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Abstract

In this paper, we focus on construction of high order volume preserving integrators
for divergence-free vector fields of the monomial basis, exponential basis and tensor
product of the monomial and exponential basis. We first prove that the commu-
tators of elementary divergence-free vector fields (EDFVF) of these three kinds are
still divergence-free vector fields of the same kind. For EDFVFs of these three kinds,
we construct high order volume preserving integrators using the multi-commutators.
Moreover, we consider ordering of EDFVFs and their commutators to reduce the error
of the schemes, showing by numerical tests that the strategies in [8] work well.
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1 Introduction

In [5], Xue and Zanna proposed an approach to develop explicit volume preserving split-
ting methods for arbitrary polynomial divergence-free vector fields, including the negative
degree, by expanding the divergence equation in terms of the monomial basis. In [7],
Zanna studied explicit volume preserving splitting integrators for more general divergence-
free ODEs than polynomial vector fields, by tensor-product bases decompositions, which
included the polynomial case [5] and trigonometric polynomial case [4] as special cases.

In this paper, we present some notes on construction of high order volume preserving
integrators for divergence-free vector fields of the monomial basis, the exponential basis
and the tensor product of the monomial and exponential basis. In Sections 2 and 3, we
study the properties of EDFVFs of these three kinds under the commutation. In Section 4,
high order volume preserving methods are constructed via commutators. The strategies of
ordering EDFVFs and their commutators are discussed and used to obtain more accurate
schemes. All high order schemes are tested by Example 1. In the last section, we give
some conclusions and remarks.

2 Properties of divergence-free polynomial vector fields based
on diagonal and off-diagonal splitting

Consider the ordinary differential equation

ẋ = f(x), x(0) = x0, (1)

where x ∈ R
n and f : Rn → R

n, f(x) = [f1(x), . . . , fn(x)]
T , is subject to the divergence-free

condition

∇ · f =
n∑

i=1

∂xifi(x) = 0. (2)

We can always decompose an arbitrary vector field f(x) into a diagonal and an off-diagonal
part by

f(x) = fdiag(x) + foffdiag(x)

where fdiag
i (x) (component-wise) is the collection of terms in fi(x) that depend on xi, that

is, ∂xif
diag
i (x) = 0; Similarly, foffdiag(x) is given by ∂xif

offdiag
i (x) = 0.

In [5], Xue and Zanna considered the diagonal part with the form

ẋi = aixix
j, i = 1, . . . , n, a = (a1, . . . , an)

T . (3)

Here j = (j1, j2, . . . , jn) ∈ Nn is the multi-index and xj = xj11 xj22 . . . xjnn . In short, one
could rewrite (3) as

x = Fj(x).

As presented in [5], each divergence-free vector field Fj is associated to a monomial basis
element, and is called an elementary divergence-free vector field (EDFVF).

The divergence-free condition associated with (3) then becomes the algebraic relation

aT (j+ 1) = 0, 1 = (1, . . . , 1)T . (4)
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Moreover, according to the definition of foffdiag, we can write the off-diagonal part as

ẋ = foffdiag =

⎛
⎜⎜⎜⎜⎝

g1(x2, . . . , xn)
. . .

gi(x1, . . . , xi−1, xi+1, . . . , xn)
. . .

gn(x1, . . . , xn−1)

⎞
⎟⎟⎟⎟⎠ .

According to the splitting rules in [3, 5], we can always split the off-diagonal part into
shears, where the ith has the form,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = 0,
. . .
ẋi−1 = 0,
ẋi = gi(x1, . . . , xi−1, xi+1, . . . , xn), i = 1, . . . , n,
ẋi+1 = 0,
. . .
ẋn = 0.

We can rewrite the above equations as

ẋ = goffdiag
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .
0

gi(x1, . . . , xi−1, xi+1, . . . , xn)
0
. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

It is well known that if f is a divergence-free polynomial vector field, f1 and f2 are either
its diagonal or off-diagonal part, we have

∇ · [f1, f2] = 0,

that is, [f1, f2] is a divergence-free polynomial vector field.
For two EDFVFs, we have the following proposition.

Proposition 1 If f1 and f2 are both EDFVFs, then [f1, f2] is also an EDFVF. If f1 and
f2 are two EDFVFs corresponding to multi-indices j and k, then [f1, f2] is an EDFVF
corresponding to a multi-index j+ k. Moreover, if we assume

f1 : ẋi = aixix
j, a = (a1, . . . , an)

T , aT (j+ 1) = 0, (6)

f2 : ẋi = bixix
k, b = (b1, . . . , bn)

T , bT (k+ 1) = 0, (7)

then we have
[f1, f2] : ẋi = [a(bT j)− b(aTk)]ixix

j+k,

with the divergence-free condition

[a(bT j)− b(aTk)]T (j+ k+ 1) = 0. (8)
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Proof. From direct calculation, we obtain

[f1, f2]i = (∇f1 · f2 −∇f2 · f1)i = [a(bT j)− b(aTk)]ixix
j+k.

We can see that (8) is true after some arithmetic by using (6) and (7).
�

3 Properties of divergence-free vector fields: tensor product
bases

In this section, we consider more general divergence-free vector fields than polynomial
vector fields where the basis functions are the tensor product of 1D cases.

3.1 The exponential basis

In [7], Zanna supposed the basis functions φj(x) with the form below,

φj(x) = φj1(x1) . . . φjn(xn),

jl ∈ Jl, j = (j1, . . . , jn) ∈ J = J1 × · · · × Jn.

The choice φjl = xjll and φj = xj = xj11 . . . xjnn is the case of the monomial basis for the
polynomial vector fields, which was discussed in [5] and the previous section. We have the
following proposition, see also [7].

Proposition 2 [7] Given a divergence-free vector field f(x), consider the divergence p(x) =
∇ · f(x) and assume that it can be expanded in a set of basis functions {φj(x)}j∈J ,

p(x) =
∑
j∈J

pjφj(x).

Let Fj(x) be the unique vector field obtained as the collection of terms in f(x) such that

∇Fj(x) = pjφj(x). (9)

Then the differential equation
ẋ = Fj(x) (10)

is divergence-free and f(x) =
∑

j Fj(x).

Now, we can extend the definition of EDFVF to a more general case, see [7] for more
details.

Definition 1 [7] Given the basis {φj(x)}j∈J , a vector field Fj obeying (9) is called an
EDFVF associated with the basis function φj(x).

In [7], we note that when the 1D function φji(xi) is a monomial basis or exponential
basis or mixed monomial and exponential basis, explicit volume preserving splitting in-
tegrators can be constructed. For other cases, we need to either transform them into a
monomial basis or exponential basis.

Now, we study the properties of commutators of EDFVFs under the exponential basis.
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Proposition 3 Consider a vector field ẋ = f(x) and assume that it can be split into vector
fields f1 and f2 corresponding to multi-indices k and l. Both functions can be written in an
exponential basis,

f1 : ẋi = ceik
Tx, f2 : ẋi = deil

Tx,

where k = (k1, . . . , kn)
T , l = (l1, . . . , ln)

T and c = (c1, . . . , cn)
T , d = (d1, . . . , dn)

T . The
divergence-free conditions give the following,

kT c = 0, lTd = 0. (11)

Then we obtain
∇ · [f1, f2] = 0, (12)

which implies that [f1, f2] is still a vector field in an exponential basis. Moreover, we have

[f1, f2] : ẋ = i[c(dTk)− d(cT l)]ei(k+l)Tx, (13)

with the divergence-free condition

i(c(dTk)− d(cT l))T (k+ l) = 0. (14)

Proof. From direct calculation, we obtain

[f1, f2] : ẋi = [∇f1 · f2 −∇f2 · f1]i
= [i(c(dTk)− d(cT l))]ie

i(k+l)Tx.

This proves (13). Moreover, from the divergence-free conditions (11) for EDFVFs f1 and
f2, we can obtain the divergence-free condition (14) for [f1, f2]. �

Formula (13) involves imaginary numbers in the coefficients. To avoid complex arith-
metic, see [7] for more details.

3.2 The tensor product of the monomial and exponential basis

In this subsection, we study the case of a mixed monomial and exponential basis. We begin
with the divergence-free vector field which can be written as follows,

∇ · f =
∑
j

pjx
jmeij

T
f x.

Now, we assume that vector field f can be split into two sub vector fields according to
multi-indices j and l,

f = fj + fl.

For the sub vector field fj, we assume the multi-index as follows,

j = jm ⊕ jf , jm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

j1
...
jp
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, jf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

jp+1
...
jn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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According to [7], the subscript m is associated with the projection onto first p components
which refer to the monomial part, while the subscript f refers to the projection onto the
remaining n− p components which are for the exponential part (Fourier part). A similar
notation is also used in the following.

The differential equation referring to fj(x) must have the following form,

ẋ = fj(x) = a⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
j1+1

...
xp

jp+1

1
ijp+1

...
1
ijn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xjmeij
T
f x = ca ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...
xp

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xjmeij
T
f x, (15)

subject to

aT1 = 0,

ca
T ((j+ 1)m + ijf ) = 0, (16)

where ca =
(

a1
j1+1 . . .

ap
jp+1

ap+1

ijp+1
. . . an

ijn

)T
and the ⊗ denoting the tensor (component-wise)

product of two vectors. (16) are two equivalent divergence-free conditions for differential
equation (15).

Similarly, for the other sub vector field fl, we assume that

ẋ = fl(x) = cb ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...
xp

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xlmeil
T
f x, (17)

with the divergence-free condition

cb
T ((l+ 1)m + ilf ) = 0, (18)

where cb =
(

b1
l1+1 . . .

bp
lp+1

bp+1

ilp+1
. . . bn

iln

)T
.

For the case of tensor product of the exponential and monomial bases, we also obtain
similar properties as the monomial and exponential basis (Fourier series) cases. We propose
the following proposition.

Proposition 4 We assume that the divergence-free vector field f , which is a function ex-
panded in tensor product of the exponential and monomial basis, can be split into two
divergence-free sub vector fields fj and fl defined in (15) and (17). Then the commutator
[fj, fl] is also divergence-free and has the form
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[fj, fl] :

{
ẋi = [ca(cb

T j̃′)− cb(ca
T l̃′)]1:px

(jm+lm+ei)ei(jf+lf )
Tx, i = 1 . . . , p,

ẋi = [ca(cb
T j̃)− cb(ca

T l̃)]p+1:nx
(jm+lm)ei(jf+lf )

Tx, i = p+ 1, . . . , n,
(19)

where j̃ = (j1, . . . , jp, ijp+1, . . . , ijn)
T , l̃ = (l1, . . . , lp, ilp+1, . . . , iln)

T , j̃′ = (j1 + 1, . . . , jp +

1, ijp+1, . . . , ijn)
T , l̃′ = (l1 + 1, . . . , lp + 1, ilp+1, . . . , iln)

T .
The divergence-free condition for vector field [fj, fl] becomes

cab
T ((j+ l+ 1)m + i(jf + lf )) = 0, (20)

where cab = ([ca(cb
T j̃′)− cb(ca

T l̃′)]1:p, [ca(cb
T j̃)− cb(ca

T l̃)]p+1:n)
T .

Proof. To start with, we consider the case of m = 1, n = 2, which can be extended to the
arbitrary case. For m = 1 and n = 2, we have

fj :

{
ẋ1 = a1

x1
j1+1x

j1eij
T
f x,

ẋ2 = a2
1
ij2

xj1eij
T
f x,

fl :

{
ẋ1 = b1

x1
l1+1x

l1eil
T
f x,

ẋ2 = b2
1
il2
xl1eil

T
f x,

where a = (a1, a2)
T , ca = ( a1

j1+1 ,
a2
ij2

), b = (b1, b2)
T , cb = ( b1

l1+1 ,
b2
il2
). Now, we have

[fj, fl] =

(
( a1
j1+1(

b1(j1+1)
l1+1 + b2j2

(j1+1)l2
)− b1

l1+1(
a1(l1+1)
j1+1 + a2l2

j2
))xj1+l1+e1ei(jf+lf )

Tx

( a2ij2 (
b1j1
l1+1 + b2j2

l2
)− b2

il2
( a1j1
j1+1 + a2l2

j2
))xj1+l1ei(jf+lf )

Tx

)

=

(
(ca(cb

T j̃′)− cb(ca
T l̃′))1x

j1+l1+e1ei(jf+lf )
Tx

(ca(cb
T j̃)− cb(ca

T l̃))2x
j1+l1ei(jf+lf )

Tx

)
,

where j̃ = (j1, ij2)
T , l̃ = (l1, il2)

T , j̃′ = (j1 + 1, ij2)
T and j̃′ = (l1 + 1, il2)

T . Moreover, by
calculation

∇ · [fj, fl] = 0

due to the divergence-free conditions ca
T ((j+ 1)1 + ijf ) = 0 and cb

T ((l+ 1)1 + ilf ) = 0.
Therefore the differential equation ẋ = [fj, fl] is divergence-free with the condition cab

T ((j+

l+ 1)1 + i(jf + lf )) = 0, where cab = ([ca(cb
T j̃′)− cb(ca

T l̃′)]1, [ca(cb
T j̃)− cb(ca

T l̃)]2)
T .

The computation for arbitrary values of m and n follows similarly but is simply more
tedious. Firstly extending the vectors a, ca,b, cb as in (16) and (18), we define j̃, l̃, j̃′ , l̃′ as
in Proposition 4. After similar calculation to the case m = 1, n = 2, [fj, fl] has the form of
(19) and the divergence-free condition becomes (20). �

4 Construction of high order integrators

In this section, we construct high order volume preserving integrators for the three kinds
of divergence-free vector fields discussed in the two previous sections: the monomial basis,
exponential basis and tensor product of the exponential and monomial basis. Furthermore,
we assume that for the monomial basis there is only the diagonal part (EDFVFs only).
In the text below, when referring to divergence-free vector fields or vector fields, we mean
these three kinds of divergence-free vector fields.
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4.1 The fourth order scheme

Assume the divergence-free vector field can be split into two EDFVFs, A and B. Given
the symmetric second order method

S2(τ) = e
τ
2
AeτBe

τ
2
A, (21)

we can construct a symmetric fourth order method by

S4(τ) = e
τ3

48
[A,[A,B]]e−

τ3

24
[B,[B,A]]e

τ
2
AeτBe

τ
2
Ae−

τ3

24
[B,[B,A]]e

τ3

48
[A,[A,B]]. (22)

The well-known BCH form tells us

e
τ
2
AeτBe

τ
2
A = exp(t(A+B) + t3(− 1

24
[A, [A,B]] +

1

12
[B, [B,A]]) + . . . ).

It is easy to see that

S4(τ) = e
τ3

48
[A,[A,B]]e−

τ3

24
[B,[B,A]]e

τ
2
AeτBe

τ
2
Ae−

τ3

24
[B,[B,A]]e

τ3

48
[A,[A,B]]

= exp(τ(A+B) + τ3(− 1

24
[A, [A,B]] +

1

12
[B, [B,A]] +

2

48
[A, [A,B]]

− 2

24
[B, [B,A]]) +O(τ5))

= exp(τ(A+B) +O(τ5)),

which implies that (22) is a fourth order method. In the following, we give an example
and test the scheme of (22).

Example 1 We consider the divergence free vector field

ẋ1 = x1x2 + x1x3,

ẋ2 = −x22 + x2x3,

ẋ3 = x2x3 − x23.

According to [5], we split it into two EDFVFs corresponding to multi-indices j = (0, 1, 0)T

and k = (0, 0, 1)T .

f1 :
ẋ1 = x1x2,
ẋ2 = −x22,
ẋ3 = x3x2,

f2 :
ẋ1 = x1x3,
ẋ2 = x2x3,
ẋ3 = −x23.

According to Proposition 1, we have the coefficient of [f1, f2]: (0,−2, 2)T and multi-index:
(0, 1, 1)T ,

[f1, f2] :
ẋ1 = 0,
ẋ2 = −2x22x3,
ẋ3 = 2x2x

2
3.

Similarly, we have

[f1, [f1, f2]] :
ẋ1 = −2x1x

2
2x3,

ẋ2 = 2x32x3,
ẋ3 = −2x22x

2
3,

[f2, [f2, f1]] :
ẋ1 = −2x1x2x

2
3,

ẋ2 = −2x22x
2
3,

ẋ3 = 2x2x
3
3.
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Figure 1: The settings are the same as in Table 1, X4 is obtained from (22) and Y4 is the
Yoshida 4th order method in [6].

According to (22), we can construct the fourth order method (X4). We compare the error
of X4 to the fourth order method proposed by Yoshida [6] (Y4). From Figure 1 and Table
1, we can see that X4 is performing better than Y4, but the error is still off the same
magnitude.

h 0.1 0.05 0.025 0.0125
X4 0.1631e-10 0.0102e-10 0.0006e-10 0.00004e-10
Y4 0.1887e-10 0.0118e-10 0.0007e-10 0.00004e-10

Table 1: Error ‖xn − x∗‖ at time T = 1 by volume preserving implementations Y4 and X4
(at various time steps h) for Example 1. Y4 is the fourth method of Yoshida [6] and X4 is
the method of (22). All the experiments are with the initial condition x0 = [0.1, 0.1, 0.1]T

and the reference solution x∗ is obtained by ode45 imposing machine accuracy on the
relative and absolute tolerance.

4.2 The composition method with an effective error

Table 1 shows that the method proposed in (22) has the same magnitude in error as Y4
in [6]. According to the experiments in [5] the fourth order method O4 in [1] has much
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lower error than Y4 in [6]. In order to get more accurate schemes, [1] proposed to increase
the number of stages not only to just reach a given order, but also leave the space for
optimizing the methods to obtain smaller error. However, increasing the number of stages
is expensive. From a practical perspective, one has to balance the cost and accuracy.

Moreover, McLachlan [2] gave a systematic study with composition methods and showed
that TYPE S, symmetric method (m=5) is more accurate compared to TYPE SS methods
which were based on the Yoshida fourth order scheme (Y4) in [6]. Therefore, we consider
second order TYPE S method (with more stages than a given order) to improve the scheme
in (22). In [2], McLachlan gave a second order method (S, m=2, error:0.026, denoted as
Sm=2
2 ) which had smaller error than the leapfrog (error: 0.070) which is exactly the form

S2(τ) in (22). In [2], Sm=2
2 can be written as

Sm=2
2 (τ) = ea1τAeb1τBea2τAeb1τBea1τA, (23)

where
a1 = 0.1932,

b1 = 0.5,

a2 = 0.6136.

(24)

Proposition 5 Suppose the divergence-free vector field could be split into two EDFVFs,
A and B. Given

Caab =
1

6
a22b1 −

1

3
a21b1 −

1

3
a1a2b1, (25)

Cbba = −1

6
a2b

2
1 +

2

3
b21a1, (26)

based on (23), we can construct a symmetric fourth order method by

S
′
4(τ) = e−

Caab
2

τ3[A,[A,B]]e−
Cbba

2
τ3[B,[B,A]]ea1τAeb1τBea2τAeb1τBea1τAe−

Cbba
2

τ3[B,[B,A]]

e−
Caab

2
τ3[A,[A,B]].

(27)

Proof. First we compute the three terms BCH form,

eb1τBea2τAeb1τB = exp(τ(2b1B + a2A) + τ3(
a22b1
6

[A, [A,B]]− b21a2
6

[B, [B,A]]) +O(τ5)).

The same procedure gives

Sm=2
2 = exp(τ(2b1B + (2a1 + a2)A) + τ3(Caab[A, [A,B]] + Cbba[B, [B,A]]) +O(τ5)),

where Caab and Cbba is (25) and (26) respectively. From (24) we know that 2b1 = 1 and
2a1 + a2 = 1, then we obtain

S
′
4(τ) = exp(τ(A+B) +O(τ5)).

This proves the proposition. �
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Figure 2: The settings are the same as in Table 2, X4 and Y4 are the same as Fig 1 and
X4N is obtained from Proposition 5.

According to our analysis in the beginning of this subsection, the fourth order method
(27) (X4N) is supposed to have smaller error than the fourth order method X4. Now, we
compare them by Example 1. We use larger step sizes h, which range from 0.5 to 0.0625
and the same initial condition for all the experiments. The results are presented in Table 2
and Figure 2, where we can see that X4N has smaller error (at least 1e-1 better) compared
to Y4 and X4. The CPU cost of X4N and X4 for T = 10000 and step size h = 0.1 is 0.672
and 0.564 seconds, respectively. We can see that for Example 1 there is no remarkable
increase in computational cost for X4N compared to X4, but the former scheme gives us
much more accurate results.

4.3 Split the vector field into more than two EDFVFs

In this subsection, we consider the case where the vector field has to be split into more
than two EDFVFs. The following proposition gives the fourth order method based on the
symmetric BCH formula in [8].

Proposition 6 Assume that the vector field can be split into n EDFVFs, f1, . . . , fn, the
symmetric second order method can be constructed by

Snv
2 (τ) = e

τ
2
f1 . . . eτ fn . . . e

τ
2
f1 . (28)

11



h 0.5 0.25 0.125 0.0625
X4N 0.036894e-8 0.002307e-8 0.000144e-8 0.000009e -8
X4 0.101919e-7 0.006371e-7 0.000398e-7 0.000025e-7
Y4 0.117854e-7 0.007370e-7 0.000461e-7 0.000029e-7

Table 2: Error ‖xn − x∗‖ at time T = 1 by volume preserving implementations Y4, X4
and X4N (at various time steps h) for Example 1. Y4 and X4 are the methods depicted
above, and X4N is the method from Proposition 5. All the experiments are with the initial
condition x0 = [0.1, 0.1, 0.1]T and the reference solution x∗ is obtained by ode45 imposing
machine accuracy on the relative and absolute tolerance.

In [8], Zanna gave the symmetric BCH formula,

e
τ
2
f1 . . . eτ fn . . . e

τ
2
f1 = eZ(τ),

where

Z(τ) = τ

n∑
i=1

fi − τ3

12

n∑
i,j,k=1,j<i,j<k

[fi, [fj , fk]]− τ3

24

n∑
i,k=1,i<k

[fi, [fi, fk]] +O(τ5). (29)

Then, we have the symmetric fourth order method by

Snv
4 (τ) =

∏n
i,j,k=1,j<i,j<k e

τ3

24
[fi,[fj ,fk]]

∏n
i,k=1,i<k e

τ3

48
[fi,[fi,fk]]Snv

2 (τ)
∏1

i,k=n,i>k e
τ3

48
[fi,[fi,fk]]∏1

i,j,k=n,j>i,j>k e
τ3

24
[fi,[fj ,fk]].

(30)

Proof. From (30) we have

Snv
2 (τ) = exp(Z(τ) +

2τ3

24

n∑
i,j,k=1,j<i,j<k

[fi, [fj , fk]] +
2τ3

48

n∑
i,k=1,i<k

[fi, [fi, fk]] +O(τ6)).

Together with (29) we obtain

Snv
4 (τ) = exp(τ

n∑
i=1

fi +O(τ5)). (31)

�

4.4 Ordering of the sub vector fields and their commutators

In this subsection we study ordering of the vector fields. Here, we use the strategies in [8],
where Zanna observed from the symmetric BCH formula that collecting the commuting
vector fields decreases the number of error terms. However, when the vector fields do not
commute, we try a strategy by minimizing the commutators.

We obtain a new scheme by ordering the sub vector fields and their commutators
(A,B, [A, [A,B]] and [B, [B,A]]) in (22) as follows.

12



Figure 3: The settings are the same as in Table 3

Proposition 7 Assume that the vector field could be split into two EDFVFs, A and B.
We obtain the symmetric fourth order method by

S4(τ) = e
τ3

48
[A,[A,B]]e

τ
2
Ae−

τ3

24
[B,[B,A]]eτBe−

τ3

24
[B,[B,A]]e

τ
2
Ae

τ3

48
[A,[A,B]]. (32)

From (32) we can minimize the term by computing e−
τ3

24
[B,[B,A]]eτBe−

τ3

24
[B,[B,A]], by

comparing other vector fields, vector field B can minimize the commutator [B, [B,A]].
Then we similarly obtain (32) which has smaller error terms than (22). Moreover, we show
this by the numerical results in Table 3.

We could also optimize Proposition 5 by the same strategy and obtain a better fourth
order method with smaller error.

Proposition 8 Assuming the same conditions as in Proposition 5, we construct the sym-
metric fourth order method as

S
′
4(τ) = ea1τAe−

Cbba
2

τ3[B,[B,A]]eb1τBe−
Caab

2
τ3[A,[A,B]]ea2τAe−

Caab
2

τ3[A,[A,B]]

eb1τBe−
Cbba

2
τ3[B,[B,A]]ea1τA.

(33)

We test Proposition 7 (X4O) and Proposition 8 (X4NO) using Example 1. The results
are presented in Table 3 and Table 3. We compare the results with Table 2. From Table 3
and Figure 3 we can see that the ordering strategies give us much better results. X4O is
at least 10 times more accurate than X4 and X4NO is also more accurate than X4N.
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h 0.5 0.25 0.125 0.0625
X4N 0.036894e-8 0.002307e-8 0.000144e-8 0.000009e-8
X4NO 0.024912e-8 0.001557e-8 0.000097e-8 0.000006e-8
X4 0.101919e-7 0.006371e-7 0.000398e-7 0.000025e-7
X4O 0.127177e-8 0.007951e-8 0.000497e-8 0.000031e-8

Table 3: Error ‖xn − x∗‖ at time T = 1 by volume preserving implementations X4, X4O,
X4N and X4NO (at various time steps h) for Example 1. All the experiments are with the
initial condition x0 = [0.1, 0.1, 0.1]T and the reference solution x∗ is obtained by ode45
imposing machine accuracy on the relative and absolute tolerance. X4, X4N are defined
from before, while X4O is defined by Proposition 7 and X4NO is defined by Proposition 8

5 Conclusion and remarks

In this paper, we have studied the properties of three kinds of divergence-free vector fields:
the monomial basis, exponential basis and tensor product of both. For EDFVFs of these
three kinds, their commutators are still divergence-free vector fields of the same kind.

In general, we can obtain a second order method by symmetrization. For instance, we
use the φA,h and φB,h to represent the first order methods for the vector fields A and B,
respectively. Then the second order symmetric method is simply obtained by

S2(h) = φA,h/2 ◦ φB,h ◦ φA,h/2

which is exactly (21). We can apply Yoshida technique [6] to construct the fourth order
method Y4 by using the symmetric second order method S2

Y 4(h) = S2(αh)S2(βh)S2(αh)

where α = 1
2−21/3

and β = − 21/3

2−21/3
.

In this paper, we used the multi-commutators h3[A, [A,B]], h3[B, [B,A]] as well as the
two vector fields hA and hB to obtain a fourth order method instead of Yoshida technique
[6] or the technique in [1]. Based on the symmetric second order method S2, we constructed
the fourth order method X4 in (22) by using BCH form and simple algebraic calculation.
From results in Table 2 for Example 1, we know that although X4 is better than Y4, the
error is still off the same magnitude.

Next, we used the more effective second order method Sm=2
2 proposed by McLachlan

[2] instead of the symmetric second order method S2. The fourth order method X4N based
on Sm=2

2 behaved numerically much better than X4 in Example 1.
Later on, we studied ordering of the vector fields by considering the strategies in [8],

that is, collecting the commuting vector fields or minimizing the commutators when the
vector fields do not commute. Numerical results showed that the strategies in [8] work
well.
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