
 

Dissertation for the degree philosophiae doctor (PhD)  

at the University of Bergen 

 

 

Diss rtation date: 16. December 2013 e



 

Impact of Geological Heterogeneity on CO2 Sequestration 

From Outcrop to Simulator 

Kim Senger 

Dissertation for the degree philosophiae doctor (PhD) 

 

Uni Research, Bergen, Norway 

Centre for Integrated Petroleum Research (Uni CIPR) 

                 

 

University Centre in Svalbard, Longyearbyen, Norway 

Department of Arctic Geology 

 

 

University of Bergen, Bergen, Norway 

Department of Earth Science 

 



i 

“Even if there is only one possible unified theory, it is just 

a set of rules and equations. What is it that breathes fire 

into the equations and makes a universe for them to 

describe? The usual approach of science of constructing a 

mathematical model cannot answer the questions of why 

there should be a universe for the model to describe. Why 

does the universe go to all the bother of existing?” 

- Stephen W. Hawking 

 

 

 

 

“Nobody climbs mountains for scientific reasons. Science 

is used to raise money for the expeditions, but you really 

climb for the hell of it.” 

- Sir Edmund Hillary 
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Abstract
Increased anthropogenic emission of carbon dioxide (CO2) into the Earth’s 

atmosphere since the industrial revolution has enhanced the greenhouse effect and 

contributed to global climate change. Controlling atmospheric CO2 emissions is thus 

essential to mitigate the environmental and socio-economic consequences related to 

these changes. Carbon capture and storage (CCS) was proposed as one possible 

option to control anthropogenic CO2 emissions, and is particularly viable at CO2 point 

sources such as coal-fuelled power plants. CCS was tested and applied globally in a 

variety of geological and top-side settings within the past decade, with varying 

success. In Longyearbyen, the main settlement on the Norwegian high-Arctic 

Svalbard archipelago, CO2 may be captured at the local coal-fuelled power plant and 

injected into an unconventional siliciclastic target aquifer. The target aquifer, within 

the Late Triassic to Middle Jurassic Kapp Toscana Group, comprises an up to 300 m 

thick sequence of tight, naturally fractured sandstones inter-bedded with siltstones 

and shales. During the Early Cretaceous, igneous intrusions, collectively classified as 

the Diabasodden Suite, were emplaced in the target aquifer. The pilot-scale 

Longyearbyen CCS project envisions only modest storage volumes of CO2, with the 

top-side CO2 storage requirements determined by the annual CO2 emissions from the 

local coal-fuelled power plant (c. 60 000 tons). As part of this PhD study, the 

geologically complex target aquifer was characterized and represented in a static 

geologic reservoir model. Fieldwork (e.g. structural and stratigraphic logs, geological 

mapping), borehole (e.g. drill core logs and plugs, wireline logs, water injection tests, 

vertical-seismic-profiling survey) and regional geophysical (e.g. 2D seismic, digital 

elevation model, magnetic data) data sets were used as input. Two main themes 

relating directly to the geological heterogeneity of the target aquifer were addressed 

in detail: (1) the natural fracture network, and, (2) the presence of igneous intrusions. 

Water injection tests, wireline logging and fracture mapping, in drill cores and at 

outcrops, all indicate that the tight heterolithic siliciclastic target aquifer is highly 

fractured, and that the pre-existing natural fracture network is critical for the 

injectivity of fluids. We integrated borehole (872 fractures measured along 302 m of 

drill core) and fieldwork data (7 672 fractures measured along > 1400 m of scanlines) 
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to develop a conceptual model grouping reservoir intervals with similar mechanical 

and lithological properties into five litho-structural units (LSUs; classified as LSU A-

E). Fractures within the shale-dominated LSU A are predominantly low-angled and 

likely contribute to lateral fluid migration within the reservoir interval. In contrast, 

the predominantly high-angled fractures within the sand-dominated LSU C represent 

probable vertical intra-reservoir permeability pathways. Water injection tests indicate 

a linear flow pattern, particularly in the lower part of the aquifer (870-970 m depth). 

The orientation and configuration of the natural fracture network will thus ultimately 

control the migration direction and speed, and thus also the shape of the fluid plume. 

The highest overall fracture frequency is evident in LSU D (dolerite), but field 

observations suggest the majority of these fractures to be sealed by various types of 

cement (e.g. calcite), precipitated from percolating fluid in the transition zone 

between host rock and igneous intrusions. On a small scale, igneous intrusions form a 

contact metamorphic aureole in the surrounding host rock. This may significantly 

affect reservoir properties, even around relatively thin intrusions. We have studied 

such a thin (2.28 m thick) intrusion penetrated by the Dh4 borehole, and conclude 

that the total contact aureole is 160-195% the width of the sill itself. On a larger scale, 

igneous intrusions set up local-to-regional heterogeneities within the target aquifer, 

either as impermeable lateral to sub-vertical (sills and dykes, respectively) fluid flow 

barriers or as high-permeability pathways along fractured intrusion-host rock contact 

zones. We integrated numerous data sets to constrain the overall geometry of the 

igneous intrusions in Central Spitsbergen, and concluded that dykes and sills are the 

dominant geometries. Saucer-shaped intrusions were also mapped, but are located 

stratigraphically below the target aquifer. In general, igneous intrusions are most 

common in the lower one-third of the target aquifer, but in some cases dykes extend 

into the upper part of the aquifer, and even into the overlying cap rock. On a regional 

scale, igneous intrusions and sub-seismic faults are thus also likely to control the 

shape of the CO2 plume, along with the matrix properties and natural fracture 

network within the country rock. The current geological understanding of the 

unconventional target aquifer was incorporated into a scenario-based calculation of 

potential CO2 storage capacity. The wide range of low to high case (P90-P10) results, 
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even for a given scenario with a deterministic areal extent, reflects the uncertainty 

attached to poorly constrained key parameters. These include the accessible segment 

size of the compartmentalized reservoir, the dominant CO2 phase at reservoir 

conditions and the storage efficiency factor. Reservoir simulations are required to 

constrain these parameters further. At this stage, the calculated storage capacity 

appears to be adequate to fulfil the stipulated requirement for the first phase injection 

of up to 200 000 tons of CO2. In summary, I present a collection of papers addressing 

the geological heterogeneity of an unconventional CO2 target aquifer on Svalbard. In 

addition, I use outcrop analogues of fracture corridors (from south-eastern Utah) and 

intrusion-host rock interfaces (from South Africa) to better understand processes 

acting on the target aquifer. This broad geological understanding is used to 

characterize the target aquifer, and is subsequently incorporated into a static 

geological model of the Longyearbyen storage site. The model may then be used as a 

base for extensive fluid flow simulations to optimize future well placement, injection 

rates and monitoring techniques. The learnings from this work can be applied directly 

to the Longyearbyen CO2 lab project, but may also be transposed as an analogue for 

storing CO2 in unconventional, naturally fractured reservoirs or even for producing 

hydrocarbons from similar geologic settings. 
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Part I – Background and Synthesis 
This part introduces the scientific problem addressed in this PhD study and outlines 

the motivation behind the reservoir modelling of the unconventional CO2 target 

aquifer on Svalbard. In addition, I attempt to provide an overview of the main results 

discussed at length within the individual manuscripts presented in Part II, and 

synthesize these within the broad framework defined by the title of the thesis, ‘Impact

of Geological Heterogeneity on CO2 Sequestration: from Outcrop to Simulator’.  

1. Introduction and motivation 
This dissertation is linked to a political vision of a CO2-neutral Svalbard proposed by 

Gunnar Sand (then director of UNIS) and Alvar Braathen (Professor of Geology at 

UNIS) in December 2006 (e.g. NRK, 2006; Dagens Næringsliv, 2007). This vision 

assumes capturing CO2 at the coal-fuelled power plant in Longyearbyen and storing it 

in the nearby subsurface. A drilling and data acquisition campaign, conducted from 

2007-2013, provides a solid base for understanding the subsurface (e.g. Braathen et 

al., 2012), and emphasizes the unconventionality of the succession; a naturally 

fractured, underpressured, heterogeneous unit affected by igneous intrusions. In this 

applied PhD thesis, I address some of these geological heterogeneities that may have 

an effect on CO2 storage on Svalbard. In this section, I outline the aims and 

objectives of this dissertation, introduce how the papers in Part II fit together, and 

define important terms. 

1.1 Hypothesis, aims and objectives 
This integrated and applied PhD thesis has a clear general hypothesis that can be 

tested: 

‘It is possible to store CO2 emissions from the Longyearbyen coal-fuelled power plant 

locally in the subsurface of Svalbard’. 

In order to test the hypothesis, the geological heterogeneity of the target aquifer was 

investigated, with particular emphasis on features likely to affect reservoir 

performance such as natural fractures and the presence of igneous intrusions. This 



2 

study focusses on these two structural geological heterogeneities, since they are 

considered to primarily control fluid flow (e.g. Braathen et al., 2012). 

Sedimentological heterogeneity is considered reasonably well constrained at the near-

well scale, with a conceptual layer-cake geological model constrained by facies 

characterization (Tveranger, 2011; section 2.3.1. in Paper VI) and associated drill 

core measurements (Farokhpoor et al., 2010), and is not addressed in detail in this 

dissertation. The more specific aspects of this work address the following questions: 

- What structural geological heterogeneities affect the target aquifer? 

o What are the main characteristics of the natural fracture network on 

Svalbard (e.g. orientation, spacing)? 

How can we represent fractures seen at outcrop-scale in a 

reservoir model? 

What impact do fracture properties (e.g. aperture, length, 

direction) have on overall fluid flow? 

o How can we use field analogues to constrain fluid flow through 

fractures? 

How do fracture corridors affect subsurface fluid flow? 

o To what extent do igneous intrusions affect fluid flow? 

What impact do igneous intrusions have on the reservoir 

properties at the local scale? 

What is the overall geometry of the intrusions and can they cause 

compartmentalization of the aquifer? 

Can we use outcrop analogues to better constrain fluid flow 

along intrusion-host rock interfaces? 

o How can we represent the various scales of heterogeneities in a 

reservoir model? 

- Can we store CO2 on Svalbard? 

o How much CO2 can we store in the subsurface of Svalbard? 

 
The overall aims of this PhD study are linked to the above questions, which are 

addressed in the individual papers. In essence, my main aim was to build a static 
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geological model of the unconventional CO2 target aquifer on Svalbard. This model 

should be suitable for fluid flow simulations and follow the ‘from outcrop to 

simulation’ workflow by including critical outcrop data acquired specifically for this 

purpose during this PhD study.  

1.2 Correlation of included papers 
The papers included in this thesis fit into a pyramid building towards the improved 

understanding of the target aquifer on Svalbard (Figure 1). The base of the pyramid 

corresponds to the geological heterogeneity which must be mapped, analysed, 

understood and represented in reservoir models before concluding at the top of the 

pyramid. In this PhD study, two main themes were chosen for focussed study, namely 

igneous intrusions and natural fractures. Both of these are critical elements in the 

target aquifer on Svalbard, and have not been addressed previously with respect to 

CO2 storage, in contrast to heterogeneities associated with facies variation (Lengler, 

2012), petrophysical variation (Lengler et al., 2010) or structural and stratigraphic 

aquifer configuration (Hovorka et al., 2004).  
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Figure 1: Schematic synthesis of the various papers and conference papers 
included in this PhD thesis, all within the framework of addressing the 
impact of geological heterogeneity on CO2 storage on Svalbard. The top of 
the pyramid corresponds to the thesis hypothesis, ‘It is possible to store 
CO2 emissions from the Longyearbyen coal-fuelled power plant locally in 
the subsurface of Svalbard’. Work on data sets from field analogues on 
natural fractures (Utah) and igneous intrusions (Karoo) is shown along the 
pyramid edges. The other sides of the pyramid (e.g. sedimentological 
heterogeneity) are not addressed in detail in this PhD study. The 
conference contributions are reproduced in the appendix.  
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1.3 Terms and definitions 
Geological heterogeneity = Non-uniformity within a body of rock. 

Aquifer = A volumetrically defined body of rock through which fluids can move. The 
fluids are typically groundwater or saline brines. 

Reservoir = In subsurface geology, a reservoir is a volumetrically defined body of 
rock through which fluids can move. The fluids are natural hydrocarbons, gases (e.g. 
CO2) or injected fluids.  

Reservoir model = The mathematical representation of the subsurface, typically 
constructed in order to predict subsurface fluid migration.  

Geological grid = Grid typically aimed at static property modelling. The purpose of a 

geological grid is to facilitate the discretization of continuous rock properties into a 

manageable number of building blocks for property and flow modelling.  

Simulation grid = Coarser grid typically aimed at flow simulations. 

Unconventional reservoir = A reservoir which is challenging and often more 
expensive to produce (or inject into), often requiring novel technologies for 
development (McGlade, 2012). The boundary to conventional reservoirs is rather 
subjective and diffuse, but naturally fractured reservoirs are typically considered 
unconventional. 

Fracture = A sharp structural discontinuity with no displacement defined by a local 
reduction in strength. Following Schultz & Fossen (2008). 

Fault = A sharp structural discontinuity with displacement defined by slip planes. 
Following Schultz & Fossen (2008). 

Dyke = Layer-discordant intrusion, transgressing across layers. 

Sill = tabular igneous intrusion, dominantly layer-parallel, as defined by Planke et al. 
(2005). 

Saucer-shaped intrusion = Igneous intrusion displaying a saucer-shaped overall 
geometry, as defined by Polteau et al. (2008). 

Hydrothermal vent complex = Pipe-like complex formed by fracturing, transport and 
eruption of hydrothermal fluids and sediments, as defined by Planke et al. (2005). 



6 

2 Background and current state-of-the-art  
In this section I define the concept of geological heterogeneity, which represents the 

‘red thread’ in this PhD thesis. I then introduce the main study areas, before 

examining the importance of carbon capture and storage (CCS) in light of the 

dynamic and expanding global energy market. I wrap up with an introduction of the 

Longyearbyen CO2 lab project to which this thesis is intimately linked, and examine 

the critical parameters behind the geological heterogeneity addressed in this work. 

2.1 Geological heterogeneity 
Given the title of this thesis, ‘Impact of Geological Heterogeneity on CO2

Sequestration: from Outcrop to Simulator’, it is important to define the term 

geological heterogeneity. In its broadest sense, heterogeneity relates to the non-

uniformity of materials (e.g. rocks) in terms of the composition and character. All 

rocks are thus by definition heterogeneous to some extent, though the level of 

heterogeneity varies at different scales (Guéguen & Palciauskas, 1994). In this study, 

I use the term ‘heterogeneity’ primarily to refer to structural heterogeneities, with a 

clear visual expression within the target aquifer (e.g. natural fractures at a small scale, 

and igneous intrusions at a larger scale).  

However, reservoir engineering usually simplifies the heterogeneity of nature through 

the use of assumptions and simplifications in order to establish computable entities. 

In other words, heterogeneity is often mimicked as a quasi-homogeneous medium 

(e.g. Nordbotten et al., 2005; Class et al., 2009). There are valid reasons for 

simplifying nature in models, including computational capacity, the necessity of 

representing reality in coarse grid cells and the ability to focus on specific factors to 

be quantified. However, recent work has shown that geological heterogeneity has a 

profound effect on reservoir behaviour (e.g. Eaton, 2006; Howell et al., 2008; Ashraf

et al., 2010). This has, amongst others, implications for CO2 storage potential (e.g. 

Hovorka et al., 2004; Lengler, 2012), reservoir performance (e.g. White et al., 2001; 

Ambrose et al., 2008) and groundwater movement (e.g. Runkel et al., 2006). 

Geological heterogeneity is often quantified on the basis of field data, such as in 
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naturally fractured carbonate reservoirs (Cooke et al., 2006). These may then be used 

to characterize the hydrogeological properties of an aquifer (Tipping et al., 2006). 

Finally, geological heterogeneity may be incorporated in numerical models to predict 

fluid migration, such as groundwater flow (Swanson et al., 2006).  

Nonetheless, understanding geological heterogeneity at a particular site, quantifying 

it using reliable data sets and implementing it in a flow simulation model are all 

challenging and time-consuming activities, fraud with uncertainty. This is particularly 

the case for the unconventional and geologically complex CO2 target aquifer on 

Svalbard. This aquifer displays heterogeneity at all scales. This is further complicated 

by the fact that some key issues related to its formation are still debated. On the 

regional-scale, the Late Triassic to Middle Jurassic depositional environment 

controlled the dominant sedimentary facies present today, with no clear agreement on 

the regional depositional environments between numerous paleogeographic 

reconstructions (Mørk et al., 1982; Steel & Worsley, 1984; Riis et al., 2008; Worsley, 

2008; Nagy et al., 2011). This has partly controlled the development of core-scale 

geological heterogeneity reflected in the varied dissolution porosity within the target 

aquifer, reflecting both initial composition at the time of deposition as well as burial 

history (Mørk, 2013). The regional tectonic setting and complex geological history 

also exerted a fundamental control on the development of heterogeneous facies 

distributions and permeability pathways, such as fracture corridors or sub-seismic 

faults (Ogata et al., 2013; Paper I). Also on the regional-scale, the emplacement of 

igneous intrusions within the Early Cretaceous (Nejbert et al., 2011; Corfu et al., 

2013; Paper II) likely led to the development of semi-regional baffles as well as high-

permeability fracture conduits along intrusion margins. The complex geological 

history of the aquifer, including a major Paleogene contractional event developing the 

West Spitsbergen fold-and-thrust belt (e.g. Bergh & Andresen, 1990; Braathen et al., 

1999), has also led to the development of a natural fracture system, a critical 

component for injectivity and flow (Braathen et al., 2012; Ogata et al., 2012b; Ogata

et al., 2013; Paper I).  
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In this thesis, I aim to represent the structural geological heterogeneity in a reservoir 

model addressing the Svalbard case study. The favourable geological exposure of the 

aquifer 15 km from the planned injection site allows for the detailed characterization 

of both the natural fracture network and igneous intrusions, serving to construct an 

outcrop-based reservoir model in a workflow going ‘from outcrop to simulator’.   

2.2 Study areas 
In this thesis the overall topic was studying the impact of geological heterogeneity on 

CO2 sequestration. This was mainly conducted on the applied case of the 

Longyearbyen CO2 lab project on Svalbard located in the high Arctic (Figure 2). 

However, two other field areas were investigated to provide additional analogue 

information and thus assist in understanding, modelling and de-risking the 

unconventional Svalbard aquifer.  

The world-class geological laboratory of south-eastern Utah contains numerous 

natural CO2 fields, some of which have leaked CO2 along faults and fracture corridors 

during recent times (Shipton et al., 2004; Dockrill & Shipton, 2010; Figure 2). 

Present-day eruptions of CO2-charged fluids, past leaks with travertine build-ups as 

well as host rock bleaching in regions of paleo-fluid flow all attest to active CO2 

migration (Parry et al., 2004; Wigley et al., 2013). We conducted an extensive 

fracture mapping field campaign near Green River, Utah, in order to understand the 

migration of fluids from paleo-reservoirs through seals along faults, fractures and 

fracture corridors (Ogata et al., 2012a; Paper VII). This knowledge was subsequently 

applied in de-risking and modelling of the naturally fractured reservoir on Svalbard. 

The Karoo Basin of South Africa is known both for its spectacular and largely 

undeformed sedimentary record and for the exposures of the Karoo dolerite. This 

large igneous province was emplaced at c. 183 Ma (Svensen et al., 2012) and 

provides countless exposures of dykes, sills and saucer-shaped intrusions across the 

basin. The good accessibility and outcrop exposure of the intrusions, in conjunction 

with their impact on groundwater flow in the water-deprived Karoo Basin (Chevallier

et al., 2001; Woodford & Chevallier, 2002), makes the basin a perfect site for 
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studying the geometry and fracturing of igneous bodies, and particularly the fracture-

driven contact zone permeability (Paper VIII). The Karoo dolerite provides an 

analogue to the intrusive Diabasodden Suite rocks on Svalbard (Nejbert et al., 2011; 

Paper II), which are in places intruded into the CO2 storage aquifer on Svalbard. 

 
Figure 2: Location map illustrating the three main study areas discussed in 
this thesis. The base map, from IPCC (2005), illustrates the location of 
natural CO2 fields throughout the world.  

2.3 Carbon sequestration and the global energy market 
As the world population is growing, and standards of living are increasing globally, 

the demand for energy has almost doubled from 1973 to 2006 (IEA, 2008). While 

renewable energies are expected to provide a greener energy mix in the future, fossil 

fuels currently dominate the global energy demand and will continue to do so in the 

near-term future (BP, 2012). Energy production from non-renewable fossil fuels 

generates atmospheric CO2 emissions and it is therefore of little surprise that there is 

a strong correlation between global energy consumption and global energy-related 

atmospheric CO2 emissions (Figure 3). The majority of energy-related CO2 emissions 

are presently focussed in OECD countries (Organisation for Economic Cooperation 

and Development; Kirby, 2008) but forecasts by the International Energy Agency 
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(IEA) clearly illustrate the future contribution of developing countries, notably China 

and partly India (Figure 4; IEA, 2010). Most scenarios predict a steady increase in 

CO2 emissions until 2020 (Figure 4b), with uncertainty related to global politics and 

energy market development establishing a ‘CO2-emission wedge’ bounded by a 

maximum and minimum scenario defined by the IEA. Under the maximum ‘Current 

Policies Scenario’ CO2 emissions steadily increase in the future. The ‘450 Scenario’, 

which assumes stabilization of global atmospheric CO2 at 450 ppm as defined by the 

Copenhagen Accord, requires active measures to be reached. It is notable that up to 

19% of these measures equate to the use of carbon capture and storage (CCS, Figure 

4d). In absolute volumes this would equate to approximately 4 Gigatons (4*109 or 

4000 000 000 tons) of CO2 sequestered underground on an annual basis by 2035. 

This equates to c. 4 000 million tons of CO2 sequestered each year from today to 

2035 (Nøttvedt, A., pers. comm.), roughly corresponding to 4 000 Sleipner-scale CO2 

projects (Eiken et al., 2011). The obvious question is whether we are in a scientific 

and technical position to undertake such a major task.  

 
Figure 3: Historical global energy consumption and CO2 emissions. A) 
Global energy consumption from 1986 to 2011, subdivided into energy 
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source (BP, 2012). B) Global CO2 emissions per region from fossil fuel use 
and cement production. Figure from Olivier et al. (2012). C) Global per 
capita energy consumption in 2011 (BP, 2012). D) Global per capita CO2
emissions in 2000 (Boden et al., 2012). 

 
Figure 4: Predicted usage and associated CO2 emissions in the period 
2008-2035. All figures from the International Energy Agency’s World 
Energy Outlook 2010 (IEA, 2010). A) Incremental primary energy demand 
by fuel and region in the New Policies Scenario. B) Scenario-based 
approach illustrating the probable global energy-related CO2 emissions.  
C) Global energy-related CO2-emission “wedge” and regions which have 
the potential to contribute most to obtain a more sustainable emission level. 
D) Technologies which may help to reduce the global energy-related CO2-
emission wedge. Note particularly the listing of carbon capture and storage 
(CCS; highlighted by the red box).  

2.4 CO2 sequestration on Svalbard and elsewhere 
In order to prevent these 4 Gigatons of CO2 from being emitted to the atmosphere, a 

viable strategy is to capture the CO2 at point sources (e.g. coal-fuelled power plants 

or other major CO2-emitting industrial plants), transport it to suitable injection sites 

(e.g. by pipelines, ships or trucks) and inject it into suitable subsurface target aquifers 

(e.g. saline aquifers, depleted hydrocarbon fields; IPCC, 2005; Bachu, 2008; Benson 

& Cole, 2008). This geological carbon storage differs from both deep ocean storage 

of CO2 and mineral CO2 sequestration in that the injected CO2 will be trapped in the 

subsurface in a system shielded from dynamic changes in oceanic currents and 
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associated temperature variation (Voormeij & Simandl, 2004; IPCC, 2005). The 

technology for injecting CO2 into the subsurface is reasonably well understood and 

has been employed by the hydrocarbon industry since the 1980s for increasing oil 

recovery (Beliveau et al., 1993). Although the global CCS picture is several orders of 

magnitude more ambitious and complex, in this thesis I investigate the feasibility of 

storing modest amounts of CO2 in an unconventional heterogeneous storage site 

beneath Longyearbyen, Arctic Norway. This pilot-scale project, where the maximum 

capture potential equates to the annual c. 60 000 tons of CO2 emitted by the local 

coal-fuelled power plant (Lokalstyre, 2011), would obviously not have a significant 

impact on global CO2 emissions but rather provide a case study of a small community 

with a nearly closed energy system. Locally mined coal is burnt to provide the c. 

2000 inhabitants (Bore et al., 2012) with heat and power, and the planned injection 

site lies only 5 km from the settlement. The complex geology, introduced by 

Braathen et al. (2012) and expanded by Ogata et al. (2012b; Paper I), makes this the 

perfect case study for studying the ‘Impact of Geological Heterogeneity on CO2

Sequestration’. The results from the studies on the Longyearbyen CO2 lab project 

thus have a global value for the emerging CCS industry. 

The practical aspect of CCS is currently best illustrated by a handful of industrial-

scale projects that operated in the past decade (Figure 5, Table 1). Their combined 

stored CO2 (c. 40 Mt within the past decade) amounts to only 1% of the annual 4 Gt 

target outlined above. Furthermore, the majority of projects are only profitable due to 

increased production (enhanced oil recovery projects in the USA) or lower CO2 tax 

bills (gas separation projects offshore Norway). A major global application of CCS 

would thus likely require a change in legislation together with a globally co-ordinated 

CO2 market system. The projects nonetheless illustrate that technology and know-

how exist for storing CO2 underground, and that well-known technologies used in the 

hydrocarbon industry can be successfully used to predict and monitor the migration 

of the CO2 plume. This is best exemplified by time-lapse seismic data acquired by the 

Sleipner CO2 sequestration project (Eiken et al., 2011), inSAR satellite data from In-

Salah (Vasco et al., 2008) and a strong monitoring focus of the Weyburn field (White
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et al., 2004; Whittaker et al., 2004). Pilot-scale projects in Japan (Xue et al., 2006), 

Ketzin in Germany (Förster et al., 2006), the Frio project in Texas (Daley et al., 

2008; Doughty et al., 2008) or CarbFix in Iceland (Aradóttir et al., 2011) all confirm 

the feasibility of the storage part of CCS under various subsurface and top-side 

conditions. Furthermore, small-scale projects with modest CO2 volumes, like the 

Longyearbyen CO2 lab project, can establish high-resolution datasets and test, 

through history-matched reservoir modelling, the feasibility of monitoring networks 

to detect even minor CO2 migration and assess leak risks. These may subsequently be 

applied in industrial-scale projects as benchmarks for CO2 plume behaviour in 

conventional and unconventional aquifers. In a broader sense, unconventional 

naturally fractured reservoirs, including tight gas sands and shale gas, are becoming 

increasingly important plays in hydrocarbon production and knowledge of their 

behaviour is in strong demand. 

Accurate CO2 storage capacity estimates are essential in order to allow governments 

to assess the feasibility of storing CO2 in a given country, region or site. Various 

methods for estimating CO2 storage capacity have been proposed (e.g. Bachu et al., 

2007a; Bradshaw et al., 2007; Zhou et al., 2008; Allen et al., 2010). These methods, 

with some modifications, have been applied in a plethora of storage-potential atlases, 

amongst others for the United Kingdom (Gammer et al., 2011), the Norwegian North 

Sea (Halland et al., 2011), the Netherlands (Ramírez et al., 2010), Europe 

(GeoCapacity, 2008), South Africa (Cloete, 2010), North America (NETL, 2010; 

NACSA, 2012), the Gulf Coast (Núñez-López et al., 2008) and Australia (Gibson-

Poole et al., 2008; Bradshaw et al., 2010). Needless to say, such regional-scale 

atlases require many simplifications. Focussed studies characterizing specific sites 

were provided, amongst others, for an unnamed North Sea aquifer (Obi & Blunt, 

2006), the Teapot Dome in the USA (Chiaramonte et al., 2008), a pilot-site in Japan 

(Ogawa et al., 2011), the Utsira Formation offshore mid-Norway (Lindeberg et al., 

2009; Pham et al., in press), the Schweinrich structure in Germany (Meyer et al., 

2008), and the Longyearbyen CO2 lab project (Paper V in this thesis).  
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Figure 5: Summary cartoon illustrating the concept of geological storage 
and usage of CO2 in different scenarios. Figure adapted from IPCC (2005). 

Table 1: Summary of the eight industrial-scale operating projects using CO2
for enhanced oil recovery (EOR) or storing it in geological deep saline 
aquifers (G-DSA). Data from Global CCS Institute (2012). 
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2.5 Longyearbyen CO2 lab project 
The Longyearbyen CO2 lab project was described in the literature (e.g. Braathen et 

al., 2012; Bælum et al., 2012; Ogata et al., 2012b; Mørk, 2013) as well as in 

numerous contributions in this thesis. To avoid repetition, only the major factors 

affecting geological heterogeneity in the target aquifer are presented in this section. 

Phase I of the project, as described by Braathen et al. (2012), identified a target 

aquifer within the Late Triassic to Middle Jurassic heterolithic siliciclastic Kapp 

Toscana Group. The stratigraphy is well constrained both by drilling and extensive 

fieldwork on exposed outcrops around Spitsbergen. Two main heterogeneities 

thought to be critical to subsurface fluid flow were identified at different scales: 

1) A natural fracture network: The presence of natural fractures is evident from 

both borehole and outcrop studies and water injection tests indicate that fluid 

flow in the lower part of the target aquifer is almost exclusively through the 

fracture network. Matrix contribution to fluid flow was suggested to be more 

important in the upper part of the aquifer (Larsen, 2012), in line with matrix 

permeability measurements on drill cores (Farokhpoor et al., 2010). The 

accurate and representative reservoir modelling of the natural fracture network 

is critical for the accurate prediction of CO2 flow in the subsurface. In order to 

better predict fracture flow, well-exposed fracture corridors with evidence of 

paleo-fluid flow in south-eastern Utah serve as an analogue to fluid flow 

through naturally fractured siliciclastic rocks.  

2) Presence of igneous intrusions: Igneous intrusions were identified in the CO2 

target aquifer based on borehole, seismic, magnetic and field data. Analogue 

studies in the Karoo Basin indicate that intrusions can act both as baffles and 

barriers to fluid flow with a potential to compartmentalize a reservoir. They 

may also offer high-permeability pathways leading to enhanced fluid flow 

along the intrusion-host rock contacts, where fracture corridors are common. 

Understanding intrusion geometry, density and impact, and subsequently 

implementing these in a regional geological model is thus important for 

predicting CO2 flow in the subsurface. 
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2.5.1 Natural fracture systems 
As conventional, easily producible hydrocarbon resources are being depleted, 

alternative, more challenging resources and plays are being targeted. Naturally 

fractured carbonate reservoirs are a prime example with a large reward, hosting the 

largest proportion of the remaining conventional resources (Burchette, 2012). 

Nonetheless, recovery factors and producibility are intimately linked to understanding 

and correctly implementing the natural fracture system, with the need of 

characterizing both the matrix and fracture properties as well as their interaction 

(Baker & Kuppe, 2000). The Svalbard aquifer is siliciclastic, but its tight nature and 

low matrix permeability, with a natural fracture system driving injectivity, requires 

the use of a dual porosity-dual permeability reservoir model, similar to what is used 

in many carbonate and unconventional fields.  

The presence of natural fractures within the target aquifer is evident from drilled 

cores, outcrops and well test data. The first water injection test during August-

September 2010, conducted in the 870-970 m interval close to the bottom of the 

target aquifer, identified an underpressured, naturally fractured reservoir (Larsen, 

2010). In short, the aquifer exhibited an order of magnitude higher injectivity than 

would be expected given the low laboratory-measured porosity-permeability data 

(matrix permeability < 2 mD; Farokhpoor et al., 2010; Braathen et al., 2012). The 

presence of natural fractures both in drill core and outcrop was subsequently 

documented in Paper I, with their accurate and representative modelling described in 

Abstract A4 and Paper VI.  

2.5.2 Igneous intrusions and fluid flow 
Igneous intrusions were identified in the study area previously, and were partly 

reviewed by Nejbert et al. (2011) as well as in Paper II. The Early Cretaceous, 

predominantly doleritic, intrusions occur as both sills and dykes and were identified 

through drilling (Braathen et al., 2012), seismic investigations (Bælum et al., 2012) 

and by fieldwork (Paper III). As discussed above, underpressure was detected within 

the CO2 target aquifer during water injection tests in August-September 2010. Due to 

the open-type aquifer configuration, in which the target aquifer is exposed at the 
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surface c. 15 km from the planned injection site, lateral flow barriers restricting 

communication to the surface are a pre-requisite for the underpressure. Igneous 

intrusions, along with stratigraphic pinch-outs, sub-seismic faults, gentle detachment 

folds and the presence of impermeable permafrost, were hypothesized as possible 

factors contributing to the development of such barriers (Ogata et al., 2012b; Paper I).  

Previous work in other volcanic basins has shown that, in their unweathered state, 

dykes may act as baffles and barriers preventing cross-dyke fluid flow (Morel & 

Wikramaratna, 1982; Perrin et al., 2011) while highly fractured dykes clearly leak 

(Sankaran et al., 2005) and may even act as preferential fluid pathways (Mège & 

Rango, 2010). Igneous intrusions were shown to significantly affect groundwater 

movement in the South African Karoo Basin (Chevallier et al., 2001; Woodford & 

Chevallier, 2002). This paradox of intrusions acting both as barriers and carriers to 

fluid flow was recently discussed by Rateau et al. (2013) in the context of 

hydrocarbon migration in the Faroe-Shetland basin, concluding that the natural 

fracture network is one of the most important parameters driving fluid flow in- and 

around intrusions. In order to judge the impact of igneous intrusions on the regional-

scale fluid flow, their overall geometry must nonetheless first be mapped. In Paper 

III, an integrated study addressed the geometry of the igneous intrusions within 

Central Spitsbergen, and suggested that the CO2 target aquifer is affected by 

intrusions, particularly in its lower third (c. 850-970 m in the Dh4 borehole).  

At the local scale, emplacement of igneous intrusions initiates geochemical aureole 

processes which, together with the intrusion, cause perturbations within the 

surrounding host rock. This process is significant even with thin sills, as illustrated in 

Paper IV where a 2.28 m thick intrusion penetrated by the Dh4 borehole was studied 

in detail. On-going work, partly presented in the draft of Paper VIII, focusses on 

quantifying the fracturing patterns, and associated fluid flow pathways, at igneous-

host rock interfaces at selected exposures in the Karoo Basin. This work will 

ultimately improve the understanding of how even minor igneous intrusions, such as 

the sills and dykes in the CO2 target aquifer, affect subsurface fluid flow and 

reservoir compartmentalization.  
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2.5.3 Database 
This integrated thesis builds on a wealth of pre-existing and newly acquired data sets, 

including outcrop, borehole, geophysical and published data (Figure 6). The various 

data sets were described in more detail within the relevant manuscripts. The majority 

of the data was integrated using the Petrel software (Schlumberger, 2011) as a work 

platform.  

 
Figure 6: Integrated database utilized for understanding the CO2 target 
aquifer on Svalbard. The red boxes and stars highlight data sets to which 
this PhD study has significantly contributed with data acquisition or 
processing. For more details on the data sets see Figure 5 and Table 1 in 
Paper VI. Additional outcrop-based data sets from outcrop analogues in 
Utah and South Africa are not included here.  
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3 Methods 
The increased use of outcrop data in building reservoir models is related to two main 

factors. Firstly, the petroleum industry is shifting towards unconventional reservoirs 

as the ‘easy oil’ is being depleted, and more challenging reservoirs need to be found 

and developed (Larsen, 2008). Secondly, the use of techniques such as lidar scanning 

allow for the rapid acquisition of immense data sets directly usable to characterize 

various aspects of reservoir analogues at field-scale (e.g. Pringle et al., 2006; Enge et 

al., 2007; Rotevatn et al., 2009).  

The broad nature of this PhD study integrated a wide spectrum of methods (Figure 7), 

which are outlined in detail in the relevant manuscripts. A large pre-existing database 

associated with the UNIS CO2 lab was used in this study, but critical data sets (e.g. 

fracture mapping, stratigraphic logging, intrusion mapping, analogue studies) needed 

to be acquired as part of this PhD project. The broad range of geological, geophysical 

and reservoir engineering methods applied clearly need to be integrated to be utilized 

to their full potential. In this work, I have used the Petrel reservoir modelling 

software (Schlumberger, 2011) as a tool for model building, visualizing and jointly 

interpreting the various data sets. Finally, Petrel was also used as an interface to 

control fluid flow simulations conducted using FrontSIM and ECLIPSE, as well as 

for displaying the simulation results.  
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Figure 7: Synthesis of the wide range of geological and geophysical 
methods applied in this study. 
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4 Main results 
In this section I outline the main results of each paper, before synthesizing the 

broader results of this PhD thesis in the next chapter. 

4.1 Paper I – Natural fractures and CO2 storage in 
Svalbard

This initial contribution, written following the manual fracture logging of the Dh4 

borehole and one field season, focusses on integrating borehole and outcrop data to 

illustrate the importance of natural fractures for CO2 storage on Svalbard. The 

inclusion of field data was critical at this stage, since it provided the first accurate 

data on the orientation of various fracture sets, given that the drill cores were not 

oriented. The publication also formed a vital building block for subsequent work by 

providing a clear link between the injection site and the outcrops through 

stratigraphic correlation (Figure 7 in Paper I). The data set was, with additional 

fieldwork, expanded to a large database of over 7 700 individual fractures measured 

along more than 1 400 m of scanlines. Results related to this database were 

subsequently presented at numerous conferences (see Appendix B, particularly 

abstracts A1, A4, C2 and C5), with abstract A4 introducing the workflow used for 

incorporating the field data in the reservoir model.  

In Paper I, focus was given to the upper part of the reservoir, the Knorringfjellet 

Formation, which, at the time of publication, was not yet tested by water injection 

tests. Furthermore, an initial working hypothesis was presented, linking the various 

fracture sets to specific events in the geologic history, with the development of the 

Paleogene West Spitsbergen fold-and-thrust belt dominating the development of 

fractures (Figure 10 in Paper I). This understanding was used to develop an initial 

conceptual fluid flow model (Figure 12 in Paper I), which introduces the concept of 

variable fluid flow through different lithologies. The concept of these ‘litho-structural 

units’ was critical since it was directly used in subsequent volumetric calculations 

(Paper V) and reservoir modelling (Paper VI).  
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4.2 Paper II – Review of late Mesozoic magmatism on 
Svalbard

Paper II reviews the broad theme of Late Mesozoic igneous intrusions on Svalbard. 

The last comprehensive review of the intrusions was published by Tyrrell & Sandford 

(1933), with more recent contributions providing additional information on the 

geochemistry (Nejbert et al., 2011) and the links to the High Arctic Large Igneous 

Province (HALIP; Maher, 2001). Intrusions are known to affect a given reservoir 

both locally, through contact metamorphism (e.g. Aarnes et al., 2010), and regionally, 

through reservoir compartmentalization and channelling of fluid flow (e.g. Rateau et 

al., 2013). The presence of igneous intrusions within the CO2 target aquifer was 

documented in the Dh4 borehole (Braathen et al., 2012), seismic data (Bælum et al., 

2012) and outcrop studies (e.g. Nejbert et al., 2011; Paper III) and a review 

contribution was deemed necessary to set the scene and define the research gaps, 

some of which (e.g. overall geometry, impact of intrusions on host rock properties) 

were addressed in subsequent papers (Paper III and Paper IV respectively) in this 

PhD thesis.  

The Early Cretaceous Diabasodden Suite igneous rocks were known since at least the 

early 19th century (Keilhau, 1831). These predominantly doleritic intrusive rocks are 

present throughout the Svalbard archipelago, and represent a well exposed part of the 

circum-Arctic High Arctic Large Igneous Province (HALIP; Dallmann et al., 1999; 

Maher, 2001). Nonetheless, this igneous suite was often overlooked by on-going 

research, with questions on timing of magmatism and overall geometry particularly 

poorly constrained. Nejbert et al. (2011) presented a comprehensive geochemical 

database illustrating the affinity of igneous rocks scattered throughout the Svalbard 

archipelago, and provided a range of new Ar-Ar dates. Recent work using the more 

robust U-Pb dating technique conducted by Corfu et al. (2013) constrained the 

magmatism geochronology significantly to c. 124.5 Ma.  
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4.3 Paper III – Regional geometry of igneous complex on 
Svalbard

As discussed in Paper II, the regional geometry of the Diabasodden Suite was 

particularly poorly constrained. Furthermore, the structural framework of an igneous 

complex plays a central role in channelling fluid flow along the contact zones of 

igneous intrusions, with local processes (e.g. fracturing at host rock interfaces, 

contact metamorphism) merely superimposed on the regional geometry. In Paper III, 

we document the various igneous bodies within central Spitsbergen, with particular 

focus on the CO2 storage target aquifer in the Kapp Toscana Group. The integrated 

study of this onshore-offshore igneous province, utilizing a broad range of geological 

and geophysical data sets, resulted in a conceptual model illustrating the typical 

igneous features in the study area (Figure 14 in Paper III). The study area exhibits a 

wide range of igneous features, with sills of varying thickness most common, 

presumably linked together by a series of dykes. These relatively thin (< 5 m) dykes 

extend through the entire target aquifer, and even penetrate an unknown distance into 

the overlying cap rock. On the basis of outcrop analogues, particularly from the 

Karoo Basin (Paper VIII), we argue that such dykes have the potential to locally 

channel fluid flow along their fractured margins and should thus be represented in 

regional-scale reservoir models. Saucer-shaped sills were also identified and 

thoroughly documented for the first time on Svalbard, but are most common in the 

stratigraphic levels below the Kapp Toscana Group. The structural complexity of the 

igneous features appears to decrease with depth in the stratigraphy (from complex 

dyke-sill interactions to thick, extensive sills), but the absolute amount of igneous 

material appears to increase with depth. We thereby conclude that while igneous 

intrusions alone are unlikely to generate laterally sealing pressure compartments 

within the target aquifer, dykes will, through their local modification on regional fluid 

flow, likely exert control on the areal extent of an injected CO2 plume. Apart from the 

direct applicability to the CO2 target aquifer on Svalbard, this onshore-offshore 

volcanic province also serves as a useful analogue for other volcanic basins 

worldwide (e.g. Møre and Vøring Basins offshore mid-Norway). 
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4.4 Paper IV – Contact metamorphism around a thin 
intrusion

In Paper IV, we study the contact metamorphism around a 2.28 m thick igneous 

intrusion drilled and cored in the Dh4 borehole. The emplacement of the intrusion, 

located at 949.71-951.99 m depth in the lower part of the Kapp Toscana Group CO2 

target aquifer, led to the development of a symmetric contact aureole, particularly 

well defined by the reduction of total organic carbon towards the intrusion. The full 

coring, along with the presence of massive black shale as the host rock, allowed us to 

log and sample both the intrusion and the surrounding host rock. The visibly bleached 

zone extends 0.5-1 m away from the intrusion, but organic geochemistry delineates 

an up to 2 m wide metamorphic aureole, symmetric on both sides of the intrusion 

(Figure 6 in Paper IV). The total aureole thickness equates to 160-195% of the sill 

intrusion thickness. Together with the sill, this results in a six meter thick zone where 

rheological and geochemical perturbation affects the CO2 target aquifer. Furthermore, 

the intrusion displays increased fracturing both within and around the intrusion, also 

evidenced at outcrops of similarly-sized sills. Aureole studies conducted in the Karoo 

Basin (e.g. Haave, 2005; Aarnes et al., 2010) quantified the thermally and chemically 

affected area, and described the various processes acting on the host rock that 

ultimately lead to a reduction in porosity and the loss of organic carbon. Based on this 

local case study, we suggest that the reservoir properties of the CO2 target aquifer 

will be locally degraded by the igneous intrusions, but their limited spatial extent and 

deeper stratigraphic setting will restrict significant loss of reservoir quality in the 

main target section in the upper part of the aquifer. 
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4.5 Paper V – UNIS CO2 lab volumetric calculation 
Paper V addresses one of the main aims of this PhD study, namely defining the CO2 

storage capacity of the Kapp Toscana Group. Determining the CO2 storage capacity 

of a particular site is clearly one of the most critical steps towards storing CO2 in the 

subsurface. We apply a stochastic, volumetric-based workflow to calculate the 

probable range of storage capacity volumes. This transparent method, taking 

probability distributions of specific parameters as input, generated a P90-P10 range 

for six different scenarios. The chosen method did not directly incorporate results 

from the water injection tests but, due to its transparency and simplicity, allows for 

the discussion of the input parameters and a qualitative risking of the storage 

capacity. In addition, the variance of each input parameter was calculated to allow the 

identification of the parameters exhibiting the largest influence on the volumetric 

estimates. These factors, including CO2 density, CO2 saturation and the storage 

efficiency factor, can then be addressed and constrained in future studies. The 

absolute results are thus arguably less important than the technical process of 

assigning the input parameter ranges based on well-documented subsurface evidence. 

The clear top-side storage requirements constrained by the annual CO2 emissions 

from the existing power plant (c. 60 000 tons/year) were compared to the available 

subsurface volumes to give a matched CO2 storage capacity following Bachu et al. 

(2007b). Due partly to the modest storage requirements, sufficient storage capacity 

seems to be present in most scenarios, with the CO2 phase (supercritical versus gas-

phase end members) being the most critical parameter for total volumes. In absolute 

volumes, the mean practical storage potential ranges from 12 to 12 000 million tons 

of CO2 (assuming supercritical CO2) and from 0.05 to 50.7 million tons of CO2 

(assuming gas-phase CO2). We have also risked the storage capacity estimates with 

respect to several cases of top-side CO2 storage requirements, concluding that the 

success rate is high (>90%) in R&D-scaled pilot projects with planned injection 

volumes of up to 200 000 tons of CO2.
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4.6 Paper VI – Reservoir modelling of UNIS CO2 lab 
aquifer

In Paper VI, we document the development of the current version of the static 

geological reservoir model and run initial flow simulations, thus spanning the full 

‘from outcrop to simulator’ workflow. The report is structured in two sections, with 

the first documenting the integrated characterization of the unconventional aquifer 

and the second documenting how this information was applied to build the reservoir 

model and test its viability for simulating water injection through conducting 

deterministic fluid simulation cases on selected model realizations. A reservoir model 

is critical for addressing a range of questions relating to site-specific CO2 storage, as 

illustrated by Figure 2 in Paper VI. The reservoir model can, however, only be as 

good as the input data used. On Svalbard, the large database accumulated by the 

Longyearbyen CO2 lab project since its initiation in 2007 provides a strong 

foundation for reservoir modelling. Nonetheless, critical input data was not available 

at the beginning of this PhD study, notably the fracture network characterization and 

the extent and characteristics of the igneous intrusions. Therefore, much focus was 

devoted to acquiring, processing and interpreting these data sets (see Papers I, II, III 

and IV) in order to provide a robust reservoir model presented in Paper VI. This 

report documents both the reservoir characterization of the unconventional target 

aquifer, as well as the workflow used for building a series of reservoir models. In the 

final part, the utility of using these models for conducting fluid flow simulations was 

presented, together with history matching of the water injection tests. At this stage, 

these simulation cases did not give a robust match to the observed pressure data 

during injection, but nonetheless provide a framework for running a matrix of 

numerous water simulation cases on a range of realizations of the geological model. 

While the report truly spans the ‘from outcrop to simulator’ workflow, it must be 

stressed that much work (e.g. simulating CO2 injection rather than water injection), 

and the development of advanced simulation tools, remains before full-field CO2 

injection into this unconventional aquifer can be accurately simulated with 

confidence.  
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4.7 Paper VII – Fracture corridors as seal-bypass systems 
In Paper VII, we present a detailed field-study of fracture corridors in south-eastern 

Utah, focussed on fracture corridors displaying evidence of paleo-fluid flow (i.e. 

bleaching; Dockrill & Shipton, 2010). Similar fracture corridors are thought to be 

present in the subsurface of Svalbard, where water injection tests into the CO2 target 

aquifer, as reported by Larsen (2010), suggest linear flow with partially sealing 

boundaries parallel to a hypothetical fracture. This pattern of flow could be related to 

the presence of fracture corridors, identified in outcrop studies primarily due to the 

enhanced fracturing within the fracture corridors compared to the background (e.g. 

Questiaux et al., 2010). Even though fracture corridors strongly influence subsurface 

fluid flow, there are only few high-resolution outcrop studies which address their 

geometry and generation. In Paper VII, we presented a detailed (6 379 individual 

fractures measured) outcrop-based study of fracture corridors in an exhumed 

reservoir-cap rock succession around Green River, south-eastern Utah. The analysed 

interval within the paleo-reservoir of the Jurassic Entrada Formation, an eolian unit 

with a characteristic red colour, testifies to ancient circulation of reducing fluids 

through an exhumed paleo-reservoir-cap rock succession. The resultant bleaching 

haloes, particularly prominent at fracture corridors, were caused by oxide removal 

from grain coatings due to circulation of CO2 or hydrocarbon-charged brines (e.g. 

Dockrill & Shipton, 2010). Based on the field observations, we identify three distinct 

types of fracture corridors, associated with (1) fault damage zones, (2) fault tip 

process zones and (3) fold-related crestal zones. These can be seen as end-member 

examples within a continuum of structural elements (Figure 15 in Paper VII). 

Ultimately, this framework can serve as a base for subsequent testing and calibration 

of reservoir models, with fault damage zone and fold-crestal zone fracture corridors 

particularly relevant to the CO2 target aquifer on Svalbard.  

 



28 

4.8 Paper VIII – Fracturing in and around igneous rocks 
In Paper VIII, we focus on mapping the fracture network at intrusion-host rock 

interfaces, using the well-exposed Karoo dolerite as an analogue to the Diabasodden 

Suite dolerites on Svalbard. Igneous intrusions were shown to act both as 

barriers/baffles and high-permeability carriers to fluid flow (e.g. Rateau et al., 2013). 

The low matrix permeability of igneous rocks requires an open natural fracture to be 

present for significant fluid flow to occur. The characteristics of this fracture network 

(e.g. fracture spacing, fracture aperture, fracture connectivity) will subsequently 

determine whether a particular intrusion will act as a barrier, potentially 

compartmentalizing a given reservoir, or as a carrier leading fluids to by-pass 

reservoir segments. The importance of natural fractures for fluid flow was well 

constrained by hydraulic testing in the Palisades sill (Matter et al., 2006), as well as 

by comprehensive groundwater exploration in the Karoo Basin (Chevallier et al., 

2001; Woodford & Chevallier, 2002). Nonetheless, few high-resolution outcrop-

based studies address the fracturing patterns at intrusion-host rock interfaces, 

considered by many to be the primary fluid conduits. In Paper VIII, we present and 

analyse five virtual outcrop models (acquired using lidar; Buckley et al., 2008) 

collected in the Eastern Cape Province of South Africa. At all sites, the Karoo 

dolerite, in various intrusion geometries, intruded a heterogeneous siliciclastic host 

rock. Fracture orientations were shown to be complex in the dolerite intrusions, but 

typically aligned along two main expected sets: (1) parallel to the main intrusion 

contact, and, (2) perpendicular to the main intrusion contact. Fracture spacing was 

more variable in the dolerite compared to the surrounding rocks. In some cases, 

fracture frequency increased in sedimentary rocks towards the intrusion. We 

concluded by presenting a conceptual model for fluid flow at intrusion-host rock 

interfaces. Ultimately, this could provide control for both small-scale site-specific 

fluid flow simulations and regional-scale fluid flow simulations in volcanic basins. 
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5 Synthesis 
This integrated PhD thesis addresses the reservoir characterization and static reservoir 

modelling of an unconventional aquifer targeted for CO2 storage on Svalbard, in a 

workflow ‘from outcrop to simulator’. The broad collection of scientific papers is 

illustrated schematically in Figure 1 and conceptually, within the framework of the 

CO2 target aquifer on Svalbard, in Figure 8 below.  

 
Figure 8: Conceptual synthesis of the various aspects of the Svalbard 
unconventional CO2 target aquifer addressed by the broad spectrum of 
papers included in this PhD thesis (marked by circled numbers, the outcrop 
analogue Papers VII and VIII are not marked). Figure drafted by Kei Ogata, 
following a conceptual sketch by Kim Senger. 

But what makes the target aquifer so unconventional?  Phase I of the Longyearbyen 

CO2 laboratory project largely demonstrated the unconventionality of the Kapp 

Toscana Group target aquifer (Braathen et al., 2012). The heterolithic aquifer consists 

of tight cemented sandstones, which display moderate injectivity during water 

injection tests, but have matrix permeability well below 2 mD (Farokhpoor et al., 

2010). Most of the matrix porosity is related to secondary dissolution (Mørk, 2013). 

Dynamically, the target aquifer is also abnormal, with a sub-hydrostatic initial 

pressure regime and natural gas presence within the cap rock shales immediately 

above the target aquifer (Braathen et al., 2012; Olaussen et al., 2013). Furthermore, 

the whole aquifer section, and particularly its lower part, is affected by the presence 

of Early Cretaceous igneous intrusions belonging to the Diabasodden Suite.  
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Clearly, such an unconventional aquifer offers numerous aspects all meriting further 

research. In this broad PhD study, two themes related to the geological heterogeneity 

at different scales were addressed in detail: (1) fine-scaled heterogeneity associated 

with the natural fracture network, and, (2) regional-scale heterogeneity associated 

with the igneous intrusions. The two themes are introduced in two manuscripts, Paper 

I and Paper II respectively.  

With the strong focus on igneous intrusions in this PhD study, it quickly became 

apparent how little is known about the Diabasodden Suite dolerites on Svalbard, even 

as on-going research is being conducted (e.g. Minakov et al., 2012; Corfu et al., 

2013). Furthermore, igneous intrusions undoubtedly have both a local and regional 

effect on reservoir properties and fluid flow (e.g. Aarnes et al., 2010; Rateau et al., 

2013), as well as hydrocarbon generation (e.g. Hubred, 2006). Nonetheless, limited 

work on real-life case studies involving igneous intrusions and their immediate effect 

on hydrocarbon production or CO2 injection was conducted. In light of this, the 

Longyearbyen CO2 lab target aquifer is truly outstanding, offering a comprehensive 

integrated database and a segmented target aquifer with igneous intrusions. To set the 

scene for specific papers addressing various aspects of the intrusions, such as the 

regional geometry (Paper III) and contact metamorphism (Paper IV), a review article 

(Paper II) was clearly warranted. A thorough understanding of the Svalbard dolerites 

is also important in order to tie the Diabasodden Suite to analogous magmatic 

provinces, such as the Karoo dolerite. Paper III addresses one of the research gaps 

identified in the review article (Paper II), namely the regional geometry of the 

Diabasodden Suite intrusives, and links it directly to the CO2 target aquifer. The 

study provides critical input to both reservoir characterization (Paper VI) and the 

volumetric calculation (Paper V), since the intrusions may affect the size and shape of 

an injected CO2 plume. In Paper III, this is evidenced by the inter-relation of doleritic 

ridges on the seafloor and pockmarks, causally suggesting fluid flow channelling 

along the impermeable base of the sills. The overall geometry of the intrusions 

nonetheless only provides a qualitative image of how regional-scale fluid flow may 

be channelled by the igneous intrusions through the Kapp Toscana Group.  
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Previous work indicates that  permeability within igneous intrusions is associated 

with the fracture network, particularly along intrusion boundaries (e.g. Woodford & 

Chevallier, 2002; Matter et al., 2006). Detailed studies of intrusion-host rock 

interfaces were, however, lacking, providing the motivation for Paper VIII. By using 

the well-exposed and easily accessible Karoo dolerite as an analogue to the Svalbard 

dolerites, we can now transpose the conceptual model (Figure 14 in Paper VIII) onto 

the regional geometry of igneous bodies illustrated in Paper III to build a next-

generation reservoir model. This model should also incorporate geochemical rock-

fluid interactions, since the enhanced reactivity of CO2 with igneous rocks may block 

the natural fracture system through carbonate formation (e.g. Aradóttir et al., 2011). 

However, igneous intrusions not only affect the fluid flow but also have a direct 

effect on the reservoir properties (e.g. matrix porosity and permeability) through 

contact metamorphism of the host rock. As shown in Paper IV, borehole observations 

and organic geochemistry indicate that the country rock is affected in a zone 160-

195% the thickness of the sill. This result may then be extrapolated across the whole 

target aquifer, using the overall geometry of the igneous complex provided by Paper 

III, to suggest the fraction of the target aquifer likely to be affected by intrusions (c. 

1% in the Dh4 borehole).  

The natural fracture network not associated with the doleritic intrusions was 

introduced using borehole and outcrop data in Paper I. The importance of the fracture 

network for fluid flow in the tight, unconventional, aquifer was known early on in the 

study (e.g. Larsen, 2010; Braathen et al., 2012; Ogata et al., 2012b). However, only 

limited outcrop-based studies have focussed on studying fracture flow in siliciclastic 

rocks, in stark contrast to the numerous studies on carbonates (e.g. Cooke et al., 

2006; Guerriero et al., in press). This provided the main motivation for Paper VII, the 

outcrop-based study of paleo-fluid flow in siliciclastic rocks in Utah. By addressing 

fluid flow along fracture corridors, which were also identified in the CO2 target 

aquifer on Svalbard, we can use the conceptual model (Figure 15 in Paper VII) to 

predict and incorporate fracture corridors in the next-generation reservoir model. At 

the present time, natural fracture sets are incorporated in a 3*3 km reservoir model, 
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documented in Paper VI. Fracture permeability is crucial for history-matching water 

injection test data (Larsen, 2010), but the contribution of the fracture network to 

overall storage capacity was poorly constrained. This is partly addressed in the 

volumetric calculation (Paper V), which uses the state-of-the-art understanding of the 

unconventional reservoir, building on Papers I, III, IV, VI, abstracts A1-A5 and other 

UNIS CO2 lab studies (e.g. Braathen et al., 2012; Larsen, 2012). The fracture 

network provides less than 1% of the initial porosity, but may open up following an 

increase in pressure during injection. Furthermore, the fracture network is likely to 

control the CO2 access to the largely secondary porosity and thus indirectly contribute 

to the overall storage capacity. Due to the low volume requirement given the pilot-

scale of the project and the low CO2 emissions in Longyearbyen, the calculated 

volumes appear able to accommodate the estimated ‘top-side’ CO2 requirement, 

particularly if it is at least partly stored in supercritical phase. This static calculation, 

however, does not incorporate full-field CO2 injection simulation, considered to be 

beyond the scope of this PhD study, and arguably also beyond the capabilities of 

present-day reservoir simulators. 

To summarize, the natural fracture network represents the fine-scaled geological 

heterogeneity addressed in this PhD study. The extensive borehole and outcrop-based 

fracture database (Paper I) was simplified by grouping individual scanlines into litho-

structural units (LSUs), which were subsequently incorporated in both reservoir 

modelling (Paper VI) and volumetric calculation (Paper V). On the broad scale, 

igneous intrusions are present in the CO2 target aquifer and set up regional 

heterogeneity with a compartmentalization potential. Their impact on the reservoir 

properties is shown to be restricted to the host rock immediately surrounding 

individual intrusions. Since the intrusions are mostly present in the lower one-third of 

the target aquifer, this direct impact is considered minimal on the upper part of the 

aquifer (Knorringfjellet Formation, Zone A in Paper V). Nonetheless, the regional-

scale heterogeneity established by the magmatic plumbing system of dykes, sills and 

saucer-shaped intrusions will most likely affect fluid flow and thereby partly control 

the shape of future CO2 plume. The exact prediction of the plume shape would 
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require additional regional-scale reservoir simulations, incorporating the regional 

geometry of igneous bodies (Paper III) as well as the finer-scaled effects associated 

with fracturing at intrusion boundaries (Paper VIII) and contact metamorphism 

(Paper IV).  

To synthesize, all these papers build on each other, and the related conference 

contributions, in order to better characterize and model the unconventional target 

aquifer on Svalbard. The geological heterogeneity on both the small scale (natural 

fracture network) and the larger scale (igneous intrusions) was considered 

throughout. Two papers focussing on outcrop analogues (Papers VII and VIII) both 

provide additional field-based conceptual models to incorporate in the next-

generation reservoir model. The learnings from this PhD study are thus applicable 

both locally on Svalbard, but also globally where unconventional reservoirs in 

complex geological settings are increasingly targeted in the production of 

hydrocarbons. 
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6 Conclusions 
To conclude, let us first examine the overall hypothesis introduced above: 

‘It is possible to store CO2 emissions from the Longyearbyen coal-fuelled power plant 

locally in the subsurface of Svalbard’. 

The short answer to this hypothesis is ‘probably yes’, as presented in the volumetric 

calculation in Paper V. However, the highly complex geology of this unconventional 

target aquifer requires further work to definitely answer this question. The problem-

specific conclusions were listed in the individual manuscripts but, in the broadest 

sense, I infer the following from this integrated PhD study: 

The unconventional target aquifer on Svalbard relies on the presence of a 

natural fracture network for fluid injectivity.  

o On Svalbard, natural fractures were mapped and analysed in both drill 

cores and outcrops, and found to be predominantly controlled by the 

lithology and regional tectonic events. This has led to the development 

of a conceptual model of fractures based on a sub-division into litho-

structural units (LSUs).  

o Natural fractures were represented in a 3*3 km large reservoir model 

on the basis of the LSU zonation extrapolated away from the 

wells/outcrop logs. Initial water simulations indicated fluid flow along 

the fracture system in two directions corresponding to the mean 

fracture set orientations – generally E-W and NNW-SSE.   

o Synthetic modelling suggested that the natural fracture network is 

likely to contribute less than 2% of the total porosity available for 

storage, but is critical for providing high-permeability pathways 

accessing secondary porosity.  

o Natural fractures display evidence for past fluid (including CO2) 

migration, particularly along fracture corridors, in south-eastern Utah. 

Three end-member fracture corridor types were proposed, occurring 
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along faults, fault process zones and along crestal zones of anticlinal 

structures. 

The target aquifer on Svalbard is affected by the presence of Early 

Cretaceous igneous intrusions, particularly in the lower part of the De 

Geerdalen Formation. Intrusions occur predominantly as sills and dykes, with 

some evidence for saucer-shaped sills. These sills are frequently seen in 

volcanic basins worldwide but have previously not been mapped in detail on 

Svalbard.  

o On the local scale, even relatively thin (2.28 m thick) intrusions 

generate a contact aureole up to twice the thickness of the intrusion. 

Within this contact aureole, reservoir properties (e.g. porosity, 

permeability) and total organic carbon were significantly reduced.   

o Fracturing at intrusion-host rock interfaces appears to favour enhanced 

fluid flow along intrusions than across them. As such, intrusions 

within the CO2 target aquifer may provide preferential fluid flow 

pathways between different reservoir compartments. The intrusions 

may, on the other hand, also contribute to the lateral reservoir 

segmentation, particularly in the lower half of the target aquifer where 

the intrusions are most common. 

A reservoir model of the target aquifer was constructed on the basis of a 

highly integrated dataset. 

o Outcrop-data was collected, analysed and integrated in the reservoir 

model to construct an implicit fracture network.  

o Initial flow simulations based on the water injection tests conducted 

confirm the feasibility of using the reservoir model for extensive fluid 

flow simulations.  

o We apply a stochastic volumetric calculation to indicate that sufficient 

subsurface space appears to be present, particularly if the modest CO2 

top-side requirement is considered. 
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6.1 Outlook 
As with any PhD project, additional work could be conducted to address the many 

questions that arise during the data acquisition and interpretation. This is best 

illustrated by the phrase ‘You learn as long as you drill’ used by Olaussen et al. 

(2013) in the context of presenting the Longyearbyen CO2 lab project’s many 

surprising findings.  

The current data sets are listed in Table 2, together with their completeness and future 

potential. The importance of natural fractures was discussed at length already, but 

important parameters of the fracture network are still poorly understood. The 

dynamic behaviour of the different fracture sets at different pressures, for example, 

may have a large effect on fracture aperture size and the permeability field. 

Laboratory techniques designed to measure the fracture aperture using CT scanning 

(Wennberg et al., 2007) under different pressures could improve the current reservoir 

model. Software already exists to coupling geomechanics directly to reservoir models 

(Bush, 2010), and with constraining lab-based measurements this may lead to the 

development of a next-generation Longyearbyen CO2 lab reservoir model. As 

described by Smith et al. (2011), such updated models with constraining, site-

specific, laboratory data on the geology, rock physics and the fluid model provide 

much more accurate and reliable predictions. Additional data sets, including new 

seismic, borehole, injection tests and laboratory analyses of drill cores would 

undoubtedly add further details, but must be weighed up with a cost-benefit analysis. 

Similarly, the geological model needs to be updated continuously as new data 

become available, incorporating state-of-the-art techniques for modelling crucial 

geological features, such as the fault facies concept (Fachri et al., 2013) as well as 

constraining the underlying sedimentological framework (Husteli et al., 2012).  
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Table 2: Summary of data sets discussed in this thesis, and proposed 
possible future research directions linked to the data sets and studies. 
Sources: 1 = Paper I, 2 = Ogata et al. (2013), 3 = Bælum et al. (2012), 4 = 
Paper III, 5 = Larsen (2010), 6 = Larsen (2012), 7 = Pettersen (2012), 8 = 
Paper VI, 9 = Farokhpoor et al. (2010), 10 = Paper V, 11 = Elvebakk 
(2010), 12 = Paper VII, 13 = Paper VIII. 
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However, at this stage the actual injection of CO2 into the target aquifer is arguably 

more important than additional data acquisition, since the question of how the 

injected CO2 will behave in this unconventional aquifer needs to be addressed prior to 

full-scale CCS. The injection of CO2 must be conducted in conjunction with the 

instalment of a surface and downhole high-resolution monitoring system, which 

would also provide important pre-injection baseline data as well as monitoring the 

development of the CO2 plume (Chadwick et al., 2009). During and following 

injection, a plethora of monitoring tools, as reviewed by Chadwick et al. (2009), are 

available to understand the subsurface behaviour of the CO2. The presence of 

permafrost and the limited amounts of CO2 envisioned to be sequestered on Svalbard 

require high-resolution monitoring, with the feasibility of each method carefully 

screened with the aid of the constantly updated reservoir model.  

This would provide important injection and plume development data to history match 

and fine-tune the model. At present, the focus remains on history matching to water 

injection tests but the increased chemical reactivity of CO2 may lead to unexpected 

results, including the blocking of some fractures through the precipitation of 

carbonate minerals (Baines & Worden, 2004). Simulating these effects, as well as the 

effects of dynamic CO2 phase changes during full-field injection, will ultimately be 

required to predict the subsurface behaviour of CO2. This was best summed up by 

Doughty et al. (2008) who, summarizing the achievements of the pilot-scale Frio CO2 

injection project, maintain that “…only through the injection and monitoring of CO2

could the impact of the coupling between buoyancy flow, geologic heterogeneity, and 

history-dependent multi-phase flow effects truly be appreciated.”  
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