trunk after each peeling-off by the 

cryptogamic epiphytes at Havrå is likely to happen at a higher rate within the top zone and to 

the aspect of south (Appendix 4). Variation in cyclical successive stages may thus underlie the 

measured significance of Aspect and Height to temporal turnover rates along axis 3, as well as 

the result of the model with Height as predictor as the most parsimonious model related to 

axis 3. Differences in exposure may explain the higher turnover rates in the top zone and to 

the south relative to the other levels of height and aspect, as shown from regression plots. The 

results related to axis 3 illustrate the way structural properties of the habitat interacts with 

environment in producing spatial variation in stages in the cyclical succession in communities 



26 
 

of sessile organisms residing in dynamic habitats, like epiphytes residing on old trunks in 

open environments.  

 

DCA axis 4 

Axis 4 seems to represent a gradient of height/ stem inclination followed by variation in the 

degree to which species adhere to their substrate, i.e. a gradient of morphological adaptations 

towards retention of water along the trunk (Appendix 3). The plot from the regression of DCA 

axis 4 on Height shows a correspondence between the top and middle zone and the positive 

end of axis 4 where species of the genera Orthotrichum, Leidella elaeochroma, Parmelia 

sulcata, Opegrapha rufescens and Phlyctis argena reside. These species adhere more or less 

strongly to their substrate as opposed to species positioned at the negative end of axis 4, 

which press loosely against their substrate, like Nephroma resupinatum, Peltigera 

resupinatum, Bazzania tricrenata, Loeskobryum breviostre and Thuidium tamariscinum. The 

negative end corresponds to the basal zone, and the results from the regression thus support 

the ecological interpretation of the arrangement of species along axis 4. The regression plot 

also indicates high similarity among top and middle zone with respect to environmental 

factors and floristic composition in relation to the basal zone (cf. Moe & Botnen 1997). 

In the following interpretations of the direction and rate of the temporal turnover, focus is on 

the directional gradients identified along DCA axis 2 and DCA axis 4, as well as on the 

gradients of light and moisture. 

 

Direction of temporal turnover. 

 

Temporal trends revealed along gradients in light and moisture 

 

The negative direction of the significant temporal change along the light gradient (Table 3) 

implies that the temporal change in composition of the epiphytic communities consist in an 

increase in relative abundances of shade tolerant species, corresponding to an increase in 

resemblance to the composition at the north side (highest R2 with Aspect, Table 2). A positive 

direction of the significant temporal change along the moisture gradient implies that the 

temporal change in composition of the epiphytic communities consist in an increase in 

relative abundances of draught sensitive species. This temporal trend in the epiphytic 

vegetation correspond to an increase in resemblance to the composition of sites of increase in 
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canopy cover as well as to the basal part of the trunk (highest R2 with Management and 

Height, Table 2). A relatively strong relation (R2 = 0.411) between Light and Moisture 

suggests that the gradients of light and moisture explain much of the same variation in the 

species compositions of this study, and the direction of temporal turnover as distributed along 

these gradients suggests a temporal environmental trend of more shady and moist conditions. 

Temporal trends revealed along DCA axis 2  

 

The direction of the significant temporal turnover as distributed along axis 2 towards the 

negative end of the axis (Table 3) indicates a change towards species compositions of the 

lower parts of the trunk and at the north side. This direction of the compositional change 

corresponds to an increase in relative abundances of draught sensitive and shade tolerant 

species, like Plagiochila asplenioides, Eurynchium striatum and Conocephalum conicum, as 

well as to a decrease in shade sensitive species like cyanolichens and old- growth indicators 

like Antitrichia curtipendula. This structural change in the metacommunity indicates a trend 

in the local environment of higher availability of moisture (from atmospheric humidity and/ or 

precipitation) and lower availability of light, and speak as such in favour of abandoned 

management as a driver of change in the epiphytic community. 

Temporal trends revealed along DCA axis 4 

 

The direction of the significant temporal change in community structure along DCA axis 4 

towards the positive end (Table 3) indicates a trend in the species data towards resemblance to 

species compositions of the mid/ upper parts, towards sites of increase in canopy cover and 

finally towards decrease in moss cover. These trends may indicate an increase in species 

moderately pressed towards their substrate and which reside throughout the entire trunk and/ 

or thrive within environmental conditions provided by the middle zone/ overhanging upper 

zone of the trunk characterized by a low percentage of moss cover, like species of the genera 

Agonimia; Arthonia and Lepraria, Radula complanata, Plagiomnium undulatum, 

Plagiothecium denticulatum, Metzgeria furcata, M. conjugata, Neckera complanata, Hypnum 

cupressiforme, Micarea prasina.s.lat., and Nephroma parile.  

The trend revealed along axis 4 indicate more shady local environments with reduced 

moisture from precipitation, corresponding to the overhanging top zones and the middle part 

of the trunk. These results in turn suggest that the trend of increase in moist conditions found 
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along DCA axis 2 and the gradient of moisture is likely to in large derive from increase in 

atmospheric humidity following canopy closure rather than increase in moisture from 

precipitation.  

 

Variation in temporal turnover rates  

 

 DCA axis 4 

The indication of the direction of temporal turnover as distributed along DCA axis 4 towards 

homogenization of species compositions along the gradient of stem inclination seems to be 

supported through the testing of Height on temporal turnover rates along the axis. Even 

though Height was not significant to temporal turnover rates along DCA axis 4, the plot from 

this regression shows that the highest response is found in the basal and top zones, where 

species respectively loosely and strongly pressed to their substrate reside. This pattern thus 

corresponds to a decrease both in large, draught sensitive pleurocarps residing in the basal 

part as well as in shade sensitive and draught sensitive species residing in the upper zones of 

90 degrees (like cyanolichens, cf. DCA axis 2 in Appendix 3).  

 

The process of homogenization in species compositions and environments of light and 

moisture at the fine scale along the stem illustrates the way the gradients of aspect and height 

becomes less important to the vertical distribution of epiphytes as canopy grow denser, 

corresponding to a lower variation in community responses to environments of light and 

moisture.  Such a decrease in beta diversity throughout the stem following an extended period 

of dense canopy cover was indicated through regression plots showing a lower variation 

within unmanaged sites among rates of temporal turnover along axis 2 as function of Aspect 

and Height, as compared to a high variation within managed sites. 

 

DCA axis 2 

The overall significance of Aspect and Height, and insignificance of Management, to turnover 

rates along axis 2 indicates however that differences in access to light and moisture 

throughout the trunk are important to the vertical distribution of epiphytes despite increase in 

canopy cover. Limitation of light in this study seems therefore not to be sufficient to mask the 

effect of neither height nor aspect (cf. Barkman 1958; Kenkel & Bradfield 1981; Pirintsos et 

al. 1993; Moe & Botnen 1997, 2000; Marmor et al. 2012). The null model represented 

however the most parsimonious model for axis 2, implying that Height and Aspect does not 
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have predictive power in relation to rates of temporal turnover in the epiphytic communities 

of this study (cf. Appendix 4). 

Assemblages of shade sensitive species were interpreted through their arrangement along 

DCA axis 2 (Appendix 3) to reside within the upper parts of the trunk and to the aspect of 

south. Consequently, a larger effect of reduced availability of light and moisture is expected 

within these zones as compared to the north side and the basal zone. The plots from the 

regressions of temporal turnover rates along axis 2 on Aspect and Height, showing that the 

rate of compositional turnover is highest in the top zone and to the aspect of south, thus 

confirms this expectation.  

In combination with the measured direction of temporal turnover along DCA axis 2, DCA 

axis 4 and the gradients in light and moisture, the results from the model testing thus supports 

the interpretation of an increase in canopy cover following abandoned management as driver 

of compositional change through time in the epiphytic communities of this study. This study 

thus demonstrate a decline in relative abundances of assemblages consisting of shade and 

draught sensitive cyanolichens, old- growth indicators like Antitrichia curtipendula, as well as 

other shade sensitive epiphytes like Melanelixia fuliginosa, Orthotrichum striatum, O. lyelli, 

O. pulchellum, Pseudoleeskella nervosa, Pteridynandrum filiforme and Ulota crispa. The 

results indicate that this temporal trend in shade sensitive species reflects a negative response 

to abandoned management during the last 20 years. 

Uncertainties 

 

Due to its use in this study for comparison among assemblages within the same vegetation 

type (cryptogam epiphytes), the employment of Ellenberg indicator values for assessment of 

temporal trends in the vegetation in relation to environment can be considered as reliable (cf. 

Wamelink et al. 2002). The reliability of the weighted average technique employed in this 

study is in addition supported through the equivalence of its results to the trends revealed 

along DCA axes 2 and 4 discussed in the following. 

 

Relationships between current epiphyte occurrence patterns and the historical landscape 

structure have suggested more than century long time- lags (Ellis & Coppins 2007; Johansson 

et al. 2012). Ranius et al. (2008) claims that as old trees represent a long- lasting habitat, it 

might be likely that current epiphytic species distribution patterns may reflect the historical 
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habitat quality. Johansson et al. (2013) demonstrated a great time lag in the response of shade 

sensitive species to environmental changes. A great time lag in the response of the epiphytic 

vegetation in this study to management would potentially overestimate the effect of 

abandoned management, with the consequence that the documented decline in shade sensitive 

species in this study would be exaggerated.  

 

Management implications 

In many European woodlands, negative impacts from cessation of pollarding on epiphytic and 

saproxylic biodiversity have recently been documented (Leppik et al. 2011; Jönsson et al. 

2011; Marmor et al. 2012; Johanson et al. 2013; Sebek et al. 2013). There is as such 

mounting evidence for the need to mitigate the negative impact of overgrowth on the future 

viability of epiphytic cryptogams as well as micro- organisms residing on old trees and 

adapted to light open environments within the cultural landscape through pollarding and 

management of surrounding meadows. Jönsson & Thor (2012) showed that traditionally 

managed open wooded meadows had the highest incidence of ash dieback disease, followed 

by significantly higher risk of species extinction, compared with unmanaged closed forests 

and semi-open grazed sites. Ash dieback disease as such impose yet another factor to the 

assumed additive effects of agricultural change and silvicultural practices to the future 

viability of the shade sensitive old- forest epiphytes throughout Europe in general, and to the 

shade sensitive epiphytic vegetation of this study in particular. 

Several of the pollards at Havrå are currently dying due to high age and/ or lack of pollarding. 

Increasing the viability of the host trees through pollarding, as well as recruitment of new 

trees, is thus in addition to management of surrounding vegetation a prerequisite to mitigate 

the temporal trend in relative abundances of shade sensitive epiphytes residing on the pollards 

at Havrå measured in this study to be negative. 
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Chapter 5. Concluding remarks 
 

A negative impact of abandoned management on the temporal trend in an assemblage of 

shade sensitive cryptogam epiphytes residing on old trees in a traditionally light- open 

landscape was indicated through the results in this study. These results thus add to an 

amounting body of evidence for an ongoing and future decline within the cultural landscape 

in shade sensitive epiphytic bryophytes and lichens dependent on long continuity. In order to 

understand to what degree this trend represents an actual threat to the future viability of rare, 

obligate epiphytes within this group, further research is needed for assessing the way forestry 

and ash dieback disease add to the declining course of the successional trajectories of such 

species within the traditionally light- open cultural landscape. 

Quantifying temporal turnover in species compositions along environmental gradients and 

measuring temporal change in species optimum values for light and moisture gradients at the 

fine scale revealed processes that is likely to be less detectable through addressing uniquely 

the spatial component of turnover and/ or courser spatial scales. The results of this study 

demonstrate that the combination of approaches employed is operational and conceptually 

relevant for detecting trends in old- growth epiphytic bryophytes and lichens dependent on 

light- open forested landscapes, in relation to environmental modifications at the scale of the 

landscape. The results also speak in favour of using communities of epiphytic bryophytes and 

lichens in detection of temporal environmental trends at the scale of the landscape. 
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Appendix 3. Ecological interpretation of DCA axes.  
 

 DCA Axis 1. 

 

Species with high negative score on axis 1 reside mainly in the upper part of the investigated 

area, equivalent to the locations of longest distance to the sea. Ochrolechia androgyna, 

Scapania umbrosa and Lophozia ventricosa are restricted to one or two trunks at 185 m 

altitude (Moe & Botnen 1997). Other species with high negative scores are Phlyctis argena, 

Grimmia hartmanni, Hylocomium splendens, Dicranum fuscescens, Antitrichia curtipendula, 

Rrytidiadelphus squarrosus, Isothecium alopecuroides, I. myosuroides, Thuidium 

tamariscinum and T. delicatulum. These species with varying abilities towards moisture and 

light are all species most abundant at higher altitudes. 

Species with high positive score reside mainly within the lower height levels of the area, 

corresponding to sites close to the sea: Gyalecta flotowii, Thelopsis rubella, Leucodon 

sciuroides, Homalothecium sericeum, Degelia plumbea, Lobaria virens, Orthotrichum 

speciosum, Nephroma resupinatum, Ramonia subspheroides, Lecidella elaeochroma and 

Nephroma laevigatum. Several of these species are sensitive to draught, and Nephroma 

laevigatum indicates humid communities in markedly oceanic habitats in relict woodlands 

(Smith et al. 2009). Moe & Botnen (1997) claimed that many of these species reside within 

the lower part of the investigated area (below 90 m). The red- list species Thelopsis rubella 

occurs mainly on old, porous bark with a high cover on the shadiest under-side of the top 

zones of the trunks (Moe & Botnen 1997).  

In between these opposite ends of the axis are positioned species residing throughout the 

investigation area: Radula complanata, Parmeliella triptophylla, Hypnum cupressiforme, 

Normandina pulchellum. Lobaria scrobiculata, Biatora vernalis and Buellia griseovirens. 

These species reside in the mid part of DCA axis 1, of which some exist exclusively within 

the middle height level of the study area at trees residing at edges between dense wood and 

open meadow. Lobaria scrobiculata and Biatora vernalis are typical of old broad- leaved 

trees often residing at edges of old woodland in relatively well lit situations, and Biatora 

vernalis is typical of old woodlands on mossy tree trunks (Smith et al. 2009). Within the more 

central parts of the positive end reside the shade sensitive and draught tolerant pleurocarpous 



46 
 

mosses Homalothecium sericeum, Pterigonium gracile, Pterigynandrum filiforme, 

Pseudoleeskella nervosa and Leucodon sciuroides. 

Moe & Botnen (1997) found the age of pollarded branches to be lowest near the farm 

buildings (15 years for the youngest at that time), and the branches further away from the 

farm centre to be the oldest (60 years at the most). During the time between the sampling of 

Moe & Botnen (1997) and the sampling of this study, this pattern of level of pollarding was 

reinforced. The trees most close to the farm have been pollarded within the last 10 years (with 

exception of the pollarded tree nr. 16 situated at high altitude), whereas the trees situated in 

areas more distant from the farm have been left unpollarded. Even though there is higher site 

quality (the capacity of the field to produce wood) in the lower sites close to the sea (Kjetil 

Monstad, personal communication 05.05.2013), there is no clear trend of tree girth within the 

area. The higher site quality in the lowermost area may however interfere with the gradient 

revealed along axis 1 as effect of that bark pH/ nutrient status may be modified by an 

interaction with the soil environment. 

 

DCA Axis 2  

 

Examples of species which reside in the upper, positive part of axis 2 are Antitrichia 

curtipendula, Orthotrichum pulchellum, Orthotrichum lyelli, Orthotrichum striatum, Ulota 

crispa, Parmelia sulcata, Lecidella eleaeochroma, Lobaria scrobiculata, Pseudoleeskella 

nervosa, Frullania fragilifolia, Orthotrichum stramineum, Dicranum fuscesence and 

Cephaloziella divaricata. Within the upper mid part of the axis, among others, species 

sensitive to both shade and draught are found: Nephroma resupinatum, Parmeliella 

triptophylla, Lobaria scrobiculata, Leptogium saturninum, Pannaria conoplea, Sanionia 

uncinata, Peltigera collina, Brachythecium rutabulum, Climacium dendroides and Degelia 

plumbea. Example of species from the middle part of the axis with tolerance towards shade 

and draught are: Metzgeria furcata, Radula complanata, Leptogium lichenoides/ terretius, 

Neckera complanata, Opegrapha rufescence. Species typical of the lower, negative part of the 

axis are shade resistant/ draught sensitive species like Loeskobryum breviostre, Oxystegus 

tenuirostris, Plagiochila asplenioides, Plagiothecium denticulatum, Plagiothecium 

succulentum, Rytidiadelphus loreus, Collema flaccidum, Eurynchium striatum and 

Conocephalum conicum.  
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The arrangement of species along axis 2 suggests that species with low resistance towards 

shade and high resistance towards draught are situated at the positive end of DCA axis 2 and 

tend to reside in the upper parts of the trunk. Situated at the extreme positive end of axis 2 are 

shade sensitive species like Orthotrichum lyelli, Parmelia sulcata and Lecidella elaeochroma, 

separated from shade tolerant species with a more central position within the positive end, like 

Thelopsis rubella, Ochrolechia androgyna and Lepraria sp (p). This arrangement may reflect 

the variation in stem inclination within the height of the top zone. Species thriving in humid 

environments which are easily overgrown by mosses, reside within bark crevices in 

overhanging top zones where irradiation is low, like T. rubella. Species like Parmelia sulcata, 

adapted to dry environments/ high evaporation, reside in the top or middle zones of 90 

degrees where evaporation is high and light is more abundant than within the top zones of 

high inclination. 

Species tolerant both to desiccation as well as shade and/ or species residing throughout the 

entire tree are scattered within the mid part of axis 2. Species sensitive to shade as well as 

draught are found in the upper mid part. Species sensitive to draught and tolerant to shade 

reside at the negative end of the axis, and these species are restricted to the lowest part of the 

trunk, mainly representing species from the ground. DCA axis 2 seems thus to represent a 

distribution trend along the stem, with species similar in abilities towards moisture as well as 

light corresponding to a particular stem inclination/ height. This arrangement of species might 

as well represent a gradient of aspect, with the positive end corresponding to the aspects of 

south- west were irradiation and evaporation is likely to be higher than to the north- east. 

 

The interpretations of species scores and plots from regression related to DCA axis 2 indicate 

that draught sensitive and shade tolerant species are confined to the lowest part of the trunk, 

i.e. the basal zone. This pattern indicates that near the base of the trunk the relative humidity 

is higher than within the upper parts of the trunk (cf. Kenkel &Bradfield 1986; Smith 1982). 

Some liverworts and mosses at the base that are sensitive towards draught are however also 

highly sensitive towards shade. Most of these species are facultative epiphytes or epigeous 

species deriving from the ground below the stem, like Racomitrium aciculare, Drepanocladus 

uncinatus and Marsupella emarginata. The domination of peurocarps and other bryophytes in 

the basal zone of the pollards in this study is also due to the high inclination that limits run- 

off of water from rainfall in summer and snowmelt in winter.  
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The positive end of this axis, corresponding to the upper parts of the trunk and the aspect of 

south, is in large dominated by lichens. Lichen assemblages are supposed to be more limited 

by light and less sensitive to desiccation than bryophytes (Ranius et al. 2008a; Kiraly et al. 

2013). Within the upper part of the trunk and to the aspect of south, light availability and 

desiccation is higher than in the moister and darker, lower parts of the trunk, as well as to the 

aspect of north, where bryophytes dominates.  

The relatively low light availability under forest canopies may limit photosynthesis and 

consequently the growth of lichen thalli (Green et al. 2008, Palmqvist et al. 2008). The 

epiphytic cyanolichens Leptogium saturninum, Lobaria scrobiculata, Degelia plumbea, 

Pannaria conoplea and Parmeliella triptophylla are species sensitive towards both shade and 

draught. From their position along DCA axis 2 these species were interpreted to reside in the 

upper part of the middle zone and to the aspect of south, what may represent a compromise 

between the need for good illumination and shelter from desiccating winds (cf. Rose 1993). 

This interpretation is supported by the observations that in temperate conifer forests of the 

Pacific North west of USA, cyanolichens take an intermediate position along the moisture 

gradient between the draught- resistant chlorolichens and the draught- intolerant bryophytes 

(Sillett & Antoine 2004). 

DCA Axis 3 

 

Several species (mainly crustose lichens) positioned on the positive end of axis 1, like 

Arthonia radiata, Opegrapha rufescens and species of the genera Pertusaria, are easily 

overgrown and prefer relatively smooth (not fissured) and bare bark. Also species from the 

genera Lecidella and acrocarps like Ulota crispa, Orthotrichum lyelli and O. striatum are 

situated at the positive end of the axis. In the mid part reside species that may thrive on 

various kinds of bark substrates or on mosses, but often common in old woodlands (Smith et 

al. 2009), like Biatora vernalis, Rinodina conradii, Ochrolechia androgyna, Trapeliopsis 

pseudogranulosa, Phlyctis argena, Thelopsis rubella, and Ramonia subsheroides. Members 

of the Lobarion community (foliose lichens with blue- green algal component) are also found 

scattered within this mid part of axis 3. These latter species grow on or among mosses in open 

patches at moderately fissured bark, like Normandina pulchellum, Parmeliella triptophylla, 

Peltigera collina, Leptogium lichenoides, L. saturninum, Lobaria virens, L. scrobiculata, 

Nephroma resupinatum, Sticta fuliginosa and Degelia plumbea. Thelopsis rubella and 

Pachyphiale fagicola are indicators of ancient woodland residing in moderately well- lit, 
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mossy bark in open patches in the Lobarion (Smith et al. 2009). These indicators of ecological 

continuity reside at the lower end of the mid part of the axis among shade tolerant and draught 

sensitive species. 

 

Examples of species residing at the negative end are; species from the genus Opegrapha, 

Gyalecta flotowii, Pachyphiale fagicola, Collema flaccidum, Peltigera praetextata, P. canina, 

Lobaria scrobiculata, Loekobryum breviostre, Eurynchium striatum and Antitrichia 

curtipendula. Species within this group are mostly slow colonizing pleurocarpous mosses and 

large foliose lichens thriving on mature or fissured old bark or on moss cover. Also some 

crustose lichens residing on bare patches among mosses appear within this group. The 

arrangement of species along DCA axis 3 seems to reflect a gradient that may be explained by 

different substrate conditions on the trunk, what suggests that DCA axis 3 represent 

conditions related to the cyclical successive stages of the epiphytic vegetation.  

Pioneer species on smooth bark such as Lecidella eleaeochroma and Ulota crispa, were 

suggested by Moe & Botnen (1997) to be relicts from earlier succession stages of the bark 

related to the growth of the three, what may explain the residence within the mid part of axis 3 

of the pioneer shade sensitive species Lecidella elaeochroma and Buellia griseovirens. Parts 

of a potential decline in relative abundances of such species might therefore be due to their 

affiliation to a passed succession stage related to three growth. The investigated trees are all 

probably close to the maximum age for Fraxinus excelsior, i.e. 300-400 years (Nedkvitne & 

Gjerdåker 1993). All the trunks under examination have as such passed the stage of extensive 

length growth, equivalent to a passed pioneer stage of smooth bark. Since the trunk have more 

or less reached the climax stage of rough bark, the arrangement of species along axis 3 

suggests a gradient from species residing on more or less rough bark structure due to peeling- 

off to species thriving on more fissured bark structure.  

The reached maximum age of the trees may be illustrated through the relation between axis 3 

and Height (R2 = 0.000). If maximum age would not have been obtained, length growth would 

have been more substantial and smooth bark species should as such correspond to the top 

zone of the tree where new bark substrate would develop. It is therefore likely that variation in 

bark substrate due to peeling- off followed by cyclical succession of the vegetation, rather 

than variation in bark substrate due to length growth, is underlying the ordination of species 

along axis 3, and the cryptogamic epiphytes at Havrå are likely to re- colonize the trunk after 

each peeling-off.  
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This pattern is likely to underlie the observations of Moe & Botnen (1997) who found thick 

mats of the pleurocarpous mosses (especially Antitrichia curtipendula and Leucodon 

sciuroides) as partly loosened with bare bark appearing underneath. Antitrichia curtipendula 

is a shade sensitive moss tolerant towards draught and associated with old-growth forests 

(Rosso et al. 2001). Rosso et al. (2001) suggested that dispersal and establishment limitations 

decrease the ability of A. curtipendula to establish in younger stands. Re- colonization of bare 

patches may result from remnants of the dislodged mat, growth of surrounding epiphytic 

vegetation, or diaspora establishment (Kenkel & Bradfield 1986, Sjögren 1995). Some of the 

pleurocarpous mosses at the negative end of the axis, like Antitrichia curtipendula, 

Homalothecium sericeum and Leucodon sciuroides, are shade sensitive and draught tolerant 

species. Other species at the negative end are shade tolerant and draught sensitive, like 

Loeskobryum breviostre and Eurynchium striatum. Also the opposite, positive end of the axis 

consist of contrasting species with respect to abilities towards light and moisture, what might 

explain the absence of clear gradients of light and moisture along axis 3.  

 

In open habitats, higher wind speed increases evaporation and also has a stronger mechanical 

destroying effect (Barkman 1958). Along axis 2, the upper parts of the trunk was found to 

correspond to the south side and sites of reduction in canopy cover. Consequently, in addition 

to the relatively higher exposure of wind at the south side, the highest wind speeds are likely 

to be found in the upper parts of the trunk. Bryophytes in general are sensitive to desiccation 

(Ranius et al. 2008a; Kiraly et al. 2013), and large pleurocarps are likely to be more exposed 

to dessication and mechanical destroying effects from wind than acrocarps and lichens that 

are more apressed to the stem (cf. discussion of axis 4 in this study). The domination of large 

pleurocarps within the basal part of the trunks in this study, corresponding to the north side of 

the trunks, indicates that these parts of the trunk are relatively more sheltered and moist.  

Like the interpretations of the species scores along axis 3 suggests, it is likely that the 

variation in substrate conditions related to the cyclic succession stages underlie the measured 

significance of Height and Aspect to the variation in turnover rates along axis 3. This 

suggestion is supported by the finding (from regression plots) of higher turnover rates in the 

upper parts of the trunk and to the south, relative to the lower parts and to the north. This 

pattern is likely to reflect relatively higher rates of peeling- off in the upper parts of the trunk 

and to the south due to relatively higher exfoliation from higher sun exposure (to the south) 

and stronger desiccating winds (in the top zone as well as to the south). At Havrå, such a 
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pattern is highly plausible due to the position of the trunks in a south- facing slope at the south 

side of Sørfjorden, where the south side of the trunk therefore is relatively higher exposed 

than the north side both to irradiation as well as to winds.  

 

DCA Axis 4 

 

At the positive, upper end of axis 4 reside Frullania fragilifolia, species of the genera 

Orthotrichum, Leidella elaeochroma, and Parmelia sulcata. These species are sensitive 

towards shade and resistant towards draught. Also the shade tolerant and draught tolerant 

Opegrapha rufescens and Phlyctis argena are found in the upper part. The above mentioned 

species are more or less strongly pressed against the substrate, reside within the upper parts of 

the trunk in environments with little retention of water and exposed to more or less irradiation 

depending on the degree of stem inclination. 

Species with different abilities towards light and moisture, and belonging to the groups of 

liverworts, small foliose lichens and small pleurocarps, are positioned within the mid part of 

the axis. The most abundant of these species are Metzgeria furcata, Leucodon sciuroides, 

Homalothecium sericeum, Hypnum cupressiforme, species of the genera Lepraria, Isothecium 

myosuroides, Leptogium lichenoides and Melanelixia subaurifera. These species are found 

either within the middle zone of the trunk or scattered throughout the entire trunk. Some 

variation in environments of light and moisture exist between the upper mid part and the 

lower mid part of the trunk (cf. discussion of DCA axis 2), but relative to the heterogeneity 

throughout the entire trunk, the environmental heterogeneity within the mid part can be 

characterized as low. Consequently, species residing in the mid part do not vary extensively 

with respect to their moderate to high resistance towards shade and draught. This 

homogeneity in species abilities towards light and moisture is reflected through the species’ 

moderate adherence to substrate, corresponding to a lack of highly pendulate pleurocarps, 

most crustose lichens (except for the leprose) and large foliose lichens.  

In the negative end of axis 4, Nephroma resupinatum, Peltigera resupinatum, Bazzania 

tricrenata, Loeskobryum breviostre and Thuidium tamariscinum reside. These latter species 

are all sensitive towards draught, more or less tolerant towards shade and found in the basal 

part of the trunk on the slanting upper side. The most striking common feature unifying these 

latter species is however the way they are loosely pressed to their substrate, indicating a 
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residence within moist and shady environments. Evaporation is likely to vary both with height 

on the stem as well as with inclination within each height (cf. discussion of axis 2 in appendix 

1). A gradient of stem inclination is consequently related to the way species are adapted to 

shade and moisture stress. Axis 4 seem therefore to reflect variation in the degree to which 

species adhere to their substrate. 

Appendix 4. Importance of Height, Aspect and Management 
 

The results from the model testing show that there are very small probabilities of that the 

variation in temporal turnover along DCA axis 2 as function of Height would have occurred 

by chance if the null hypothesis was true. The large F- value for axis 2 (F = 4.44) of the 

Anova- test of the regression of turnover rates along axis 2 as function of Height provide 

evidence to reject the null hypothesis of no variation in rates along this axis (no beta 

diversity). The significance of Height to turnover rates along axis 2 indicate an important role 

to gradients in light and moisture to the vertical distribution of the epiphytes along the stem.  

The interaction term between Height and Aspect was not significant for axis 2, indicating that 

the change in temporal turnover rate by moving from one level to the next (e.g. from middle 

to top) of the predictor of Height does not depend on the predictor of Aspect, and vice versa. 

The null model (intercept-only model) represented the most parsimonious model for axis 2. 

These results indicate that the model with Height does not have predictive power to the 

variation in temporal turnover rates along axis 2. The fact that the null model is provided with 

the greatest support does only signify that it is the best model out of the ones included in the 

selection, and that the potential variation in temporal turnover rates cannot be predicted by the 

variables in the alternative hypotheses. There may be variation that is unrelated to the 

measured gradient, like indicated through the large F- value.  

 

The results from the model testing show that there are very small probabilities of that the 

variation in temporal turnover along DCA axis 2 as function of Aspect would have occurred 

by chance if the null hypothesis was true. The large F- value for axis 2 (F = 3.52) of the 

Anova- test of the regression of turnover rates along axis 2 as function of Aspect provide 

evidence to reject the null hypothesis of no variation in rates along this axis. 

Aspect and Height was significant to variation in temporal turnover along DCA axis 3. The 

results from the regressions show that it is unlikely that variation as function of these 
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variables would have occurred by chance if the null hypothesis was true. The large F- values 

for axis 3 (F = 3.27 for Aspect and F = 15.8 for Height) from the Anova- tests of these 

regressions provide evidence to reject the null hypotheses of no variation in rates along this 

axis (no beta diversity).  

The interaction term between Height and Aspect was not significant for axis 3, indicating that 

the change in temporal turnover rate by moving from one level to the next (e.g. from middle 

to top) of the predictor of Height does not depend on the predictor of Aspect, and vice versa. 

The model with Height as the only fixed effect factor represented the most parsimonious 

model for axis 3. These results indicate that Height has predictive power to the variation in 

temporal turnover rates along axis 3, whereas Aspect does not have predictive power. Other 

relevant factors that were not measured and included as potential predictive variables 

obviously might have had higher predictive power than Height to the variation along axis 3.  

 

 

 


