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Preface

Introduction

Algebraic K-theory of a ring captures several important properties of the ring. The
zeroth group Kj is concerned with the projective modules over the ring, while the
first group K is related to the general linear group over the ring. By methods of
Quillen and Waldhausen, these groups can be extended to a family of groups K; for
each natural number i. Although the K-theory of a ring has a very natural definition,
it’s almost impossible to compute it directly, so people have sought approximations
that are easier to compute.

One approximation is Hochschild homology, another is cyclic homology, and there
exists a map from K-theory to Hochschild homology, called the Dennis trace map, that
factors through negative cyclic homology. Hochschild homology and cyclic homology
are possible to calculate due to their algebraic nature, and by results of Goodwillie in
[Goo86], rational relative K-theory is isomorphic to rational relative cyclic homology.

It’s possible to generalize the definition of K-theory to the category of ring spectra,
and K-theory of rings then becomes a special case by associating to each ring R,
the Eilenberg Mac Lane spectrum HR of the ring. One can then hope to mimic
the construction of Hochschild homology and cyclic homology in the category of ring
spectra, and in the unpublished article [Bok86a], Bokstedt was able to define THH,
the topological Hochschild homology, of some special spectra. In a modern framework
with highly structured ring spectra, topological Hochschild homology of a commutative
ring spectrum R can be defined as the tensor S* ® R, see [MSV97]. For a space X
we will write Ax R for the spectrum defined in Section 4.6 in [BCD10], which is non-
equivariantly equivalent to the tensor X ® R. Martin Stolz analyzed the categorical
constructions of the functor Ax R in his PhD thesis [Stol1].

The cyclic group C,, with n elements act on S! through multiplication with the n-th
roots of unity, and this induces an action of C,, on TH H. Topological cyclic homology
TC of a spectrum, was invented by Bokstedt, Hsiang and Madsen in [BHM93], and
is defined as a limit over certain maps between the C,, fixed points of TH H, where n
varies over the natural numbers. Similarly to the non-topological versions, there is a
map from K-theory to TH H, which factors through T'C, and by a result in [DGM13],
the map from K-theory to T'C' is an equivalence in the nilpotent relative case.

Békstedt calculated THH of the Eilenberg Mac Lane spectra HF, and HZ, in
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[B6k86D], and building on these calculations Bokstedt and Madsen in [BM94] with the
help of Tsalidis [Tsa94], was able to calculate TC/(Z);), the topological cyclic homology
of the integers completed at a prime p, for all odd primes p. Later Rognes did the case

= 2 in [Rog99]. Hesseholt in [Hes97] and Hesselholt and Madsen in [HM97a, HMO03]
have calculated TC' completed at a prime p for free associative F-algebras, perfect fields
of characteristic p > 0, truncated polynomial rings of perfect fields of characteristic
p > 0, and certain local fields, more specifically complete discrete valuation fields of
characteristic zero with perfect residue field k& of characteristic p > 2.

Several people have put a lot of effort into computing the homotopy groups of
topological Hochschild homology of various ring spectra. Some examples are calcu-
lating the mod p homotopy groups of THH of the Adams summand ¢ in [MS93], the
mod vy homotopy groups of T"H H of connective complex K-theory in [Aus05] and the
integral homotopy groups of THH (¢) and the 2-local homotopy groups of TH H (ko)
in [AHL10].

Related to the fixed points of T"H H is the now proven Segal conjecture. One version
says that for a cyclic group C), of prime order p, the canonical map THH(S%)% —
THH(S%)" | from the fixed points to the homotopy fixed points, where S° is the
equivariant sphere spectrum, is a p-adic equivalence. In [LNR11] the authors prove
similarly that THH(MU)% — THH(MU)"“» and THH(BP)®» — THH(BP)"‘»
are p-adic equivalences, where MU is the complex cobordism spectrum, and BP is
the Brown-Peterson spectrum, at the prime p. Another calculation in [HM97b] of
similar flavour, is that for a perfect field k of characteristic p, the map THH (k)% —
THH (k)" induces an equivalence of connective covers.

Let Cy act on Ag2 HF, via the free action on S? given by the antipodal map. In
Chapter 2 we make the following calculation: There are ring isomorphisms

T (A2 HF2)“?) = Pyju(a) @24 Ez/a(B)/ (20,28, 0%, o)
W*((AszH}Fg)hCz) &= .Pz/4(257 Oé) ®Z/4 Ez/4(ﬁ)/(2t, 20[, 25, oz2, aﬁ)

where |t| = =2, |a| =2 and |8| = 3, and the homomorphism
I,: m(As2 HF2)®?) — 7 ((Age HF)"C2)

is given by mapping « to a and 8 to 5. Since ¢ is not in the image of I',, it is not an
isomorphism in non-negative degrees.

In Chapter 3 we calculate the homotopy groups of iterated topological Hochschild
homology of HF,, which is isomorphic to m.(Ar= HF,), where T" is the n-torus. We
do these calculations for n < p when p > 5 and n < 2 when p = 3. These groups are
as expected, in the sense that the spectral sequence calculating them collapses at the
E*term and 7.(Ar. HF,), is abstractly isomorphic as an F,-algebra to the E>-page
as an algebra. Here abstractly isomorphic means that the IF,-algebra isomorphism
between E*° and m.(Ar» HF,) is not necessarily given by the canonical isomorphism
between E*° and the associated graded complex of m,(Ar» HF,), coming from the
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filtration giving rise to the spectral sequence. There is a natural map of spectra
w: St A Ap HF, — Apa HF,,, which is important when calculating the homotopy
fixed points, and we attain explicit formulas for the induced map in homotopy.

After the proof of the periodicity theorem in [HS98], periodic phenomena play a
prominent role in stable homotopy theory. The chromatic viewpoint on stable homo-
topy theory, is an organizing principle that let us see only information with particular
periodicity properties. In [CDDI11], the authors construct higher topological cyclic
homology of a ring spectrum R, as a limit of fixed points of Ap»R. It is hoped that
higher topological cyclic homology increases the chromatic type of a spectrum.

Fix a prime p and let k(n) be the n-th connective Morava K-theory. One version
of periodicity as defined in Section 6 in [BDR04] is that of telescopic complexity of a
spectrum X, and this is related to the chromatic type of a spectrum. If a spectrum
X has telescopic complexity n, then the map k(n).(3?"2X) — k(n),(X) induced by
multiplication of v, is an isomorphism in high degrees.

There is an obvious action of T"*! on Arni1HF), and it is expected that the
homotopy fixed points (Azn+1 HF,)*T""" has telescopic complexity n. In the last section
of Chapter 3 we show that in the range were we have calculated 7, ((Agni HF,)"T)
the self map

k(n)*(E2pn_2(ATn+1HFp)th+l) — k(n)*((AT"JrlHFp)th*-l)

induced by multiplication of v, maps 1 to something non-zero, supporting the conjec-
ture that (Agne HF,)" ™™ has telescopic complexity 7.

The calculation of 7, (Ar»HF,) should be possible to generalize to a calculation
of the mod p homotopy groups V(0).(ArnHZ) and the mod v; homotopy groups
V(1)«(Arn?) in some range for n depending on p.

Organization

In Chapter 1 we give a short introduction to the Loday functor with some associated
results. After that we introduce the bar spectral sequence, and prove some results
about spectral sequences that we need later. In the last two sections we define the
isotropy separation diagram of an equivariant spectrum, and some spectral sequences
associated with it.

Chapter 2 begins in Section 2.1 by identifying the first possible non-zero differential
in the Tate spectral sequence for an equivariant S* or S® spectrum. Continuing in
Section 2.2 we find a family of non-zero differentials in V(0).(Agn HF5) for all n > 1.
We finish the chapter by calculating the homotopy groups of the Tate fixed points,
homotopy fixed points, geometric fixed points, and actual fixed points of Ag2 HF5, and
identify the homomorphism 7, ((Ag: HF3)¢?) — 7, ((Ag2 HF5)"C2).

Chapter 3 is the main part of this thesis, both in length, difficulty and technicality.
The first section introduces multifold Hopf algebras, which is a way to encode the
connection between the Hopf algebra structures coming from the different circles in
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A HF,,. In Section 3.2 we prove that the structure of a multifold Hopf algebra puts
restriction on the possible coalgebra structures that can appear in m,(Azn HF,). In
Section 3.3 we explicitly calculate m.(Agn HF,) for n < 2p, and state several technical
lemmas that are needed in Section 3.4, where we explicitly calculate m. (A HFEF))
for n < p when p > 5 and n < 2 when p = 3. The calculation is spread over several
lemmas, and consists of showing that a bar spectral sequence collapses on the E2-page,
and then find a suitable F,-algebra basis for m,(Ar» HF,) that allows us to identify the
algebra structure. Section 3.5 shows that there is an element in the second column of
the homotopy fixed points spectral sequence that is a cycle and not a boundary, and
represents vy, in k(n)(Apn+ HF,).

The appendix contains the definition of a Hopf algebra, and the bar complex. In
addition we define a spectral sequence, state some convergence theorems and define an
algebra and coalgebra spectral sequence. After that, we define the Bokstedt spectral
sequence and continuous homology of a Tate spectrum, two constructions that are
needed in some proofs, but doesn’t play a very prominent role in the thesis.

Notation and Convention

We let C denote strict inclusion and C denote inclusion when equality is allowed. We
let N denote the natural numbers including 0, and N, denote the strictly positive
natural numbers. Given n > 1 we let n denote the set {1,...,n} of natural numbers.
Given a set S and an element s € S we will often write S\ s for S\ {s} to make the
formulas more readable.

Given an element z in a (bi)graded module M, we let |z| denote the (bi)degree of
x. Given a graded module M we let M, denote the part in degree n, and let M,
denote the module ,.,, M, and similarly for other inequalities <,> and >.

Let R be a commutative ring, let  and y be of even and odd degree, respectively.
We let Pr(x) be the polynomial ring over R and let Er(y) be the exterior algebra
over y. When R is clear from the setup we often leave it out of the notation and write
P,(z) = P(x)/(a?) for the truncated polynomial ring. Furthermore, we let I'(z) be the
divided power algebra over R, which as an R-module is generated by the elements ;(x)
in degree i|z| for ¢ > 0, with R-algebra structure given by v;(x)v;(z) = (i?‘)%ﬂ- (x),
and R-coalgebra structure given by (v () = 32, vi(z) @ 7;(2).

Homology is always with IF,, coefficients, where p is a prime which is clear from the
setting. The differentials in a spectral sequence is only given up to multiplication with
a unit.
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Chapter 1

Preliminaries

In this chapter we define the Loday functor and state the properties we need from
orthogonal ring spectra. After that we introduce the spectral sequences that are used
throughout the thesis. See the appendix for the definition and convergence properties
of a spectral sequence.

1.1 The Loday Functor

We will work in the category of orthogonal spectra, but since our goal is to calculate
homotopy groups of certain spectra, we could have chosen another model. See [MM02]
and [MMSSO01] for details. In [MMSSO01] they prove that the category of orthogonal
commutative ring spectra is enriched over topological spaces, and is tensored and
cotensored.

Given a simplicial set X and an commutative ring spectrum R we define the Loday
functor Ax R as in the beginning of Section 4.6 in [BCD10]. When X is a topological
space, we write Ax R for Ag,x)R, where sin(X) is the singular set of X.

Proposition 1.1.1. The Loday functor has the following properties.

1. If R is a cofibrant commutative ring spectrum then there is a natural equivalence

AxR~ X ®R.

2. A weak equivalence X — 'Y of simplicial sets induces a weak equivalence Ax R —
AyR.

3. Given a cofibration L — X and a map L — K between simplicial sets there is
an equivalence Ax 11, kR = AxR Ay r Ak R.

Proof. The first and second part follows from Corollary 4.4.5 and Lemma 4.6.1 in
[BCD10], respectively. The last part follows from the equivalence AxR ~ X ® R and

the fact that tensor commutes with colimits. O
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Definition 1.1.2. Let X be simplicial sets, and let R a commutative ring spectrum.
The inclusion {x} — X induces a map Ay;3R — Ax R, and these maps assemble to a
natural map
wx: Xy AR= \/ R \/ AR — AxR.
zeX reX

Let Y be a simplicial set. Composing wyx : X1 AN AyR — Axxy R with the map
induced by the map X xY - X xY/(XVY) X X AY vyields a natural map

@X : X+ A\ AyR — AX/\yR.

The map wy was first constructed in Section 5 of [MSV97]. Given a simplicial set
X the cofiber sequence X, — S° — ¥X induces a stable splitting X, ~ SV X.

Definition 1.1.3. Composing the maps ws1 and Gg1 with the stable splitting S ~
StV SY induce maps in homotopy

m.(S*AR) = H.(S") ®, m.(R) = m.(As1 R)
T (S* AAyR) = H,(S") ®p, T.(Ay R) = m.(Asiny R).

Given z € T,(R) and y € m.(AyR) we write o(z) and 5(y) for the image of [S'] ® z
and [SY] ® y under the respective maps, where [S!] is a chosen generator of Hy(S').

The following statement was proven in Proposition 5.10 in [AR05] for homology,
but the same proof works for homotopy.

Proposition 1.1.4. Let R be a commutative ring spectrum. Then o : m.(R) —
m«(Asi R) is a graded derivation, i.e.,

o(zy) = o(z)y + (—=1)"'z0(y)

forxz,y € m.R. From this it follows that the composite o : m,(As1R) = m.(Agixs1 R) —
m.(Ag1 R) where the last map is induced by the multiplication in St is also a derivation.

Proposition 1.1.5. Let n > 1 and let R be a commutative ring spectrum, and assume
that m,(AgnR) is flat as a m.(R)-module. Then m,(AgnR) is an m.(R)-Hopf algebra
with unit and counit induced by choosing a base point in S™ and collapsing S™ to
a point, respectively. The multiplication and coproduct is induced by the fold map
V8"V S — S" and the pinch map ¢ : S — S™V S", respectively, and the
conjugation map is induced by the reflection map —id : S™ — S™.

Proof. We have Agnysn R ~ AgnR Ap AsnR and since ,(Ag-R) is flat as a m,(R)-
module, m,(AgnR Ag AgnR) = m,(AgnR) Ar,(r) Tx(AsnR) by Corollary 1.2.2. That
the various diagrams in the definition of a ,(R)-Hopf algebra commutes, now follows
from commutativity of the corresponding diagrams on the level of simplicial sets. [
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Proposition 1.1.6. Let R be a commutative ring spectrum, and assume that m.(As1 R)
is flat as a m(R)-module. Given z in m,(R), then o(z) is primitive in the the m.(R)-
Hopf algebra m,(As1R).

Proof. The diagram

SIAR—= AgiR
immd AyR
(StvSH, AR—“>AqysiR
commutes. Hence, ¥(0(2)) =0(2) @ 1+ 1® o(2). O

1.2 The Bar Spectral Sequence

In this section we introduce the bar spectral sequence which is the most important
tool in our calculations.

Let X, be a simplicial spectrum and define the simplicial abelian group m(X,) to
be m(X,) in degree ¢ with face and degeneracy homomorphisms induced by the face
and degeneracy maps in X,. Write |X,| for the realization of the simplicial spectrum
X.. See Chapter X in [EKMMO97] for more details.

The spectral sequence below is well known for spaces, and appears for spectra in
Theorem X.2.9 in [EKMMO97].

Proposition 1.2.1. Let X, be a simplicial spectrum, and assume that sks(X,) —
skqi1(Xy) is a cofibration for all s > 0. There is a strongly convergent spectral sequence

Esz,t(X*) = Hy(m(X.)) = mopu(Xs).

Let R be a simplicial ring spectrum.
If X, is a simplicial R-algebra, then E?,(X.) is an m.(R)-algebra spectral sequence.

Proof. The skeleton filtration skg X, C sk; X, C sko X, C ... of X, gives rise to an
unrolled exact couple
Ag A Ay

NN

E. E'  E

where Ay, = my(sks X,) and E;,z = Tort(sks Xi/ sks_1 X,) when s > 0 and 0 oth-
erwise. That the d'-differential is the differential in the chain complex associated to
m(X,) follows from a diagram chase as in Theorem 11.14 in [May72].

This spectral sequence is concentrated in the right half plane. By Theorem A.3.6,
the associated spectral sequence converges strongly to the colimit colimg Ay = 7, (X,)
since the limit lim, A, = 0. We have the usual filtration Fy C F; C F, C ... of the
colimit colimg A, as constructed in Section A.3.
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Recall the definition of an algebra spectral sequence in Definition A.3.7. Given
a € m(sks X,) and b € m,(sk, X,) represented by maps of simplicial sets S* — sk, X,
and SY — sk, X,, the product ab € myy,(Sksyy X) is represented by the composition
StAS* — sky X, AR sk, X, — sk Xi Agp AX, —, where the first map is the smash
product, the second is the inclusion, and the last map is the product map in X,.

If X, is a simplicial R-algebra, the product thus respects the filtration, i.e., ¢(F;;®
Fuv) € Fyiyttv. Using the crossproduct in homology we get a product

(X, Ar X,) — E? (X.,)

E?,t(X*) ® Ez,U(X*) - E2 s+t utv

s+t utv
where the last homomorphism is the standard shuffle product of simplicial modules.
Thus the product satisfies the Leibniz rule, and we define the rest of the products as
the homology of the product on the E?-page. It coincide with the induced product
on the associated graded complex coming from the filtration of colim A, since both
products have the same geometric origin from a map of simplicial spectra.

O

We are interested in the special case when R is a commutative ring spectrum, M a
cofibrant right R-module, N is a left R module and B(M, R, N) is the bar construction.
Le., B(M, R, N) is the simplicial spectrum which in degree ¢ is equal to M A RM AN,
and where the face and degeneracy maps are induced by the same formulas as in the
algebra case using the unit map and multiplication map. By Lemma 4.1.9 in [Shi07]
there is an equivalence |B(M, R, N)| ~ |M Agr N|.

Corollary 1.2.2. Let R be a bounded below ring spectrum, M a right R-module and
N a left R-module. Then there is a strongly convergent spectral sequence

EZ, = TorT"(n, M, 7,N); = my (M AL N).

Remark 1.2.3. If 7. (X,) is flat as an 7, (R)-module, this corollary yields an isomor-
phism 7, (X, A X)) =& m(X,) ®r.(R) e (X).

If X, is a simplicial R-coalgebra, i.e., there is a coproduct map ¢ : X, — X, Ag X,
with a counit map X, — R making the obvious diagrams commute up to homotopy,
and m,(X,) is flat as an 7, (R)-module, then m,(X,) is an 7, (R)-coalgebra with coprod-
uct induced by 1 followed by the isomorphism m, (X, Ag X) = 7,(X,) ®x, (r) T(Xs).

Corollary 1.2.4. Assume that X, is a simplicial R-coalgebra, and assume that the
map sky(X,) — skey1(Xy) is a cofibration for all s > 0. If each term E™(X,) forr > 1
is flat over m,(R) then E?(X,) is an m.(R)-coalgebra spectral sequence. If in addition,
(X, is flat as an m(R)-module, then the spectral sequence converges to m.(X,) as
an m,(R)-coalgebra.

Proof. Recall the definition of a coalgebra spectral sequence in Definition A.3.8. Let
sk, (X« ArX,) be the colimit of the diagram consisting of the spectra sk; (X,) Agsk;(X,)
with ¢ + j < n, and with one map sk;(X,) Ag sk;(X.) — sky(X\) Ag sk (X.) when



1.2 The Bar Spectral Sequence 5

1 <id and j < j' with i'+j" < n, induced by the inclusion of the skeletons. The natural
map sk, (X, Ar X,) = sk, 1(X,ArX,) is a cofibration since it can be constructed as a
pushout of cofibrations, by adding the extra spectra in the diagram for sk, (X, Az X.,)
one by one.

This yields a sequence of cofibrations

§O(X* AR X*) — Sikl(X* AR X*) — ST{Q(X* AR X*) — ...

with colimit equal to X, Ag X.. We let A,; = 7o (sky(X, Ag X.)) and E;t =

7. (ko (Xs Ag X.)/ske1(X, Ag X)) and the chain complex E s equal to the total

complex of E*(X,)®, (r) E*(X,), since sky(X, Ag X,)/sky_1(X. Ar X,) is the wedge of

ski(X,) Arsk;(X,) with i+j = n divided by the images of lower dimensional skeletons.
This corresponding spectral sequence converges strongly

E' (X, Ar X.) = m(X. Ar X.),
with and since each term E'(X,) for r > 1 is flat over 7, (R), the Kiinneth isomorphism

induces an isomorphism E (X, Ap X,) = E"(X,) Qr.(r) E"(X.).
From Proposition 1.2.1 we have a spectral sequence

EY X, Ar X.) = m(X. Ar X,)

coming from the skeleton filtration of X, Ar X,.

There is map from the filtration &i(X* Ar X,) to the skeleton filtration sk; (X, Agr
X.) induced by the natural maps sk;(X,) Ag sk;(X,) = skiy; (X Ag X.). It induces
the shuffle map from ' (X. AR X.) to EY(X, Agr X.), which is a chain equivalence
with inverse given by the Alexander Whitney map.

The composition

o

EL(Xa) = EL (X Ar Xo) — Epo(Xs) @y B (XS

utr=s,0+y=t

where the first map is induced by the map X, — X, Ar X,, and the second map is
induced by the Alexander Whitney map defines a 7, (R)-coalgebra structure on £ (X,)
satisfying the the assumption of an R-coalgebra spectral sequence in Definition A.3.8.

If in addition 7,(X,) is flat as an m,(R)-module, then 7,(X,) is an m.(R)-coalgebra
as observed in Remark 1.2.3. Let

FoC...CF 1 CF,CF C...Cm(X))
be the filtration associated with the skeleton filtration of X, let
GoC...CGy1 €CGy CGop1 €. C( X AR X))
be the filtration associated with the skeleton filtration of X, Ar X,, and let

FOQ-HQFS—I QFSQF5+1S...Q7T*(X*/\RX*)
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be the filtration associated with the filtration &(X* ArX.). Since the spectral sequence
E?(X, Ar X,) is isomorphic to FQ(X* Ar X.), and they both converge strongly to
(X« Ar Xi) we have a commutative square

Do G/ Gomt —= Do B (Xu Ap X/ EZ (X A X

lg i%

@szo H/Hs — 69520 EEO(X* AR X*)/E(sxil(X* Ar X.)

so G, = F, for all s > 0. Since the coproduct map 1 : X, — X, Ap X, preserves
the skeleton filtration, this implies that on homotopy groups (F;) C G5y = H,. Now
H,/Hs_1 = @, F,/Fs_1, so the spectral sequence converges to m.(X,) as an m.(R)-
coalgebra. O

In particular, for B(R, AxR, R) ~ Agi,x R we have the following proposition.

Proposition 1.2.5. Let R be a commutative ring spectrum and let X be a simplicial
set. The operator
0 :m(AxR) = m.(Asiax R)

takes z to the class of [z] in
Eg,t = Tor™(Axf) (me(R), m(R)) = Tsyt(Asiax R),
where [z] is in the reduced bar complex B(m.(R), m.(AxR), m.(R)).

Proof. Using the minimal simplicial model for S we get a simplicial spectrum Si A
Ax R which in simplicial degree ¢ is equal to (S;)+ ANAxR = (AxR)Ve, the ¢-fold
wedge of AxR. In the E?-term of the spectral sequence in Proposition 1.2.1 associated
with this simplicial spectrum, the element [S'] ® z is represented by 1 @ z in Ell* >~
m(AxRV AxR) = 7. (AxR) ® 7.(AxR), where the second factor corresponds to the
non-degenerate simplex in Sj.

Similarly, there is a simplicial model for the spectrum Agi,x R, which in simplicial
degree ¢ is equal to Aginx R = Ay, xR = (Ax R)" 2971 the (¢ — 1)-fold smash product
over R. The map @ : S} AAxR — Agi xR is given on these simplicial models in
degree g by the natural map

(AxR)vq — (AxR)/\q — (AxR)/\Rq_l

where the first map is induced by the inclusion into the various smash factors using
the unit maps, and the second map is induced by the map AxR — Ay, R on the
factor indexed by the degenerate simplex. The element 7(z) in the spectral sequence
from Proposition 1.2.1 associated with this simplicial spectrum, is thus represented by
the element z in B}, = 7w, (AxR).
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Now we have to compare this last spectral sequence, with the spectral sequence
coming from the bar complex B(R, Ax R, R). In simplicial degree q, B(R, Ax R, R) is
equal to RAAxRMIAR = ASOH(]_Iq x)R. The equivalence between B(R,AxR,R)
and the model above is induced by the map S®II [, X — /X identifying S° and
the basepoints in X to the base point in \/, X. The element o(z) is thus represented
by the class of [z] in

Eft = Tor’”(AXR)(W*(R), T(R)) = msi(Asiax R),

where [z] is in the reduced bar complex B(m.(R), m.(AxR), m.(R)). O

1.3 Hopf Algebra Spectral Sequences

This section contains some results about calculations in spectral sequences with a Hopf
algebra structure. The first result is well known, and will be a cornerstone in reducing
the number of potential non-zero differentials in the bar spectral sequence and the
Bokstedt spectral sequence.

Proposition 1.3.1. Let E? be a first quadrant connected R-Hopf algebra spectral se-
quence. The shortest non-zero differentials in E? of lowest total degree, if there are
any, are generated by differentials from an indecomposable element in E? to a primitive
element in E?.

Proof. If there are no di-differentials for i < r, then E" = E? is still an R-Hopf algebra
spectral sequence. Let z be an element in E” of lowest total degree with d"(z) # 0. If
z can be decomposed as z = zy, with both x and y in positive degrees, then by the
Leibniz rule d"(zy) = d"(z)y £+ zd"(y), so if d"(zy) # 0, then d’(z) or d"(y) must be
non-zero, contradicting the minimality of the degree of z.

We have ¥(2) = 1® 2+ 2@ 1+ > 2 ® 2" for some elements 2’ and z” of lower
degree than z. Now,

Y(d(2)=d"(W(z)=1d (z)+d"(z) ®1+ Z d'(Z)@2"+7ed(2").

If d"(z) is not primitive we must have that d"(z") or d"(2") are not zero, contradicting
the minimality of the degree of z.

Thus the shortest differential in lowest total degree is from an indecomposable
element to a primitive element. O

The next proposition shows that in certain circumstances the coalgebra structure
of the abutment in a spectral sequence is determined by the algebra structure of the
dual spectral sequence. We will use it to calculate the F,-Hopf algebra structure of
W*(ASnHIFp).
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Proposition 1.3.2. Let R be a field, and let

O A() L A1 : AZ

Y

Ey 12 B,

be an unrolled exact couple of connected cocommutative R-coalgebras which are finite in
each degree. The unrolled exact couple gives rise to a spectral sequence E* converging
strongly to colimg As by Theorem A.3.0.

Assume that in each degree t the map Ay — Asy1, eventually stabilizes, i.e., is the
identify for all s > u for some u depending on t. Assume the E*-term of the spectral
sequence is isomorphic, as an R-coalgebra, to a tensor product of exterior algebras
and divided power algebras, and there are no differentials in the spectral sequence,
i.e., B> = E>. Then there are no coproduct coextensions in the abutment. Hence,
colimy Ag & E* as an R-coalgebra.

Proof. The colimit colimg Ag of R-coalgebras is constructed in the underlying category
of R-modules. Applying D(—) = hompg(—, R) to the unrolled exact couple in the
proposition yields an unrolled exact couple ... = A_y — A_; — Ay of commutative
R-coalgebras with A_, = D(A,). By Theorem A.3.6 the associated spectral sequence
converges strongly to limy A, = D(colim, A,) since it is a spectral sequence with exiting
differentials. Since R is a field, cohomology is the dual of homology, so Fr_sv_t =
D(EL,).

Now, since E? = @), E(z;)®@ ; '(y;), we have o= X, E(r)®Q; P(y;), where
x} is the dual of 25, and (y;)" is the dual of 74 (y;). Since there are no differentials in E?,
there are no differentials in EQ, SO E2 = E™. Since colim A, is cocommutative, lim, A,
is commutative, and hence (2})? = 0 in the abutment lim, A; since z} is in odd degree.
Furthermore, y; is not nilpotent, so there is an algebra isomorphism lim, A, = E~.
Since the maps A; — Asy1 eventually stabilizes, D(lim; As) = colim; Ag, so we can
dualize again, and get that there is an R-coalgebra isomorphism colim, Ay & E*°. [

The final two lemmas are one standard homological calculation, and one easy
homological calculation that are used to identify the EP-term of the Bokstedt spectral
sequence.

Lemma 1.3.3. Let
E? = A®p Tr(zo,21,...) @ Er(y1, 1o, .. .)

be a connected R-algebra spectral sequence with x; and y; in filtration 1 and R a field.
Assume there are differentials

A" (Yprn (1)) = () Yis1,
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for all k,i > 0. Then
E? 2 A® Pr(zg,x1,...)/(zh, 25, ...).

Proof. Consider the R algebra I'gr(x;) ® Egr(y;y1) with differentials dP~ (v, x(2;)) =
Ye(:)yig1. The cycles are v (x;) for k < p — 1 and yx(x;)yi41 for all k, but this last
family are also boundaries, so the homology is Pg(z;)/(a?). The lemma now follows
from the Kiinneth isomorphism, since R is a field. i

In the next lemma we have a family of differentials dP~!(v,4x(z;)) given by certain
formulas, and then another family of differentials dP~'(v,4x(2)) with image in the
module generated by the images of all the differentials in the first family. The lemma
states how we can construct new cycles such that we are not bothered by the last
family of differentials.

Lemma 1.3.4. Let
E? = A®Tgr(zo,21,...) @ Er(y1, s, ...) @ Tr(2)
be a connected R-algebra spectral sequence. Assume there are differentials
&P (i (20)) = () yina

@ (pan(2)) = (z) - D md (1)),

leN
where r; are elements in R.
Then there are cycles
pk—l
@) = 3 (=) S T, (135)
Jj=0 a€eNN |o|=; i€N

where || = 3,y o, and the convention is that 0° = 1, yo(z) = 1, and v(z) = 0
when i < 0.
Furthermore, this formula induces an R-algebra isomorphism

ARTg(xo, 21 ... )@FER(Y1,Y2, .. ) QT R(2") & ARTr(z0, 21 ... )R ER(Y1, Y2, . . .) QT r(2).

Proof. First we show that the elements 7, (2') are cycles. By the Leibniz rule

o) = (S (W c) S T (@)
J=0 a€NN |a|=j i€N

=D (0 peyy(2)) D T mana)
J=0 NN |a|=j i€EN

ph

2 (@) X (L) ).

Jj=0 aeNN |a|=j €N

—
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Using the formula for d”~!(v,_,;(z) and the Leibniz rule once more,

pk—l

() = 3 (D (B (o md (@) Y T e (@)
J=0 leN aeNN |a|=j i€EN

O (D (=) D0 D ey @)@ (p(a0) T 0, (2),
Jj=0 a€eNN |a|=j leN I#ieEN

(1.3.6)

and there are no extra signs here since all the factors in the expression of v, (z) are
in even degrees.
In the first sum in equation 1.3.6 observe that

O nd @) S T e e @)

leN aeNN |a|=j i€N
=30 @) e (@) [T e ()
leN aeNN |a|=j IF#i€EN,
=3 > d @) vt (@) [T e ()
lEN aeNN |a|=j+1 I#ieN

Substituting this expression into equation 1.3.6 and increasing the summation index
in the first sum with one, the differential is given by

7 () =

P41
Do (2 Y D e (@) (@) [T e (@)
j=1 €NV |a|=j lEN I#ieN
pk—l
) (D) D D i e @)@ (@) TT e (22)-
7=0 aeNN |a|=;5 lEN l#ieN

The j = p*~! 41 summand in the first sum is zero because Yok ph-141)p(2) = V-p(2) =
0. Similarly, the j = 0 summand in the last sum is zero because 0 = j = || implies
that a; = 0 for all [, and hence v,(,—1)(21) = Y—p(2;) = 0.

The rest of the summands cancel pairwise, due to the factors (—1)7~ and (—1).
Thus d*~*(y,x(2)) = 0.

That (v,:(2"))? = 0 is clear by the Frobenius formula, since every summand in the
expression for y,.(2") contain a factor from a divided power algebra.

The composite

Yk ()Y, (27) PIrp(2)

Cr(z) Lr(zo,x1,...) @ Er(y1, 92, ...) @ Tr(2) Lr(z)
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equals the identity. Hence, the map induced by equation 1.3.5 induces an R-algebra
isomorphism

AQTgr(zg, 1 ... )QFER(Y1,Y2, - - ) QL R(2") & ARTr(z0, 71 ... )@ ER(Y1, Y2, - - . )T R(2).
O

1.4 The Isotropy Separation Diagram

Everything in this section about finite groups can be found in Section 4 in [LNR12]
or in Part 1 of [GM95]. Recall from Section II.2 in [MMO02] what it means for an
equivariant orthogonal G-spectrum X to be indexed on various universes. We let i be
the inclusion of the trivial G-universe into a complete G-universe, let i* be the forgetful
functor from G-spectra indexed on a complete universe, to a G-spectra indexed on the
trivial G-universe and let i, be the left adjoint of i*. See Section V.1 in [MMO02] for
more details.

Let EG be a free, contractible G-CW complex. The collapse map from FG to a
point gives a homotopy cofiber sequence

EG, — S° - EG (1.4.1)

of based G — CW complexes where EG is the unreduced suspension of EG, with one
of the cone points as a base point.

Definition 1.4.2. Let X be an orthogonal G-spectrum and define the spectra

Xne = (EGL NT*X) /G (homotopy orbit)
X" = F(EG,, X)¢ (homotopy fized points)
X' = [EG A F(EG,, X)|¢ (Tate spectrum,).

We have a commutative diagram

[EG. A X]¢ X¢ [EG A X)¢

- r |¢

[EG, A F(EG,,X)|¢ — F(EG,, X)¢ — [EG A F(EG,, X)|°,

with horizontal cofiber sequences coming from 1.4.1, where F(Y, X) is the mapping
spectrum from Y to X and the vertical map is induced by the map X = F(S°, X) —
F(EG,, X) given by collapsing FG to a point.

The left map is an equivalence by Proposition IV.6.7 in [MM02]. We also have the
Adams equivalence, Equation VI 4.6 in [MMO02],

7 (ZMOEG, Ni*X)/G S i (EG, Nit X))
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where ad G denotes the adjoint representation of G. When G is finite, the adjoint
representation is trivial, so the diagram above can be rewritten for any genuine G-
spectrum X, as the isotropy separation diagram

Xpg — X0 ——[EG A X)©

|k

XhG XhG RM XtG.

Our goal is to compute the homotopy groups of X¢ and to do this we introduce
some spectral sequences, first introduced in [GM95], that converges to the homotopy
groups of the bottom row of the isotropy separation diagram.

1.5 Tate Spectral Sequence and Homotopy Fixed
Points Spectral Sequence

In this section we will define three spectral sequences that calculates the homotopy
groups of the three spectra in the lower half of the isotropy separation diagram. These
were originally constructed in [GM95].

To define one of these spectral sequences we need the notion of a complete resolution
and Tate cohomology of a finite group G with coefficients in a G-module M. This can
be found in Chapter IV in [Bro82].

A complete resolution for G is an acyclic complex P = (P,);ez of projective F,-
modules together with a surjective homomorphism € : Py — Z such that P = (P;)en
is an ordinary resolution of F with augmentation e. From the definition there is a
monomorphism 7 : F, = P_; such that the diagram

commutes.

Definition 1.5.1. Given an F,-module M and a complete resolution (P, d,) of G,
the Tate cohomology groups of M are defined by

H™(G; M) = H"(Homg, (P,, M)),
and the Tate homology groups are defined by

H,(G; M) = H,(P, @, M).
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These groups are independent of the chosen resolution of G, and there is an iso-
morphism
H"(G M)= H_,1(G;M).
We will not distinguish between a Qgpace and its suspension spectrum. Let G be
a finite group, E, be the n-skeleton of EG for n > 0, while E_,, = D(E,) = F(E,, S°)

is its function dual. Splicing the skeleton filtration of EG with its function dual gives
the finite terms in the Greenlees filtration of G:

DEG) > ... E | —Ey=58"—E —...— EG. (1.5.2)
The successive cofibers of 1.5.2 are
E,/E,1 =G A(VS™Y). (1.5.3)

So, applying homology to the filtration yields a spectral sequence El,=H wrt(Ey/Es_y)
that is concentrated on the horizontal axis. Since both EG ~ hocohmnE and

(EG) ~ holim, E, are non- equivariantly contractible, this spectral sequence col-
lapses at the E2-term, giving us a long exact sequence

s Hy(Ey ) Ey) —> Hy(Er [ Ey) —%= Hy(Eg/ E_)— -

l

Ho(S)

of finitely generated free F,[G]-modules. Letting P, = H, 1(E,41/E,) yields a com-
plete resolution (P, d.) of F, = Hy(S").

We are also interested in the non-finite, groups of units in C and H. Let K be one
of the fields C or H and let k = dim K. Let G = S(K) be the group of units in K and
let S¥ be the one point compactification of K thought of as the unreduced suspension
of S(K). Given a G-spectrum X, the Greenlees filtration of EG = SX™ is defined as

Eks = Eks+1 = ... = Ek(s+1)—1 = SSKa (154)

with maps iys : Ers—1 — Ejs equal to the natural inclusion SG—DE — K.

We now construct the Tate spectral sequence. Let G be a finite group, S(C)
or S(H), and let X be an orthogonal G-spectrum. Smashing the cofiber sequence
E,, - E, > FE, s/ E,_1, coming from the Greenless filtration, with F(EG,,X) and
taking G-fixed points, yields the cofiber sequence

[Ey 1 AF(EG,, X)]¢ = [Es AN F(EG,, X)]¢ = [Es/E,1 A F(EG,, X))%.

Theorem IV 2.11 in [MMO02] and Corollary II 1.8 in [LMSMS86] combines to give a
non-equivariant equivalence ¢,i*(X) — X, and the map collapsing EG to a point gives
a non-equivariant equivalence F(S° X) — F(EG,, X). Hence we get an equivalence

[By/Esy A F(EGy, X)|¢ ~ [By/Es_y A X|C = [E/Ey_y Aini™(X)]€
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Since E,/E,_ is G-free, the Adams equivalence, equation VI 4.6 in [MMO02] gives an
equivalence

[Ey/Esq Niyi* (X)) ~ (24CE, /B, Ni*(X))/G.
The Greenless filtration yields a filtration
% —> - —— B,y NF(EG4, X)|¢ — [E,AF(EG,,X)|¢ — .. —= X'C |

where the identification of the homotopy (co)limits follows from Lemma 4.4 in [LNR12].
Applying homotopy to this sequence gives rise to an unrolled exact couple of graded
groups

A5,1 As As+1
e
A N
B Eg

where Ay, = 7rs+t([E's,1 ANF(EG,, X)]%) and E;t = 7rs+t(2“d(G)ES/Es,1 Ni*(X))/ Q).
The dotted line is a degree 1 homomorphism.

More general versions of the spectral sequences in the next proposition can be
found in Theorem 10.3 in [GM95]. Furthermore, Theorem 10.5 and 10.6 in [GM95]
proves the claim about the multiplicative property of the spectral sequences involved.

Proposition 1.5.5. Let G be a finite group, and let X be a G spectrum. Assume
that X is bounded below and with finite homotopy groups in each degree. Let M be the
sphere spectrum or V(0) the mod p Moore spectrum. Then there are strongly convergent
spectral sequences

E2, 2 H°(G; My(X)) = M (X')  Tate spectral sequence
E2, = H*(G; My(X)) = Myt (X"9)  homotopy fized point spectral sequence
EZ, = H(G; My(X)) = My (Xng)  homotopy orbit spectral sequence,

where the first come from the Greenlees filtration, and the second and third come from
the skeleton filtration of EG.
If X is a G-ring spectrum, the first two are My(X)-algebra spectral sequences.
The restriction map R* : X9 — X' induces the standard homomorphism

H™*(G; M(X)) — H*(G; My(X))
which is an isomorphism for s < —1 (see Section 4 in [Bro82]).

Proof. We only do the argument for the Tate spectral sequence. We do the proof for
homotopy groups, but all the arguments work equally well for V(0), since it is a finite
spectrum.
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When G is finite, the adjoint representation is trivial, so equation 1.5.3 lets us
rewrite the £ term as

Esl,t = Hs(Es/Es—l) ®leG 71't(X) =P, ®]FPG Wt(X)7

with the d' differential being induced by the differential in the complete resolution
(P.,d,). Thus, R R R
B, = Hoo(Gim(X) = H(Gym(X)),

where H is Tate-(co)homology.

To show that this spectral sequence converges conditionally we must show that
limA; = 0 and Rlimg; A; = 0. We have, by Theorem IX.3.1 in [BK72], an exact
sequence

0 — Rlim, A, .1 — 7, (holim,[E, A F(EG, X)]%) — lim, A,, —0 .

This exact sequence also holds for V'(0). since it is a finite spectrum.

Since holim,[F,_; AF(EG., X)]% is contractible m, (holim,[E,_ AF(EG,, X)]%) =
0 so both Rlimg A, and lim, A, are zero. The Tate spectral sequence is concentrated
in the upper half plane, so by Theorem A.3.5 the spectral sequence converges strongly
when Rlim, E” = 0, which is the case since E? is finite in each bi-degree. That the
Tate spectral sequence is an algebra spectral sequence when X is a G-ring spectrum,
follows from Proposition 4.3.5 in [HM97b] or from [GM95].

For the homotopy fixed point spectral sequence, homotopy orbit spectral sequence
see Theorem 10.3-10.6 in [GM95], and the claim about the restriction homomorphism
R", is proven in Section 2 in [BM94]. O

By Lemma 2.12 in [BM94], the spectral sequence we get from the skeleton filtration
of EG is isomorphic to the spectral sequence we get from the negative part of the
Greenlees filtration

.= [EL, ANF(EG,, X)]% — [Ey A F(EG,, X)|% = F(EG,, X)¢ = X"

The next proposition also appears in [GM95] as Theorem 14.2 and 14.9 in combi-
nation with Theorem 10.3

Proposition 1.5.6. Let K be one of the fields C or H, let G be the group S(K) and
let k = dim K.

Assume that X is a G-spectrum that is bounded below and with finite homotopy
groups in each degree. The Greenlees filtration induces a strongly convergent Tate
spectral sequence

B2, 2 P(t,t7") @ m(X) = mere(X').

where |t| = (—k,0).



16 Chapter 1. Preliminaries

Proof. We have to identify the E?-term. The cofiber E‘l/EO may be identified with
YGy. In general, for k = dim K, ixs = idge-1nx A iy, so the cofiber Ey,/FEys_1 may be
identified with G A S¢~VE_ Thus, the action map induces an isomorphism

YOG, Ag i*(SETVE A X) =2 |BkgE-DE A X| = Bk X].

Here |X| denotes the underlying spectra of the G-spectra i*(X). Hence the E*term
is equal to P(u,u™1) ® m,(X). To show that the spectral sequence converges strongly,
we can use the same argument as in the finite case. O

Now we want to construct the homotopy fixed points spectral sequence for the
group 7™, the n-fold torus. We use the setup in [BRO5]. Let the unit sphere S(C™) be
our model for ES! with the S'-action given by the coordinatewise action. The space
S(C*>) is equipped with a free S1-CW structure with one free S!-cell in each even
degree, and the 2k-skeleton is the odd sphere S(C%*+1). The 2k-skeleton is attained
from the 2k — 2-skeleton S(C?*~1) by attaching a cell S* x D?* via the T"-action map

S x 9D* — S(CF).

We use the product S(C*)" as a model for ET™ with the product 7"-CW structure.
Thus the 2k cells in S(C®)" are T" x D*1 x ... x D* where ky + ...+ k, = k.
In particular there are 2n number of 2-cells in ET™, and they are attached by the
T"-equivariant extension of the inclusion S' — T™ of the i-the circle.

We now get a T"-equivariant filtration

0 C ET" C...C Eo 0T C ExT" C ...
with colimit ET™, and T™-equivariant cofiber sequences
By oT™ — EgpT" — T7 A (VS*)

where the wedge sum runs over all 2k-cells in ET™. Here T™ acts trivially on the space
(VS%).

Proposition 1.5.7. Let X be a bounded below T™-spectrum with finite homotopy
groups in each degree. The skeleton filtration of ET™ induces a strongly convergent
homotopy fixed point spectral sequence

E2, = Pty ... t,) @ T(X) = mepe(X'9).

where |t;| = (=2,0). Let M be any homology theory. When restricted to the 2-skeleton
of ET™ there is a strongly convergent spectral sequence

B2, 2 Z{1 ty, ..t} @ My(X) = Moy (F(ETY, X)™).

st T

When n = 1 the restriction map R" induces the inclusion map P(t) @ m(X) —
P(t,t71)Y®@m(X) on spectral sequences from the homotopy fized points spectral sequence,
to the Tate spectral sequence.
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Proof. Applying F(—, X)™" to the skeleton filtration of ET? yields a filtration

o= F(BETY X)) = F(Ey T X)) — o= F(ETE, X)™ — {pt},
with the homotopy fixed point spectrum as its limit

XhT" — lim F(E,TY, x)T,
From the cofiber sequences
By T" — ET" — ET" /By T"
we get cofiber sequences of spectra
F(ET" By T, X)) — F(ETE, X)) — F(B T, X)™.

When £ is odd the last map is an equality and F(E,T"/E,_T", X)™" is contractible.
When k is even E,T"/Ej,_,T" = T" A VS*, and since T acts freely on T A (VS*),

there are equivalences of spectra F(T7 A (VS*), X)T" ~ F(vS*, X) ~ vEFX.
We define an unrolled exact sequence

AQs—l = A2s A23+1 — .. — AO
1.7 |
7 e
¥ ¥
Es, E, Eq

by Agp = T (F(E_T?, X)) and B}, = mo(F(E_,T"/E_ 7", X)™") The dotted
arrow is a degree 1 homomorphism, and when s is odd or s > 1 then E;t =0,
and when s is even and non-positive, then E!, = m (F(E_,T"/E_ T, X)) =
et (VEX) 2 m(VX).

This spectral sequence converges conditionally to the limit lim, A, = m,(X"™")
since colimg A; = 0. By Theorem A.3.5 it converges strongly since Rlim, E" = 0.

By Theorem 9.8 in [GM95] There is an isomorphism E? & H*(BT", 7, (X)) =
P(ty,...t,) @ m.(X), where the last isomorphism follows from the fact that the action
of T" on m,(X) is trivial.

That the spectral sequence for the 2-skeleton is as desribed is clear since ET™ only
contain even degree cells. Convergence is not a problem since it is concentrated in two
columns. O






Chapter 2

Homotopy Groups of (h)-fixed
Points of A HIF9

In this chapter we will use the isotropy separation diagram for the spectrum Ag2 HFo
to calculate the homotopy groups m,((Ag2 HF5)?), where the non-trivial action of
Cs, the cyclic group with two elements, is induced by the antipodal map on S2. In
Section 2.2 we construct a family of non-zero differentials in the Tate spectral sequence
calculating V(0).((Ag2 HF5)!2). In Section 2.3 we use the bar spectral sequence to
calculate 7, (Ag2 HF,), and from this we calculate the homotopy groups of Agp2 HFy,
which is one of the spectra in the isotropy separation diagram. In the last section
this enables us to determine all the entries, except for the actual fixed points, in the
isotropy separation diagram, and the various maps connecting them, and in turn this
determines 7, ((Agz HF2)?).

2.1 A Differential in the S' and S® Tate Spectral
Sequence

In this section we will show that given a G-spectrum X, where G is S! or S3, the first
possible non-zero differential in the Tate spectral sequence converging to m,(X“) is
given by the action of G. The argument is a generalization to the field of quaternions
H of an argument given for the complex plane C in [Hes96]. Originally we needed
the result in this section to calculate m,((Ag2 HF2)!“?), but we have changed that
calculation. We choose to include it anyway, since it has independent interest.

Let K be one of the fields C or H and let k£ = dim K. Let G = S(K) be the group
of units in K and let S¥ be the one point compactification of K thought of as the
unreduced suspension of S(K). These spaces fits into a cofiber sequence G, — S° —
SK. For dimension reasons the last map is zero in homotopy, so the induced long
exact sequence of stable homotopy groups splits into short exact sequences. From the

19
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equivalence S¥ ~ @ this gives a splitting
.Gy =2 m,G ® .S (2.1.1)

Let 1 and v be the respective Hopf maps S%*~1 — S*. Let [G] and 7k in mp_1G
denote the elements which reduces to (id,0), and (0,7) or (0, »), respectively. Recall
that ad G is the adjoint representation of G.

Proposition 2.1.2. In the Tate spectral sequence
E? = Plu,u™) @ m(X) = m (X9,

where |u| = (0, k), the first potentially nonzero differential df,,; EA,’C“SJ — Ellj(sq)
is given by the composite

JA+k—17

[G]+nn . ~ . ~
T X Tyt (G A X)) 2 o 2(B2CGL A X) B Typope 899X 21 X,

where the first map is exterior multiplication and the second map 1 is induced by the
diagonal action of G4 on ¥4¢ and X.

When G = S!, the adjoint representation is trivial since S! is abelian. When X
is an HF,-module, it is equivalent as a spectrum to a wedge of suspensions of HIF,,
so Nk acts trivially on X, since it acts trivially on each HF, summand for dimension
reasons. Thus when X is an HF, module and G = S, the differential is just exterior
multiplication by [S!] followed by the action map on X. This is the case we are
interested in.

Proof. The identification of the E2-term is done in Proposition 1.5.6 as follows: In the
Greenlees filtration of FG in 1.5.4, the cofiber of iy : Eps_ 1 — Es is XG 1 A SE=1DK,
and we have the Adams equivalence

0 2YMEGL NG i (SETVE A X) — i (BG, A SETVE A X9
and the action map of G gives an isomorphism
$@G, Agi*(SETVE A X) 2 |BhSEDE A X| = Bk X).
After desuspending once these maps are the vertical maps in the diagram

(G A, (SEDE A X6 —2n [1,i*(SE-DE A X6 —Lx [SG A, (SE-DE A X))C

Z)adGGJr Ag SE—DE A X 9 (EadGs(sfl)K A Z*X)/Gi ZEadGG+ Ac Ss=2K A * X

|EadGs(s—1)K /\Xl leadGs(s—Q)K /\Xl
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The map ¢ is induced by the unit map S° — G, and 9 and j comes from the cofiber
sequence induced by the Greenlees filtration of EG.

After applying homotopy 7ys1¢ to this diagram, the left hand side is equal to E,%sﬁt,
the right hand side is Eg(sfl)ﬁt +r_1> and the differential df_, is the composition across
the top of this diagram, which due to the equivalences is equal to the composition of
maps from the lower left hand corner to the lower right hand corner. The composition
Ou is equal to the identity and since the homomorphism j is defined by the cofiber
sequence giving the splitting in equation 2.1.1, it represents exterior multiplication
with [G].

Hence, it suffices to look at the composition fi o pr. If one ignores suspension, this
composition is equal to

Z‘ddGG+ A 5(372)1( Ai*X Es—2Aid
ZadGG+ AGL A Q=K A X M)EadGG+ A SG=2K A Gy A X
yad G g(s—2)K A i*X,

$dGSE-DK A G A e X — 2N

pAId Ap
_—

where 7 interchanges G and S®=2K A is the diagonal map, and &,_, is defined as
the composition

€on: Gy NSEDE AL G A Gl-2K ML oA G-k

We will prove that under the isomorphism in the splitting 2.1.1

b2 = ((5 —12)77 (1]> b2 = ((s —12)y ?)

when G is equal to S* and S? respectively, and the matrix multiplies from the right.
Every entry except the one in the lower left corner is clear from the expression of £;_o

To understand &, o it suffices to consider the case s = 3 since the case s > 3
follows by composition and s < 3 follows by smashing with SNX for large N as seen
by the following argument: For n > 1, &, is equal to the n-th iterated composition
of & A S™=VK with shuffle maps inserted so that G acts once on every S¥ factor.
When n < 0 we choose N such that N +n > 1 and get, when ignoring the required
shuffle maps, that (éxy A S™) o (&, A SVE) = £y, Now the matrix for &, is clear
since the matrices for £x and &y, are known.

We will now identify the lower left entry in the matrix for &;.

Let R C K be the ray from the origin given by the non-negative part of the first
coordinate axis in K, and let the the intersection of {0} x R and S(K x K) be the
basepoint in S(K x K). The map j that defines the splitting in 2.1.1 fits into the
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commutative diagram
G ASE (2.1.3)

]

SEXKZ = _$S(K x K)—~ NS(K x K)/(0 x S(K))
/(

(K x K)* —=>((K x K)/(0 x R))* —"~ ((K x K)/(0 x K))°,

where the superscript ¢ indicates compactification, pr is the projection map, and f
is the weak equivalence given by (z,w) — (‘Z;‘, ﬁ), with z = 0 being mapped to the
basepoint.

The lower left entry of & is the composite of the left, bottom and right map in the
following commutative diagram

S(K x K) 1 SK
%
o ]
G ANSK T ANd o AGoASK MM Gl ASK,

where the top map is identified as the respective Hopf map n or v by diagram 2.1.3. [

2.2 A Differential in the Spectral Sequence Calcu-
lating V(O>* ((AanIFQ)tCQ)
In this section we use the map w : S A HFy — Agn HF; to find a family of non-zero

differential in the Tate spectral sequence calculating V (0).((Ag. HF2)!“?), where the
Cs-action is given by the antipodal action on S™.

Proposition 2.2.1. Forn > 1, there is an Fy-module isomorphism
W*(AanFQ) = ]FQ D ]FQ{Zn} D /17

where |z,| =n+ 1 and A is some Fo-module which is zero in degree less than n + 2.
When n > 2, z, is equal to G(z,—1).

Proof. Use induction on n. By proposition A.4.6, m.(Agi HF3) & P(u) with |u| = 2.
Assume we have proved it for m < n. The bar spectral sequence in Corollary 1.2.2
coming from applying the functor A_HF5 to the pushout

qn Dn+1

|

Dn+1 S7Hr17
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begins
E'(S"Y) = B(Fy, m.(Agn HF2)Fy).

Furthermore, E}, & Fy, and when s > 0 we have

Fy t=0,n
Bl =4
0 O<t<n.

From this we can read off m.(Agn HF5) in degree less than or equal to n + 1. That
Tns1(Asn HF3) is generated by the image of & follows from Proposition 1.2.5. O

Proposition 2.2.2. Let n > 1. There are Tate spectral sequences
E*(n) = P(u,u™") @ E(x,) = m.(S7 A HF,)'c
E2(V(0),n) = Plu,u™) @ E(To) @ E(z,) = V(0).(ST A HF,)>,
where |u| = (—1,0), |x,| = (0,n) and [To| = (0,1). The differentials are given by
A" (u) =" e, and  dTH(Fou') = Fou T,
foralli € Z.

Proof. We identify the E2-terms using Proposition 1.5.5, and the fact that the Cs
action on 7 is trivial. Hence the Tate cohomology is as above. The spectral sequences
are not multiplicative spectral sequences, since S} A HF; is not an equivariant ring
spectrum.

By Proposition 2.4 and Theorem 5.6 in [GM95], m,((S7 A HF5)'??) = 0, since the
action of C on S™ and thus on ST A HIFy, is free. Since the spectral sequence E2(n)
is concentrated in vertical degree 0 and n — 1, the above pattern of differentials is the
only one possible in this case.

We prove the proposition for £2(V(0),n) by induction.

The inclusion E?(1) — E?(V(0),1) determines the differentials d*(u’) = u"2z; in
E?(V(0),1). Since V(0).((St A HF3)'®2 = 0, the other differentials must be as stated
in the proposition.

For dimension reasons E*(V(0),n) = E""1(V(0),n). If we have proved the case
n — 1, then E2(V(0),n — 1) = E»}(V(0),n — 1), and the map E"1(V(0),n — 1) —
E™Y(V(0), n) is an isomorphism in vertical degree 0 and 1, and zero elsewhere. Hence,
d" Y (Tou') = 0 in E"1(V(0),n), since d" ! (Tou') = Tou'™"x,,—1 in E"1(V(0),n — 1),
and Tou"x, , is mapped to zero in E"}(V(0),n). From the inclusion E?(n) —
E*(V(0),n) there are differentials d"™(u') = u™*'z, in E*(V(0),n), and since
V(0).((ST A HF2)'“?) = 0 the other differentials must be as stated in the proposi-
tion. O

Corollary 2.2.3. Let n > 1. The Tate spectral sequence
E? = P(u,u™) ® E(To) ® mu(Agn HFy) = V(0),(Agn HF,)!

n+1

has differentials generated by d" (7o) = u"*'z, where z, is the non-zero element in

V(0)ny1(Agn HF5) = Fy.
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Proof. The natural map
w:SYANHFy — Agn HF,

is an equivariant map, so it induces a map of Tate spectral sequences. It follows
from Corollary A.4.7, see Theorem 5.2 in [HM97b], that p in V(0)o(Agt HFs) is the
image of [S'] ® & under the map w, : V(0).(SL A HF5) = H,(S1) ® V(0).(HF,) —
V(0).(Ag1 HF5). There is a commutative diagram

(SL)™ A HTF, St A HF,

lw iw
(S1)M=LA Agi HFy —2= (S1)"2 A N HFy —2> .. —2 > A g HTF,

~

where the top horizontal map is induced by the quotient map 7™ — T"/T" | = S™.
By Proposition 2.2.1, z, € V(0).(Ag. HF;) is the image of [S']®" @ &, under the
composition of the left and bottom maps in this diagram. Hence, z, is the image of
[S"] ® &, under the map w, : V(0).(S7 A HF3) — V(0).(Ag HF,).

On the level of Tate spectral sequences w thus induces a map which is an inclusion
except in vertical degree n— 1, so we can read off the differentials in the corollary from
the differentials in Proposition 2.2.2. O

The above statements can also be made for odd primes and odd dimensional spheres
with some adjustments.

2.3 Calculating the Homotopy Groups of App2HIF,

In this section we will use the bar spectral sequence to calculate m,(Agz HF3) and use
this to show that there is an equivalence Agpz HFy ~ Agt HFy Agp, Ag2 HF.

Proposition 2.3.1. There is an isomorphism of Fao-Hopf algebras
m(As2 HFy) = E(B),
where |G| = 3.

Proof. From Corollary A.4.7 there is an isomorphism 7, (Agt HFy) = P(u) where |u| =
2. The pushout
Sl . DQ

|

D? —— §?
yields by Corollary 1.2.2 a bar spectral sequence

E? = Tor™ st HE2)(F, /) =2 Tor” W (Fy, Fy) = E(B) = 7. (Ag2 HFy),
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where the identification of the E2-term follows from Proposition A.2.10. Now, there
are no room for any differentials or (co)multiplicative (co)extensions, since the spectral
sequence is concentrated in bidegrees (0,0) and (1, 2). O

To calculate the homotopy groups of Agp2 HF2 we need to know which P(u)-module
structure the attaching map S* % S in the standard CW-structure of RP? induces on
7. (Ag1 HF3). Recall that by Proposition 1.1.5, m.(Agn HF3) is an HFo-Hopf algebra,
since Fy is a field.

Lemma 2.3.2. For n > 1, the degree two map from S™ to S™ induces the map € o,
on m(Agn HF3).

Proof. By calculation 7. (Ag: HF3) is cocommutative as an Fo-coalgebra, and in general
when n > 2 we have that 7, (Agn HFs) is cocommutative as an Fa-coalgebra since the
pinch map on S™ is homotopy cocommutative.

An example of a degree two map from S™ to S™ is the composite

gn ¥ gn Sn*id\/idsn v gn v gn

where 9 is the pinch map, —id is the reflection map, and V is the fold map. Applying
the functor A_HIF, yields

$o(x®id)op
_—

W*(AS?LHFQ) Ty (ASHHFQ),

and since this is a Hopf algebra, this composite is equal to € o 7. O

Using the two previous results we can deduce the following proposition.
Proposition 2.3.3. There is an equivalence
ARP?HIFQ ~ ASlHFQ A\ As‘zH]FQ.

Proof. Let R be a commutative simplicial ring. Theorem 4.5 in [Sch99] gives a Quillen
equivalence between simplicial R-algebras and algebras over the Eilenberg Maclane
spectrum HR. In the paragraph following Theorem 5.2 in [HM97b] they show that
A1 HF5 is equivalent to H of the free Fo-algebra generated by an element in degree 2.
By Lemma 2.3.2 the attaching map S* — S* for RP?, yields a map Agt HFy — Agi HF,
which is zero in homotopy. Therefore the attaching map factors stably through HFs,
SO
ARPZH]FQ ~ AslHJFQ /\HIFQ ASQHIFQ.
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2.4 Calculating the Homotopy Groups of (A g HIF,)

In this section we will find a differential in the Tate spectral sequence calculating
7o ((Ag2 HF2)¥2) | and use this to identify the homotopy groups of the spectra in the
isotropy separation diagram associated with Ag2 HFF5, and the maps between them. In
this section tensor products and algebras are over Fy, unless otherwise specified.

We will consider the following Tate spectral sequence and homotopy fixed points
spectral sequences:

E? = H(Cy; m(As2 HF»)) = P(u,u™") ® E(B) = m.((As HF,)'?)
E? = H*(Cy; mi(As2 HF5)) & P(u) @ E(B) = m,((Ag2 HF2)"?)
E’ = H*(Cy; V(0).(As: HF,)) = P(u) ® E(8) ® E(o) = V(0).((Ag2 HF,)"2),

where ‘u| = (7170)7 ‘?0| = (07 1) and |6| = (073)
Lemma 2.4.1. There is an isomorphism
mo((Ag2 HF)"“2) =2 7,/4.

Proof. For dimension reasons E7, = EZ, when s > 3, in the homotopy fixed points
spectral sequence. Hence, there is an isomorphism 7, ((Ag: HF)"“2) = Fy when * =
1,2,3, and mo((Ag2 HF5)"“?) has order 4.

We use S(R*) as a model for ECy, with the antipodal action. The space S(R>)
is equipped with a free Co-CW structure with one free Cy-cell in each degree, and the
k-skeleton is the k-sphere. Restricting the skeleton filtration to the 3-skeleton, yields
a filtration

{pt} S9 St S2 58
which gives rise to two spectral sequences
'E? = P(u)/(u*) ® BE(B) = m.(F(S%, Ag2 HF)“?)
B = P(u)/(u*) ® E(8) ® E(7o) = V(0).(F(5%, Ag2 HF,)®2),
which are equal to EZ, and Eiw restricted to the columns —3 < s < 0. For dimension

reasons, there are no differentials in 'E2.
The inclusion 5% — (ECs); induces a map of spectral sequence

B’ = P(u) ® B() ® E(7o) ~' E* = P(u)/(u") @ B(8) ® (7o),

which is the quotient map. By Corollary 2.2.3, there is a differential d3(7y) = u38 in
the first of these spectral sequences, and thus also in the latter. Hence, the element
represented by u33 in 'E? is zero in o mo(F (9%, Ag2 HF5)“2) = Z/4. Since the
inclusion S% — (EC,) induces aring map m, (F(S3, Ag2 HF2)?) — 7o ((Ag2 HF5)"2),
the unit in 7o ((Ag2 HF5)"2) has order at least four. O
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We are now ready to do the following calculation.

Proposition 2.4.2. The nonzero differentials in E" are generated by d*u = u’f.
Hence, there are ring isomorphisms

7. (A2 HF,)'9?) 2 P(t,t7") @ E(B)
T (Mg HF2)"?) 2 Py y(t, o) ®@z74 Ezya(B)/(2t, 20,28, 0%, af3)

with |t] = =2, |a| =2 and |B| = 3. Furthermore, m.((As2 HF2)pc,) = Fa for all x > 0,
and the restriction homomorphism R" : 7, ((Ag2 HF2)"C?) — 7, ((Ag2 HF5)!C?) is given
by mapping t to t, 5 to 5 and a to zero.

Proof. Since mo(Agp2 HFy) = Fy, the ring map mo(Appe HFy) — mo((Ag2 HF5)!?)
proves that the unit in 7r0(,/\52H]Fg)ltc2 has order at most 2. By Lemma 2.4.1 there
is an isomorphism mo((Age HF)"?) = Z/4, and since R* : mo((Ag: HFy)"C2) —
mo((Ag2 HF)!?) is a ring map, mo((Ag2 HF5)!?) =2 Fy. Hence, there are non-zero
differentials in ET, and since this is a multiplicative spectral sequence, the only possi-
ble non-zero differentials are those generated by d*u = u°p.

These differentials also gives rise to non-zero differentials in the homotopy fixed
point spectral sequence and the homotopy orbit spectral sequence, giving us the mod-
ule structures in the proposition.

The element ¢ is represented by u2. There are no room for any additive or multi-
plicative extensions, except for mo((Ag2 HFy)"C?) = 7 /4. O

The proof that I, is injective, hinges on proving that I, of some element is non-
zero in continuous homology. So before we prove this we state two lemmas needed in
the proof. Consider the two Cs-spectra A, w52 HFy and Ag2y g2 HF5, where Cy acts on
the Cy-factor in the first spectrum and by interchanging the two wedge factors in the
second spectrum.

Lemma 2.4.3. There are A,-isomorphisms

Ho(Agyxs2HFg) 2 A, @ A @ E(21, 20)
H*(ASQ\/SQH]}?Z) = A* ® E(Zlu 22)7

where |z1| = |22| = 3, and the map induced by identifying the subspace Cy C Cy x S?
to a point, is given by multiplication of the A.-factors.

Proof. Since Ag2HFy is an HFy-module H,(As2HFy) = A, ® E(z) where z is the
image of § € m3(Ag2 HF3) under the Hurewicz homomorphism. By flatness we have

H,(Asevs2 HF:) = H,(As2 HFs) @1, () H.(Age HFy)
= (A @ E(21) ®a. (A © E(20)) = A, ® E(21, 22).
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Similarly,
H*(ACZ><52HF2) = H*(A52HF2) ® H*(ASZ’HIFQ) = A* (2] A* (029] E(ZhZQ).

That the homomorphism is multiplication of the A,-factors follows from the com-
mutative diagram

Ao, HF, Ay HF;

| |

AC'2><52H]F2 —— A52V52H]F2.
O

Lemma 2.4.4. The E?-page in the Tate spectral sequence that calculates the con-
tinuous homology HE((Aseys2 HF2)') is equal to P(u,u™") ® A, ® E(z12,), where
|u| = (=1,0) and |z125| = (0,6). For all i, the elements u' @ 212y survives to the E*
page.

Proof. Observe that since the Cs-action on Ageyg2 HF5 is given by interchanging the
two wedge factors, it interchanges z; and z; in homology. A complete free Fo[Co]
resolution of Fy is given by

[ Cy] — T Fa[Ch) - [ Co] 2

where ¢ is a generator of Cy. Thus the E%-page is equal to P(u,u™!) @ A, @ E(z2).
By Proposition A.5.3 the Tate-spectral sequence calculating HE((Agyxs2 HF9)1?)
collapses at the E2-page, and is given by

E? = H*(Cy; (A, @ E(2))%?) = P(u,u™) @ Fy(2®?),

where z runs through a [y basis of A, ® F(z). By Lemma 2.4.3 the element u’ ® z;2y
is the image of the infinite cycle v’ ® 22, and is thus an infinite cycle itself.

If u' ® 212, is a boundary it must be the image of a differential which have
P(u,u™!) ® A, as a source. But this is impossible since the Tate spectral sequence
computing HE((Agpy HF2)'?), have E2-page equal to P(u,u™!) ® A,, and there is a
splitting

Pu,u™)® A, — P(u,u™') @ A, @ E(2125) — Pu,u™') @ A,

induced by the Cy-map {pt} — S*' Vv S* — {pt}.
O

Given a space X with a free Cy action, Lemma 5.2.5 in [BCD10] yields an equiva-
lence -
[EC2 N AxH]FQ}CZ ~ Ax/CQH]Fg.

Hence I' is a map from Agp2 HF, to (Ag2 HF5)!2 and we have the following proposi-
tion.
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Proposition 2.4.5. The homomorphism
f* : 7T3(A]RP2HF2) — Wg((ASQHFQ)tCQ)
s an isomorphism.

Proof. The pinch map S? — 52V S? induces a homomorphism 73((Ag2 HF3)!2) —
73((Agovge HF2)P?), where the Co-action on S?V.S? interchanges the two wedge factors.
We will show that 3 the generator of m3(Agp2 HFy) survives to ms((Ag2yg2 HF2)!?),
under the composition of I', followed by the homomorphism induced by the pinch map
on 52, and is thus non-zero in m3((Agz HF3)'?).

There is a commutative cube of Cy-spaces and Chy-equivariant maps

Cy x St St (2.4.6)
~ ‘ N
i CQ x D? {pt}
x|t |
~ N

Cyx S2—=S2V S2,

where C5 acts on the Ch-factor on the left face, with the antipodal action on S and
S2, and by interchanging the two wedge-factors in $? V $2. The maps in the left face
are inclusions, and the top map on the back face is the identity on {e} x S!, where e
is the identity element in C5. The rest of the maps are defined by requiring the left,
front, right and back face to be pushouts of Cy-spaces.
Taking Cs-orbits in the back face of the cube 2.4.6 and then applying A_HIF5,
yields a pushout diagram
At HFy —— Ag1 HF, (2.4.7)

ADZHFQ I A]RP2H]F2.
By Theorem 5.13 in [LNR12] there is a 2-adic equivalence of spectra
(Acyxx HF2)'® ~ Ax HT,,

when X = S', 52, D% Applying the functor (A_HTF,)!? to the top and left edge of
the front face of diagram 2.4.6, and then taking the pushout, thus yields a pushout
diagram

Ap2HIF,

(A{pt}HIFQ)tC2 (2.4.8)

|

AgoHFy —— (AszHFz) NHF, (A{pt}HFg)tcz.

The homomorphism I, together with the cube 2.4.6 and the universal property of
pushouts induces a sequence of maps

Appr HFy —= (Ags HF) Aps, (A HF2)!C2 —2> (Agoy g2 HF,)C2,
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and we will first show that f.(3) # 0.
The Tate spectral sequence computing (A HF2)? is concentrated on the z-axis
and hence m, (A HF2)'“? = P(u, u™") where |u| = —1. By flatness

W*((A52H]F2) NHT, (A{pt}H]F2>t02) = E(ﬁ) ® P(u7 Uil),

so if £,(8) # 0, then £,(8) = .

To show that f.(8) is non-zero we will look at the map f induces on bar spectral
sequences. From the 2-adic equivalence of ring spectra (A, xx HF9)!? >~ Ax HF,, we
get that applying the functor (A_HIF,)!? to the left face of the cube 2.4.6, yields a
pushout diagram of ring spectra. Composing this pushout diagram with the pushout
diagram 2.4.8 thus yields a pushout diagram

Ag1 HTF, (A{pt}HFQ)tCZ (2.4.9)

| l

Ap2 HFy —— (ASQH]FQ) AHT, (A{pt}H]FQ)tCZ.

By Corollary 1.2.2 there is a bar spectral sequence associated with this pushout di-
agram. Since the top map in this diagram factors through Ap:HF,; ~ HIF,, the
P(p)-module structure on P(u, u™1) is the trivial one, so the E?-page is isomorphic to

E?* = Tor"™W(P(u,u™),Fa) = P(u,u )@ E(8') = m.((As2 HF2) A, (Agpiy HF2)'?).

From the previous calculation of the abutment 7, ((Agsz HF3) Agr, (A{pt}H]Fg)tCZ), we
know that the spectral sequence must collapse, so E? & F>,
The pushout diagram 2.4.7 gives rise to a bar spectral sequence

E*(RP?) = Tor"W(P(p),F,) = m.(Agp2 HF,),

By Lemma 2.3.2 the degree two map on S? induces the trivial module structure on
P(u). Hence,

E*(RP?) = P(i) ® Tor™® (E,,F,) = P(u) ® E(8).

By Proposition 2.3.1, there are no differentials in E2(RP>), so E?(RP?) & E*(RP?),
and 8 € m3(Arp2 HF9) is represented by ' in the spectral sequence. Now, on the
E*>-pages the homomorphism

for EX(RP?) = E(8) ® P(n) = E* = E(8) ® P(u,u™)

maps 3’ to . Thus, f.(8) is non-zero, so it must be equal to 3.
It is left to prove that g.(8) # 0. This is equivalent to showing that the image of
[ is non-zero under the map

A52HF2 >~ (A02X52HIF2)tCZ E—— (A52v52H]F2)tC2 y
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coming from the lower map on the front face of the cube 2.4.6. To achieve this we
consider the diagram

o~

7T3(A52H]F2) — 7T3(A02X52HF2)t02 *>7T3(A52\/52HF2)ISC2

| | b

H3<A02X52H1F2)tc2 s Hg(AszszH]Fg)tC? — H§<A52V52HF2)tC27

where h is induced by the Hurewicz homomorphism. Now,
h: W*(A02X52H]F2)tCQ — H*(A02X52HF2)tcz = A* ® 7T3(A02X52H]F2)t02

maps 3 to z = 1® (. If we show that the image of z is nonzero in HS(Agzyg2 HF5)!¢2,
we know that the image of 3 is nonzero in m3(A g2y g2 HF)!2, finishing the proof.

By Proposition A.5.3 the Tate spectral sequence calculating HE(A¢,xg2 HF2)!? is
equal to

E? = P(u,u™") @ Fo{a?} = H(Agyxs2 HF:)',

where 2 runs over a basis for the elements in H(Ag2 HF3). Furthermore, this spectral
sequence collapses on the E%-page and e,(z) is represented by u® ® 22

Finally, by Lemma 2.4.4 the element u® ® 22 survives to the element u? ® 2,2, on
the E>-page of the spectral sequence computing HE((Ag2yg2 HF9)!?). Thus g.(B) is
non-zero and hence T',(3) is non-zero and thus equal to § € m3((Ag2 HF,)'2). O

Together with results by Hesselholt and Madsen in [HM97b] this lemma enables
us to calculate I',.

Proposition 2.4.10. The map
L. m(Arp2 HF) & P(p) ® E(8) = m((As2 HF)') = P(t,¢7") ® E(8)
is given by mapping p to t™', and B to B.
Proof. The inclusion S' — S? gives a commutative diagram
mo(As1 HIF,) o (Arp2 HF3)

B I

ma((Agt HF2)C2) — = my((A g2 HF,)1C2).

In Lemma 5.4 in [HM97b] they prove that mo((Agi HF,)!?) = P(t,t71), where t is
represented by u? in the Tate spectral sequence. (They actually state the lemma
for odd primes, but everything works out for p = 2 with the obvious renaming of
elements). The left map is then proved to be an isomorphism in Proposition 5.3 in
[HM97b]. By Proposition 2.3.3 the top map is an isomorphism and the bottom map
is an isomorphism if you look at the Tate spectral sequences, since both groups are
represented by the infinite cycle 42 in their respective Tate spectral sequences. Hence,
the right map is also an isomorphism so p is mapped to t~1. That S is mapped to 3
follows from Proposition 2.4.5. OJ
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Finally, we are able to calculate m,((Ag2 HF3)®?) using the isotropy separation
diagram. Recall that there is a ring isomorphism

T (As2 HF2)"%2) 22 Py (t, o) @274 Ezya(B)/(2t, 20,28, 0%, af).
Theorem 2.4.11. There is a ring isomorphism
7. ((Ag2 HF5)?) = Pya(a) ®zy4 Ezya(B)/ (201,28, o?, ap)
where |a| =2 and |B| = 3, and the homomorphism
I, 7.((Ag2 HF)?) — 7,((Ag2 HF5)"2)
is given by mapping o to a and 5 to 5.
Proof. From the isotropy separation diagram we get a commutative diagram

( AszH]FQ hcz)‘>7T*((A52HIF2)02)HW*((ARPZHFQ)HTF* 1((A52HF2)}LC2)

| |- I |

T((As2 HF)n,) — (A2 HF2)"9?) —= m, (A2 HF5)'%?) —= 7,1 ((As2 HF2)nc,),

where the horizontal lines are parts of two long exact sequences.

From Proposition 2.4.10 the homomorphism T, : 7, (Agp2 HF) — m,((Ag2 HF)'%?)
is an isomorphism when * > 0 and * # 1. By the five lemma we thus get that
T ((Ag2 HF2)C?) = 7, ((Ag2 HF2)"?) when * >= 2. Since 7 (Agp2HF5) = 0 and
mo((As2 HF2)pe,) and mo(Agp2 HF3) are isomorphic to Fs, we know that the order
of mo((Ag2HF5)?) is four. Now, T', is a ring homomorphism, so this implies that
mo((Ag2 HF2)C?) 2 7,

Examining the long exact sequence in the top row we get m((Ag:HFy)®?) =
7T1(ARP2H]F2) =0. O



Chapter 3

Homotopy Groups of ApnHIF), and
Periodic Elements

In this chapter we calculate 7, (ArnHF,) when p > 5and 1 < n < p, and p = 3
and 1 < n < 2. These calculations take a lot of effort, and every section but the
last revolves around it. The argument is based on the bar spectral sequence, and is
heavily dependent on the Hopf algebra structures of m,(Ar» HF,). We have one Hopf
algebra structure for each circle factor, and the first two sections concerns the interplay
between these Hopf algebra structures. In Section 3.3 we calculate m,(Agn HF,) for
n < 2p, before we calculate 7. (A HF,) in Section 3.4.

In the last section we use this to show that v, is non-zero in k(n).(Ar-+1 HF,),
where k(n) is the n-th connective Morava K-theory.

It’s recommended to skip the first two sections on your first read, and rather go
back to it when you need it.

3.1 Multifold Hopf Algebras

The homotopy groups of the spectrum Ap» HF, will have several Hopf algebra struc-
tures coming from the various circles. These structures will be interlinked, and this
section sets up an algebraic framework for this interlinked structure. Our main goal
is to be able to state Proposition 3.2.5 which is a crucial ingredient in the calculation
of the multiplicative structure of m,(Arn HF)).

Multifold Hopf algebras have more structure than we show below. In particular,
it would be interesting to have a good description of the module of elements that
are primitive in all the Hopf algebra structures simultaneously. In that regard a
generalization of the very special case in Lemma 3.3.12 would be welcomed.

Let CRings be the category of commutative rings. In this section we will assume
that all our Hopf algebras are connected and commutative.

First we construct a category of Hopf algebras, and show that it as all small colimits.
Objects in this category are ordinary Hopf algebras, but we need the morphisms to

33
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define a multifold Hopf algebra.

Definition 3.1.1. We define the category of Hopf algebras to have objects pairs of
commutative rings (A, R) where A is given the structure of a commutative connected
R-Hopf algebra. A morphism from (A, R) to (B,S) consists of two maps f: A — B
and g: R — S such that f is a map of R-algebras and S-coalgebras, where the R-
algebra structure on B and the S-coalgebra structure on A are induced by g.

Proposition 3.1.2. The category of Hopf algebras has all small colimits, and the
colimit colim;(A;, R;) is equal to the pair (colim; A;, colim; R;), of colimits in the
category of commutative Tings.

Proof. The ring colim; A; is a colim; R;-algebra. Since colimits commute, there is an
isomorphism

B colJlm(Aj ®r, Aj) = CO}]IIII Aj Ocolimy R; CO}]lnl A;,

and we define the counit and coproduct in colim;(A;, R;) to be equal to colim(e;)
and 3 o colim;(¢;), respectively. That the required diagrams in the definition of a
(colimy R;)- Hopf algebra commute, follows by functoriality of the colimits.

The only thing left to prove is that given a Hopf algebra (A, R) which is a cone
over (A;,R;) with j € J, the homomorphism (f,g) from (colim; A;, colim; R;) to
(A, R) induced by the universal property of colimit of commutative rings, is actually
a homomorphism of Hopf algebras.

By the universal property of colimits of commutative rings, there is unique map
h : colim;(A; ®g, ®A;) - A®p A, since A®p A is a cone over A; @, ®A; with
j € J. From the fact that the coproduct and counit are algebra homomorphisms, and
by functoriality of colimits, there are commutative diagrams

colim; A; ! A colim; A; Ay
icolim P; iwA icolim € l €A
colim;(4; ®r, 4;) h A®p A colimy R, —2~ R.
iﬂ ref

(colimy A;) ®colim, r, (colim; A;)
Thus, (f,g) is a homomorphism of Hopf algebras. O

Our multifold Hopf algebras will be functors from the following category. Let S
be a finite set a and define V(S) to be the category with objects subsets of S and
morphisms from U to V given by UNV, where composition is intersection. Let [2}5 be
the category with objects subsets of S and morphisms inclusions of sets. The category
V() is isomorphic to the category of spans in [2]°.

The next definition is only a stepping stone towards the final definition of an S-fold
Hopf algebra in 3.1.13.
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Definition 3.1.3. Let S be a finite set. A pre S-fold Hopf algebra A is a functor
A :V(S) — CRings, such that:

For everyv € V. C S, the pair (A(V), A(V \ v)) is equipped with the structure of a
Hopf algebra with unit and counit induced by the inclusion V \ v — V', such that with
this structure the composite

AxS % S V(S)x(—\-)

V(S) x § 222 V(8) x V(9) V(S) x V(S) 4 CRings x CRings,

becomes a functor to the category of Hopf algebras. Here A is the diagonal functor
and the functor (— \ —) takes (U,u) to U \ u.
We write A(V) = Ay, and let Y, @Y, n¥ and €, denote the various structure

maps in (A(V), A(V \ v)).

Definition 3.1.4. A map from a pre S-fold Hopf algebra A to a pre S-fold Hopf
algebra B is a natural transformation from A to B such that for everyv € V.C S the
induced map from (Ay, Av\,) to (By, By\y) is a map of Hopf algebras.

The example we have in mind is the functor m,(Ar- HF,) : A : V(S) — CRings
that maps U C S to m,(Arv HF,). We show in Proposition 3.4.2 that this is a (pre) S-
fold Hopf algebra, where the different Hopf algebra structures, comes from the different
circles.

Let T(S) be the full subcategory of [2]° x [2]° with objects pairs (U, V) with
UNV = 0. There is an inclusion [2]° — V(S) given by sending a morphism U C V
to the morphism U from U to V.

Example 3.1.5. Let S = {u, v}. Then, the category V(S) is equal to

== (v}

-

{u} — {u7 U}v

and the inclusion [2]5 — V(S) is given by picking all the inner arrows going away from

0.

We will now define some commutative rings AY that will be the source and targets
for iterated coproducts in a pre S-fold Hopf algebra. These commutative rings are
constructed from functors from [2}5 to the category of commutative rings. Using the
inclusion [2]‘{’ — V/(S) this construction applies to any pre S-fold Hopf algebra A.

Definition 3.1.6. Let S be a finite set and A a functor A : [2}5 — CRings. Given
finite sets U C'V C S we define the functor FXV to be the composite

—U(V\U)

T(U)—>[2)Y [2]° —4~ CRings,

and define AY to be the colimit of the functor F/[{,v-
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Example 3.1.7. Let U = {u,v} € V. The source category T(U) of FY, is the
diagram on the left, and the image of FXV in commutative rings is the diagram on
the right:

{u, v}, 0 <—{u},0 —{u}, {v} Ay Ay Ay
T T | [ .
{v},0 0,0 0, {v} Ay =— Av\fup) — Avu
| | | I
{v} {u} =—0,{u} —0,{u, v} Ay Ay Ay.

In our example, . (Ap- HF,){ = m (Apviv g1y s1yx0 HE).
We will now describe a helpful way to think about the rings AY.

Definition 3.1.8. The power set, P(U) of U, can be thought of as a discrete category,
with objects the subsets of U. There is a functor G from P(U) to T(U) given by
mapping W C U to the pair (U \ W,W). The composite FXV o (7 is the constant

functor Ay, so this induces a surjective map on colimits from A%Pw) to AY.

An element in AY can thus be represented by an element in A%P(w, and we write
the image of these representatives as cubes with an element of Ay in each corner,
indexed by the subset of U.

Example 3.1.9. Let U = {u,v} C V. An element of AY is represented by a sum of

cubes

xgp Ty}

Tly) Tluw}]
where all the z’s are elements of Ay. The four entries in the cube correspond to the
four corners in the right diagram in Example 3.1.7, and the subscripts are given by the

second set in the four corners in the left diagram. Multiplication is done component
wise, and we have the following identifications

{aum@ .’L‘{,U}:| _ |:.?7@ aum{v}} |: Ty m{v}:| _ |:.7:q) Tiv} :|
T{u}  T{uw} Ti{u}  T{uw} T} T{uw} T{u}  Cul{uw}
[avx@ CL’{U}:| _ l: Ty Z‘{v}:| |:13@ avx{v}} _ |:Z‘q) I{U} :|
T{u}  T{uw} Qv T{u}  L{uw} T{uy  T{uw} L{u}  Col{uw}
when a, is an element in A\, € Ay, and a, is an element in Ay gy € Ay. Observe
that if a is an element in Ay ) We can move the element between all four corners

of the cube.
Observe that the colimits of the columns in the right diagram in Example 3.1.7 are

Ai{/u} Av

{u}
V\{v} AV .
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Given a map of diagrams

Ay ~— Ay, —— Ay

I

{u} {u} {u}
AV AV\U AV ’
we will write the map on the colimits of the horizontal direction as

[’(/}V lﬂv] : A;{;]} — A‘{/u,v}‘

Lemma 3.1.10. For U CV andv € V\ U, the universal property of colimits induces

an isomorphism
AV @y Ay = AP

of commutative Tings.

Proof. Both sides are the colimit of the functor FXL‘J/”. On the left hand side the colimit
is evaluated in two steps, evaluating the v-th direction in the diagram 7'(U U v) last.

More explicitly, the middle term A\[i\u is the colimit of the functor FXL‘J/” precom-
posed with the inclusion T(U) — T(UUv). The two outer terms A%, are the colimit of
the functor FXL‘J}’ precomposed with the two maps T'(U) — T(U Uv), given by adding

v to the first and second set in T'(U), respectively. C

Given a pre S-fold Hopf algebra A, there are some related multifold Hopf algebras.
You can think of a pre S-fold Hopf algebra as an S-cube, with corners indexed by
the subset of S, of commutative rings with extra structure. The first part of the next
proposition says that every face is a pre multifold Hopf algebra in a natural way.

Proposition 3.1.11. If U and W are subsets of S, the composite

—-uu

V(W) =% V(5) —2~ CRings
is a pre W-fold Hopf algebra. If U is a subset of S the functor
AY . V(S\U) — CRings
given by AY(V) = AY 1, is a pre S\ U-fold Hopf algebra.

Proof. The first case is clear by definition. In the second case, for every U CV C §
and v € V \ U, we need to give a Hopf algebra structure to the pair (A"f,Ag\U)
satisfying the definition of a pre S\ U-fold Hopf algebra.

We claim there is a pushout diagram

(Ag\w A?V\u)\v) - (Ag, Ag\v)

| |

(Ag’ Ag\v) (AgUu7 Agi\\fj)
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of Hopf algebras.

The identification of the pushout follows from Lemma 3.1.10. The case U = 0
follows from the definition of a pre S-fold Hopf algebra. The rest are by induction on
the number of elements in U.

The universal property of pushouts guarantees that these Hopf algebras combines
to a functor satisfying the definition of a pre S\ U-fold Hopf algebra. O

Composing the various coproducts in a pre S-fold Hopf algebra, gives rise to several
homomorphisms that we now introduce. An S-fold Hopf algebra is a pre S-fold Hopf
algebra where these various homomorphisms agree.

Definition 3.1.12. Let A be a pre S-fold Hopf algebra. Given a pair of sets U CV C
S withv € V\ U we define

Uv. AU U U~ AU
Vit Ay = Ay @uy Ay = Ay

to be the composition of the coproduct in the Hopf algebra (Ag, A‘[f\v) with the isomor-
phism from Lemma 3.1.10
Given a sequence of distinct elements uy, us, ..., ux € V C S, we define

Uy U {ut,ug}
Y Ay AL

by the recursive formula

Uiy g {1 U by Ui 1yeey Uk
wvu B — l/)V ) o ,l/}V .

Similarly, we define B
Q/)él,...,uk: AV - A‘{/ul,...,uk}

using the reduced coproducts J‘{/““’l"”’uk}"ul.
Definition 3.1.13. Let S be a finite set. An S-fold Hopf algebra A is a pre S-fold
Hopf algebra A with the additional requirement that for every sequence uy,us, . . ., ug

of distinct elements in V C S, and all permutations « of k,
1/)3&(1),444,”@(1‘-) _ 1/}‘71/17-»-77% . AV N Agtl,“.,uk}.

We denote this map
’L/}gI AV — Ag7

where U = {uy, ..., uy}.

In the case of Ap- HIF,, where the different coproducts come from the pinch map on
the different circles, the extra requirement in the definition of an S-fold Hopf algebra,
amounts to the fact that all the ways to go from Apv HIF, to A(g1ys1yxv HF, by pinching
each circle once, are equal up to homotopy.
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Definition 3.1.14. A map from an S-fold Hopf algebra A to an S-fold Hopf algebra
B is a map of pre S-fold Hopf algebras.

It shouldn’t come as a surprise that when the composition of the coproducts agree,
the composition of the reduced coproducts agree. More precisely:

Proposition 3.1.15. Let A be an S-fold Hopf algebra, and let ui,us,...,ux be a
sequence of distinct elements in V C S. Then

Juau) ----- Ua(k) _ JUL,... Uk
14 - YV :

for all permutations o of k.

Proof. By Proposition 3.1.11, it suffices to check the claim for transpositions, since
Aluwisund i an S\ {ug, . . ., uy, }-fold Hopf algebra for every i < k. Let i,j € V C S.
In cube notation this amounts to showing that

-t (16 s[4 -3 A)o(i-1a -1 )
ST D[] 8 - e

where the horizontal direction of the cube is the j-th direction, the vertical direction

s the iith direction. [06, wi] = 6% and [9V] < it
is the i-th direction, [z/)v ¢V]_ ) an 1/}{/ =
Expanding the first two parentheses in the above expression we get

i = wtleld)-( [T 3]+ a])eltl-to wilelia 1)+t i)

id 1 1 id 1 1 n 1 1
Flroa oo T a1 T oad]
Since A is an S-fold Hopf algebra we have

P =loh wtlo )= ¥ uh] -t

By naturality we have that
i ; . . id 1 1 id ;
i wido(l 0+ i) = ([ 5]+ 1 ia]) ot
and similarly for j, thus finishing the proof. O

We end this section by constructing some special S-fold Hopf algebras. In the
case we are interested in, m,(Ap- HF,), the simplest version correspond to the functor
T (Ap- HE,).



40 Chapter 3. Homotopy Groups of Apn HF, and Periodic Elements

Definition 3.1.16. Let S be a finite set. We define a subcategory A of V(S) to be
saturated if it has the property that when W € A then V(W) C A.

Definition 3.1.17. Let S be a finite set and let A be a saturated subcategory of V(S).
Define a partial S-fold Hopf algebra A: A — CRings, to be a functor A which for
every W € A, is a W-fold Hopf algebra when restricted to W. Let A be the subcategory
Unea 27 € A
The functor
A:V(S) — CRings

defined by A(W) = colimyycy, yex A(U) has the structure of an S-fold Hopf algebra
and we denote it the extension of A to S.

Given an S-fold Hopf algebra A, we define the restriction of A to A to be the S-fold
Hopf algebra which is the extension of the functor

Ala : A — CRings.

Since the category of Hopf algebras has all small colimits, and these are given as
pair of colimits in commutative rings, it is clear that the extension of A is an S-fold
Hopf algebra. All the properties of an S-fold Hopf algebra follows from functoriality
of the colimit.

Definition 3.1.18. Let S be a finite set, and let m be a positive even integer. Let
A C V(S) be the full subcategory containing all sets with at most one element. Let
A : A — CRings be the functor given by A(0) = R and A({s}) = Pr(ps), with
|ps| = m.

We define Pr(u—), the polynomial S-fold Hopf algebra over R in degree m, to be
the extension of the functor A to all of S.

When m = 2, the functor m(ATf HF,) is isomorphic to P(u_).
Note that for U = {uy, ..., u} there is an isomorphism Pr(pr) = Pr(fbuys - - - 5 fuy, )5
and for v € U the element f,, is primitive in the Hopf algebra (Pr(py), Pr(po\u))-

3.2 Coproduct in a Multifold Hopf Algebra

In this section we will state a proposition that we need when we calculate the multi-
plicative structure of m, (A HF,).

First we give Lucas’ theorem about binomial coefficients, see Lemma 3C.6 in
[Hat02] for a proof.
Proposition 3.2.1. If p is a prime, then (Z) =TI, (Z) mod p where n = > n;p'
and k=Y, kip" with 0 < n; < p and 0 < k; < p are the p-adic representations of n
and k.
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The convention is that (n) =0if n < k, and (") =1foralln>0.
Given an integer n divisible by p, we write 2 for the image of 2 under the ring map

Z — F,. In the polynomial F,-Hopf algebra PF (1), we write ” o) for the image of

w(” ) under the ring map Py(p,) — Pr,(fn) given by mapping fi, to p,. This is well

deﬁned since ([7« ) is divisible by p for all i and k with 0 < k < p’.

Lemma 3.2.2. Let M be an F,-module, and let n be a natural number greater than 2.

Let {Tkn—k fo<k<n be a set of elements in M which satisfy the relations ("’Jbrb)r,wb,c =

(b?) Tapre for alla+b+c=n and 0 < a,c < n. Then the following relations hold:

1. If n = p™*! for some m > 0, then

(i)

Tkn—k = = Tpm (p—1)pm
p

forall0 < k <mn.
2. If n=p™ 4 p™? with m; < my and k # p™,p™2, then ry i = 0.

3. If n # p™TL p™ + p™2 with my < mea, then

ny 1
Tkn—k = k Ny, Tpm n—pm

for all0 < k < n, where n = ng+nypt+...+ny,p™ with 0 < n; < p and n,y, # 0
is the p-adic representation of n.

The only case which is not covered by the lemma is n = p™ + p™2 with m; # ma,
when the relations in the lemma doesn’t give any relation between 7,m1 yma and ryma pmi .

Proof. Given a set {rg,— k}0<k<n of elements in an abelian group, let ~ be the equiva-

lence relation generated by (“F*)7atpe ~ (*7)Tapre. Let Fp{rin 1, ..., 70 1,1} be the
free Fp-module on the set {T1,n71, ceeyTn_11}. Since M is an F,-module, there is a
homomorphism

Fpl{rin-1,- o rno1a}/~ = M

defined by mapping 74 ,—k to 7, ,—r. Hence it suffices to prove the lemma for the
module M =F {ri,—1,...,rn-1,1}/~.
Let
k=ko+kip' +...+kp

with 0 < k; < p and k; # 0, be the p-adic representations of k. Similarly, let
n=ng+np +...+nup™

with 0 < n; < p and n,, # 0 be the p-adic representation of n, except that when n is
a power of p we express it as n = p™ti.
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The proof consists of two part. First we prove that unless both k and n — k are
powers of p, there is a sequence of equations expressing 74 ,,—x as a multiple of rpm ;,_pm.

The second part is to identify the factor in this equation in terms of (Z)

We will now use the relations (azb) Tatbe = (bf) Tq,b+c tO €XPress 1y ,,—k as a multiple

of rym p_pm. By Proposition 3.2.1 (k p]) = (:J) = k;, giving us the equation

n—pJ

S =) N
on—k = n—pi-
’ (kfpj) ’

If 5 = m we are done. Otherwise, if n > p/ + p™, the m-th coefficient in the p-adic

expansion of n — p/ is at least 1. Hence (";"7 ) # 0, and we have two equations
P p™ n—p™
. _ ( pm ) ) ) _ ( pJ )
Tpim—pl = ~ 20N TP 4p™ n—pi—p™ Tpi+p™ n—pi —p™ = 5 omy Tpm n—pm-
( pm ) ( pI )

If n < p/ + p™ there is an i < j such that n; # 0 and the i-th coefficient in the
p-adic expansion of n — p’ is n;. Hence ("1”]) = n,; and ("pjfl) = n,, and the four

equations below move these powers of p back and forth

(") (")
pi
Vi m—pi — T pi tpt n—pi—pi Tpi4pi n—pi —pi = N
Pl n—p (n,p;) p+ptn—pl—p p?+p*n—pl—p (pgﬂ,l) Tpim—p
pi
(pz+pm) (n m
pm pi
Tpipn—pt = szrpi+pm7n,pm,pi Tpitpm n—pi—pm = AT T'pm p—pm -
(pm) ( pt )

Combining three or five equations, respectively, we get when (k,n) # (p’,p/ + p™)
with j < m, the equation
Tkn—k = UTpm p_pm
where u is some element in F,,.
To determine u we will take a detour through Z(p the integers localized at p. In
the Q-module Q{ry,—1,...,7n-11}/~ we let r1,-1 = nr. The formula ( )rk ek =
(" k“)r f—1n—k+1 and mductlon give the equality

n—k+1 n—k+1 n _(n
Tk,n—k—ik Tk—1,n—k+1—7k E—1 r= k T

in Q{Tl,n—l, cee 7Tn—1.,1}/N-
_— (p7n+1)
k

Ak ) — __p .
(pmﬂ)rpm,(p—l)pm = pmﬂfl)rp'”,(p—l)p’"’ and when
pm pm—1

m~+1

Thus, if n = p™**, then ry,,— =

n is not a power of p, 1y, = ((WT)rpm,n,pm = (M) nplrym p_pm
o



3.2 Coproduct in a Multifold Hopf Algebra 43

By Proposition 3.2.1, (p";:l) is divisible by p for every k, but neither (p:,:l__ll) nor
Ny, are divisible by p. Hence these relations exists in Zg){rin-1,...,7n-11}/~ C

Q{Tl,nfla cee ,7"n71,1}/~~

By the universal property of localization we get a map
f : Z(p){rl,nfly ey Tnfl,l}/’\’ — Fp{rl,nfh e 77’n71,1}/’\‘

by mapping 7,k t0 Tk n_k-

By Proposition 3.2.1, (”::Ll:ll) =1 mod p and (nn:;m) =1 mod p. So when n is
not a power of p, f (( (ﬁ) )) = (Z) = u proving part 3. In particular when k # p/, p™
nmp"
the binomial coefficients (p7 me) are equal to 0, proving part 2 of the lemma.
(pwzcﬂ) (p’"“)
When n = p™*!, then f =4 | = 2~ = u proving part 1. |

("om2") b

Definition 3.2.3. Let A and B be R-algebras. An R-algebra homomorphism from A
to B in degree less than or equal to q, is an R-module homomorphism f : A — B
which induces an R-algebra homomorphism on the quotients A/As, — B/Bs,. We
define the similar notion for coalgebras and Hopf algebras.

First we state a similar proposition about ordinary Hopf algebras. Let P denote
the set of integers {p° p',p*...} CN.

Proposition 3.2.4. Let R be an F,-algebra and let A be an R-Hopf algebra such that:
1. There is a sub R-Hopf Algebra Pr(u) C A.

2. As an R-algebra in degree less than or equal to q, this is part of a splitting
Pr(u) € A% Pru).

3. In degree less than or equal to q — 1 this is a splitting as an R-Hopf algebra, i.e.,
the following diagram commutes

A = Pr(p)

iw li/fPR(m

A® A" Pr(jn) ® Pa(p)
in degree less than or equal to ¢ — 1.

Let x be an element in degree q in ker(pr). Then there exists elements r, € R for
n € Ny, and t(n,<n,) € R for pairs (ny < ny) € P x P, such that the coproduct satisfy

e n /lf[)/ M” n n:
(DL © D) 00(@) = 3 (1) 4 3 (p Jb Y e @

neNy nep (n1<ng2)ePxP
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Recall that {/;(//L) = :;11 (Z)u’“ ® p™~* and that when n is a power of p, (Z) is

divisible by p for all 0 < k& < n. Hence, J(Zn) is well defined.

Observe, that since J(M’l) = 0 for all © > 1, the first sum is independent of the
values of 7,;. An example where this proposition applies is the dual Steenrod algebra

A, with P(£,) C A,. Then ¢(&,) = &, ® &} so t1p=1.

Proof. In general (prp, () @ Prp, () 0U(T) = D2 cn D aspon Tabll" @ b, for some 7, €
R. Since (e ®id)y = (id ®€)y = id and x € ker(pr), we must have that r¢,, = 7,0 =0
for all n. _

In degree less than or equal to g, there is a factorization of ¢ as

A<q Z Ay, ® Ac) C(A® A)<,

k4=
k,l>0

Tensoring the diagram from assumption 3 in the proposition with A<, gives a
commutative diagram

¥ Yoid
E A ® Ag E E A ® A<y ® A
k+l=q k+l=qitj=k
k,I>0 k>0 i,5>0
> prepr 2 pPreprepr

> Palp)<k ® Pr(p)< Zver D > Palp)<i® Pr(i)<; © Pr(p)<

k+l=q k+l=qi+j=k
k>0 kl>0 4,j>0

There is also a similar diagram for id ®J. Hence we have

(PY®PY®PF)(¢®1d Z Z Tde Z ( )ua®ub®uc,

neN d+c=n a+b=d

and

(proprop)ided)i@) =Y Y 1w . ( )ﬂ“®ub®uc-

neN a+d=n b+c=d

From coassociativity of 1/J we know that the coefficients in front of pu® ® u® ® u°
in the two expressions above must be equal. Hence there are relations (ajb) Tatbe =
(btc)ra’bﬂ, for all a,c > 1 and b > 0.

Given such relations, if n = p™*!, then by Lemma 3.2.2 ry,,, 5 = (’%)rpmﬂ(p,mpm,
and we let r, = rpm (p_1ypm. If 0 = p™ + p™2 with m; < my, then 74, = 0 when
k#p™,p"2. We let 1, = ryms pmi and f(pmicpmay = Tpm1 pma — Tpma ymi . Otherwise, let
n=mng+np'+...+n,p™, with 0 < n; < p and n,, # 0, be the p-adic representation
of n. Then ry,—x = (Z)n;llrpm,n_pm, and we let r,, = ny'rym o pm. O
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The next Proposition is similar to the previous proposition, but involves S-fold
Hopf algebras. Although they are similar, when S contains exactly one element the
next proposition doesn’t specialize to the previous proposition, since in assumption 2
in the next proposition, A = R giving an impossible splitting Pr(p) = R — Pgr(u).

Given a finite set U = {uy,...,ur} we write Pr(uy) for the polynomial ring
Pr(ftuys - - - 5 iy, ), and given an element m € NV where U C V, we let p} in Pr(ur)

muk

denote the product fiu,"* - - fiu,
Proposition 3.2.5. Let A be an S-fold Hopf algebra such that:

1. R= Ay is an Fp-algebra.

2. There is a splitting of S-fold Hopf algebras Pr(p—) LAn Pr(p—), where A s
the restriction of A, as in Definition 3.1.17, to the full subcategory of V(S) not
containing S.

3. In degree less than or equal to q, the map pr can be extended to Ag, i.e., in degree
less than or equal to g, there is an R-algebra homomorphism pr : As — Pgr(s)
(see Definition 3.2.3) such that the following diagram commutes

Ag Ag
e i
PR (,[LS) 3

in degree less than or equal to q.

4. For all s € S, the map pr: (As.,AS\s) — (PR(/LS),PR(us\S)) is a map of Hopf
algebras in degree less than or equal to q — 1.

Let x be an element in (\,cgker(eg : Ag = Ag\s) € Ag of degree q. If x € ker(pr)
and s € S, then there exist elements r, € R for b € Nis such that for every s € S,

. ~ ¢ (b
r o) ouie) = 3 F) + Y iy, U

xS xS
bEN’ beP

+ Z Z tb,cl<cg,sﬂf)§’\5 I:Mgl ﬂgz] 5 (326)

bePS\s c1<c2€EPXP

where by is the s-th component of b, and rys and ty e <c, s are elements in R.

An important observation is that in the first sum, the coefficients 1, are independent
of the element s. The P*¥ part in the first sum is zero since 1*(u2") = 0 for all i > 0.
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Proof. In this proof we will compare {/;”“(z) with {/;]“(x) for all pair of elements ¢ # k
in S, where the definition of 1}21 is found in Definition 3.1.13.

For every element 7 € S the ring Ag is an Ag\;-Hopf algebra and Ag; is an F-
algebra since R = Ay = F,. Assumption 2 and the unit 7% : Ag; = Ag induces an
inclusion PAS\{(/’Li) = Pr(ps) ®Pr(usy,) Asvi — ;15 — Ag so assumption 1 in Propo-
sition 3.2.4 is satisfied for the Hopf algebra (Ag, Ag\;). The splitting in assumption
2 in Proposition 3.2.4 comes from the homomorphism As — Pr(us) @ Pp(us\s) Agy &
PAsv(:“i) induced by € and the splitting in assumption 2. From assumption 4 this
splitting induces a map of Hopf algebras

(As, As\i) = (Pr(is) @paus,) As\i» Pr(Hs\i) @Paus,) Asvi) = (Pag,, (1i); As\),

satisfying assumption 3 in Proposition 3.2.4.
By Proposition 3.2.4, there exist elements r;,; and #j ¢, <c,; in R such that

HECCED IR SRS

beNS beNS\i|b, PP

+ Z Z tb,cl<cg7iﬂg‘\i |:ZZ:| . (327)

beENS c1<co€PXP

Observe that if b; = 1, we can choose 7,; arbitrary.

We will now show that if b; > 2 and b, = 0 for some k # 4, then 7, = 0.
The counits €% and Eg\i induce a map of Hopf algebras (Ag, Ag\;) = (As\k, As\{ik})-
Since @ is in (cgker(ey: As — Ag\s), we have ¢, o e§(z) = 0. If rp; # 0, then
e @ ek (Yi(z)) # 0 so the commutative diagram

/lb‘l,
As = Ag Rag,, As

5’5 ’ ie’é@eg
Agyp 2% 4 A
S\k S\k @A iy AS\K
gives a contradiction. Thus r,; = 0.
From assumption 4 in the proposition, we get a commutative diagram

o Lr

ker(€%) Ag} Ag’k}

l&‘s pr
T{i}.k

i v Y i
Ag} — s Prps)™ = Pr(us) i,

in degree less than or equal to g, where the composition of the two morphisms on the
top is the definition of 1/)2’1. The diagram commute in degree less than or equal to ¢,
and not just ¢ — 1, since we use the reduced coproduct.



3.2 Coproduct in a Multifold Hopf Algebra 47

From this diagram we have the formula

bp—ayg
pr pr ;” b Mg fog My
e 5 () e [

ngS 0<a;<b; 0<aj<by

(o [ T
DD IS sz( ) ug\{lk}[g w }

bENE [b;€P 0<a;<b; 0<a)<by

c1, 0k b —ag
5D VRD DD o Gy A L

?ENi\Z c1<c€PXP 0<ap<by

The three lines correspond to the tllrce summands in equation 3.2.7.
Since A is an S-fold Hopf algebra, 1/1k 1/15 SO

o oo v = b B ot

pr pr pr pr

bp—a
[CNTA k]

In this equation we will now compare the coefficient in front of ,uS\ (i) { o 1
Nz

for b € Ni, with 0 < a; < b;.

We will say that an integer b; > 2 is type 1 if ; is equal to a power of the prime p,
type 2 if b; is equal to a sum of two distinct powers of p, and type 3 otherwise.

Case 1, both b; and by, are type 3:

We get the equation
Thi = Tb,k-
ag a; Qa; 93

Since neither b; nor by, are of type 1, there exists integers 0 < a; < b; and 0 < a < by
such that (ZZ) # 0 and (Z’;) # 0. Thus ry; = rp.

Case 2, b; is type 2 and by, is type 3:

Let b; = p/ + p' with j < I. When a; = p’ we get the equation

b\ (0, (O, (b (be
% pj Tbi s bpi<pli — p7 a Tb,k>

and when a; = p! we get the equation

;| Tbi = ; Tbk-
ar/) \P p ay,

From Proposition 3.2.1 we know that (;J) = (pz) = 1. Since by, is not of type 1, there

exists an ay such that (Z’; ) # 0. The last equation thus gives r,; = 7, %, and the second
equation becomes 14 + £y picpt i = To ks SO Ty picpr; Must be equal to 0.
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Case 3, b; is type 1 and by, is type 3:
b
(o)

We get the equation
(o) 5= () )
Thi = Tbk-
ag/) P Qi) \Qk

Since b; is equal to a power of p, (Z’) =0 for all 0 < a; < b;. Hence the right hand
side of the equation is always 0. Since by, is not of type 1, there exists an a; such that
b

(Z’;) # 0, and if b; = p™*!, we have ('T#‘ = 1. Thus ry; = 0.

Case 4, both b; and by, are type 2:

Very similar to case 2. Let b; = p’ + pb and by, = p* + pP* with j; < l; and ji < .
When a; = p” and a;, = p** we get the equation

plk pjz‘ Tb,q,“i‘ plk /b,p1i<pli7i— pjz plk ’r'b7k,

and when a; = p' and a;, = p'*we get the equation

b\ [ bs b\ [ by
pe )\t )"0 T\ ) e )0

b\ (b (b . (bk\ .
From‘Proposltl(h)n 3.2.1 we know that (p,) = (pll.) = (p]’jc) = (p/;) = 1. The last
equation thus gives that r,; = 7%, and so Ly it <pts ; MUS be equal to 0.

Case 5, b; is type 2 and by, is type 1:
Let b; = p? + p! with j < 1. When a; = p’ we get the equation

b,
b\ /b; by b\ ()
. i t J i = . k 5
<Gk> <P7>rb’ " <ak) bpIs <P> P Tk

and when a; = p' we get the equation

)T =\ Tbk-
ar/ \p v/, p

From Proposition 3.2.1 we know that (z;) = (2}) = 1. Since b, = p™*! for some

b
m, (2’;) =0 for all 0 < ap < b, but (5#) = 1. In the last equation the left hand
side is always equal to zero, and hence 7, = 0. The first equation doesn’t give any
information about ry; and ¢, pi <y ;-

Case 6, both b; and by, are type 1:

We get the equation

() (o)

Thi = — Tbk-
ag) p a;) p
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Both sides are 0 for all 0 < a; < b; and 0 < a;, < b, so we don’t get any information
about 7,; nor .
From these six cases we will now deduce equation 3.2.6 in the proposition.
Consider an S-tuple b € Nf_. These fall in five classes:

1. All b;’s are equal to 1.

2. At least one b; is of type 3.

3. No b; is of type 3, but at least two are of type 2.

4. Exactly one b; is of type 2 and the rest are of type 1 or equal to 1.
5. All b;-s of type 1 or equal to 1.

We will now consider these cases one by one.
1. We can choose 14,; arbitrary, since they don’t affect the sum so we let r, = 0.

2. Case 2 shows that for all b, = p’ +p' of type 2, topipte = 0 and ryp = 1. From
case 3, 1y = 0 for all k with by of type 1. Finally, case 1 says that 7, = rp; for
all by, of type 3, so we let 7, = 1;. This correspond to the first sum in equation
3.2.6.

3. Assume b; = p/i < p' and b, = p’* < p'* are of type 2. Then using case 4 twice,
we get that ¢,y cpt g = thpicpix = 0 and 1y = 15. If b; is of type 1, case 5 shows
that 7, ; = 0. We choose 1, = 13, and this also correspond to the first sum in
equation 3.2.6.

4. Assume b; is of type 2. By case 5, for all by, of type 1 r; = 0, but nothing can
be said about 73; nor ¢ i, ;. We choose 7, = 13,4, and this correspond to one
summand in the first sum and one summand in the last sum in equation 3.2.6.

5. This correspond to the middle sum in equation 3.2.6.

3.3 Calculating the Homotopy Groups of Ag»HI),

In this section we will calculate 7,(Ag» HF,), when n < 2p and p is odd. First we
describe an F,-Hopf algebra B,,, and then we show that L(S™) = B,. In the end of
this section we state several lemmas, which we need in the next section, about the
degree of certain elements in B,,. Given a space X, we write L(X) for the graded ring

W*(AxHIFp).

Definition 3.3.1. Given the letters u, o0, 0" and ¢* for k > 0. Define an admissible
word to be a word such that
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1

2
3.
4

It ends with the letter p.

. The letter y is immediately preceded by o.

The letter o is immediately preceded by oF.

. The letters o* and ¢* are immediately preceded by o or @' for some 1 > 0.

We define a monic word to be admissible word that begins with one of the letters
0.0% ¢ or pu.

We define the degree of i to be 2, and recursively define the degree of an admissible
word by the rules

lox| =1+ |z
lo"z| = p*(1+|2])
[ x| = p*(2 + pla|).

An example of an admissible word of length 6 is o™ ! 0" op.

Lemma 3.3.2. The following statements hold:

1.

An admissible word of length at least 3 always ends with the letter combination
k
o op

There is at most ";1

degree of length n.

occurrences of the letter o in an admissible word of even

Every admissible word of length n has degree at least n + 1
IAll admissible words of odd degree begin with the letter o.

Given 0 < k < p. A monic word of degree 2k modulo 2p is either equal to
(0°0) 2, or starts with the letter combination (0°0)* 1" or (o°0)*. A monic
word of degree 2k + 1 modulo 2p is either equal to o(0°0)* 'y, or starts with the

letter combination 0(0°0) 1" or o(00)*.

Proof. All but the last statement is obvious. The last statement follows from the
observation that the degree of a word starting with ¢' or o'p is 0 modulo 2p, when
I > 1, and the degree of a word starting with ¢° is 2 modulo 2p. O

Definition 3.3.3. We define By to be the polynomial F,-Hopf algebra P(u), with
|| = 2. Given n > 2, we define the F,-Hopf algebra B, to be equal to the tensor
product of exterior algebras on all monic words of length n of odd degree, and divided
power algebras on all monic words of length n of even degree.

For example, the monic words of length 4 are po*ou and ¢°¢*op. Hence, By =
®k20(E(QQkQM) ® ['(pd*op)).
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Proposition 3.3.4. When n > 2 there is an isomorphism of F,-Hopf algebras
B, = Tor®~(F,,F,).

Proof. By Lemma 3.3.2, the odd degree monic words are those starting with p, while
the even degree monic words are those starting with o°, ©° or . From Proposi-
tion A.2.10, we get that By = E(ou) = Tor” ™ (F,,F,). When n > 3,

B =@ Ew:) ©QT(2) = Q) Ew:) @ Q) Q) Bl ()

el JjeJ el JjeJ k>0

where y; runs over all admissible words of length n—1, starting with ¢ and z; runs over
all admissible words of length n — 1 starting with ¢° or ¢°. The isomorphism is only
an isomorphism of IF,-algebras. By Proposition A.2.10, and the Kiinneth isomorphism
we have an isomorphism of F,-Hopf algebras

Tor®(F,., F,) = Q) T(0y:) @ R) Q) E(07,:(2))) @ D7 (25)).

el j€J k>0

where |oz| =1 + |z| and |pz| = 2 + plz|.

Now, there is an homomorphism of F,-Hopf algebras TorB"*l(IFp7 F,) — B, given
by mapping the elcment oy; to the monic word ¢%;, and if zj = QOZ;- we map U’ypk(zj)
to the monic word oo” z; and gpvpk(zj) to the monic word (°o* 2}, while if z; J gp z; we
map o7,+(z;) to the monic word gp*z} and @7,x(z;) to the monic word ¢ ¢*z

The monic words of odd degree of length n is equal to the set of words Qx where
x runs over all admissible words of length n — 1 starting with o* or ¢*. Similarly, the
monic words of even degree of length n is equal to the set of words gom and ¢%z where
x runs over all admissible words that starts with ¢ and z runs over all admissible words
that starts with o* or ¢* for & > 0. Hence, the homomorphism above is an F,-Hopf
algebra isomorphism Tor? ' (F,, F,) = B,. O

Before we calculate L(S™), we state a technical lemma which is needed in the proof.
Given a graded module A, we will write A; for the part in degree i. Recall that P(B,,)
is the submodule of primitive elements.

Lemma 3.3.5. If2 <n <2p, then P(B,)api-1 = P(By)2pi =0 for all i > 2.

Proof. In a divided power algebra I'(z), the only primitive element is v (z), so, by
Proposition A.1.8 and 3.3.4, the primitive elements in B,, are linear combinations of
monic words of length n.

We will show that the shortest monic word in degree 0 modulo 2p and of degree
greater than 2p, has length 2p + 2.

By part 5 of Lemma 3.3.2, a monic word of degree 0 modulo 2p must either be

equal to (0°0)P~tu, or start with the letter combination (0°0)P~1" or (¢%0)P.
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The word (0°0)P~ 11 has degree 2p, so the shortest monic word in degree 0 modulo

2p of degree greater than 2p, is thus (0°0)?'¢%0*op, for k > 1, and it has length

2p+ 2.
By a similar argument, we get that the shortest monic word in degree —1 modulo 2p
of degree greater than 2p, is 0(0°0)? 20" opuo, for k > 1, and it has length 2p+1. [

Applying the functor A_HT, to the cofiber sequence
R
gives rise to a bar spectral sequence
E*(S™) = Tor*" (R, F,) = L(S™),

by Corollary 1.2.2.
The pinch map 1 induces vertical maps of cofiber sequences

Sn—l Dn qn

| i J

Sn—l v 5"71 D\ D™ Sn v S",

and this in combination with the reflection map on S™, gives a map of simplicial spectra
B(HF,, Agn-1 HF,,, HF,) — B(HF,, Agn-1 HF,, HF),) Apr, B(HF, Agn-1 HF,, HF),)

that endows this spectral sequence with a F,-Hopf algebra structure as explained in
Corollary 1.2.4. Flatness is no problem, since I, is a field.

Theorem 3.3.6. When n < 2p, there are no differentials in the spectral sequence
E*(S™), and there is an F,-Hopf algebra isomorphism

. (Agn HF,) = B,,.
Proof. The proof is by induction on n. Corollary A.4.7 gives us that m,(Ag1 HF,) =
P(p) = Bi.
Assume we have proved the theorem for n — 1. The bar spectral sequence then
becomes
E*(S™) = Tor®*~(F,,F,) & B, = m.(As- HF,).

By Proposition 1.3.1, the shortest differential in lowest total degree goes from an
indecomposable element to a primitive element. We have E?(S™)o. = F,, so the
indecomposable elements in B, that can support differentials, are generated by o*w
and ¢Fw, with k > 1, where w is some admissible word of length n — 1. By part 3 in
Lemma 3.3.2 these elements are all in degrees greater than or equal to 4p, and equal to
0 modulo 2p since k > 1. Thus if z is an indecomposable element, d"(z) is in degree —1
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modulo 2p, greater than or equal to 4p — 1. By 3.3.5 there are no primitive elements
in these degrees when n < 2p, so there are no differentials in the spectral sequence.
Hence, E?(S") = E=(S").

To solve the multiplicative extensions we must determine (g*w)? and (p*w)? for
all £ > 0, and w an admissible word of length n — 1.

Assume z is one of the generators o*w or p*w of lowest total degree with 27 # 0.
Then by Frobenius

d)(z”):1/)(,2)”:(1®z+z®1+2z/®z“)p:1®z”+zp®1+2(z/)p®(z")p
=1R2PP+2P®1,

so 2P must be a primitive element in degree 0 modulo 2p. By Proposition 3.3.5, this
is impossible when n < 2p and |z?| > 4p, so there are no multiplicative extensions.

When n > 2 the pinch map ¢ : S™ — S™ V S™ is homotopy cocommutative, i.e.
the following diagram commutes

, Sty
n/ lT
}A

S
gn o\ Sn ,

where 7 interchanges the two factors. Cocommutativity is shown by suspending a ho-
motopy between the identity and antipodal map on S!, picking one of the endpoints of
the suspension as the basepoint in S™, and identifying the suspension of two antipodal
points on S* to a point, to define 1.

From this is it follows that L(S™) is cocommutative as an F,-coalgebra when
n > 2. Since E?(S") is a tensor product of exterior algebras and divided power
algebras, Proposition 1.3.2 says that there are no coproduct coextensions. Thus
L(S™) = E>~(S™) = E*(S™) & B, as an F,-Hopf algebra. O

We finish this section by proving five technical statements about the degrees of
certain admissible words. They are used in later sections in arguments about differ-
entials and multiplicative extensions in spectral sequences. The first two lemmas can
obviously be generalized to all n, but we only need them for n < p, so we keep their
formulations as simple as possible.

Lemma 3.3.7. Let n < 2p—2, and let © be an admissible word in B, of even degree.
Let 1 be the number of occurrences of the letter o in the word x. The sum of the
coefficients in the p-adic expansion of the number L;l is equal to n — 1.

Proof. The proof is by induction on n. It is true for n = 1 since [ = 0 and |u| = 2.
Assume it is true for all 1 < m < n — 1. An admissible word = in B,, of even degree
is, by part 4 in Lemma 3.3.2, either equal to ¢y or o* oz for some k > 0, where y and
z are admissible words in B,,_; and B,,_s, respectively.
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First, M =prF(1+ pM) so if the sum of the coefficients in the p-adic expansion of

|y| isn—1 fl where [ is the number of occurences of g in y, the sum of the coefficients

in the p-adic expansion of WTZ” isn—1

|o*oz| QZ|

Second, pF(1+ %)7 so if the sum of the coefficients in the p-adic expansion

of ‘2 ism—2—(l—1)=n—1—1, where [ — 1 is the number of occurences of ¢ in z,

|o* oz]
f

then the sum of the coefficients in the p-adic expansion o is n — [, unless there

was carrying involved in the addition 1 + %

There is only carrying involved if the degree of z is equal to —2 modulo 2p, and by
part 5 in Lemma 3.3.2 this implies that z is equal to (0°0)P~2u, or starts with (o%0)P~*
or (0°0)P72¢0. In these cases 0°pz has length at least 2p — 1, so there is no carrying
involved when n < 2p — 2. O
Lemma 3.3.8. Let Q(B,) be the module of indecomposable elements in B,,. If2 <n <
2p, then Q(By)opi—1 = 0 for all i and @, Q(By)2p: is equal to the module generated
by all non-monic admissible words of length n.

Proof. The module of indecomposable elements is generated by all admissible words

of length n. All non-monic words are in degree 0 modulo 2p. All monic words are

primitive, so by 3.3.5 they are not in degree —1 or 0 modulo 2p when 2 < n < 2p. O

Lemma 3.3.9. The sum of the coefficients in the p-adic expansion of the number
pjl p72 pJn

“‘1“27””, where j; > 0 and || =2 for 1 <i < n, is equal to n when 0 < n < p

andn orn—p+1 whenp <n < 2p.

Proof. If less than p of the numbers j; are equal, we get the case n, and if at least p
of the numbers j; are equal, we get the case n — p + 1. O

Corollary 3.3.10. Let x be an admissible word in B, of even degree.

If 1 < n < p, then the degree of x is not equal to the degree of ulf“,u’;? T
where j; >0 for 1 <i<n.

Ifp>5,1<n<pandl <s <n, then the degree of T is not equal to the degree
of (,u?“ugm ) where ;>0 for1<i<n+1.

Proof. By Lemma 3.3.7 the sum of the coefficients in the p-adic expansion of L;l is
equal to n — [ where [ is the number of occurences of the letter ¢ in z. Part 2 in
Lemma 3.3.2 says that 1 <1 < 5% so M <n—1 < n—1. By Lemma 3.3.9 the

P J1 pJZ p]n
sum of the coefficients in the p-adic expansion of ml’”iﬂ"l is equal to n when
O<n<pandnorlwhenn=p Now,n—Il<n—1<n<n+1and whenn=7p
then 1 < "—H = ﬂ < n — [, proving the first claim.

Il sz p]n pIn+1
(B py - )T |

The sum of the coefficients in the p-adic expansion of l is equal

ton+1when0 < n < p—1and n+1or n—p+2 when p—1 < n <p. Whenn—p 1>4
n+l __ _ +1 __ p+l

then 1 < = =% <n —1 and when n = p > 5 then 2 < "= = 5= < n — [, proving

the second claim. O
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Definition 3.3.11. Given a finite ordered set S = {s; < ... < s,} we define an
S-labeled admissible word to be an admissible word of length n, where the first letter
1s labeled with s,, the second with s,_1, and so forth. We define Bs to be the IF,,-Hopf
algebra that is a tensor product of exterior algebras on all S-labeled admissible monic
words of odd degree and divided power algebras on all S-labeled admissible monic words
of even degree. We let By =T, be generated by the empty word in degree zero.

Forgetting the labels on the letters induces an F,-Hopf algebra isomorphism be-
tween Bg and B,,. An example of an S-labeled word of length 3 is g§3952u51.

Lemma 3.3.12. Let n < p, and let P C Q- Bu be the F,-submodule generated by
all products zy, - - - zy,,, where Uy, ..., Uy is a partition of n, and, zy, is a primitive
element in By,, for everyi. Then Py, = 0 for every i > 2, and the module @222 Py
is contained in the module generated by all the elements Mf“ug"
for1 <i<nmn.

2.../L{’lj", where j; > 0

Proof. In a divided power algebra I'(z), the only primitive element is (), and in
a polynomial algebra P(z) the primitive elements are generated by z?’. By Proposi-
tion A.1.8, the primitive elements in By, are thus linear combinations of monic words
w; of length |U;] when |U;] > 1, and ,u’;j when |U;] = 1. Assume without loss of
generality that z is a product of such elements.

Observe that the degree of a word starting with ¥, o*o or upk is 0 modulo 2p when
k > 1. Thus multiplication with one of these words will not change the degree of the
product modulo 2p. The degree of ¢’z and u is 2 modulo 2p, and finally the degree
of ¢°ox is 2 + |z| modulo 2p.

Except for the products ,u’f“ ... 2" the smallest n where the degree of z is 0
modulo 2p is thus n = p + 2 where z may be equal to 1 -+ pp—2 - /15;1 . g2+29p+1pp.
Similarly, the smallest n where the degree of z can be —1 modulo 2p is n = p + 1,
where z might be equal to g -+ pp—o - uzil © Op+1fhp- i

3.4 Calculating the Homotopy Groups of A HF,

In this section we will calculate the homotopy groups m,(Ar» HF,) for n < p. We will
use the bar spectral sequence, and the multifold Hopf algebra structure of m, (Azn HEF))
to make the calculation.

Fix a basepoint on the circle S'. Let Z be the category with objects finite sets of
natural numbers, and morphisms inclusions.

We define the functor T : Z — Top by T(0) = {pt}, and when U # @, T(U) =
TY, the U-fold torus. On morphisms it takes an inclusion U C V to the inclusion
inl‘ﬁ: TY — TV, where we use the basepoint in the factors not in U.

Given a finite subcategory A C Z, we define

T2 = colim TY.
UeA
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Given a finite set U we define Ay, the restriction of A to U, to be the full subcategory
of A with objects {VNU|V € A}. The dimension of A, is the the maximal cardinality
of the sets in A.

If U has cardinality k, there is a quotient map

gV 1Y =1V )T | = 8V,
where SV is the U-sphere, and if U C V, there is a projection map
prg: TV > 1Y,

Given a map of spaces f: X — Y we will, when there are no room for confusion,
write f for both the induced maps AfHF,: AxHF, — Ay HF, and L(f) : L(X) —
L(Y).

Proposition 3.4.1. For each u in U € T, if L(TY) is flat as an L(TY\*)-module, the
ring L(TY) is a commutative L(TV\")-Hopf Algebra where:

1. Multiplication is induced by the fold map TV Iy TV = TV x (STv S1) — TV,
2. Coproduct is induced by the pinch map S* — S* Vv S on the u-th circle in TY.
3. The unit map is induced by choosing a basepoint in the u-th circle in TU.
4. The counit map is induced by collapsing the u-th circle in TV to a point.

Proof. Since Ayv HF,, = Ag1 Ao, HF), this follows from Proposition 1.1.5. O

Recall the definition of the category Z in Section 3.1. Given a finite set S € Z and
a full subcategory A of V(S) we also write A for the full subcategory of Z containing
all the sets in A.

Proposition 3.4.2. Let W be an object in I, and let A be a saturated subcategory
of V(W), see Definition 3.1.16. Define the functor L(T~) : A — CRings on objects
by L(T~)(U) = L(TY) and on a map U : V — W by infy, opr);. The functor L(T™)
is a partial W-fold Hopf algebra, when equipped with the Hopf algebra structures in
Proposition 3.4.1, and we let L(T®) denote its extension to W. Thus, L(T*)(U) =
L(TAv),

Furthermore, the map g induces a map of Hopf algebras

(L), L(T"V)) — (L(S™),F,).

Proof. 1t suffices to show that L(T~) is a W-fold Hopf algebra when A = V(W).
Given U C V C W and v € V we get two homomorphisms of Hopf algebras
(L(TY), L(TY\)) — (L(TY), L(TV\")) — (L(TY), L(TY\")) induced by the inclusion
U\v— V\v. Hence, L(T~) is a pre W-fold Hopf algebra.
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Given a set U C V C W, the ring L(T"V)Y, as defined in Definition 3.1.6, is
isomorphic to L(TV\Y x (S* v SY)V), since L(—) commutes with colimits, and the
colimit of the composite

—U(V\U)

T(U)—[2]" [2]° = Top.
is TV\U x (S v S1)U, where the definitions are as in Definition 3.1.6.

That L(T~) is a W-fold Hopf algebra, follows from the geometric origin of the
coproducts ¥, for i € V. C W. Given a sequence uy, ug, . . ., ux of distinct elements in
VCW,let U= {uy,us,...,ur}. The map

defined in Definition 3.1.12, is induced by the pinch map on every circle in TV C TV.
Hence, it is independent of the order of the elements w; in """, O

Ultimately we are interested in L(T™), so we only do the next constructions for
the finite sets n. We will now construct a family of bar spectral sequences that will
be the backbone in our calculations of L(7™).

Give the circle S' the minimal C'W-structure, and give the U-fold torus TV the
product C'W-structure.

The attaching maps in the CW-structures yield cofiber sequences

Snfl ~ o

n—1

.

giving an equivalence of commutative HF,-algebra spectra
B(ApnHF,, Agn-1 HF ), Arn HTF,) =~ Apa HTF,,.
By Corollary 1.2.2, there is an [Fj-algebra bar spectral sequences
EX(T™) = Tor™S" (L(T™ ), F,) = L(T™).

For each i € n, the pinch of the i-th circle in 7™ induces a map of cofiber sequences

gt qm ™

| |

Srly Gl T T TR ——> T My T,

inducing a map of simplicial spectra
B(HF,, Agn-1 HF,, Arn  HTF,)
— B([{IE“TJ7 Asn—l HFP /\H]F,, Agn—l HFP, AT;',IHIFP /\ATn\iH]FP AT;‘,lHFP)
~ B(HFP, ASn—l H]Fp, AT,’;’,l HFP) /\ATn\iH]FP B(f]ﬁ‘ﬂp7 Agn—l HFP, AT:.LlHFp) .
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Hence by Corollary 1.2.4, if E"(T™) is flat as an L(T™\")-module then E*(T™) is a
spectral sequence of L(T™\)-Hopf algebras, and if L(T™) is flat as an L(7™\)-module,
then L(T™) is an L(T™\)-Hopf algebra and the spectral sequence converges to L(T™)
as an L(T™\")-Hopf algebra.

In light of part 3 in the next theorem, we will abuse notation and write By C L(T")

for the injective homomorphism By — @y BV =~ L(TV), when U C V.

Theorem 3.4.3. Given 1 <k < p whenp >5and1 < k <2 whenp =3, let A a
finite subcategory of T of dimension at most k and let V- C W be two non-empty sets
in I of cardinality at most k.

1. The map L(f*): L(S*) — L(T¥_,) factors through F,.
2. When k > 2, the spectral sequence EQ(Tk) collapses on the E?-term.

3. There is a natural Fy,-algebra isomorphism
=& b

where By is described in Definition 8.8.11. These isomorphisms induce an F,-
algebra isomorphism

L(T?) = colim L( TV) = (X) Bu.
Uea
4. Assume |V| > 2 and let v be the greatest integer in V.

The operator
o: L(TVV") — L(TV)

is determined by the fact that o is a derivation and that o(z) = 0,z and o(z) =
0%z when O £ U C V \v and z is an U-labeled admissible word in By C L(TV\V)
of even and odd degree, respectively.

In particular, for any z € L(TV\"), (z) is in the kernel of the homomorphism

pr: L(TV) = ®BU—>®B{Z}

Ucv eV

5. There is a commutative diagram

L(TW) —— ®Ugw By

l pr¥ J{pr
U

L(T") —>Qucv B
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6. There is a commutative diagram

L(TV) — ®Ugv By
o
L(SV)—=—— By,

where the bottom isomorphism is the one from Theorem 3.3.6, together with the
canonical isomorphism By = By given by labeling the words in B)y,.

Part 3 and 5 are equivalent to o being a natural transformation of functors from
the category V (k) to the category of F,-algebras.

The range k£ < p comes from all the lemmas in Section 3.3 concerning the degree of
primitive elements. It is possible that this range could be improved by getting better
control of the degree of the primitive elements.

When k& = p = 3 part 1 and 2 of the theorem still holds, but we are not able to
determine the multiplicative structure of L(T3) & E>~(T3) = L(T2) ® Bs. This i
because the degree of v,u+1(0%0p) € I'(0°op) = Bs equals the degree of u’fkﬂ’“l gkug’k’.
Thus, we can’t use Proposition 3.2.5 to show that (’ka+l(gogﬂ))p is a simultaneously
primitive element.

The idea to look at the simultaneously primitive elements to show that the spectral
sequence collapses on the E2-term originated from a note by John Rognes, where he

showed that the spectral sequence E?(T3) collapses on the E2-term.

Remark 3.4.4. It should be possible to prove a similar result for V(0),(An HZ). The
difference would be the degree of the elements in the rings, and thus the degree of the
simultaneously primitive elements. The arguments in Section 3.3 would thus have to
be adjusted for these new elements, and possibly you would want to work modulo 2p?
instead of modulo 2p.

Before we prove this theorem, we give a very short sketch of the proof. We use
the Bokstedt spectral sequence to identify the E?-term E?(T™) and to show that all
d*-differentials are zero. The S-fold Hopf algebra structure on L(7T™) will help us prove
that there are no other non-zero differentials, and hence E*(T™) = E>=(T™).

From E>(T™) we get a set of Fy-algebra generators for L(7™). In several steps we
exchange this set of generators with other sets. The elements in these new sets have
extra properties, and using these extra properties we are able to prove the various
statements in the theorem. In particular, we need the S-fold Hopf algebra structure
and Proposition 3.2.5 to get hold of the multiplicative structure to prove part 3.

We begin the proof by stating two lemmas with corresponding corollaries. The
first lemma concerns the Bokstedt spectral sequence calculating H,(Ara HF),).

Lemma 3.4.5. Given n, assume that Theorem 3.4.8 holds for 1 <k <n —1, then:
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1. The Bikstedt spectral sequence calculating H.(Ar= HF,) has E*-term

2 n\ ~v n— e ra = =
EY(T™) 2 AL(T* N ® By ®E(0,€1, 0,8, .. )@ (0,70, 0472, . . .),
0#£UCn—1

2. There are no differentials d" when r < p—1, so EQ(T“) = Ep_l(T“).
3. There are differentials
dpil(“/p’ (0nTi)) = Ungi—o—l “Ypl—t (0nTi)-

If, in addition, given m > 0 the homomorphism f®: L(S™ ') — L(T™,) factors
through F,, in degree less than or equal to 2pm — 1 and the spectral sequence E*(T™)
collapses in total degree less than or equal to 2pm — 1 (that is E*(T™) = E®(T™) in
these degrees) then:

4. The only other possible non-zero differentials in EP_I(T“) starting in total degree
less than or equal to 2p(m + 1) — 1, are

dp_l(%’(anw)) = Ypt—p(0a) Z Tx,idp_l('Yp(Un?i)L
where x is a generator in L(T™Y) of odd degree and r,; € L(T™™) C Eg;l(T“).
Let B}, EQ(T“) be the algebra, isomorphic to By, that has the same generators

as By, except that we exchange the generators v, (o,x) in degree less than 2p(m+
1) with the infinite cycles

&

-1

Y ((onz)') = Z ((_1)j7p’—pj((0nx)/) Z HT?Wpai(Un?i))v
Jj=0 a€NN |a|=j i€EN

where || = Y,y i, and the convention is that 0° = 1, yo(z) = 1, and v;(z) =0
when 7 < 0.

When s+t < 2p(m + 1) — 2 we get an isomorphism

E (M= AL Q) Bium @ PolonTo,onr,...).
0#£UCn—1

Proof. By Proposition A.4.1 and the Kiinneth isomorphism there are isomorphisms of
H.(Apn-1HF,) =2 A, ® L(T™')-Hopf algebras
EX(T™) = HH,(H,(Apn1 HF,)) & H,(Apa-1 HF,) ® Tor**®“T" )R, F,)
~ A LI e @ To’(F, F,) @ Tor* (F, F,)
UCn—-1

= A* & L(Tnil) ® ® BUU{n} 02 E(Ungl7 O-TL527 . ) & F(UTL?O’ O-n?% B ')7
0AUCn—1
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where the empty set is left out in the tensor product in the last line, since Tor?0 (F,,Fp)
is isomorphic to IF,,.

Proof of 2: The Bokstedt spectral sequence FQ(T“) is an A, ® L(T™1)-Hopf-
algebra spectral sequence. By Proposition 1.3.1, the shortest differential is therefore
from an indecomposable element to a primitive element. By Proposition A.1.8 the
primitive elements are linear combinations of the monic words in ®® £UCn—1 Buuny,
and the elements 0,§;; and 71(0,7;) for i > 0. The primitive elements are thus in
filtration 1 and 2. The indecomposable elements are linear combinations of the F,-
algebra generators in ®®¢U§n71 Byugny ® E(0,6,,006,...) T (0,70, 0071, - . ), given
by the admissible words in @), sucn—1 Buugny together with the elements ang]- and
Ypr(0475), and they are in filtration 1,2 and pi for i > 0. The indecomposable elements
in filtration p are generated by v,(0,) for a generator x in A, ®L(T“‘1) of odd degree.
By Theorem A.4.5, these elements survive to Epil(T“) s0 B (™) = E" 1(T“)

Proof of 3: Theorem A.4.5 also gives us the differentials

dp_l(’prLk(o—n?i)) = uiangi+1 : ’Yk(an?i)v (346)

where u; are units in IF),.

Proof of 4: When m = 0, there is nothing to prove, since all elements in filtration p
and higher are in degree at least 2p. Since Apn HF,, is an HFp-module it is an Eilenberg
Mac Lane spectrum, so the Hurewicz homomorphism induces an isomorphism between
the F)-modules A, ® L(T™) and H.(Am=HF)).

From the assumption that f* factors through F, in degree less than or equal to
2pm —1 and that E*(T™)<apm = E°°(T™)<2pm, we know the dimension of H,(Arn HF,)
as an F-module in degree less than 2pm. We will show that if there are other differ-
entials in the spectral sequence EQ(T“) than those in part 3 and 4 of the lemma, the
dimension of EOO(T“) is smaller than the abutment of the spectral sequence, which is
equal to H,(ApnHFF,), thus giving us a contradiction.

Assume the only dP~!-differentials in the Békstedt spectral sequence EQ(T“) are
those generated by 3.4.6. Lemma 1.3.3 yields an isomorphism

E(T)=ALT) e Q) Buuwm @ Pplonto,onr1,. ).
0AUCn—1

Proposition 3.3.4 together with the assumption that f* factors through F, in degree
less than 2pm — 1 and that E*(T™)<opm = E°(T™)<2pm, gives us an F,-module iso-
morphism

L(Tn)<2pm = EOO(TH)<2pm = E2(Tn)<2pm = (L(T: 1) ® B )<2pm

= (®BU)<zpm = ( Q Bre & BUu{n}®B{n})
UCn

UCn-1 0£UCn—1

%(L(T“*I)@) ® BUu{n}®B{n})
0£AUCn—1

<2pm

<2pm
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Now, there is an F,-module isomorphism from P,(c,7o,0,71,...) to B,y given
by mapping 0,7; to p2, and this isomorphism yields an F,-module isomorphism
E"(T™)<opm = (Ax ® L(T™)) <opm = Ho(Arn HE) <opn.

Assume there is a dP~!-differential with image in Epil(T“)me, which doesn’t have
image in the ideal (0,&;,0,&,,...) C Ep_l(T‘“)7 which is the ideal generated by the
images of all the differentials in equation 3.4.6. Then, in the degree of the target of
this differential, the dimension of the F,-module EOO(T“)<2pm would be smaller than
the dimension of H,(Apn HF},)<opy = ﬂ(T“)<2pm, giving us a contradiction.

To find all possible d?~!-differentials with target in (c,&;,0,,,...) it suffices to
look at differentials from indecomposable elements. Possible non-zero dP~!-differentials
with image in Ei;;m are thus generated by P~ (7. (%)) and dP~!(y,x(¢,z)) where
x is an U-admissible word in By C L(T™') for some @ # U C n— 1 of odd degree

1—k 2mpl—F—
P

at most 2mp " — 1 and even degree at most 2 respectively, and k£ > 1. From

the calculation

(@ (1 (Da2))) = & (@D (@n2))) = @7 (D 7i(dnt) © 75(da)),

itj=pk

we see by induction on k, that d”~'(v,.(¢,z)) must be primitive. Thus it is zero,
since when £ > 1, it is in filtration greater than or equal to p 4+ 1, while the primitive
elements are in filtration 1 and 2.

For the elements v, (¢)2), Theorem A.4.5 yields the formula

_ lz] +1
A" (Yprr(dn)) = (08Q = x) - yi(op),
50 Yprk(022) is a cycle if and only if y,(0%z) is a cycle.
In Ezf;l(T“), the ideal generated by the elements 0,,, 0,&,, .. . is equal to A, ®
L(T™ " ){00&,, 00y, - .} Thus, if dP~*(v,(d%2)) is non-zero, crnﬁQmTH:Jc must be an
element in A, @ L(T™ 1){0,&;, 0n&s, - - -} Since differentials from a A,-comodule prim-

" o || .
itive has target an A.-comodule primitive, anﬁQ%x must actually be an element in
L(T™Y{0,£,,0,E,, .. .}. Hence,

lz|+1 — _
O—nﬂQ 2= Zr.t,idp l(vp(anTi))v

where 7, ; are elements in L(7™71).
Proof of part 5: By Lemma 1.3.4, the elements 7, ((0,,x)") in part 5 are cycles, and

E"' is isomorphic as an algebra to
BN T 2 A LI Y e Q) Bl @ E(0u8,,00Es, . ..) @ T(00T0, 0072, . ).
P#AUCn—-1

In total degree less than or equal to 2p(m + 1) — 1, all elements in @y, 1 By
are cycles. Thus, when s+t < 2p(m + 1) — 2, the only differentials are those in part
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3, so by Lemma 1.3.3 there is an isomorphism

E(I™ 2 A LI ® &K By ® P07, 0071, ),
0£UCn—1

in total degree less than 2p(m + 1) — 2.

All the algebra generators in filtration greater than 2 are in total degree zero modulo
2p. All generators in total degree less than or equal to 2pm must be cycles, because
otherwise, in the degree of the target of this non-zero differential, the dimension of
the F,-module EOO(T“)me will be smaller than the dimension of H,(Arn HF,,)<opm =
E"(T™) 2gpm. Thus there are no more differentials with source in total degree less than

or equal to 2p(m + 1), so Ep(Tn)SZP(erl)fQ = EOO(TH)SZp(erl)—} O]

We only need this lemma to prove the following corollary, which we need to identify
the E%-term E%(T™) and show that there are no d2-differentials.

Corollary 3.4.7. Given n, assume Theorem 8.4.8 holds when 1 < k <n — 1. Given
m >0, if f*: L(S™ ') — L(T™ ) factors through F, in degree less than or equal to
2pm — 1 and the spectral sequence E*(T™) collapses in total degree less than or equal
to 2pm — 1 (that is E?(T™) = E*(T™) in these degrees), then:

1. The map f™: L(S™™') — L(T™,) factors through F,, in degree less than or equal
to 2p(m+1) — 2.

2. The spectral sequence E*(T™) collapses in total degree less than or equal to 2p(m+
1) —2.

Proof. From the Proposition we know that as an F,-module

Ho(Arn HF) <opim1)-2 2 (Ar ® Q) Byr))<ap(m1)-2-

UCn

Since Apn HF), is a generalized Eilenberg Mac Lane spectrum, the Hurewicz homomor-
phism induces an isomorphism between the F,-modules A, @ L(T™) =2 A, @ E=(T™)
and H,(AmHF,).

The E'-terms of the bar spectral sequence E'(T™) is the two-sided bar complex

B, .(T") = B(L(T}

n—1

)7 anhF:n) = L(TT:LI) & n Bfﬂ O F,.

and the differential d' : E;’t(T“) — ESLU(T“) is given by

d'(a®@b®- - @bey1) = af* (b)) @be®- - @bey1+ Y (—1)'a@b1 @ @bibip1 @ - Dbays.
If f* factors through F, in degree less than {, then

EX(T") = Tor"" N(L(T})), F,) = L(T}L,) © Tor " ) (F,, F,) = L(T;,) © Ba,
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in bidegree (s,t) with ¢ < {. Furthermore,
Eqy(T") = L(T},)/ im(f")

If f™ doesn’t factor through I, in degree I < 2p(m + 1) — 2 then the dimension of
A, ® E*(T™) in total degree [ is smaller than the dimension of H,(Ar- HF,) in degree
[, giving us a contradiction.

Thus f* factors through F, in degree less than or equal to 2p(m + 1) — 2.

By a similar argument, if there are any non-zero d"-differentials in E2(7T™). starting
in total degree less than or equal to 2p(m + 1) — 1, the dimension of A, ® E*(T™) in
the degree of the image of this differential, will be smaller than the dimension of
H,.(AnHF,) in this degree.

Thus the spectral sequence E?(T™) collapses in total degree less than or equal to
2p(m+1) — 2. O

This lemma is about which elements in L(T* ;) are simultaneously primitive in

all n Hopf algebra structures. For example ul,ug,ugz is simultaneously primitive in
L(T3) since it’s a product of elements that are primitive in the different circles. We
only gain control over the degree of the elements, but that is sufficient for our needs.
It’s probably a very special case of a more general statement about simultaneously
primitive elements in an S-fold Hopf algebra, but a more general statement has eluded
us.

Lemma 3.4.8. Assume Theorem 3.4.3 holds for 1 <k <n—1. Let S be an object in
T and let A be a saturated subcategory (see Definition 3.1.16) of V(S) with dimension
at most n — 1.

Let V € I and define Ny C N to be the set of degrees of monic words in By when
|V| > 2, and the set {2p'}iso, the set of degrees of u? when V = {v}. Let Na C N be
the set

NA:{ Z TU,

UiE{U1,..,,U]’}

Uy, ... Uj, is a partition of S with U; € A and ry, € NU1}~

If z € L(T?) is S-fold primitive, then |z| € Na.

Proof. We prove it by induction on the number of sets in A. If S\ (Upea U) = W # 0,
there are no S-fold primitive elements in L(T?), since L(T?s\i) = L(T*) for any
je W, so lbfé =id: L(T?) — L(T?). If S = {s} and A = S the lemma holds since
L(T?) = Bys; = P(u,), and the primitive elements are generated by p?" for i > 0.

Let V € A be a maximal set in A, i.e., if V. C W € A then V = W. Let A be the
full subcategory of A not containing V.

Let 2, 2{,... be the monomials in By C L(TV) = @y By ordered so that
|2V < \zxr1| for all i > 0. Note that 2} = 1. -
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When z # 0 we can write z uniquely as

z:zl‘/xl‘?—l-zl‘ilxﬁl—l-...—l—z(‘)/xg, (3.4.9)
v
L(TA) = L(Tﬁ) ® By. If | =0, then z € L(Tﬁ) and we are done by the induction
hypothesis. ~
Otherwise, given j € V, assume x} & L(T?!s\j) C L(T*). Then

where z; are elements in L(Tﬁ) = Queavsy Bu, and xf/ # 0. This is possible since

wi(2) = vl D)+l Dkl ) + o+ el
=10+ 01+> Y@ 1o +af @1+ (@) @ ()")
+...

:1®zlvxl‘7+zlv:rl‘7®l+zlv®x?+:r}7®zlv+...

Now, % : L(Tz) — L(Tz) ®, L(Tz), so the expression on the last line can

(TPIs\5) " .
not be equal to 2 ® 1 + 1 ® 2z due to the summands 2} ® #} and 2} ® 2} and the
fact that 2),...,2) is part of a basis and 2z} is of highest degree. Hence we get
a contradiction and x} € L(T?ls\i) C L(T?). Doing this for all j gives us that
x) € L(TAlsw) C L(T*).

For U € A, the projection maps prg\v - TV — TU\V combines into a map

pr: TB = TAls\wv
Since this map collapses T‘%_l to a point, the map ¢¥ : TV — SIV! together with pr
induces a map
pr: T4 — SV TAlswv,

For j € V the pinch map 97 on the j-th circle induces a commutative diagram

T4 Lad SV TAls\wv
iw\/id
I SV v SV v TAlIsw

TATL ag, TA PR (SY v TAISW) IT g, (SY v TAlsw),

Similarly, for j € S\ V the pinch map 97 on the j-th circle induces a commutative
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diagram
e b SV v TBls\w
lid Vapd
pd SV v (TA|S\V HTﬁl(S\V)\] TA\S\v)

Tg

T a1, T4 pripr (S VTSI, s, (87 V TAlsW),

SVvT

Applying the functor L(—) to these two diagrams yields for j € V' a commutative
diagram

L(T%) i By @ L(T?s\v) (3.4.10)
lwfq lev@d

L(TY) ® LT PO B, ® By @ L(TAlsw)

Lr®ls\

and for j € S\ V a commutative diagram

L(T%) d By @ L(TAls\wv) (3.4.11)
l#} lid@l%\v
L(T*) OLraIs\y L(T2) "2 By @ (L(TAlsw) O rAls\wingy L(T®swv)).

We have proved that 3:}7 € L(T?lswv), so
pr(z) = 2z + 27 pr(zl_y) + ... + 25 pr(ag ),

is non-zero since 2),..., 2y is part of a basis. From Diagram 3.4.10 we know that
pr(z) must be primitive in the L(T?!s\V)-Hopf algebra By @ L(T*5\v), where the Hopf
algebra structure is induced by the F,-Hopf algebra structure on By = By = L(SY).
By Proposition A.1.8, this implies that if pr(z}) is non-zero then 2z} is a V-labeled
monic word when |V| > 2 or an element p?" for some m when V = {v}. It follows

from Diagram 3.4.11 that when pr(z}) # 0 it is S\ V-fold primitive. By induction
the Lemma holds for pr(«}), finishing the proof. O

Corollary 3.4.12. Given n < p, assume Theorem 3.4.3 holds for 1 < k <mn. Lety
be an n-fold primitive element in L(T™ ). If x is an admissible word of length n and
degree 0 modulo 2p, , then |z| — 1 # |y|. If z is an admissible word of length n and of
even degree, then |2F| # |y|.

Proof. When 2 < n < p, Lemma 3.3.8 says the admissible words of length n and
degree 0 modulo 2p are those that start with ' or ¢’ for i > 1. Hence z = o'2’ or
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x = ¢'a’ for 2’ some admissible word of length n — 1. The element o'z’ is in degree
greater than or equal to 4p. By Lemma 3.4.8 and 3.3.12, there are no n-fold primitive
elements in L(T! ;) in dimension 2pm — 1 for m > 2, and hence |z| — 1 # |y|.

If z is an admissible word of length n and of even degree Lemma 3.3.8 says the
admissible words of length n and degree 0 modulo 2p are those that start with ¢ or ¢’
for i > 0. Hence z = 0’2’ or z = 'z’ for 2’ some admissible word of length n — 1. So
|2P] = |¢"T12] or |2P] = |¢™12/|. By Lemma 3.4.8 and 3.3.12 the degree of the n-fold
primitive elements in L(7* ;) is equal to the degree of a product T ...uﬁj", By
Corollary 3.3.10 neither "'z’ nor ¢!z’ is in the same degree as one of the products

p]l

p 2 and hence |2P] # |yl O

Proof of Theorem 8.4.3. The proof is by induction. Given n, with 1 < n < p when
p>5and 1 <n <2 when p =3, assume the theorem holds for all k£ with 1 < k < n.
The only place in the proof where there is a difference between p = 3 and p > 5 is
when we invoke Corollary 3.3.10 in the proof of Lemma 3.4.13.

When n = 2, the theorem holds since L(TV) = P(uy).

Proof of part 1 and 2 : We prove it by induction on the degree of elements in part
1 and total degree in part 2. Given m, assume that part 1 and 2 holds in degree less
than or equal to 2pm — 1. This is trivially true when m = 0.

By Corollary 3.4.7, part 1 and 2 holds in (total) degree less than or equal to
2p(m + 1) — 2. We must thus show that they hold in degree 2p(m + 1) — 1.

The attaching map f™: L(S"') — L(T™ ,) is determined by what it does on the
set of algebra generators in L(S™1) given by the monic words of length n — 1, and by
Lemma 3.3.8 there are no such element in degree —1 modulo 2p, and hence f™ factors
through IF,, in degree less than or equal to 2p(m+1)—1. So, in vertical degree less than
or equal to 2p(m + 1) — 1 Proposition A.2.10 together with the Kiinneth isomorphism
yields an L(T ,)-module isomorphism

EX(T") = Tor " N(L(T)L)), Fy) = L(T;,) © Tor " (F,, F,) = L(T;,) © By,

It remains to show that there are no d"-differentials in E?(T™) starting in total
degree 2p(m + 1). For every i in n, E(T™) is an L(T™V)-Hopf algebra spectral se-
quence, since E2(T®) is flat over L(T™V). The Hopf algebra structure on E?(T™) is
the tensor product of the L(7T™\?)-Hopf algebra structures on L(T™ ;) and the F, Hopf
algebra structure on B,,. Thus, by Proposition 1.3.1, a shortest non-zero differential
in lowest total degree, must go to a primitive element in the L(7™\)-Hopf algebra
structure. Hence, if a shortest non-zero differential starts in total degree 2p(m + 1),
there must elements in degree 2p(m -+ 1) — 1 that are primitive in the L(7™\')-Hopf
algebra structure for all ¢ € n.

The L(T™\P)-primitive elements in L(7™ ,) ® B, are by Proposition A.1.8 lin-
ear combinations of primitive elements in L(T7}* ;) and B,. By proposition A.1.8
the module of L(7™\Y)-primitive elements in B, is L(7T™){x;}, where z; runs over



68 Chapter 3. Homotopy Groups of Apn HF, and Periodic Elements

the monic words in B,. The intersection ;. L(T™\)){z;} is equal to F,{z;} since
MNicn L(T™\') = F,. Thus, the module of elements in B, C E?(T™) that are primi-
tive in the L(7™\))-Hopf algebra structure for every i € n is F,{x;} C B, which is
isomorphic to the module of Fp-primitive elements in B,,, under the projection map
E?(T™) — B,. By Proposition 3.3.5 there are no F,-primitive elements in B,, in degree
—1 modulo 2p when n < 2p. Hence, there are no differentials starting in total degree
2p(m + 1) that have target in filtration 1 or higher.

It remains to show that there are no differentials starting in total degree 2p(m+1)
that have target in filtration 0. This is only possible if there are n-fold primitive
elements in L(7» ) in the target of the differential. If z is an indecomposable element
in B, in degree 2p(m+ 1), Corollary 3.4.12 says there are no n-fold primitive elements
in L(T? ) in degree 2p(m + 1) — 1 when n < p.

Hence, there are no differentials in E*(T™) when n < p, so E?(T™) collapses on the
E%term. Since E?(T™) = L(T™), L(T®) is flat as an L(7T™\)-module, so the spectral
sequence converges to L(T™) as an L(T™\')-Hopf algebra.

Proof of part 3- 6: We will only show the theorem for the set V = n.

1. Let gf%d and G7'g" and be all admissible words of length n starting with ¢ or 0°,
respectively.

2. Let Go_; be all admissible words of length n that starts with ¢° or ¢! for i > 0.
3. Define Gi = Gi¢' U Giy™.

The set Go_1 only contain even degree elements. These three sets generate B,, as an
F,-algebra.

We can also think of g‘f%d and Gy™ as sets of elements in E7 (T™) of odd and
even degree, respectively, while Gy _; is a set of elements in E? (T™) with s > 2, and
together they generate E2(T™) as an L(T™ ;)-algebra. '

Given an element z € B, we let Z denote the corresponding element in L(T™)
under the F,-module isomorphism L(T™) & E?(T™) = L(T™ ;) ® B,. We let ?‘i%d,

—Seven

G and Gs._1 be the set of elements in L(T™) corresponding under this isomorphism,
—Seven

to G4, Gi™ and G, 1, respectively. Let E(?T%d) and B,(G,, UGy _1) be the exterior
algebra and truncated polynomial algebra on the respective sets. Note that there is
an [F,-algebra isomorphism B, = E(G(l)i)d) & Pp(?ivg“ UGs 1) given by the bijections
Gio=0Gioand Go 1 =Gy 1. B

Given two sets Gy, and Go ; of elements in L(T™) where all elements in G, ; are of
even degree, we define an L(T ;)-module homomorphism

n —odd —even = — n
i LT ) @ B(Gy; ) ® Py(Gy; UGay) — L(TT)

by mapping the monomial az; ..., where a € L(T™,) and 2; € G1; U Gy to

the corresponding element axy ...z, in L(T* ;). This is not necessarily an algebra

homomorphism since «; ;(z)? might not be zero for z € ??;en UG,
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Given admissible words x1,...,x,, in B,, then the product Z7...Z,, is equal to
Z1---Tm modulo everything in filtration lower than the filtration of x;...x,,. Thus,
ap,—1 is an isomorphism of L(T* ;)-modules.

We will prove part 3-6 of the theorem using the following lemma, which we prove
after finishing the proof of the theorem.

Lemma 3.4.13. Assume everything in this proof up to this point. Let G1, be the set
of elements o(zn—1) in L(T™), where zn_1 Tuns over all admissible words in Bn_1 C
L(T™"). For every | > 0, there exist sets Go of elements in L(T™) with bijections
Bi1:Gio— Gi1 and Bay : Gog—1 — Gay such that:

1. For any x € G;j_, the element x is equal to B;;_1(x) in L(T™) modulo the ideal
generated by the non-units in L(T™ ;).

2. Given o(zn-1) € ?171, if z € B,_1 is the unlabeled version of the admissible word
Zn_1, then g™(0(2n_1)) € L(S™) & B, is equal to 9z or ¢z, when o(zq_1) is of
odd or even degree, respectively.

3. For everyl > 0 and V' C n, the elements in ?1,1 and 32,1 are mapped to zero
under the homomorphism pri: L(T™) — L(TV).

4. When | > —1, the homomorphism o, is an L(T} ,)-algebra isomorphism in
degree less than pl.
5. Whenl > 1, the bijection By is the identity on all elements not in degree | — 1.

1

6. Composing the isomorphism oy, with the projection homomorphism

Q) By = Q) By =P

UCn i€n

—odd —even

L(TP,) ® E(G)Y) ® Py(Gry UGay) = L(TE,)

=

yields an F,-algebra homomorphism prp, . L(T™) = P(pa) in degree less than
pl, and for every i € n, this homomorphzsm induces a homomorphism of Hopf
algebras (L(T™), L(T“\i)) — (P(pn), P(pn\i)) in degree less than 1.

Note that the homomorphism prp, ) doesn’t come from a map of spaces, but is
purely an algebraic construction. The bijections 85; will be identities when [ is not
equal to 0 or 2 modulo 2p, since Gy, only contain elements in degree 0 and 2 modulo
2p. Furthermore, the bijections /1 ; and f,; are used for book keeping, and there is
no particular relation between them and the homomorphism ay .

Now we continue the proof of Theorem 3.4.3. We define Ggyoo to be equal to 62714_1
in degree less than or equal to [, and by part 5 in Lemma 3.4.13 Gy o, is well defined.
Define 8 : Gy oy g2 = gl U g2 ~ to be the bijection given by all the 3; ;’s. Recall
that when we constructed g1 o and g2 _1, we also showed that there was an Fj-algebra

—=even

isomorphism E((]10 ) ® P, (glo UGs_1) & B,. Together with 3 this induces an

—Seven

[F,-algebra isomorphism E'(Q1 1 ) ® Fy(G, UGae) = By
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Now, the map ¢" : Ayn HF, — Agn HIF, induces the projection homomorphism on
spectral sequences E®(T™) = E*(T™) & L(T* ;) ® B, — B, & E*(S") = E®(S").
Thus, the homomorphism ¢ : L(T™) — L(S™) is surjective and maps L(T> ;) C L(T™)

to F,,. Since B, is finite in each degree, and we observed above that there is an IF)-
—odd —even

algebra isomorphism E(G ;) ® B,(G,; UG200) = By, there exists another F-algebra

—odd —even

isomorphism 6 : E(Gy, ) @ Py(G,; UGss) = B, such that the following diagram of
F,-modules commutes

L(T™) ’ L(S™)

n —odd —even | — pr —odd —even | — F}
L(Tnfl) ® E(gl,l ) ® Pp(gm U g2,oo) - E(gm ) ® Pp(gm U g2,oo) — By,
where the rightmost isomorphism is the one in Theorem 3.3.6.
By part 4 in Lemma 3.4.13 the homomorphism «; o is an algebra isomorphism.
We define the IF,-algebra isomorphism « in part 3 of the theorem to be the composite
of F,-algebra isomorphisms

1,00 n —odd —even — i n
a: LT &= LT ) @ BGY) ® By UGsn) “2 LT ) @ B,
LT © By ™ Q) Bu.

UCn
where ( is the isomorphism given by labeling the words in B,,, and the last isomorphism
comes from the induction hypothesis.

Part 6 of the theorem is satisfied for V = n, since a was deliberately constructed
to satisfy it.

To prove part 4 of the theorem it suffices, by the induction hypothesis, to show
that under the isomorphism «, o(2,_1) = 0nzn_1 and o(zn_1) = 0221 for any
n-labeled admissible word 2, ; in B,_; C L(T™'). Let z be the underlying unla-

beled admissible word of z,_1. As we see from the construction of G; 1, the element
1 —odd —even .

1 oo(0(2n-1)) 18 equal to o(zn-1) in E(G, ;) ® Py(G,; ). By part 2 of Lemma 3.4.13,
Spr(a; L (o(za_1))) is thus equal to gz or ¢z, in B, when o(2,_1) is of odd or even
degree,’ respectively. Hence, oo (zn_1)) is equal to g,2n_1 or 022n_1 in By C L(T™),
respectively. This proves part 4 of the theorem

By the induction hypothesis and part 5 in Theorem 3.4.3, the following diagram

L(Ty,) —— ®Ugn By
iprﬂ ipr
L(TV) — ®Ugv By.
commutes for any set V' C n. From part 3 of Lemma 3.4.13 we have that the non-units

in B, C L(T™) is mapped to zero under the homomorphism pr};. Hence, part 5 of the
theorem holds for V' = n. O
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Proof of Lemma 3.4.13. After we have proven part 1 for the bijection 8;,, we know
that given z € Gy, then 8 1(z) is equal to  in L(T™) modulo the ideal generated
by the non-units in L(T* ;). Since oy is an L(T* ,)-module isomorphism, this
implies that a££1 o g1 is an L(T? ;)-module isomorphism, and hence o _; is an
L(T? ,)-module isomorphism.

It follows by induction, that if we prove part 1 for all [ < m, then aj,, is an
L(T}? ;)-module isomorphism. Hence, to prove part 4 it suffices to prove that a;; is
an algebra homomorphism on the various quotients.

First we prove part 1-3 for 6171.

Recall that the set ?170 consists of the elements 9z and %z where z runs over all
admissible words of length n — 1 of even and odd degree, respectively. The bijection
B1, is given by mapping pz and 09z to 0(zn-1), where z,_1 € Bp_1 is the labeled
version of the word 2. By part 6 of Theorem 3.4.3, g" }(2,_1) = 2 € L(S") ¥ B,,.

By Proposition 1.2.5 and the commutative diagram

Si A ATn—lH]Fp 40‘)> ATnHFp

iS}r/\g“’l lg"

SLA Mgt HF, —2> Agn HF,,

the element ¢g"(c(zn_1)) is equal to 0™ '(2,_1) = 0z. This proves part 2 of the
lemma.

The map g™ induces the projection map from E*®(T™) = E*(T™) = L(T™ ,) ® B,
to E*(S") = E?(S") = B,. Hence, g®(92) = 0z € L(S"), since pz is represented
by oz in EFS(T"), and there is nothing in positive degree in filtration 0 or lower in
E2(S™).

Hence, 0(zn-1) is equal to gg®~1(z) in L(T™) modulo the ideal generated by the
non-units in L(7T™_,), and we have proved part 1 for the set G ;.

Observe that the diagrams

Si VAN ATn—lHFp*w>ATnHFp S}r /\AT!’A—IHFP*W>ATHHF:H
ls}*_/\pr::i\i prﬁ\z lprJr Aid lpr271
SLA Apn-1yi HF, —> Apny HF,, SOA Agn-1 HF, ——> Agn 1 HF,,

commute for all i € n—1. Let y be an element in L(7T™!). By part 5 in Theo-
rem 3.4.3, przj\i(y) = 0. Let o(2) be an element in G;;. From the left diagram, we
conclude that pry;(o(2)) is zero when ¢ # n. From the right diagram we conclude
that pr2_,(0(z)) is zero, since H;(S°) = 0. This proves part 3 of the lemma for the
set Gi1.

Second, we construct the set Gy and prove part 1 and 3 for the set Gq .

Given z € L(T™), we define

7= 30 (=1 ing i (o).

UCn
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Now, let ?270 be the set of elements T where x runs over the elements in Eg,_l and
the bijection Sy is given by sending x to . For every U C n we have inf} prji(z) €
L(T™ ), so T is equal to « in L(T™) modulo the ideal generated by the non-units in

L(T™ ). This proves part 1 for the set ?2,0-
The diagram

n P pryy TU ingy n
lprgnv iprﬁ
in,
Tunv unv TV

commutes. Hence, if V' C n, then

pry (z Z( " vl pry ing) pryy(z Z Z noIsw ing pri(z) = 0,

UCn SCV WCn\V

since ngn\v(—l)”’m"w‘ = Z?;OM(—1)’“'3"2'("2"/') = 0. This proves part 3 for
the set Gz,o.

Third, we will prove the lemma by induction on [. When [ = 0, part 5 and 6 are
empty statements. The first three parts was proven previously in the proof, while the
isomorphism in part 4 is just an isomorphism of L(T™ ;)-modules.

Now, assume that we have proven the lemma for 0 < [ < m. We will construct
the set 62,m+17 and prove that the lemma holds for [ = m + 1. By Proposition 3.4.2,
L(T7) is an n-fold Hopf algebra. By part 3 in Theorem 3.4.3, every element in
Quven e € L(T7) is nilpotent. Hence, there is a splitting of n-fold Hopf algebras
Pr,(p-) — L(T,_,) — Pr,(u—), since no element in Fg, (f1n) is nilpotent. Since
L(T,_,) is the restriction, see Definition 3.1.17, of L(T~) to the full subcategory of
V' (n) not containing n, assumption 2 in Proposition 3.2.5 is thus satisfied for the n-fold
Hopf algebra L(7T7).

By part 4 and 6 in the lemma, assumption 3 and 4 in Proposition 3.2.5 holds for
the n-fold Hopf algebra L(7T~) when ¢ =m

For z € ?g,m, the degree of x is equal to the degree of an element in Gy 1 which
is equal to the degree of an admissible word in B, C FE?(T™) of even degree. By
Corollary 3.3.10, x is thus not in the same degree as any of the elements /t’l’“ u’; N uﬁj"

or (8" 5 - ")y where 1 < s <nand j; € Nforalll<i<n+1

From part 3 in the lemma we have 2 € ), ker(el, : L(T™) — L(T™\%)). By part 6,
if = is in degree m, then z € kcr(prp ) Hence, Proposmon 3.2.5 gives us that

i i, bi
(prP(Mn) ®P<#n\z) prP(un)) © wn(‘r) = Z Tb,zﬂ?]\ﬂ/’ (,uz‘ )
beN?
for some 1, in IF,,, and we define

T=x— E rb,m/ﬁr’l.

beN?
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Obviously, 7 is equal to  modulo the ideal generated by the non-units in L(T™ ;).
We define the set EQMH to be the set that contains all elements in glm in degree not
equal to m, together with the elements , where z runs over all the elements in degree
m in Gz,m This construction gives a bijection B2 41 : ngm = ggym_;_l satisfying part 1
and 5.

In the construction of Z we only sum over positive integers so pri;(Z) = prj(z) =0
for all V' C n. Thus, part 3 holds for the set G 1.

We will now prove part 4 and 6 for [ = m+1. Since, (52,41 is the identity in degree
less than m, it suffices to prove this for elements in degree m. That the homomorphism
pr in part 6 is an F,-algebra homomorphism in degree less than p(m + 1), follows from
proving part 4 for [ =m + 1.

If z is an element in ?Zmﬂ of degree m, then by construction

(prP(un) ®P(Hn\i) prP(,un)) o ¢;(I) = 0. (3414)

Let 0(z) € G11 be an element in degree m. By Proposition 1.1.4, o : m,(Apa-1 HF,) —
7.(Arn HF,) is a derivation. Hence, if % ;(2) = 1®2+2Q1+>_ z/®@z/ fori € n — 1,
then

Va(0(2)) =0(Wh(2) =1®0(2) +o(z) @1+ Y o(z) ® 2 £ ® o (2]).

Recall that by Proposition 3.3.4, the F,algebra L(T™ ') = @), Bv is generated
by all U-labeled admissible words for U C n— 1. Since o is a derivation and z is
of degree m — 1, to show that o(z]) and o(2]) are in the kernel of the projection
homomorphism prp, ), it suffices to show that o(2y) is in the kernel of prp, , for all
U-labeled admissible words zy of dimension less than m — 1, where U C n — 1.

Now, by part 4 of Theorem 3.4.3, if U # n — 1, then o(zy) is in the kernel of
PLp(un)- Otherwise, o(z,_1) is an element in 6171 by the construction of 6171. By the
induction hypothesis and part 6 of Lemma 3.4.13, o(x,_1) is thus in the kernel of
DI p(u,)- Hence, o(z;) and o(2;) are in the kernel of prp, ), so

(PY (i) @ P (i) PLP () © Vi(o(2)) =0 (3.4.15)

when i € n — 1. This equation also holds for ¢ = n, since, by Proposition 1.1.6 o(z) is
primitive as an element in the L(T™~1)-Hopf algebra L(T™).

By equation 3.4.14 and 3.4.15, the homomorphism prp,, ) induces a map of Hopf
algebras (L(T™), L(T™\")) — (P(pn), P(pin\i)) in degree less than m + 1, and hence
we have proved part 6 for [ =m + 1.

To prove part 4 for m + 1, we must show that when y € G;; UGa,,41 and |y| = m,
then 4 = 0 and y? = 0 when y is of even or odd degree, respectively. The claim is
obvious when y is of odd degree, since the ring is graded commutative.

In degree less than m the only elements in L(T™) that are non-zero when raised
to the power of p are the elements in the subring P(u,) C L(T™), as we see from the
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homomorphism a ,,. Thus, by Frobenius and part 6 of Lemma 3.4.13 for [ = m + 1,
Vi) =) = (1ley+y@l+) Yoy P =10y +y el

in all L(7™\))-Hopf algebra structures. Hence, y? is primitive in the L(7™\')-Hopf
algebra structure for every ¢ € n.

Let y? be represented by yo + ... +y, € E(T™), where y; € ES(T™) and y, # 0.
Then, since 3P is primitive in the L(T™\")-Hopf algebra structure, 3, must be primitive
in the L(T™\%)-Hopf algebra E*°(T™) for every i € n. Otherwise, ¢} (y”) would not be
equal to ys ® 1 + 1 ® y, in filtration s.

The L(T™\Y)-primitive elements in L(T® ,) ® B, are by Proposition A.1.8 lin-
ear combinations of primitive elements in L(T ;) and B,. By proposition A.1.8
The module of L(T™\%)-primitive elements in B, is L(T™\"){xz;}, where z; runs over
the monic words in B,. The intersection ;. L(T™\"){z;} is equal to F,{z;} since
MNica L(T™\Y) = F,. Thus, the module of elements in B, C E?(T™) that are primi-
tive in the L(T™\")-Hopf algebra structure for every i € n is F,{z;} C B,, which is
isomorphic to the module of F,-primitive elements in B,, under the projection map
E*(T™) — B,

The degree of yP is zero modulo 2p and the degree of z is at least four, so by
Lemma 3.3.5 there are no Fy-primitive elements in B,, in degree 0 modulo 2p.

Hence, y? must be equal to an n-fold primitive element in L(T* ). By Corol-
lary 3.4.12, the degree of y? is not equal to the degree of any n-fold primitive element
in L(T ;) when n < p. Thus y? = 0, S0 a1,,+1 is an algebra isomorphism in degree
less than p(m + 1) proving part 4 when [ = m + 1. O

3.5 Periodic Elements

The connective n-th Morava K-theory k(n) is a ring spectrum with coefficient ring
k(n). = Pr,(v,) where |v,| = 2p" — 2. The unit map of the ring spectrum Apn HF,
induces a homomorphism Py, (vn,) — k(m)«(Ar=HEF,) and we denote the image of vy,
with v,,. In this section we show that the class of £, +tapd +...+t,u?" " in the
homotopy fixed points spectral sequence calculating k(n— 1), (F(E>T}, Apn HF,)™") is
not hit by any differential, and that this implies that v,_; € k(n — 1).((Ara HF,)"")
is non-zero.

See [JW75] for the following details about Morava K-theory. We have H,(k(n)) =
A,, where A, is the dual Steenrod algebra A,, without the generator 7,,. Multiplication
by v, yields a cofiber sequence

Y#" 2k (n) — k(n) — HF,
which in homology decomposes into short exact sequences

05 A, > A, =5 X214, 0.
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Since A HF), is an HF,-module spectrum, we have k(m),(Ar= HF,) = k(m).(HF,)®
L(T™).
By Proposition 1.5.7, there is a homotopy fixed point spectral sequence

E? = H*(T", H,(A- HF,)) 2 P(t; .. . 1,) @ H.(Ama HF,)) = 7. ((HF, A Apn HF )T

where |t;] = (—=2,0). Similarly as in Section A.5, the right hand side is called the
continuous homology of (Azn HF,)"™" and denoted with HS((Apa HF,)"™).

Give ES' = S(C>) the free S'-CW structure given by the odd spheres filtration,
and use S(C*>)™ as a model for the free contractible T"-CW complex ET". Let E,T"
denote the k-skeleton of ET™.

By Proposition 1.5.7 the filtration E T} — E,T7 yields a spectral sequence

E2(M,n) = My(Apn HF,){1,t,, .. .t,} = M.(F(EyT7, Apn HF,)™")

when M is HF, or k(m).

First we show that in our case it suffices to look at the first two columns in the
homotopy fixed points spectral sequence, to determine whether v,,_; is non-zero in the
homotopy fixed points.

Proposition 3.5.1. Assume x in E*,, . i(k(n —1),n) survives to E*(k(n — 1), n).
If (Tno1) = x in E2(HF,,n), then x = uv,_, for some unit u.

Proof. The cofiber sequence

VUp—1AArn H]Fp
_—

S22k (n — 1) A A HT, k(n — 1) A Apn HF, —— HF, A Agn HT,
preserves the filtration used to construct the spectral sequences, so it descends to a
map of spectral sequences.

Now EgSy w1 _o(k(n —1),n) = E, 1, (HF,,n), and, since E?,, . i (k(n—1),n)
maps injectively to E? (HF,,n), the class of d*(7,_1) = = generates the kernel
of

2,2?"71

k(n)opn—1_o(F (BT, Apn HF)™™) — Hopn1_o(F(EoTT, Apa HF,)™").

The difference between Ef, . 1 _,(k(n — 1),n) and Ef, . (HFp,n) is 7,1, so
since d*(7,_1) = z and x is not hit by any differential in E?(k(n — 1),n), the map i is
an isomorphism on E&Zp"*lfl' Thus the edge homomorphism maps Egzpn, 14 (HTF,,n)
to zero in Ef o(k(n —1),n), so it must map 1 € E§ (k(n — 1),n) to kernel of i, which
is generated by x.

O

Definition 3.5.2. Let M be a homology theory. The homomorphism

(an)* : M*(Tj_l N ATnH]Fp) — ]\4*(ATn><TnH]Fp)
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in Definition 1.1.3, together with the stable splitting T™ ~ TV S° and the multiplica-
tion map in the group T™, induces a homomorphism

H,(T™) ® M,(AgaHF,) — M,(AgHF,).

Gwen j € n and x € M.(Arn HF,) we write o;(x) for the image of [S}] @ x under this
map, where [Sj] € H.(T") is the image of a fundamental class [S'] € H.(S") under
the inclusion of the j-th circle.

Letp>band 1 <n<porp=3and 1 <n <2 and define p to be the kernel of
the projection homomorphism

H.(AmHF,) = A, @ L(T") = A, © Q) By — X) By

UCn i€n

where the isomorphism o : L(T™) = @, By comes from Theorem 3.4.3.
We will now show that the image of the d?-differential in the homotopy fixed points
spectral sequence is usually contained in the ideal p.

Propositi9n§.5.3. Letp>bandl <n<porp=3and1 <n <2 Ifxisin the
subring P(&1,&y,...) @ L(T™) C A, @ L(T™) = H.(AmHF,), then o;(z) is in p for all
Jjen.

Proof. Since o; is a derivation by Proposition 1.1.4, it suffices to check the claim for
the set of F-algebra generators in P(£;,&,,...) ® L(T™) = P(&,&,,--.) @ @pcn Bu
consisting of &, for i > 1 together with all U-labeled admissible words, where U C n.

By Proposition A.4.4, the element o (&;) for i > 1 is represented by ¢, in filtration
1 in the Békstedt spectral sequence calculating H,(Ag1 HF,). By Proposition A.4.6 the
element o¢; is a boundary in the Bokstedt spectral sequence, and hence o(§;) € A,.
It must thus be equal to zero since it is the image of [S'] ® &;, and [S'] is mapped to
zero on the left hand side in the commutative diagram

H.(SY)® H,(HF,) —"> H.(Ast HF,)
ipr@id lpr@id
H.(S°) ® H.(HF,) —~ H, (A HF,).
Hence 0;(§;) =0foralli >1and 1 < j <n.
We prove the proposition by induction on the degree m of an element z in L(T™) =
& ycn Bu- When m = 0, there is nothing to check since o; is trivial on units.
Assume the proposition holds for all elements in degree less than m. If m is
even, the proposition holds because o;(x) is then of odd degree, and &), , By is
concentrated in even degrees. Assume m is odd, and that z is a U-labeled admissible
word of degree m for some U C n. By Proposition 3.3.2, z is thus equal to oy, where
k is the greatest element in U and y is a U \ k-labeled admissible word of even degree.
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By part 4 of Theorem 3.4.3, x is equal to o4 (y) where we think of y as being an element
in Byyy C L(TU) C L(Tx1).

If j > k, the element o;(z) = 0(ox(y)) is in p by part 4 of Theorem 3.4.3.

The element o;(ox(y)) is equal to the image of [S}] - [SE] @ y, where [S]] - [S}] is
the product in H,(T™). When k = j, 0;(0x(y)) is thus zero since [S}]* = 0.

When j < k, we have 0;(ox(y)) = to(o;(y)) since the ring H,(T™) is graded
commutative. Now, o;(y) is in L(T%1), so by part 4 in Theorem 3.4.3, the element
or(0;(y)) is in p. Hence, o;j(ox(y)) is in p. O

Proposition 3.5.4. The differential in E*(HF,,n) is given by
d*(z) = tioy () + ... + ton(2),

for x € E§ (HF,,n).

7Thius, ifp>bandl <n<porp=3and1l <n <2, and x is in the subring
P(£,&,...) ® L(T™) C H (A HF,) = E (HF,,n), then d*(x) is in p{t1, ... t,}.
Proof. There is a surjective homomorphism from the spectral sequence

E* = H(T", Ho(Aga HF,)) = P(ty .. . ,) @ Ho(Apa HF,) = 7. ((HF,AAra HF,)"™™),

to E?(HF,,n). Inclusion of fixed points induces the projection homomorphism from
E? to

'E* = H*(S", H.(Ap« HF,)) = P(t;) @ H.(Arn) = m.((HF, A Apa HF,)"5"))

where S! acts on the i-th circle in T". Now 'E? maps injectively to the Tate spectral
sequence, so by Proposition 2.1.2, the d2-differential in 'E? is induced by the operator
O'j.

The formula for the differential in E*(HF,,n) is thus

d*(z) = tioy () + ... + ton(2),
and the second claim now follows by Proposition 3.5.3. |

We will now show that the element ¢, +top +...+t,u2" " in E*(HF,,n)
is not hit by any differential in the homotopy fixed points spectral sequence. The
idea of the proof is that by the previous propositions only 7; can hit an element in
P(p1, ... pn){t1, ... t,}. For dimension reasons this can only happen when i < n — 2,
but since we have one fewer variable 7; than p;, these will not add up correctly.
Proposition 3.5.5. Letp>5and1 <n<porp=3and1 <n <2. The element

1

td" T At + t? in
E*(k(n—1),n) 2 k(n—1).(Apm HF){1,t1, ..., t,} = k(n— 1) (F(E T, Apa HF,)™)

is not hit by any differential, is obviously a cycle, and thus represents a non-zero
element in k(n — 1) (F(ET}, A« HF,)™™).
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Proof. Since k(n — 1).(Ar=HF,) C H.(Ar=HF,), the differentials in E?(k(n — 1),n)
are determined by the differentials in E?(HF,,n). By Proposition A.4.6 and A.4.4,
0i(T;) = ufj, so Proposition 3.5.4 yields d*(7;) = >, t,-,uf?. Assume z is an element
in k(n — 1).(Ar=HF,) with differential d?(z) = Y., ti,uf"fl. It can be written, not
necessarily uniquely, as
z = ?02’0 . ?n_gzn_g + Z/7

where 2’ is in P(£,,&,,...) ® L(T™). By Proposition 3.5.4, d?(2') is in p{t,,...,t,}, so
we must have

n—2

P (Fo)zo+ .+ B (Fua)om o= 3 (bl +. il )z =Yt 4y, (3.5.6)
j=0 i=1

for some y in p{t1,...,tn}.

Write the elements z; in the monomial basis in A, ® L(T™) = A, ® @y, Bu-
For equation 3.5.6 to hold, at least one of the z-s must have a non-zero coefficient in
front of u’fnflf’] " We let &, > 0 be the greatest integer i such that this coefficient is
NON-ZETO.

Let ko < ki be the greatest integer where the coefficient in front of an
in z;, is non-zero. Such an integer must exist, because the coefficient in front of
tgugkl/ﬁfnfl_pkl on the left hand side in equation 3.5.6 would otherwise be non-zero
due to the contribution from d?(7y, )2z, -

Continuing in this way we get that, since there are n variables t;, there must be a

-1 k k 2
—p 1 P l—p 2
2

sequence of integers k; > ... > k, such that the coefficient in front of the monomial
n—1_pk1  pki_pko kn _pkn . . .. . .
p TP b TP TP qn 2, is non-zero. But this is impossible since there are

only n — 1 number of variables z;.
We thus get a contradiction, so there is no element z in k(n — 1).(Ar=HF,) with

n—1

differential d?(z) = >0 tipuf . 0
Theorem 3.5.7. Letp>5andl1 <n<porp=3andl1 <n <2 Thenv, 1 in
k(n —1).((Ara HF,)"™) is non-zero. Equivalently, the homomorphism

k(n — 1).(S2" " 2 F(ByT}, Apn HF,)™) 2“5 k(n — 1), (F(E,T}, Agn HF,)™")
maps 1 to something non-zero.

Proof. The unit map S° — (Ara HF,)"™" and the inclusion E,T™ — ET™ induces the
vertical homomorphisms in the commutative diagram

k(n — 1),(5%"'=259) k(n —1).(S°)

i |

k(n —1),(22%" ' 2 (A HF,)MT") — 1~ k(n — 1).((Apn HF,)"T")

i |

k(n —1).(3%" 2 F(ByT7, Apn HF,) ™) 2 k(n — 1), (F(EyT7, Apa HE,)™").
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By Proposition 3.5.5 and 3.5.1 the homomorphism v,_; maps 1 in the lower left hand
n—1 n—1 ne

corner to the non-zero element represented by the cycle typ +toph  +. . +toul"

in the lower right hand corner. Hence, the image of v,,_; must be non-zero in the middle

group on the right hand side of the diagram. O






Appendix A

Tools for Calculation

A.1 Hopf Algebras

We will now recall the definition, and some basic properties, of a Hopf Algebra. See
[MM65] and Chapter 20 in [MP12] for more details. The spectral sequences we en-
counter later will often have extra structure coming from a Hopf algebra, and this will
aide us in our calculations.

Our ground ring will be graded, so there will be some small differences between
our treatment and the classical treatments of Hopf algebras. Our constructions could
be made more general, but we restrict the attention to the cases we are interested in.

We will work with graded objects, and all our objects will be non-negatively graded.
Let R be a fixed graded commutative field, i.e., a graded commutative ring such that
every graded R-module is free, and write ® for ®g.

Definition A.1.1. An R-algebra is a graded R-module A together with morphisms of
graded R-modules ¢ : A® A — A, called the multiplication, and n: R — A, called the
unit such that the following diagrams are commutative

id®¢ n®id

ARAR AL An A RoA™S A0 AL A9 R
J{(b@id itﬁ o l(b Z
A9 A—" 4 A

A morphism of R-algebras f : A — B is a morphisms of graded R-modules, such
that the following diagrams commute

p
A(szf A Iff R"/’ Tf
P

BoB-2-B B.

81
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Given two R-modules A and B we define the twist map Tap: A® B — B® A by
the formula 7(a ® b) = (—1)"b ® a where a is an element in A of degree k and b is an
element in B of degree [

Given two R-algebras A and B, then A ® B is an R-algebra with multiplication
the composition

ARBR AR B8 A9 A9 Bo B2 A9 B

and unit
R2R®RMY. A9 B.

An R-algebra A is said to be commutative if the diagram

A A 4
=2
—5
A® A
commutes.

An R-algebra A is said to be connected if n: : Ry — Ag is an isomorphism, and is
said to be augmented if there is an R-algebra map e: A — R such that en = id. Given
an augmentation €, the kernel ker(e) is denoted I(A) and is called the augmentation
ideal. The splitting en = id induces an isomorphism A = R & I(A).

Definition A.1.2. An R-coalgebra is a graded R-module A together with morphisms
of graded R-modules v : A — A® A, called the coproduct, and € : A — R, called the
counit such that the following diagrams are commutative

A—Y A4

lw iw®m > N
A0 AN A9 A0 A RA<EY Ao A% AR

A morphism of R-coalgebras f : A — B is a morphisms of graded R-modules, such
that the following diagrams commute

Pa
A A A A,
if if@f lfi:::j}%
B-Y- BB B~ *

Given two R-coalgebras A and B, then A ® B is an R-coalgebra with coproduct
the composition

A B A9 A9 B B2 A9 B A B
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and counit
A®B-2YE. RQR~R.

An R-coalgebra A is said to be cocommutative if the diagram

, A®A
A= l
YT AR A

commutes.

An R-coalgebra A is said to be connected if €: : Ag — Ry is an isomorphism., and
is said to be unital if there is an R-coalgebra map n: R — A such that en = id. Given
such a map, the cokernel Coker(n) is denoted J(A). The splitting en = id induces an
isomorphism A =~ R & J(A)

Definition A.1.3. Let A be an augmented R-algebra. We define the R-module Q(A)
of indecomposable elements in A by the exact sequence

I(A) ® I(A) —2~ I(A) —= Q(A) —=0.

Let A be a unital R-coalgebra. We define the R-module P(A) of primitive elements
in A by the exact sequence

¥

0— P(A) —= J(A) —= J(A) @ J(A).

Let A be a unital R-coalgebra and let I(A) = kere. We say that an element x in
I(A) is primitive if its image in J(A) lies in P(A).

Definition A.1.4. Given an R-coalgebra A with coproduct 1), we define the reduced
coproduct ) : A — AR A to be equal to ) =1 —id®1 — 1 ®id.

Lemma A.1.5.~]fA is a unital R-coalgebra, the primitive elements in I(A) is equal
to the kernel of . Le., if x € I(A) is primitive, then

YE)=r1+1u.
Proof. This is clear from the definitions. O

Definition A.1.6. An R-Hopf algebra is a graded R-module A together with mor-
phisms of graded R-modules

P ARA— A Pv:A>ARQA
n:R— A e:A—=R



84 Chapter A. Tools for Calculation

such that the morphisms ¢,n and € makes A into an augmented R-algebra, 1, e and n
makes A into a unital R-coalgebra, and the following diagram commutes

A9A—2 A Y _AgA
lww T¢®¢
AQARARA AQARARA.

id ®74,4®id

Commutativity of the last diagram is equivalent to 3 being a morphism of R-
algebras, or ¢ being a morphism of R-coalgebras.

We say that an R-Hopf algebra is connected if A is connected as an R-algebra, or
equivalently as an Rcoalgebra. We say A is commutative if A is commutative as an
R-algebra, and cocommutative if A is cocommutative as an R-coalgebra.

Proposition A.1.7. If A is a connected commutative R-Hopf algebra, there is an
R-module map x : A — A called the conjugation such that x> = id and the following
diagram commutes

A— s R—" . A

X §

AR A AR A

Proof. We have A = I(A) & R. Let x be an element in I(A) of degree q. Then
YE) =21+ 1®x+ > 2 @z and since A is connected, 0 < |z"| < q. We
inductively define y by the formula x(z) = —z — >_ a’x(2"). That x? is the identity
follows from Section 8 in [MMG65]. The generalization to a graded ground ring R is
straightforward. O

id ©x

Proposition A.1.8. Let A and B be unital R-coalgebras. Then there is a split short
exact sequence of R-modules

P(A®nE) P(eA®B)

0—— P(A) P(A® B) P(B) ——0,

where the splitting is given by P(na ® B).

Proof. When R is concentrated in degree zero, a more general statement is given in
Proposition 3.12 in [MM65], and the proof below is an adaption of the proof of this
proposition.

Let is = A®np and prg = €4 ® B.

Exactness of the short exact sequence in the proposition is clear except at the
middle term. That P(prg) o P(ia) = 0 is clear since prgoig = 17p 0 €4

The only thing left to prove is that ker(P(prg)) C im(P(i4)). Observe that there
is an exact sequence of R-modules

0 A4 A9B—t-A9B®B
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where f is given by f = idagp ®1 — (idagp @ prg) © Yagp. Exactness is clear except
for ker(f) C im(i4). The composite

idy ®ep®ida
— 5

AoB-l-A9B®B AQR®B~A®B

is equal to pry ®1 —id, and the kernel of this map is equal to im(i4), hence ker(f) C
im(ia).

If + € P(A® B) satisty P(prg)(z) = 0, then prg(z) = 0 so f(z) = 0. Hence
z € ANP(A® B), so z is an element in P(A). Thus ker(P (prB ) Cim(P(ia)). 0O

A.2 The Bar Complex

In this section we let k be a field. Everything in this section can be found in Chapter
VIII and X in [ML95].

Definition A.2.1. A simplicial k-module M is a family of k-modules M,, n > 0
together with k-module homomorphisms

di - My, - M, _1,1=0,...,n, called face maps and
sj: My — Myi1,5=0,...,n, called degeneracy maps,

satisfying the simplicial identities. See Section VIIL5. in [ML95] for more details.

Associated to every simplicial k-module M we have an associated chain complex
(M,,d), called the Moore complex, with differential

d= i(—l)idl
=0

Let M be a simplicial k-module and denote with DM, the submodule of M,
generated by the degenerate simplices, i.e., DM, = soM,_1 + ...S,_1M,_1. The
relations between the face and degeneracy maps show that DM, is a subcomplex of
M,. We call the complex M, /DM, the normalized complex of M,.

Proposition A.2.2. The canonical projection M, — M, /DM, is a quasi-isomorphism.
Proof. See Theorem VIIL.6.1 in [ML95]. O

Given two simplicial k-modules M and N their product M x N is defined component
wise, i.e (M X N), = M, ® N,,, dp, = d, @ d,, and s, = $,, @ .

Before we define the shuffle product, we must give the definition of a shuffle. Let
m and n be two non-negative integers. An (m,n)-shuffle (11, v) is a partition of the set
{0,...,m+n — 1}, into two disjoint subsets p; < ..., and v1 < ..., v, of m and n
integers, respectively. The sign of this permutation is denoted with sgn(u, v).
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Theorem A.2.3. There is a natural map of chain complexes sh : M, ® N, — (M X
N)., called the shuffle map, given by

sh(a®b) = ngn V) (Suy - S0 (@) @ Sy, o Sy (D),
(1)

where a € M,,, b € N,, and the sum runs over all (m + n) shuffles. The map is
associative, graded commutative and a chain equivalence.

Proof. See Theorem VIIL.8.8 in [ML95]. O
This map induces a map on normalized chain complexes as well.

Corollary A.2.4. The shuffle map induces a chain transformation on the normalized
chain complexes
sh: DN, ® DM, — (DN x DM)..

Proof. See Corollary VII.8.9 in [MLI5]. O

If M is a simplicial k-algebra then composing the shuffle product with the algebra
product gives M, a k-algebra structure.
_ Write d for the “last” face map in a simplicial module. That is if a € N, then
da = d,a.

Theorem A.2.5. There is a natural map of chain complezes f : (M X N), — M,QN,,
called the Alexander-Whitney map, given by

flaxb)= Zd” ‘a®dib, a€ N, be M,

Proof. See Theorem VIL.8.5 in [ML95]. O

Corollary A.2.6. The Alerander-Whitney map induces a chain transformation on
the normalized chain complexes

f: (DN x DM), = DN, ® DM.,.

Proof. See Corollary VII.8.6 in [ML95]. O

We will now elaborate on a particular simplicial module. Let R be a k-algebra let
M be a left R-module and N a right R-module, and define the simplicial k-module A
by A, = M ® R®" ® N. The face and degeneracies are given by

di(a0-~‘7an+1) = (0’07'"aaiai+1>"'7an+l) for i = O7"'an_ la

sj(ag. .. ans1) = (ag, ..., a5, 1, aj41, ..., an41) for j=0,...,n

where ag € M and a,,1 € N.
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The (normalized) two-sided Bar complex is defined to be the associated chain com-
plex of the normalization of this simplicial module, and is denoted with B(M, R, N).
It is a standard fact that B(M, R, N),, = M ® (R/k)®*" @ N, where R/k is the coker-
nel of the augmentation k& — R. An element in B(M, R, N),, is written {[aq]| ... |a,]r
with [ € N, a; € R and r € M, and these elements are normalized in the sense that
lla] . ..|an)r = 0 when any one a; € k.

Proposition A.2.7. The chain complex B(R, R, M), respectively B(M, R, R), is a
free resolution, of left, respectively right, modules, of N.

Corollary A.2.8. There is an isomorphism
Tor®(M, N) = H,(B(M, R, N))

There is a standard coproduct in the bar complex, and by the next proposition
this coproduct is “unique”.

Proposition A.2.9. Let R be a k-coalgebra. The composition of B(k,v¥r,k) and
the Alexander-Whitney map, induces the standard coproduct on the bar complex 1 :

B(k,R,k) — B(k, R, k) ®g B(k, R, k), which is given by

[ar] .. |an] l—)Zaﬂ ai] @ [aia] - - - [an).
Since we work over the field k, it descends to a coproduct in homology via the Kiinneth
isomorphism.

Proof. See Corollary 7.12 in [McCO01]. O

Proposition A.2.10. Let x and y be of even and odd degree, respectively. For all
primes p there are isomorphisms of Fy-Hopf algebras

E(oz) = TOfP(I)(vaR?) = H.(B(F,, P(x),Fy))
I(oy) = Tor”) (Fp, Fp) = H.(B(Fy, E(y), Fp)),
and when p is odd there is an isomorphism of F,-Hopf algebra
E(oz) ® I'(pz) = TOpr(z)(]Fme) = H.(B(Fp, (), Fp)),

given by sending ox to the class of [z], n(oy) to the class of [y] and y1(px) to the
class of [xP~Yx] in the bar complex.

Proof. The differentials in the bar complexes B(F,, P(z),F,) and B(F,, E(y),F,) are
all zero, giving us the F,-module structure in the first two cases.
There is a free resolution

.. —— 2P Py(x) —= 2Pt Py(x) — 2P P,(x) — xP,(2) — P,(x)
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of F,, giving us the F,-module structure of Tor’»@(F, F,).

In the first case, there is only one possible [F,,-Hopf algebra structure.

In the second case we have to check that the homomorphism respects the multi-
plicative structure. Let yl! = [y|...|y] (i-fold product). Then the product on the right
hand side is given by

shy™ @ ™) = 37 sgn(u v) (50, - 50 (4"™) © 83 - 50 (™))
(u,v)

=) (sgn(p,v)* (Y = (n . m) g
(mv)

n

where the extra sgn(u, v) come from the graded product in E(y)®**™ when we shuf-
fle the non-degenerate factors in s,,, .. .s,, (y™) past the non-degenerate factors in
Sy -+ S0 (Y1),

The coalgebra structure follows from Proposition A.2.9.

For the F,-Hopf algebra structure of Tor!»®) (F,,F,), we refer to Proposition 7.24
in [McCO01]. O

A.3 Spectral Sequences

The construction of a spectral sequence and the convergence properties of a spectral
sequence are from Boardmans paper [Boa99]. The algebra and coalgebra properties of
spectral sequences are from [McCO01].

Definition A.3.1. An unrolled exact couple is a diagram of graded abelian groups
and homomorphisms of the form

E! E}

where j or k is a homomorphism of degree 1, while the other two are of degree 0, and
where each triangle As 1 — As — FEy — Agiq1 is a long exact sequence.

Note that we use a different indexing than Boardman.

An unrolled exact couple as above gives rise to a spectral sequence {E”, d"}. That
is a sequence of differential bigraded abelian groups Ef, for r > 1 with differential
d":E}, = El_, ., such that E"' = H (E" d").

When we draw our spectral sequence on a grid in the plane, we will put the group
E7, in the (s,t)-coordinate. Thus our differentials will go up and to the left.

We will say that a spectral sequence is concentrated in a half plane or a quadrant,
if Eit is zero outside of the half plane or quadrant, respectively.
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We denote the s-th grade the horizontal grade and the t-th grade the vertical grade.
For readers who are unfamiliar with the construction of a spectral sequence from
an unrolled exact couple, we point to Boardmans paper [Boa99].

Definition A.3.2. Given an unrolled exact couple as in A.3.1 we

1. Filter the colimit colims A by the subgroups FsAs = im[A; — colimg Ay, i.e.,
there is a sequence of inclusions

.CF, 1 CF,CFgq C...CcolimA;,.
S
2. Filter the limit lims As by the subgroups FsA_o = ker[A® — limg A4, i.e., there
is a sequence of inclusions
QFS,1 ngng+1 Q ghmAs
S
The homomorphisms As — colimg Ay and limg A, — A® are the canonical ones coming
from the colimit and limit construction, respectively.

Given a filtration ... C Fy 1 C Fy, C Fgyqy C ... C H of the group H, we write
Gr H for the associated graded complex

GrH = F./F. .

We will write Rlim A for the the derived limit of the sequence A, see [Boa99] for
more details.

Definition A.3.3. Given an unrolled exact couple we say that the associated spectral
sequence (E",d") converges strongly to H where H = colim; As or H = lim; A, if

1. There is an isomorphism colim, F, = H.
2. There are isomorphisms EX° = Fy/Fs 1.
3. We have lim, Fy, = Rlim, F, = 0.

When a spectral sequence converges strongly, we have by the second property above
an isomorphism

GrH=E.

We will now give two theorems that suffices to prove strong convergence in the
cases we are interested in. Before we do that we need the definition of conditionally
convergence which together with some extra properties will guarantee strong conver-
gence.
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Definition A.3.4. Given an unrolled exact couple, we say the resulting spectral se-
quence converges conditionally to the colimit colimg A, if limg Ay = Rlimg A = 0. We
say that the spectral sequence converges conditionally to the limit lim, A, if colimg A, =
0.

The next two theorems are Theorem 6.1 and 7.1 in [Boa99], rephrased in the
language of half plane spectral sequences.

Theorem A.3.5. Given an unrolled exact couple, suppose the resulting spectral se-
quence is concentrated in the right half plane, or the lower half plane.

1. Iflimg A, = 0, the spectral sequence converges strongly to the colimit colim, A
2. If colimg A; = 0, the spectral sequence converges strongly to the limit limg As.

Theorem A.3.6. Given an unrolled exact couple, suppose the resulting spectral se-
quence is concentrated in the left half plane or the upper half plane, and that it con-
verges conditionally to the colimit colimg Ay or the limit limg A,. If Rlim, E™ = 0, the
spectral sequence converges strongly.

Note that Rlim, E" = 0 if £, is finite for all s and ¢, which will always be the case
in our applications.

We finish this section by defining what it means for a spectral sequence to have an
algebra and coalgebra structure. This extra structure will be crucial for our calcula-
tions. See Section 2 of [McCO01] for more details.

A differential bigraded R-algebra {E .,d} is a bigraded R-module with a product
structure ¢ : E,; ®pr Ey, — Esiuit+o such that d is a derivation, i.e., satisfies the
Leibniz rule

d(zy) = d(z)y + (—1)" zd(y)
when z € E,, and y € E,,, and such that it satisfies the usual associativity and unit
conditions.

Definition A.3.7. Assume we have an unrolled exact couple of graded R-algebras,
with a spectral sequence (E",d") converging strongly to H where H = colims As or
H =lim, Ay, such that the product ¢ on H satisfy

¢(Fs,t ®R Fu,v) g Fs+u,t+v~
We say that the spectral sequence is an R-algebra spectral sequence if:

1. For everyr > 1, {Er,,d"} is a differential bigraded R-algebra.

*,% )

2. The homomorphism ¢"+1 is given as the composite
Bt or B 2 HAB,) ©r HAE,,) — H (B, ©r E},)

OO0 (e

~ r+l
s+u,t+v) =2F

stu,t+v

where the unlabeled homomorphism is the cross product in homology.
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3. The induced pairing on E* makes the following diagram commute

Gry H, ® Gr, Hy —2> Gryyy Hypo

S

>
o] 00 00
Es,t & Es,t Es+u,t+v

where the vertical isomorphisms comes from strong convergence.

Dually, a differential bigraded R-coalgebra {F. .,d} is a bigraded R-module with
a coproduct structure

1/) : Es7t — @ Eum Qr Ez,y

ut+r=s
v+y=t

such that if ¢(z) = Y2/ ® 2” then ¢"(d(z)) = Y. d(2) @ 2" 4+ (=)’ @ d(2")
where |2'| = u + v is the total degree of 2’ E E,., and such that it satisfies the usual
coassociativity and counit conditions.

Definition A.3.8. Assume we have an unrolled exact couple of graded R-coalgebras,
with a spectral sequence (E",d") converging strongly to H where H = colimg Ay or
H = limg A;. We say that the spectral sequence is an R-coalgebras spectral sequence

if:
1. For everyr > 1, {E",d"} is a differential bigraded R-coalgebra.
2. The R-module £, is flat

3. The homomorphism Y™+ is given as the composite

T ~ T H(yT) T T
Es,_:l = H*(Es,t) *T}b H*( @ Eu,v ®R E:vy)

utr=s
v+y=t

r+1 r+1
= D HAEL)en H(E,,) = D B on B
ut+r=s U+r=5
v+y=t vty=t

where the second to last isomorphism is the Kiinneth isomorphism, which exists
since B, is flat as an R-module.

If H is an Rcoalgebra we say that an R-coalgebra spectral sequence converges to H
as an R-coalgebra if the coproduct vb on H satisfy

Ft)g @ Fu,v®RFz,y~

utr=s
v+y=t
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and the induced pairing on E* makes the following diagram commute

Gr, H, i) @ Gr, H, ®p Gr, Hy

u+r=s
v+y=t

1R
IR

o

B EX, @ B2,

u,v

ut+r=s
v+y=t

where the vertical isomorphisms comes from strong convergence.

Observe that if the definition only holds for E” when r < rg, the coalgebra structure
still gives valuable information about the differentials in this range.

A.4 Bokstedt Spectral Sequence

In this section we define the Bokstedt spectral sequence, and give some results about
it.

Let R be a graded commutative ring and let A be a augmented R-algebra. See
[Lod98] for the definition of the A-Hopf algebra H H,(A), the Hochschild homology of
A.

All the information we need about Hochschild homology can be found in the fol-
lowing proposition, which is similar to Proposition 2.1 in [MS93].

Proposition A.4.1. Let A be a commutative augmented F,-algebra. There is an
isomorphism of A-Hopf algebras

HH,(A) = A® Tor(F,,F,).

Proof. There is an isomorphism H H,(A) = Tor*®4™ (F,, F,) by Proposition 1.1.13 in
[Lod98], and by Theorem X.6.1 in [CE56] there is an isomorphism Tor*®4™ (F,, F,) =
Tor?(A’,F,) where A’ is A with the trivial A-module structure. Hence, Tor(A’,F,) =
A ® Tor*(F,,F,). O

There is a Bokstedt spectral sequence first introduced in [Bok86b].

Proposition A.4.2. Let R be commutative ring spectrum. There is a strongly con-
vergent spectral sequence

B}, = HH,(H,(R)) = Hy(Asi R).

An overview of this spectral sequence can be found in [AR05], and their Theorem
4.5 states:
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Theorem A.4.3. Let R be a commutative ring spectrum.

1. If H(As1R) is flat over H,(R), then H.(AsiR) is an A.-comodule H,.(R)-Hopf

algebra.

2. If each term E" forr > 2 in the Bokstedt spectral sequence calculating H,(Ag1 R)
is flat over H,(R), then E" is an A.-comodule H.(R)-Hopf algebra spectral se-
quence. In particular, the differentials d” respect the coproduct 1.

From Proposition 4.9 in [AR05] we have
Proposition A.4.4. Let R be a commutative ring spectrum. Given x in H,(R) the
element o(z) in Hey1(AsiR) is represented by ox in HH;(H.(R)).

A helpful tool for calculations is Theorem 1 in [Hun96], which is a generalization
of an argument by Bokstedt in [Bok86b].

Theorem A.4.5. Suppose x € H,(R) with n odd and positive. Then in the Bokstedt
spectral sequence

HH,(H,(R)) = H.(As:R)

the element ~y,.(ox) lives to E*~* and
n+1

& (e (o)) = 0(BQT )y (o).

Given a prime p, let A, be the dual Steenrod algebra, see [Mil58] for details. When
pisodd A, = P(§,,&,,...)® E(To,71,...) where |;| = 2p' — 2 and |7;| = 2p’ — 1, and
when p is even A, = P(&;,&,,...) where || = 2 — 1. Bokstedt proved the following
in [B6k86b]. See Theorem 5.2 in [HM97b] for a published account.

When p is odd the Bokstedt spectral sequence calculating

Proposition A.4.6. When p is odd, the Bdkstedt spectral sequence calculating the
A,-comodule H,(As1 HF,,) begins

E? = HH,(A,) = A, ® E(0€,,0&,,...) @ (07,071, ..),
and the only non-zero differential is given by Theorem A.4.5, so the E* page is equal
N E>* = A, ® P)(0T0,071,...).
There is an isomorphism of A,.-comodules
H,.(As1HF,) = A, ® P(07y),
where (07o)?' is represented by oT; on E*.
Similarly, when p = 2 there is an isomorphism of A.-comodules
H,(AgtHFy) =2 A, ® P(0¢)).
We can use this to calculate the homotopy groups.

Corollary A.4.7. For any prime p, there is an isomorphism of Fp-algebras

r.(As HF,) = P(u).
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A.5 Continuous Homology of Tate Spectra

In this section we define continuous homology of a Tate spectrum, and state some
results about the corresponding homological Tate spectral sequence. See [LNR12]
for more details. We will need continuous homology in Section 2.4 to show that a
homomorphism is not zero.

When G is a finite group, the Greenlees filtration of G gives rise to a filtration

X¢ ... 5 [EG/E,_i ANF(EG,, X)|% — [EG/E, NF(EG,,X)|% = -+ — =
where the identification of the homotopy (co)limit follows from Lemma 4.4 in [LNR12].
The next definition is Definition 4.7 in [LNR12].

Definition A.5.1. Let G be a finite group and X an orthogonal G-spectrum whose
underlying non-equivariant spectrum is bounded below and of finite type over F,. By
the continuous homology of X*¢ we mean the complete A,-comodule

HY(X'®) = lim H.(EG/E,1 A F(EG,, X)|%).

The following proposition is part of Proposition 4.15 in [LNR12]

Proposition A.5.2. Let G be a finite group and X a G-spectrum. Assume that X is
bounded below and of finite type over IF,. Then the homological Tate spectral sequence

E2,(X) = H™*(G; Ho(X)) = HE,((X'9)
converges strongly to the continuous homology of X*C as a complete A,-comodule.
When X = B A B for some spectrum B, with the action of C5 being permutation
of the two factors, there is more to say about this spectral sequence. The examples we

are interested in are are Ag,«x HF, ~ (AxHF,) A (Ax HF,,) for some space X. Below
we state the homological version of Proposition 5.14 in [LNR12].

Proposition A.5.3. Let B be a bounded below spectrum of finite type over Fy. The
homological Tate spectral sequence

B® = 117(Cyy H.(B)™) = HE((B A B°?)
collapses at the E2-term. Hence the E? = E>-term is given by
E® = P(u,u™") @ Fo{a}
where a Tuns through an F,-basis for H.(B).
The map ¢, : H,((B A B)!“?) — HS((B A B)¥?) maps an A,-comodule primitive
element z € H,((B A B)'“?) to the element represented by u™ @ 2% in the Tate spectral
sequence.

Proof. The identification of the spectral sequence, and the fact that it collapses is part
of Proposition 5.14 in [LNR12]. By Corollary 2.9 in [LNR12] continuous homology is
the dual of continuous cohomology. We can now read of the formula for ¢, from
Proposition 5.12, Formula 3.8 and Proposition 5.14 in [LNR12]. O
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