
UNIVERSITY OF BERGEN

A Comparison of Vertex and Edge
Partitioning Approaches for
Parallel Maximal Matching

by
Alexander N. Sørnes

Thesis for the degree Master of Science
December 2013

in the
Faculty of Mathematics and Natural Sciences

Department of Informatics

http://www.uib.no
http://www.uib.no/matnat
http://www.uib.no/ii

Abstract

This thesis will compare two ways of distributing data for parallel graph algo-
rithms: vertex and edge partitioning, using a distributed memory system.

Previous studies on the parallelization of graphs has often been focused on
a vertex partitioning, where each processor is assigned a set V’ ⊆ V where G
= (V,E), yielding a one-dimensional partitioning. It has been shown, however,
that an edge partitioning (or 2D partitioning), where each processor is assigned
a set E’ ⊆ E, may yield a benefit in terms of a lower communication volume.

The performance and scalability of vertex and edge partitionings are com-
pared by implementing the Karp-Sipser matching set algorithm for both parti-
tioning schemes. A matching set is a set E’ ⊆ E of independent edges such that
each vertex in V occurs at most once in E’.

We find that while the vertex partitioned algorithm gives a significantly
higher speedup, the increased performance of the edge partitioned algorithm on
more dense graphs suggests that if the graph framework is improved further, it
could lead to the implementation of an edge partitioned matching algorithm that
offers better scalability and comparable matching quality to a vertex partitioned
matching algorithm.

An edge partitioning requires a rigorous framework for handling the commu-
nication resulting when edges owned by multiple processors are incident on the
same vertex. Hopefully, the framework developed for representing an edge par-
titioned graph facilitates the implementation of other parallel graph algorithms
using an edge partitioning approach.

Acknowledgements

I would like to thank my supervisor, Prof. Dr. Fredrik Manne, for providing
wise counsel and encouragement throughout my work with this thesis.

Furthermore, I would like to thank my parents for teaching me the value of
knowledge.

(On a slightly less serious note, I would finally like to thank the inventor of the mi-
crowave oven, without which I would surely have starved while confined to the study
hall.)

1

Contents

1 Introduction 4

2 Matching 7
2.1 Definitions . 7

2.1.1 Bipartite graphs . 7
2.2 Bipartite matching . 8
2.3 Matching in general graphs . 10
2.4 Heuristics . 10
2.5 Summary . 11

3 The Karp-Sipser algorithm 12
3.1 A simple greedy heuristic . 12
3.2 The sequential Karp-Sipser algorithm 13

3.2.1 Analysis . 14
3.2.2 Data structures . 15

4 Parallelization 18
4.1 The need to go parallel . 18
4.2 Computation model . 19

4.2.1 Bulk-Synchronous Processing (BSP) 19
4.3 Data partitioning . 20

4.3.1 Load balancing . 21
4.4 Implementation . 22

4.4.1 Communication . 22
4.4.2 Graph partitioning . 22

5 Parallelization - related work 23
5.1 Speedup . 23
5.2 Bipartite matching . 23

5.2.1 Shared memory . 23
5.2.2 Distributed memory . 24

5.3 Matching for general graphs . 24
5.3.1 Shared memory . 24
5.3.2 Distributed memory . 24

6 Karp-Sipser using vertex partitioning 26
6.1 Overview . 26

6.1.1 Terminology . 26
6.1.2 The algorithm at a glance . 26

6.2 The vertex partitioned algorithm . 27
6.2.1 Queue processing . 27
6.2.2 Examination of the local graph 29

2

6.2.3 Message processing . 31
6.3 Analysis . 32

6.3.1 Communication volume . 32
6.3.2 Number of supersteps . 33
6.3.3 Sequential work . 34

6.4 Data structures . 34
6.4.1 Graph representation . 34
6.4.2 Vertex sets and states . 35
6.4.3 Vertex queue . 35

7 Karp-Sipser using edge partitioning 37
7.1 Overview . 37
7.2 The edge partitioned algorithm . 37

7.2.1 Vertex ownership . 39
7.2.2 Singleton vertices . 39
7.2.3 Message types . 39
7.2.4 A special case . 40

7.3 Analysis . 41
7.3.1 Communication volume . 41
7.3.2 Sequential work . 42

7.4 Data structures . 42
7.4.1 Graph representation . 42
7.4.2 Vertex sets . 42

8 Experimental results 44
8.1 Experimental setup . 44
8.2 Data set . 45
8.3 Sequential algorithm . 45
8.4 Vertex partitioning . 45

8.4.1 Speedup . 46
8.4.2 Quality . 50

8.5 Edge partitioning . 53
8.5.1 Speedup . 53
8.5.2 Quality . 55

8.6 Comparison . 60

9 Conclusion 63
9.1 Summary . 63
9.2 Further work . 63

10 References 65

3

Chapter 1

Introduction

Suppose that you are in Berlin, and you need to know the cheapest route by train
to Warsaw. There is one rail link via Prague, and another one that goes through
Dresden, and Dresden and Prague are directly linked as well. This may be expressed
as a graph where the cities are vertices and the rail links are edges, as shown in Figure
1.1. These edges may have weights, which in this case would be the ticket prices, but
as this thesis is concerned with unweighted graphs, let all ticket prices be equal.

Having expressed the problem in graph terms, it may now be solved using a shortest
path algorithm. Although this particular problem is trivial, the same method could
be used if there were scores of stations and hundreds of rail links - or indeed millions,
as is the case of one considers a network of e.g. all the airports in the world, with one
edge per direct flight connection.

Dresden

Warsaw

Prague

Berlin

Figure 1.1: Graph of the train network; vertices are shown as circles and edges
as lines

Indeed, graphs and the algorithms that may be run on them are so powerful
and versatile that they may be used to express relations in such large quantities of
information that it would be impossible to handle by humans. An example of this is
Facebook: with one vertex per user - of which there are more than one billion - and
an edge between any two friends, the resulting friend graph may be used to extract
interesting information, such as identifying cliques, large groups of people in which
everyone knows each other.

The same technique may be used for web pages: with one vertex per site, and edges
between any two linked sites, analyzing the resulting graph may yield some interesting
information. A website mostly linking to press agencies may be automatically iden-
tified as a news site, whereas one may deduce that a website linking mostly to sites

4

about animal welfare, would be suitable for pet lovers.
What do these examples have in common? The average number of direct plane

routes per airport, compared to the number of airports; or the average friend count
per individual, compared to the number of human beings; or the average link count
for a website, compared to the total number of such sites on the web - in graph terms,
the average edge count per vertex, or average vertex degree, is quite small. Such graphs
are called sparse, and it is their prevalence in real world problems that make them so
interesting.

Another graph problem, and indeed the main topic of this thesis, is that of graph
matching. A matching set is a subset of a graph’s edges such that no two edges are
adjacent, i.e. each endpoint in the matching set occurs at most once. Say that you
have been put in charge of a group of high school drop-outs in order to assign them to
new schools for the next year, but the number of students that may be accomodated
in each school is limited. How should one express this as a graph problem?

This may be formulated as a graph with one vertex per student, and one vertex
per vacant school position, thus there may be several vertices per school. Now, place
an edge between each student and the schools offering study programmes he or she
is qualified for. The answer to the question “what is the student-school assignment(s)
that will fill as many positions as possible?” is that of a maximum matching in the
graph that was constructed. A maximal matching, on the other hand, is a matching
that cannot be extended by adding another edge from the graph. Thus a maximum
matching is also a maximal matching, but a maximal matching is not necessarily a
maximum matching.

The graph used to describe the student-school matching problem actually belongs
to a special class of graphs known as bipartite graphs, and the corresponding matching
problem is known as bipartite matching. In such a case, the graph vertices may be
divided into two sets - in our case students and schools - and the only edges that occur
have an endpoint in each of the sets.

Bipartite graphs are not limited to assigning students to schools, or prospective
parents for adopted children, for that matter. In the field of computer vision, a central
problem is that of object recognition - deciding whether an object perceived by a
set of sensors matches a corresponding object in a pre-computed database. If each
object is described by a graph, the problem of recognizing objects becomes that of
graph isomorphism (sometimes called graph matching); deciding whether two graph
are identical. Shokoufandeh et al [11] describes a method in which the graph of an
observed object is compared to that of a database object by computing a matching of
the bipartite graph obtained by combining the two.

In real-world scenarios, obtaining the best possible solution is not necessarily the
only requirement; another might be that the solution has to be computable within a
reasonable amount of time. A heuristic might guarantee a much lower running time
than an exact algorithm, but at the expence that the solution it finds is not necessarily
optimal. The Karp-Sipser algorithm is a heuristic procedure for the maximal matching
problem discussed earlier. It works in a series of steps, where in each step one edge is
added based on simple rules and randomization.

How does one solve the problem even faster? A tempting answer is to simply
run the implemented algorithm on a faster computer; however, the speed of today’s
processors touches a barrier, a fundamental limitation in our current understanding
of physics: the speed at which information can travel. A modern processor will have
a clock frequency in the order of a few GHz, which translates into 109 operations
per second, i.e. each operation takes about 10−9s. Most of these operations (adding
numbers, multiplication etc.) requires input in the form of numbers stored in system
memory, or RAM.

Higher processor speeds become irrelevant if a processor spends most of its time
waiting for information. Instead of relying on doing computations faster on a single

5

machine, another approach is to go parallel - dividing a problem into several smaller
parts, and solving them simultaneously with multiple processors.

Parallelization raises another question: how does one divide the problem? This
thesis examines two approaches for graph distribution, by parallelizing the Karp-Sipser
matching algorithm: the graph may be divided by assigning each process a set of the
graph’s vertices, or by assigning a set of the graph’s edges, sometimes referred to as a
1D or 2D partitioning, respectively.

The rest of this thesis is structured as follows: in Chapter 2, the matching problem
is defined formally and discussed in further detail, by designing an intuitive algorithm
for the special case of bipartite matching ; Chapter 3 presents a heuristic for maximal
matching in general graph, and details the Karp-Sipser algorithm’s advantages in
terms of solution quality ; Chapter 4 begins by presenting some extra motivation for
why parallelization is important, before presenting concepts and terminology that
are necessary for the discussion and analysis of parallel algorithms; while Chapter 5
examines previous work regarding parallelization of matching algorithms.

The first attempt at parallelizing the Karp-Sipser algorithm is presented in Chapter
6, where a vertex partitioning is used. This is contrasted with the implementation of
the Karp-Sipser heuristic using edge partitioning in Chapter 7.

Finally, Chapter 8 provides experimental results and a comparison between the
two approaches.

6

Chapter 2

Matching

Before discussing the Karp-Sipser matching algorithm, the matching problem will be
examined more closely. First, the problem will be defined formally, as well as related
terminology and notation. A special case of matching in bipartite graphs will be
used to present a first matching algorithm, before the case for general graphs will be
discussed.

2.1 Definitions
An unweighted graph G is defined by its vertex and edge sets, G = (V,E). The vertices
of a particular graph G are referred to as V (G), and the edges as E(G). An edge, say
e, is defined by its two endpoints, e = (u, v), where u and v are vertices, u, v ∈ V (G).
Unless otherwise stated, any graph in question is an undirected graph: given vertices
u and v, (u, v) and (v, u) refer to the same edge.

A matching M of a graph G is a set M ⊆ E(G) such that for any edge e = (u, v) ∈
M , no edge in M \ {e} contains u nor v as an endpoint, or more formally, for any
e = (u, v) ∈M and for any x ∈ V (G), (u, x), (v, x) /∈ {M \ {e}}.

Recall that a maximal matching was defined as a matching that could not be
extended by adding a new edge. Formally, a matching M is maximal if for any (u, v) ∈
E(G) \M there exists some x ∈ V (G), such that either (u, x) ∈M or (v, x) ∈M .

Two edges are said to be adjacent if they share a common endpoint; thus the
edges (u, v), (v, w) are adjacent, whereas (u, v), (w, x) are not. A path is an ordered
set of adjacent edges such that no edge occurs more than once, with distinct start and
end points. A cycle is an ordered set of adjacent edges, with no edge occurring more
than once, without a unique start and end point. Thus (u, v), (v, x), (x, u) is a cycle,
whereas (u, v), (v, x) is a path.

2.1.1 Bipartite graphs
In a biparitte graph, the vertices may be divided into two sets, where there are no
edges between the vertices of each set. The set of graph vertices may thus be described
as a union of the sets A and B, V (G) = A ∪ B,A ∩ B = ∅, with the property that
for any (u, v) ∈ E(G), either u ∈ A, v ∈ B or u ∈ B, v ∈ A. An example is shown in
Figure 2.1.

The bipartite matching problem is a special case of the mathcing problem, where
the input graph is bipartite.

7

A

B

Figure 2.1: A bipartite graph with V (G) = A ∪ B. Notice that all edges have
one endpoint in A and one in B.

2.2 Bipartite matching
Central to the bipartite matching problem are the definitions of an alternating path
and augmenting path. Given a graph G = (V,E) and a matching M , an alternating
path is an ordered set of adjacent edges such that every edge not in M is followed by
an edge in M , and vice versa. An augmenting path is an alternating path that starts
and ends with an unmatched edge; an example is shown in Figure 2.2.

Looking at the figure, it is obvious that the matching can be extended by removing
the blue (matched) edges from it and replacing them with the unmatched (red) edges.
In fact, Berge’s lemma [12] states that a matching in a graph is maximum if and only if
there is no such augmenting path. Based on this lemma, a simple algorithm for finding
maximum bipartite matchings is to repeatedly find an augmenting path, remove its
even edges from the matching and replace them with the path’s odd edges, until there
are no augmenting paths left (Algorithm 1).

Algorithm 1 A simple algorithm for a finding maximum matching in a bipartite
graph

procedure Bipartite matching(Graph G)
M := ∅
while G has an augmenting path P = e1 ∪ e2... ∪ en do

M := M \ {e2 ∪ e4... ∪ en−1}
M := M ∪ {e1 ∪ e3... ∪ en}

end while
end procedure

How many iterations of the while loop will be executed? Let |V | denote the number
of vertices and |E| the number of edges in the graph. A vertex can be included in a
matching at most once, and since each edge is represented by two vertices, a maximum
matching contains at most |V |/2 edges. This is the case if all vertices are matched,
and is referred to as a perfect matching. As each iteration of the loop increases the
matching size by one edge, it will be run at most |V |/2 times. Finding an augmenting

8

A

B

A1

A2

A3

B1

B2

B3

Figure 2.2: An augmenting path starting at A2 and ending at B2. Edges in M
are shown in blue, unmatched edges in red.

path may be done in O(|E|) time [12], giving a total running time of O(|V ||E|). The
procedure for finding an augmenting path in a graph is as follows:

Let M1 be the current matching and M2 be another matching. Construct a graph
G1 consisting of the edges that belong to M1 or M2, but not both. G1 will now consist
of connected components, each of which is either a cycle of even length or a path,
where every edge in M1 is followed by an edge in M2, and vice versa. If a path has
odd length and begins with a vertex in M2, then it is an augmenting path.

Hopcroft and Karp’s algorithm [13] devised an improved bipartite matching algo-
rithm, with a bound of O(

√
|V ||E|) by exploiting the fact that Berge’s lemma allows

for the finding of several augmenting paths in each step, as shown in the procedure
above. They start with a matching M0 = ∅. In each step, they then find a set of j
vertex-disjoint augmenting paths of the smallest possible, and equal, size. In a step
i > 0, Mi is then formed by augmenting Mi−1 with the j shortest augmenting paths
found. By showing that the sequence M0,M1,M2... has at most 2

√
s + 2 elements,

where s ≤ |V |/2 is the size of a maximum matching for the given graph, the improved
bound is obtained.

In the paper they also suggest that a similar bound could be extended to general
graphs; as will be discussed further in the following section, this is indeed true. The
algorithm by Hoproft and Karp for biparitte matching was the fastest known (for
sparse graphs) until Mucha et al.’s work [9] on randomized algorithms using fast matrix
multiplication. As will be explained in the next section, however, this improved bound
does not necessarily translate into faster running times in practice. For dense bipartite
graphs, Alt et al. [20] showed how a version of the Hopcroft-Karp algorithm could be
implemented to run in time O(|V |1.5

√
|E|/log|V |).

Yet another approach for a bipartite matching algorithm is to look at the problem
as a special case of network flow. Given an undirected graph G = (A ∪ B,E), create
a directed graph G′ as follows: add a source vertex s with directed edges towards all
vertices in A, add a sink vertex t with a directed edge from every vertex of B to t.
Finally, for every edge in E(G), let E(G′) contain a corresponding edge directed from
a vertex in A to a vertex in B. Assign a unit capacity to each vertex.

Expressing bipartite matching as a special case of network flow is especially inter-
esting as it allows for the employment of algorithms that were designed with parallelism

9

in mind. The algorithm of Goldberg and Tarjan [24] is such an algorithm, running
in time O(|V ||E|log(|V |2/|E|)). In the algorithm, the incoming flow for a vertex is
allowed to exceed the outgoing one; excess flow is then pushed along shortest paths
towards the sink. The flow is pushed in a series of step, where in each step the vertices
are relabeled to reflect the new flow distribution, giving rise to the term push-relabel
algorithm.

2.3 Matching in general graphs
The first polynomial-time algorithm for finding a maximum matching in general graphs
was proposed by Edmonds in 1965 [14]. While not defining an algorithm in the strictest
sense, it rather put forward a set of ideas that could be used to develop further algo-
rithms, such as that of Hopcroft and Karp [13] for bipartite graphs.

The idea is, as with the bipartite case, to iteratively increase a matching using
augmenting paths. Without the structural constraints of a bipartite graph, however,
the algorithm becomes more complex, and its discussion would fall outside the topic
of this thesis.

Using the ideas of Edmond’s algorithm, Silvio et al. [10] were able to formulate
an O(

√
|V ||E|) algorithm for maximum matching in general graphs, thereby matching

the running time of Hopcroft and Karp’s algorithm [13] for bipartite graphs.
Thus far, all the matching algorithms presented have relied on augmenting paths

for constructing a maximum matching. Another, more recent work by Mucha et al. [9]
uses randomization and fast matrix multiplication, running in O(nω) randomized time,
where O(nω) is the complexity of the fastest known matrix multiplication algorithm.

As of 2013, the fastest published algorithm for matrix multiplication is that of
Coppersmith and Winograd [15], with ω = 2.376. A more recent, but as of yet
unpublished work by Williams [16] gives an algorithm with ω ≤ 2.373. In contrast,
the bound of O(

√
|V ||E|) obtained by Silvio et al. translates into O(n2.5) for complete

graphs, but closer to O(n1.5) for sparse graphs.
A common characteristic of these matrix multiplication algorithms is that they rely

on large hidden constants to achieve their bounds for the running time. In the words
of Chris Umans of the California institute of Technology, although the algorithms
“perform better than Strassen aymptotically, the input matrices must be astronomically
large for the difference in time to be apparent” [17]. Strassen’s algorithm [18] gives
ω ≈ 2.806, resulting in a running time that is significantly slower than that of Silvio
et al.

2.4 Heuristics
In real-world scenarios, obtaining the best possible solution is not necessarily the
only requirement; another might be that the solution has to be computable within a
reasonable amount of time. Consider a graph with a hundred million vertices and an
average vertex degree of 10. A running time of O(

√
|V ||E|), which, as was shown in the

previous section, is the fastest known matching algorithm in practice, would then imply
that the number of computations performed could be in the order of

√
108×109 = 1013,

or 10 trillion.
Aheuristic might guarantee a much lower running time than an exact algorithm,

but at the expense that the solution it finds is not necessarily optimal. Recall that a
maximal matching was introduced as a matching not necessarily of the largest possible
size, but where no further edges could be added. In other words, given the choices
that have already been made, there is no “quick fix” to improve the matching; in order
for it to be extended, edges already part of the matching must be removed.

10

The Karp-Sipser algorithm is such a heuristic procedure, and will be the topic of
the next chapter. It works in a series of steps, where in each step one edge is added
to the matching, and its vertices are removed. This guarantees that the number of
steps is proportional to the number of vertices in the graph, but at the expense that
the choice of a particular edge might not lead to a maximum matching.

2.5 Summary
This chapter introduced the matching problem, with a special focus on bipartite graphs
as their structure is well-suited for presenting algorithmic ideas. Exact matching
algorithms for general graphs were covered briefly; their relative complexity serves
as a justification for developing heuristic procedures, with one such algorithm, Karp-
Sipser, being the topic of the next chapter.

11

Chapter 3

The Karp-Sipser algorithm

This chapter will first present a simple greedy algorithm for the maximal matching
problem, in order to show how utilizing simple observations may yield powerful results
in terms of solution size. The Karp-Sipser algorithm itself will be presented in Seciton
3.2, while towards the end of the chapter, an analysis of the Karp-Sipser algorithm’s
running time will be given (Section 3.2.1), along with a presentation of the data
structures used for its implementation (Section 3.2.2).

3.1 A simple greedy heuristic
Recall that for a matching to be valid, no vertex may be included as an endpoint more
than once. As such, when adding an edge e = (u, v) to a matching, u and v should
not be considered for inclusion again, unless e is later removed from the matching. By
permitting edges to be examined at most once it is ensured that no more than |E|
such operations are performed, thus providing an upper bound of the running time of
the form (number of examined edges) × (time taken to examine an edge).

This leads to an idea for a simple, greedy heuristic: repeatedly add edges to the
matching and remove their endpoints, as well as any incident edges, until there are
none left. The greedy algorithm is given in Algorithm 2.

Algorithm 2 A simple greedy matching heuristic
procedure Greedy matching(Graph G)

M := ∅
while G has edges left do

Select an edge e = (u, v) at random
M := M ∪ {e}
remove u and v from G

end while
end procedure

Two vertices are removed in each iteration of the while loop, guaranteeing that it
will be run at most |V |/2 times.

What about the solution size? Let the quality of a matching M be the size of M
relative to the maximum matching size for that graph:

Matching Quality(G,M) =
|M |

Size of maximum matching
(3.1)

12

e

Figure 3.1: A graph with maximum matching size 2. If edge e (blue) is chosen
to be part of a maximal matching, no further edges may be added and |M | =
1.

An example run of Algorithm 2 is shown in Figure 3.1, with a resulting matching
quality of 0.5. In this particular case, edge e was selected as the first edge; if any other
edge had been selected initially, the resulting matching quality could be 1.

In fact, the greedy algorithm will always produce a matching quality greater or
equal to 0.5 [19]. Intuitively, this may be explained as follows: consider an edge,
such as e in Figure 3.1. As no vertex may occur as an endpoint in a matching more
than once, selecting e prevents any adjacent edges from being part of the matching.
However, exactly because no endpoint may occur more than once, the selection of e
prevents at most two optimal edges from being part of the solution.

Here, an optimal edge means an edge that would have been part of a maximum
matching. Thus selecting e disqualifies at most two other edges, but it does increase
the matching size by one. Hence the greedy algorithm will always produce a matching
with quality ≥ 0.5. For a formal proof, see [19].

3.2 The sequential Karp-Sipser algorithm
The Karp-Sipser algorithm [1] (Algorithm 3) prevents the scenario shown in Figure
3.1 by giving preference to matching vertices of degree 1, hereafter referred to as
singletons. If there is more than one singleton vertex in a given step, one is chosen
uniformly at random. If there are no singletons, a random edge is selected, similar to
the greedy heuristic presented in Section 3.1.

Karp and Sipser refer to the algorithm as working in two phases, where the first
phase extends from the start of the algorithm until the first time the set of singletons
is empty. It will now be shown, with the arguments from [1], that the choices made
in the first phase are optimal, i.e. if the algorithm is terminated after the first phase,
the resulting (partial) matching could be extended to a maximum matching.

A vertex is said to be lost with respect to an edge set E if it does not occur in E
as an endpoint. Consequently, for a graph with no vertices of degree 0, the number
of lost vertices, l(M), resulting from the choice of the edge set M as a matching, is
described by

|V | = 2|M |+ l(M) (3.2)

Consider the matching in Figure 3.1: the number of lost vertices, l(M) = 6. If e is
not present in the matching, one may select any one edge to the left of e and any one
edge to the right, doubling the matching size and resulting in only four lost vertices.

Karp and Sipser show that in general, the number of lost vertices after a run of
the algorithm on a graph G may be described as

l(E(G)) = l1 + l(E(H1)) (3.3)

13

where H1 is the remaining graph after the first phase and l1 represents the number
of vertices lost in that phase. They show that while l(E(H1)) depends on the random
choices made by the algorithm, l1 depends only on G.

Another, perhaps more intuitive proof, may be sketched by following the same
argument as was given in Section 3.1 for proving that the greedy algorithm guaranteed
a matching quality of ≥ 0.5. Consider a singleton vertex, v, and the corresponding
edge e = (u, v) for some u. From Section 3.1, the argument is that if e is not part of
some maximum matching, selecting it could prevent at most two optimal edges from
being part of the matching.

However, since v has degree 1, selecting (u, v) for the matching would only prevent
the selection of at most one optimal edge that has u as an endpoint. In other words,
it would prevent at most one optimal edge from being part of the matching, but the
matching size is increased by one, i.e. the choice of (u, v) is also optimal.

The optimality of Phase 1 has lead to the Karp-Sipser algorithm being suitable for
computing an initial matching that is later extended by an algorithm for maximum
matching. This is particularly relevant due to the fact that almost all maximum
matching algorithms operate by iteratively increasing a partial matching [21].

Others, such as Aronson et al. [22], have studied the average performance of
Karp-Sipser for sparse random graphs, in terms of matching quality, and found that it
produces a maximum matching with high probability when the average vertex degree
is smaller than e, the base of the natural logarithm. If the average degree is greater
than e, the matching calculated is within |V |1/5+o(1) of the maximum matching, with
high probability.

Algorithm 3 Sequential Karp-Sipser algorithm
procedure Sequential Karp-Sipser algorithm(Graph G)

M := ∅
while G has remaining edges do

if G has at least one singleton vertex x then
e := The edge between x and its neighbour

else
e := a random edge

end if
Remove e’s endpoints from G, as well as all incident edges
M := M ∪ {e}

end while
end procedure

The remaining sections will present an analysis of the Karp-Sipser algorithm, in-
cluding required data structures. In order to simplify the implementation, a slight
modification will be made to the Karp-Sipser algorithm (Algorithm 3): instead of
selecting edges uniformly at random, a vertex of degree > 0 will first be selected uni-
formly at random, before one of its adjacent vertices is chosen in the same manner.
This increases the probability of selecting edges whose endpoints have lower degree,
but as it occurs in Phase two it does not affect the optimality of Phase one.

3.2.1 Analysis
The running time analysis of the algorithm is quite straight-forward. Note from the
previous section that due to its nature of deleting at least two vertices in each step,
the algorithm will terminate after at most |V |/2 steps. In order to express the total
running time, the operations performed in each step will be examined. The running

14

time of these operations will in turn depend on the underlying data structures, whose
characteristics will be briefly sketched here and outlined further in the next section.

Singletons and sets

The algorithm maintains a set of singleton vertices; the set implementation needs to
support four operations: to add or remove members, to get a random element, and a
method to get the size of the set itself. This set is implemented using two arrays, one
to store the actual set members contiguously and one to support lookup of individual
vertex indices; each array has size |V |. Using this implementation, which is explained
further in the ensuing Data structures section, all four operations may be performed
in constant time.

Selecting random edges

To allow for the random selection of edges, it is necessary to also maintain a set of
vertices with degree > 0, which is the set of all vertices with edges incident on them;
the set implementation is the same as for the set of singletons. When selecting a
random edge, a vertex with degree > 0 is selected first, and then one of its incident
edges, both operations uniformly at random. This has the side-effect of increasing
the probability for selecting edges whose endpoints have lower degrees, as opposed to
selecting edges uniformly at random.

Removing vertices

When removing a vertex v it is necessary to iterate over its d(v) neighbours in order
to update the sets of singletons and vertices with nonzero degree. This gives an upper
bound of O(|V |) for the number of steps required to remove a vertex. However, one
may instead consider the average time taken to delete neighbours, which depends on
the average degree of a vertex, davg = |E|/|V |. The average time to delete a vertex
may now be expressed as O(davg).

Total running time

The algorithm runs at most O(|V |) steps. On average, each step takes O(davg) time,
giving a total of O(|V | ∗ davg) = O(|V | ∗ |E|/|V |) = O(|E|). Finally, it may be noted
that for sparse graphs, one could have O(|E|) = O(|V |).

3.2.2 Data structures
Vertex sets

The matching algorithms rely on vertex sets when e.g. selecting a random vertex of
degree 1 or determining whether a vertex is active. Using one array for looking up
vertex IDs (L, of size |V |), i.e. determining whether a particular vertex is part of the
set, and another array for storing the set elements contiguously (S, of size |V |), the
following operations may be performed in constant time:

1. Determining whether an element is part of the set
2. Removing an element from the set
3. Adding an element to the set
4. Selecting a random element

Upon initialization, the set accepts a value, maxSize, to determine the size of the
underlying data structure, while a variable size determines how many elements are

15

currently part of the set, initially size = 0. Providing a maxSize of |V | lets one add
elements 0 through |V | − 1. An example is shown in Figure 3.2, where maxSize = 7,
so elements 0 through 6 may be added.

The lookup array, L, stores −1 if an element is not part of the set, or a non-
negative index otherwise; this index is the position at which the element is stored in
the contiguous set members (S) array, and is used when removing a set element.

When adding an element i to the set, i is put at position size of S, and L[i] is
updated to store the value of size. Finally, size is incremented by 1. If the element
1 was added to the set in Figure 3.2, it would be stored at S[4] and L[1] would thus
equal 4.

Removing a set element i is done by swapping its position in S with that of the
last element in S, before updating L. Finally, size is decremented by 1. Consider the
set in Figure 3.2: if element 6 was removed, element 5 would be moved to S[0], L[6]
would be set to −1 and L[5] would be set to 0, to reflect that 5 was moved.

6 2 0 5

032 −1 −1−1 1L

S

Figure 3.2: A vertex set containing elements 0, 2, 5 and 6

Graph representation

The graph is represented using the adjacency list format. An array, edgeList, of size
|V | stores pointers to a list of neighbours for each vertex. These lists are stored
consecutively in an array, edgeData, of size 2|E|. An edge e = (u, v) is thus represented
twice: u occurs in the adjacency list of v, and vice versa. The number of edges incident
on a particular vertex is stored in an array, edgecCount, of size |V |. Thus, the total
memory usage of the graph representation is O(|V |+ |E|). An illustration of the data
structure is shown in Figure 3.3.

To avoid the use of an extra array for storing edge counts per vertex, the edge
count of a vertex with ID i might have been calculated as edgeList[i+1]−edgeList[i].
This would, however, fail to provide a method for determining the edge count of a
vertex if edges are allowed to be removed from the graph, which is the case for the
implementation discussed in this thesis.

An alternative to the edge list representation could be the adjacency matrix format,
where a graph is represented as an n × n boolean matrix A, with n = |V |. The
adjacency matrix format provides two advantages: given two vertices with ID i and
j, testing for the existence of an edge (i, j) simply involves evaluating A[i][j] 6= 0,
and removing an edge can be done by setting A[i][j] = 0. Listing the neighbours of
a vertex, or selecting a random neighbour of a given vertex, would however require
O(|V |) time unless some additional data structure is used. Finally, a adjacency matrix
requires O(|V |2) space, which can be a factor O(|V |) larger than the adjacency list
format for sparse graphs where O(|V |) = O(|E|).

16

2

1

1

1 2 0 0

edgeCount

edgeData

edgeList

0

2

3

Figure 3.3: An undirected graph with |V | = {0, 1, 2} and |E| = {(0, 1), (0, 2)}

17

Chapter 4

Parallelization

This chapter is concerned with two main aspects of parallelism: what a parallel com-
puter is, and how one should divide data in other to make a sequential problem into
a parallel one. These two aspects translate into two discussions: the choice of a theo-
retical computer model and data partitioning schemes.

This chapter starts by further examining the motivation for computation in par-
allel. A discussion of graph partitioning schemes is given in Section 4.3, while Section
4.2 will discuss theoretical computation models used for analyzing the partitioning
schemes and the parallel algorithms. Finally, Section 4.4 will give an overview of the
implementation of the parallel algorithms.

4.1 The need to go parallel
How does one solve a computational problem faster? A tempting answer is to simply
run the implemented algorithm on a faster computer; however, the speed of today’s
processors touches a barrier, a fundamental limitation in our current understanding
of physics: the speed of light, a limit for how fast information can travel. A modern
processor has a clock frequency in the order of a few GHz, which translates into 109

operations per second, i.e. each operation takes about 10−9s. Most of these operations
(adding numbers, multiplication etc.) requires input in the form of numbers stored in
system memory, or RAM.

For simplicity, assume that the memory is located 3 cm from the processor. The
time it takes for information to travel from the processor to memory and back, the
latency incurred when requesting information, is then bounded from below by the
speed of light:

distance traveled
speed

=
2× 3× 10−2m

3× 108ms−1
=

2× 10−2m

108ms−1
= 2× 10−10s (4.1)

Thus this lower bound is only one order of magnitude away from the speed of
current processors, and it should be noted that current memory transfer mechanisms
do not necessarily achieve such speeds. To alleviate this, memory may be moved closer
to the CPU; a modern processor typically includes a CPU cache, which is memory
embedded in the processor die, used for storing frequently accessed information or
CPU instructions.

Instead of relying on doing computations faster on a single machine, another ap-
proach is to go parallel - dividing a problem into several smaller parts, and solving
them simultaneously with multiple processors.

18

Parallelization raises another question: how does one divide the problem between
processors? This thesis will examine two approaches for graph partitioning, by paral-
lelizing the Karp-Sipser matching algorithm: the graph may be divided by assigning
each process a set of the graph’s vertices, or by assigning a set of the graph’s edges,
sometimes referred to as a 1D or 2D partitioning, respectively.

These two data partitioning schemes will be discussed in Section 4.3; before dis-
cussing them, it is necessary to define a theoretical model for what a parallel computer
really is: Section 4.2 presents two main varieties, shared and distributed memory com-
puters.

4.2 Computation model
There are two main types of parallel computers: shared memory and distributed mem-
ory multicomputer [23]. In a computer with shared memory, the processes all have
access to the same memory area, and consequently data may be shared with ease
amongst processes. A challenge with such a computer is the hardware: while comput-
ers granting equal access to a common memory area for a small number of processes
have been around for some time, only a decade ago there was considerable doubt [23]
about whether the shared-memory approach would scale.

With the introduction of hardware such as the Intel Xeon Phi coprocessor family,
systems with 57 - 61 cores, supporting up to 244 processes, can be purchased for
as little as USD$ 2,000 [33]. Previously, such massive multithreading has only been
available with highly specialized hardware such as the Cray XMT [34], produced in a
limited number and designed for supercomputer systems.

In a distributed memory computer, each process has its own memory area, and
some form of explicit communication is required when sharing information between
processes. A common method is message passing, where the processes communicate
by sending messages to each other, using a common API such as MPI [35]. While each
process may be assigned to an individual processor (CPU), this is not necessarily the
case; several processes might share a single CPU, as is the case with Hyper-Threading
technology.

Developing parallel applications using a message passing interface, as opposed to
using a shared memory model, puts an extra burden on the programmer as the sharing
of information has to be done explicitly. On the other hand, benefits may be reaped
in terms of avoiding time-consuming implicit synchronization mechanisms.

Another approach is to achieve parallelism by passing the same instruction set
to multiple processes, each using different data, known as Single Instruction Multiple
Data (SIMD) [23]. This is especially suited for situations where the results of the
computations are independent, such as deciding what colour a pixel on a computer
screen should be, and Graphic Processing Units (GPUs) thus often have a SIMD
structure.

4.2.1 Bulk-Synchronous Processing (BSP)
The parallelization of the Karp-Sipser algorithm in this thesis, both using vertex
partitioning and edge partitioning, is performed under a paradigm known as Bulk-
Synchronous Processing (BSP) [5]. While BSP relies on message passing, it tries to
alleviate some of the extra complications involved in programming a message passing
application by structuring communication and computation.

Execution is done in a series of supersteps, each consisting of two phases: compu-
tation and communication. Each process is required to enter and finish the communi-
cation phase before the program can proceed to the next step, thereby ensuring a form

19

of synchronized execution, and eliminating the need for synchronization mechanisms
within a computation step.

A reference BSPlib standard [5] provides primitives that are suitable for a higher-
level approach in comparison to MPI, leaving optimization to the developers of a
BSPlib implementation. For the experiments in this thesis, the functionality needed
for the BSP computing model is provided by the library BSPonMPI [4], which in turn
is implemented using the MPI framework.

The two main primitives of BSP are bsp_send() and bsp_sync(). In a computation
phase, a process adds messages to a communication buffer using bsp_send(); these
messages are stored and only sent when all processes enter the communication phase
by calling bsp_sync(). The primitive bsp_sync() is a blocking operation, i.e. once a
program calls it, execution is not resumed until all processes have reached the same
point. A message sent from a process i to a process j is thus available to j after both
processes have called bsp_sync(); an example is shown in Figure 4.1.

Computation Computation

i j

Sends message

 x to j

bsp_sync()

bsp_sync()

Step y

Computation Computation

i j

bsp_sync()

bsp_sync()

Step y + 1Time

Processes

message x

Figure 4.1: An example run of a BSP program. In step y, process i sends a
message x to process j, which is processed by j in step y + 1. The compu-
tation phase (white) of step y + 1 begins when all processes have entered the
communication phase (blue) of step y.

4.3 Data partitioning
This section presents two data partitioning schemes: vertex partitioning and edge
partitioning. Data partitioning refers to the following problem:

Given a graph G = (V,E), how does one divide G into p parts? The p parts refer
to p processors, or more specifically processes, the difference of which was described in
Section 4.2.

Any partitioning would entail that some process does not see and/or work with
the whole graph at some point. However, the matching problem, as defined in Section
2.1, requires that no vertex may be included as an endpoint more than once. This
is solved by introducing a notion of vertex ownership. The owner of a vertex will be
required to keep track of whether it is part of a matching or not, and thus has the
final say when including it in the result.

In vertex partitioning, a process i is assigned to a set Vi ⊆ V (G), which implicitly
also assigns a set of edges, Ei ⊆ E(G), where an edge (u, v) ∈ E(G) is in Ei if i owns u,

20

v, or both. In this case, vertex ownership becomes trivial: a process i owns a vertex u
if u ∈ Vi. The assignment of Ei in turn implies the assignment of a set of ghost vertices,
V g
i : the set of vertices not owned by i, but adjacent to vertices owned by i. Ghost

vertices are used for communication: if a process encounters an edge e = (u, v) where
v is owned by some other process, it can perform a query to a local data structure to
retrieve the process ID of the owner of v and consequently sent a message. For an edge
(u, v) ∈ Ei, there are three cases: 1) {u, v} ∈ Vi ; 2) u ∈ Vi, v ∈ V g

i ; 3) v ∈ Vi, u ∈ V g
i .

For the edge partitioning approach, the set Ei ⊆ E(G) is assigned explicitly, which
requires a separate mechanism for determining vertex ownership. In the worst case,
a vertex u may be shared among d(u) processes, assuming d(u) ≤ p. The owner of a
vertex is chosen to be the process owning the highest number of incident edges to it;
if no process owns the plurality of incident edges, ownership is awarded to the process
with the lowest ID.

The set of ghost vertices V g
i for a process i is then the set of vertices that occur as

an endpoint in Ei, excluding the set Vi. Thus a process i may not have knowledge of
all edges incident on a vertex u ∈ Vi, or it may own vertices u and v but be unaware
of the edge (u, v). This is solved by letting the owner of a vertex know about the set
of processes owning edges incident on that vertex.

These, and other, problems that arise with the edge patitioning approach are
discussed in Chapter 7, while the vertex partitioning approach is discussed further in
Chapter 6.

4.3.1 Load balancing
At this point it might be relevant to question why the more complicated edge par-
titioning approach should be given further consideration. The answer is that of load
balancing. As was shown in Figure 4.1, a process that finishes its computation phase
earlier than some other process cannot continue execution until all processes have fin-
ished communicating. Thus while a vertex partitioning may yield an algorithm that
requires less computation per process, this may be offset by an uneven load balancing,
resulting in an overall longer execution time.

Consider a graph consisting of four vertices, forming a tree such that the vertex
with ID 0 is connected to the remaining vertices. A division of this graph amongst
three processes, using both vertex and edge partitioning, is shown in Figure 4.2. In
general, graphs where some vertices have a much higher degree than the average may
lead to poor load balancing, as a high-degree vertex has to be assigned to only one
processor.

1

20

3

0

1 3

2 0 3

1 2

Edge PartitioningVertex partitioningGraph

Figure 4.2: A graph and a corresponding vertex and edge partitioning among
three processes (red, blue, magenta) where red has the lowest process ID.

21

4.4 Implementation
This section briefly covers some of the details that are common to the implementation
of both parallel algorithms, discussed in Chapters 6 and 7. It covers the method used
for communicating between processes, and how graph partitioning is handled.

4.4.1 Communication
The interaction between the program and BSPlib is done through a Communicator
interface. While performing initial experiments, it was discovered that BSPlib had
problems when distributing larger graphs to a larger number of processes. To alleviate
this, the Communicator interface allows for the graph to be distributed in smaller
parts.

Furthermore, using the Communicator interface, it is possible to record the exact
number of messages sent and received, which in the following chapters will be used for
comparisons with the theoretical bound on the communication volume.

On the other hand, it is aknowledged that an extra layer between the algorithm
implementations and the underlying MPI library, may have a negative impact on
performance. For those familiar with C++, the Communicator class is a virtual class
with implementations for both BSPlib (which in turn is based on MPI) and MPI itself;
thus the use of inline functions would not necessarily be optimized by the compiler.
Only the BSPlib implementation of the Communicator interface was used during the
experiments, and as such this situation could have been avoided, but it was the author’s
desire to create a framework that could be used for testing other parallel algorithms,
without the BSP model being a requirement.

4.4.2 Graph partitioning
For the vertex partitioned algorithm, graph partitioning is done via a common inter-
face, so that different partitioners may be tested with minimal effort. The interface
consists of a single method, partition, taking two arguments: a graph, in compressed
row storage (CRS) format, and the process count.

For the vertex partitioning, METIS [2] and SCOTCH [3] were utilized. Both
software packages have parallel versions in order to speed up the partitioning process,
but the sequential versions were chosen as the data distribution time was excluded from
the experiments performed. An interface for the Zoltan [36] hypergraph partitioner
could also have been developed; however, a comparison of graph partitioning software
would fall outside the topic of this thesis.

For the edge partitioned algorithm, the Mondriaan partitioner [7] for sparse ma-
trices is used. As is discussed further in Chapter 5, Patwary et al. [6] showed that
the communication volume for edge partitioned parallel matching is proportional to
that of sparse matrix vector multiplication, thus Mondriaan can be used without any
modifications.

22

Chapter 5

Parallelization - related work

As was explained in Section 4.3, implementing an algorithm with an edge partitioning
approach requires extra work in comparison to vertex partitioning. This chapter ex-
amines previous works related to the matching problem, and through this examination
provides some justification for the edge partitioning approach. Section 5.2 examines
parallel algorithms for bipartite matching, while Section 5.3 examines parallelization
of algorithms designed for general graphs.

In both sections, the discussion is organized based on the two main computation
models, shared memory and distributed memory.

5.1 Speedup
In order to evaluate a parallel algorithm, a notion of how to measure its performance
is required. Let the speedup of an algorithm using p processes be given as:

Speedup(p) =
Running time of the best sequential algorithm

Running time of the parallel algorithm using p processes
(5.1)

Another, perhaps more cynical, approach would be to measure the efficiency of
the parallel algorithm, by evaluating how often a process is active, in order to perform
an analysis from a cost-benefit perspective.

5.2 Bipartite matching

5.2.1 Shared memory
The parallelization of matching algorithms for bipartite graphs requires special atten-
tion, due to the existence of push-relabel algorithms, as descried in Section 2.2. In
their original paper, Goldberg and Tarjan give a parallel algorithm running on O(|V |)
processes, but without any implementation. As explained in Chapter 1, real world
graphs may have millions of vertices, and as such an implementation with millions of
processes might be impractical.

In 1992, Setubal [25] provided a parallel implementation of Goldberg and Tarjan’s
algorithm and showed that a speedup of 3.2 could be obtained with up to 12 processors
on a shared-memory system on random graphs.

More recently, in 2012, Azad et al. [27] implemented parallel versions of sev-
eral maximum matching algorithms, where parallel versions of Karp-Sipser and the

23

greedy matching heuristic, as explained in Chapter 3, were used for providing an ini-
tial matching. Once initialized, their algorithms rely on increasing the initial matching
by finding augmenting paths in parallel, using either vertex-disjoint depth-first search
(DFS), DFS with lookahead, breadth-first search (BFS), or, using a modified version
of the Hopcroft-Karp algorithm, a combination of both.

They tested their algorithms on both systems with a few dozen processes (1-2
processes per core) and a more special system with 16 384 processes using 128 processes
per core, the Cray XMT. They find that the Karp-Sipser algorithm as an initialization
mechanism produces better results when using dynamic scheduling, as used for the
DFS based algorithms, whereas the greedy heuristic performs best for static scheduling,
as used in the BFS based algorithms.

Using these initalizaiton mechanisms, they were able to obtain good speedups for
the maximum matching problem on systems with a few dozen processes, where the
DFS- based algorithms performed best on average, and for the massively multithreaded
system, where the BFS based algorithms offered the highest speedup.

More recent still, in October 2013, Dufossé et al. [28] developed a maximal match-
ing heuristic that uses a parallel version of the Karp-Sipser algorithm as a subroutine.
Their algorithm works by scaling the corresponding adjacency matrix of a graph to
doubly stochastic form, from which they are able to select subgraphs with properties
that allows their parallel version of Karp-Sipser to find a maximum matching. They
show that their algorithm guarantees a matching quality of at least 0.866, and give an
implementation that achieves a speedup ranging from 9 to 12 when using 16 processes.

5.2.2 Distributed memory
A recent attempt at parallelizing the push-relabel algorithm was performed by Langguth
et al. [26] in 2011. The shared-memory algorithm of Setubal is adapted to a distributed-
memory environment by limiting the number of communication operations performed
in each push-relabelling step. In addition, they test the usage of the Karp-Sipser algo-
rithm as an initializing method for speeding up computation; while they find that the
use of Karp-Sipser does not provide a predictable speedup, it does pay off on average.
Their algorithm uses an edge-partitioning approach, which is based on the findings of
Patwary et al. [6] described in the following section.

5.3 Matching for general graphs

5.3.1 Shared memory
With the onset of GPU programming, a new possibility for running shared-memory
parallel algorithms emerged. Auer et al. [8] found that the memory bandwidth of
modern graphics cards, which can be tenfold that of CPU-RAM bandwidth, made
their matching algorithm implemented for the GPU significantly faster than the same
algorithm implemented on a system with eight physical cores. They implemented
their algorithm in two versions: maximal matching for unweighted graphs, and an
approximation algorithm for weighted matching, where the edges have weight, and the
goal is to maximize the total weight of the edges included in the matching.

A GPU based algorithm is limited by the number of cores available on a graphics
card; a system of interconnected GPUs would potentially defeat their benefit of a large
memory bandwidth.

5.3.2 Distributed memory
This section is divided into two sections: parallelization of approximation algorithms
for weighted matching and maximal cardinality (unweighted) matching.

24

Weighted matching

Using the MPI framework for message passing, Catalyurek et al. [30] developed a
parallel 0.5 approximation algorithm for the weighted matching problem for distributed
memory computers. Their algorithm is based on finding locally heaviest edges on each
processor, and while this is shown to only guarantee a solution that has at least half
the weight of the optimal one, they experimentally obtain matchings that deviate less
than 1 % from the optimal. They obtain speedup using up to 4,096 processors using
the IBM Blue Gene/P supercomputer on sparse graphs.

For a non-supercomputer system, Manne and Bisseling [31] devised a parallel al-
gorithm based on finding local heaviest edges. Their algorithm operates in phases,
where local matching operations is followed by communication for vertices that have
neighbours owned by other processes, leading to a BSP style algorithm. The algorithm
is shown to give good speedup using up to 32 processors for both sparse and complete
graphs.

Maximal cardinality matching

The idea of comparing vertex and edge partitioning for graph algorithms is a novel one,
with the first work of Patwary et al. [6] published in 2010 for the maximal matching
problem for sparse graphs. The idea was inspired by the field of sparse matrix-vector
multiplication; a symmetric n×n matrix A, where all entries on the diagonal are zero,
may be viewed as an undirected graph with |V | = n vertices, where there is an edge
between vertices i and j if A[i][j] 6= 0.

A vertex partitioning thus corresponds to a partitioning of rows or columns in
matrix terms, whereas an edge partitioning corresponds to a partitioning of non-
zero elements. By establishing that the communication volume for an edge partition
based Karp-Sipser matching algorithm is proportional to that of sparse matrix-vector
multiplication, Patwary et al. indicated that partitioners developed for that purpose,
such as Mondriaan [7], may be used.

They tested their findings in an experiment where a one-dimensional partitioning
was simulated by constraining the matrix partitioner to assigning all nonzero elements
up to the diagonal in a given row to the same processor. Their experiments indicated
that a two-dimensional partitioning would yield better results both in terms of speedup
and matching quality, when compared to a one-dimensional partitioning. While that
was indeed the case for their experiments, an edge partitioning requires a more complex
data structure and message handling than a vertex partitioning.

In Chapter 6 and Chapter 7 their hypothesis will be tested further by implementing
a purely vertex based and a purely edge based algorithm, respectively.

25

Chapter 6

Karp-Sipser using vertex
partitioning

This chapter presents a parallel version of the Karp-Sipser algorithm where the graph
is partitioned by assigning each process a set of vertices; the task of determining these
sets is performed by dedicated graph partitioning software, as was explained in Section
4.4.

An overview of the algorithm, as well as terminology and definitions, is given in
the following section. In Section 6.2, the algorithm is explained in detail, before an
analysis is presented in Section 6.3, and the data structures explained in Section 6.4.
Experimental results are given in Chapter 8.

6.1 Overview

6.1.1 Terminology
In the parallel version of the Karp-Sipser algorithm, vertices are divided into three
sets, that may overlap: singletons, as seen in the sequential algorithm, are vertices
of degree one; vertices that have at least one adjacent vertex owned by the current
process; and vertices of nonzero degree. Furthermore, an edge is said to be shared if
its endpoints belong to different processes, and local otherwise.

Given a vertex u, the process owning u will be denoted as pu.

6.1.2 The algorithm at a glance
The master process, hereafter referred to as p0, takes care of reading an input graph,
partitioning it and thereafter the distribution of data to the other processes. Once a
process has received the data, it proceeds to set up an internal representation of its
part of the graph; the data structures are further explained in Section 6.4.

Each superstep of the algorithm has three phases: message processing, queue pro-
cessing and examination of the local graph. Message processing handles the informa-
tion sent by other processes in the previous superstep, queue processing takes care of
removing or reactivating vertices involved in matching operations with another pro-
cess, and examination of the local graph performs local matching operations and sends
requests to other processes.

For the examination of the local graph, each process attempts to perform a number
of matching operations per round; this number is denoted byMPR. Preference is given
to singleton vertices; if none are available, random edges for which the process owns

26

both endpoints are matched. If the number of singleton and local matching operations
in a given round is less than MPR, the process picks a vertex it owns and sends a
matching request to a random neighbour.

Thus the only case where a process does not perform MPR matching operations
in a given round, is if it has less than MPR unmatched vertices available. The value
for MPR is a question of load balance and matching quality: a lower value will mean
that the processes synchronize more often, which may reduce the time any process
stays idle waiting for the other processes to call bsp_sync(), and the more frequent
communication will mean that fewer random matching requests are performed before it
is discovered that a vertex is a singleton, thus improving the quality of the solution. On
the other hand, more frequent synchronization results in a higher accumulated startup
cost, as each bsp_sync() operation requires synchronization messages and incures a
latency, and if each process has an even amount of work, frequent synchronization will
not improve load balancing.

If a process pu encounters a shared edge e = (u, v) during examination of the local
graph, it sends a matching request to pv. At this point, u is temporarily removed from
the graph, and u is added to the queue pending an answer from pv. As was explained
in Section 4.2.1, it takes two supersteps before pu receives an answer, if any. During
the queue processing stage in round i, a process examines the vertices queued in round
i − 2. It checks whether each queued vertex u has been permanently removed from
the graph or whether it should be added back into the local graph for future matching
operations.

At the end of a computation step, each process checks whether it has performed
any work in that step. If no messages were received, no vertices were queued and
no local matching operations were performed, a message of no activity is sent to the
master process. This information allows the master process to determine when the
algorithm may be terminated; at that point, it notifies all other process that their
(partial) results should be sent to the master process and execution halted. Each
process continues execution until the result is requested by the master process, as a
call to bsp_sync() is required from each process until a superstep can be completed.

An overview of the algorithm is given in Algorithm 4. The following section ex-
plains the algorithm in more detail, with a dedicated section for each of its phases.

6.2 The vertex partitioned algorithm
In this section, the different phases of the parallel algorithm are presented in detail;
for an overview, refer to the preceding section. The layout is as follows: Section 6.2.1
describes how the vertex queue is handled and how vertices are temporarily removed
from the graph when part of the queue; Section 6.2.2 gives details as to how the local
matching operations are performed; while Section 6.2.3 details which messages are
sent between processes, and how they are handled.

6.2.1 Queue processing
If a process pv wants to use a shared edge (u, v) for matching, it sends a matching
request to pu. At this point, v is temporarily removed from the graph, pending an
answer; this is done by removing it from the vertex sets that vertices are drawn
from when performing matching operations. However, a reply is only sent if the
matching request succeeds or if u is temporarily unavailable due to being part in
another matching request. If no reply is received, it therefore means that the request
has failed because u is part of the matching already.

However, v may have several incident edges, and in that case it has to be added
back into the graph to be available for future matching operations. A matching request

27

Algorithm 4 Overview of parallel Karp-Sipser algorithm with vertex partition-
ing

procedure Parallel Karp-Sipser with vertex partitioning(Graph
G)

Mlocal := ∅
while termination not requested by master do

for i := 1→ |messages| do
handle message
if message[i].type == master requests result then

send Mlocal to master and terminate
end if
if message[i].type == match ok then

add edge to Mlocal

end if
end for
handle queue
for i := 1→MPR do

if All locally owned vertices are exhausted then
break

end if
Pick an edge e from local graph
if e is local then

Mlocal := Mlocal ∪ {e}
end if
if e is shared then

Send match request and add our endpoint to queue
end if

end for
if no activity then

notify master
end if
if master notified of no activity from all processes then

master process requests result
end if
bsp_sync()

end while
end procedure

28

sent by pv in round i is processed by the receiver in round i+1, and the reply (if any)
is processed by pv in round i+ 2. This is handled by having two queues, as shown in
Figure 6.1.

Process vertices

 in queue

Examination of

 local graph

(add vertices

 to queue)

 in queue

Process vertices

Examination of

 local graph

 to queue)

Process vertices

 in queue

Examination of

 local graph

(add vertices

 to queue)

(add vertices

Queue 1

Queue 2

Superstep i Superstep i + 1 Superstep i + 2

Time

Figure 6.1: Handling of queued vertices. The vertices in Queue 1 are read in
superstep i; afterward Queue 1 is overwritten by new queued vertices. Queue
2 is used for reading and writing in superstep i + 1; the vertices queued in
superstep i are read from Queue 1 in step i+ 2.

Thus when pv processes a queue entry for an edge (u, v) where no reply has been
received for two rounds, there are two options: 1) v is a singleton, i.e. u was the only
possible match, so v may be permanently removed from the graph; 2) v has degree >
1, so u may be removed from its adjacency list and v added back into the graph.

The vertex is added back into the graph by including it in the relevant vertex
sets: vertices of degree 1 are added to the set of singletons, and vertices of degree >
0 are added to the set of vertices with nonzero degree. Note that a vertex with local
neighbours will never be queued.

6.2.2 Examination of the local graph
In each superstep, every process tries to perform at least MPR matching operations,
either by directly matching local edges or by sending matching requests. As in the
sequential algorithm, preference is given to matching singletons, regardless of whether
the corresponding edge is local or shared. If the corresponding edge is local, the edge
is added to the matching and the vertices are permanently removed from the graph.
If it is shared, a matching request is sent to the other process, and the locally owned
vertex is temporarily removed from the graph and added to the queue, pending an
answer, as was described in Section 6.2.1.

If all singleton vertices are exhausted, random matching is performed on vertices
with local neighbours, which may be added into the local matching immediately. Both

29

endpoints are then permanently removed from the graph, along with any edges inci-
dent on the endpoints; note that this may lead to new singleton vertices. If neither
singletons nor local edges are available, random matching is performed using the set
of vertices with nonzero degree. The procedure is summarized in Algorithm 5.

Algorithm 5 Examination of local graph
procedure local matching(Graph G, Queue Q)

matched := 0
Q := ∅
while matched < MPR do

if |singletons| > 0 then
Pick a random singleton vertex u with neighbour v
if v is owned by the current process then

Mlocal := Mlocal ∪ {(u, v)}
Permanently remove u and v from G, and all incident edges

end if
if v is owned by another process then

Temporarily remove u from graph, add u to Q
Send a singleton match request to pv

end if
matched := matched +1
continue

end if
if |vertices with local neighbours| > 0 then

Pick a random vertex u with locally owned neighbour v
Mlocal := Mlocal ∪ {(u, v)}
Permanently remove u and v from G
matched := matched +1
continue

end if
if |vertices of nonzero degree| > 0 then

Pick a random vertex u of nonzero degree with neighbour v
Temporarily remove u from G, add u to Q
Send a singleton match request to pv
matched := matched +1
continue

end if
break

end while
end procedure

In addition to testing different values for MPR, two strategies for examination of
the local graph are tested, and the results presented in Chapter 8; in Algorithm 5,
only Strategy 1 is presented. The two strategies are as follows:

Strategy 1: Perform MPR matches per round

In this strategy, exactly MPR matching operations are performed, unless the number
of vertices available for matching by the current process is less than MPR. Priority is
given to performing matching operations on singleton vertices; let the number of such
operations be denoted by SM . If there are not enough singleton vertices available, i.e.

30

SM < MPR, matching is perform on vertices with at least one local neighbour; let the
number of such operations be denoted by LM . If neither singletons nor verices with
local neighbours are available, i.e. SM +LM < MPR, random matching requests are
performed until the number of matching operations in the computation step equals
MPR, or no vertices are available.

Strategy 2: Perform as much local work as possible, but at least MPR
operations

In this strategy, each process tries to perform as much local work as possible. Prefer-
ence is given to matching singletons, regardless of whether their adjacent vertices are
owned by the current process or not. The number of singleton matching operations
is not limited by MPR; singleton matching operations are performed until the set of
available singletons is empty. When the set of singletons has been exhausted, vertices
with local neighbours are matched. Each process performs as many local matches as
possible; this may generate new singleton vertices, which are also matched. If, when
the sets of singletons and vertices with local neighbours are both empty, the number
of matching operations performed is less than MPR, random matching operations are
performed until the number of matching operations equals MPR, or no vertices are
available.

The hypothesis is that by increasing the value of MPR, or by using strategy 2,
more work is done in each round, and consequently the number of rounds should be
reduced, leading to fewer bsp_sync() operations being performed. On the other hand,
this less frequent synchronization is of less importance if several processes run out
of work waiting for replies to matching requests. In addition, fewer synchronizations
should imply that singleton vertices are discovered less frequently, and as such the
matching quality may be reduced.

6.2.3 Message processing
Since the graph is partitioned by assigning sets of vertices to different processes, the
endpoints of an edge might have different owners. If a process, say pi, encounters
such an edge, it has to communicate with the owner of the other endpoint, say pj ,
to ensure that it has not already been matched, or whether it is busy, because pj
has already sent a request to match it with another vertex. A message includes the
ID of the sending process, a message ID, vertex IDs (denoted by u and v), the size
of the message and, for M_RESULT, any additional data. Some of the message
parameters may be redundant; if a process pu receives a request to match u with v,
the ID of the sender can be obtained by querying the local graph for the owner of v,
instead of reading the message parameter. However, having a set of standard message
parameters simplifies the debugging of the implementation, and, more importantly,
allows for the graph framework that was developed to be used for implementing other
algorithms.

In total there are nine message types (message information in parentheses):

M_MATCH_SINGLETON (u,v) - The sender, pv wishes to match the single-
ton vertex v with u. If u is already part of an unresolved matching request, pu sends
an M_MATCH_BUSY message; as a special case, if pu has already sent a request
to pv to match u with v, M_MATCH_OK is sent. Otherwise, u has already been
matched to some other vertex, and no reply is sent.

M_MATCH(u,v) - The sender, pv wishes to match u with v. The message
handling is the same as for M_MATCH_SINGLETON.

31

M_MATCH_OK(u,v) - Sent by pu to inform pv that the request to match u
with v succeeded. The edge (u, v) is then added to the local matching, and u and v
are permanently removed from the graph.

M_MATCH_BUSY(u, v) - The request to match u with v failed because pu
has already sent a request to match u with another vertex, and has not received a
reply yet. Upon receiving this message, pv removes v from the queue and adds v back
into the graph.

M_NO_ACTIVITY - Sent to the master process, this message indicates that
the sender did not have any work to do during the previous communication step.

M_REQUEST_RESULT - Sent by the master process if it received messages
of no activity from all processes for two consecutive rounds, and is itself idle. Upon
receiving this message, a process sends its results to the master process and ends
execution after the next bsp_sync().

M_RESULT(sender, resultSize, data) - Sends matching result as pairs of inte-
gers.

M_REMOVE_VERTEX(u, v) - Sent by pu to pv to inform that u has been
removed from the graph, and as such should be removed from v’s adjacency list. This
allows for the detection of singleton vertices at an early stage. If pv owns several
vertices adjacent to u, it will receive one message for each of its adjacent vertices.
Alternatively, this could have been handled by letting the owner of u maintain a set
nonOwners(u) containing the process IDs of all processes owning vertices adjacent
to u. This would in turn require each process to maintain an edge list for its ghost
vertices, and notifing the owner of a ghost vertex when its local count is reduced to
zero. This is the approach taken for the edge partitioned algorithm, and is discussed
further in Chapter 7.

6.3 Analysis
The choice of BSP as the computation model allows for a more accurate analysis of
the parallel algorithm’s running time; it will depend on the sequential work performed
in a computation step for of the process with the most work, the number and cost
of bsp_sync() operations performed, which in turn depends on the communication
volume, the latency incurred for a sync operation, and the number of rounds.

To simplify the analysis, only three aspects will be considered: the communication
volume, the number of bsp_sync() operations, i.e. the number of supersteps before
the algorithm is terminated, and the local work performed by a given process. The
communication volume is examined in Section 6.3.1, the number of supersteps in 6.3.2,
and the sequential workload in Section ??.

6.3.1 Communication volume
Let each message sent be of unit length, such that the communication volume is
expressed in terms of the number of messages sent. Now consider a vertex with ID i
that is owned by pi. From Algorithm 5, observe that there are three cases, which will
be examined in turn.

1) i is a singleton vertex, thus j is the only available match for i. If pi = pj , the
edge is matched locally and no communication occurs. Otherwise, a matching request
is sent to pj . If the matching request fails, no message is sent, and no further matching
attempts for i are carried out. If the request succeeds, pj sends a confirmation message
to pi. The upper bound for singletons is then t = 2 messages.

2) i is a vertex with at least one locally owned incident edge. In this case, all
matching operations are done locally. pi still needs to send messages to any processes
owning edges incident on i to inform them that i has been removed. Assuming that

32

the other d(i) − 1 adjacent vertices are owned by other processes, this gives a bound
of t = d(i)− 1.

3) i is a vertex whose d(i) neighbours are all owned by other processes. The worst
case is observed when the first d(i) − 1 matching requests fail, resulting in d(i) − 1
messages being sent. The final request will add one message if it fails, and two if it
succeeds, giving a total volume of t = d(i) + 1. d(i) is bounded by |V |, but since the
algorithm is intended for sparse graphs, it may be assumed that d(i) � |V |. Letting
f(i) denote the number of failed matching requests for vertex i, the communication
volume may be expressed as t = f(i)+ s(i), where s(i) = 2 if vertex i is matched, and
zero otherwise.

Let s denote the number of singleton vertices, and l the number of vertices with
local edges. Then the bound for the volume, V ol, is obtained as follows:

V ol ≤
s∑

i=1

[f(i) + s(i)] +

|V |−l−s∑
i=s+1

[f(i) + s(i)] +

l∑
i=1

[d(i)− 1]

≤
s∑

i=1

2 +

|V |−l−s∑
i=s+1

[d(i) + 1] +

l∑
i=1

[d(i)− 1]

As s and l are not known, the upper bound is expressed in terms of |V | only:

V ol ≤
|V |∑
i=1

[d(i) + 1] (6.1)

In order to examine how ’good’ the communication bound is, it may be compared to
the oft-studied problem of sparse matrix vector multiplication, whose communication
volume is given by

V olspmv = 2

|V |∑
i=1

[d(i)− 1] (6.2)

V olspmv = 2(

|V |∑
i=1

[d(i) + 1]−
|V |∑
i=1

2) (6.3)

1

2
V olspmv +

|V |∑
i=1

2 =

|V |∑
i=1

[d(i) + 1] (6.4)

(6.5)

Noticing that the right-hand side now equals the upper bound for the communi-
cation volume of the matching algorithm, the following relation is obtained:

V ol ≤ 1

2
V olspmv +

|V |∑
i=1

2 (6.6)

6.3.2 Number of supersteps
Let |Vi| denote the number of vertices assigned to process i and li the number of
vertices with local neighbours assigned to i. It is sufficient to consider the work on a
single process, assuming it has the highest workload, as the algorithm cannot terminate
before all processes have exhausted their locally-owned vertices.

33

Assuming that all matching requests succeed, one would expect the algorithm
to terminate after |Vi|/MPR supersteps, if strategy 1 from Section 6.2.2 is used.
However, as MPR increases, the chance of a vertex being part of an ongoing matching
request increases as well, thus reducing the chance that a random matching request
will succeed. Let Ematch(MPR) be the expected number of matching requests that
has to be sent before a match is successful; as MPR increases, so does Ematch. Using
the number of local edges, li, the expected number of supersteps of the algorithm using
strategy 1 may be described as.

|Supsersteps(1)| = li + (|Vi| − li)Ematch(MPR)

MPR
(6.7)

Using strategy 2, all local edges are matched in the first superstep, thus li
MPR

may
be replaced with 1, giving the expected number of supersteps as

|Supersteps(2)| = (|Vi| − li)E(MPR)

MPR
+ 1 (6.8)

6.3.3 Sequential work
The sequential work in a computation work consists of three elements: message pro-
cessing, queue processing and examination of the local graph. First consider the
message processing: a maximum of MPR × p matching requests may be sent in a
given superstep; on average a process should expect to receive at most MPR match-
ing requests. If a process pu receives a matching request for the vertex u, it first has to
check whether u is part of an ongoing matching request; this may be done in constant
time, as is described in Section 6.4. If u is available, it is removed from the graph;
the cost of removing a vertex is O(davg), where davg is the average vertex degree, as
described in Section 3.2.1.

Examining the vertex queue is done by iterating over the queued elements, of
which there may be at most MPR, unless matching strategy 2 from Section 6.2.2 is
used, and the number of singleton vertices is significant; assume that it is not. Finally,
examination of the local graph is similar to that of the sequential algorithm (Section
3.2.1), taking at most O(davg) time for each matching operations, of which MPR are
performed.

This gives the cost of a computation step as O(MPR× davg).

6.4 Data structures

6.4.1 Graph representation
Vertex IDs

Let Vi be the set of vertices assigned to process i, and ni = |Vi|. For the vertex-
partitioned graph, each process needs to store information that allows it to commu-
nicate with the owners of vertices adjacent to those in Vi. When referencing vertices
internally, each process will use a local ID, in the range 0 through ni−1, while a global
ID in the range 0 through |V | − 1 is used when communicating with other processes.

For converting IDs, each process has an array localIdToGlobalID of size ni, and
globalIDToLocalID of size |V |. The owner of each vertex is stored in an array owners,
of size |V |. With a total of p processes, this requires O(|V |p) space. An alternative is
for communication to be done using local vertex IDs, and storing the local ID (for the
owner process) of ghost vertices.

34

Shared and local edges

The storage of edges is akin to that of the sequential graph, as described in Section
3.2.2, however the edges are grouped as local, where the process owns both endpoints,
and global. The distinction is made for two reasons; mainly, it allows for the selection
of a random locally-owned edge in O(1) time.

Furthermore, grouping edges as local or global simplifies the implementation: global
edges may be temporarily removed from the graph, pending an answer for a matching
requests, whereas local edges are only removed if they are included as part of the
matching.

The data structure does not keep track of the local degree of vertices that are not
owned by the current process. Thus, if a process owns two vertices with IDs i and j
that are both adjacent to a third vertex k owned by some other process, pk has to sent
two M_REMOVE_VERTEX messages if k is removed from the graph. This leads
to extra communication, but it frees pk of maintaining a set of the processes owning
vertices adjacent to k, and pi from maintaining a local edge list for k.

6.4.2 Vertex sets and states
The implementation uses three vertex sets, as described in Section 3.2.2: singletons
is the set of vertices of degree 1; locals is the set of vertices that have at least one
locally owned neighbour, and is used when there are no singleton vertices left in a
computation step; nonzeros is the set of all vertices of nonzero degree, and is used
when neither singletons nor locally-owned edges are available.

When a vertex is temporarily removed from the graph, pending a matching request
to another process, the vertex is removed from all three vertex sets, so that it is not
selected when the graph is queried for a random vertex. As a vertex is only temporarily
removed from the graph if it is either a singleton with a global neighbour or a vertex
with only global neighbours, it may be added back into the graph, and to the set of
singleton or nonzero vertices, by using its global edge count.

When permanently removing a vertex, its owner ID is set to −1, and it is referred
to as purged.

6.4.3 Vertex queue
In order to add temporarily removed vertices back into the grpah, and to check whether
a vertex is part of an ongoing matching request or not, the implementation uses a
vertex queue that supports the following operations:

1) To determine whether a given vertex is part of the queue, in constant time.
2) To add or remove a vertex from the queue in constant time.
3) To iterate over all the vertices in the queue in time O(|Q|), where |Q| denotes

the number of queued vertices.
4) If a given vertex is queued, perform a query to determine which vertex the

corresponding matching request is for. Thus if two processes try to match the same
vertex pair, the request can be accepted instead of sending an M_MATCH_BUSY
message.

Operations 1, 2, and 3 are supported using a data structure analogous to the
vertex set that was described in Section 3.2.2. Thus one array, L is used for looking
up a vertex ID, while another array, Q, stores the queued vertices consecutively. The
vertices in Q are stored as pairs of integers (i, j), where i is the local ID of the queued
vertex owned by the current process, pi, and j is the global ID of the vertex that pi
wants to match i with.

35

As was explained in Section 6.2.1, it is necessary to maintain two queues: the data
structure therefore consists of three arrays: Q1, Q2, and L. Note that there is no need
for two L arrays, as a vertex cannot be part of more than one matching request.

36

Chapter 7

Karp-Sipser using edge
partitioning

This chapter details the Karp-Sipser algorithm parallelized with an edge partitioning
approach. As was explained in Section 4.3, an algorithm based on edge partitioning
is more complex than its vertex-partitioned counterpart, as multiple processors may
own edges incident on the same vertex.

Section 7.1 gives an overview of the algorithm, while Section 7.2 describes its
various parts in further detail. An analysis of the algorithm is given in Section 7.3.
Section 7.4 describes the data structures used for handling the partitioned graph.

7.1 Overview
The algorithm works in three phases: each superstep consists of handling incoming
messages, examining queued matching requests and examination of the local graph.
Although these are essentially the same steps as for the algorithm described in Chapter
6, the message handling and queue processing is more involved, as several processors
will need to share information about a single vertex. An overview of the algorithm is
given in Algorithm 6.

As was explained in Section 4.3, the owner of a vertex may not be aware of all its
adjacent vertices. In order for a vertex owner to determine at the earliest possible stage
that a vertex has become a singleton, it will instead maintain a set of the processes
that own edges incident on a vertex it owns, called ghost processes, and whether they
own zero, one or many such edges.

Once the local edge count for a non-owned vertex v becomes one, a process thus
sends an local singleton message to the owner of the vertex, pv; when the local count
becomes zero, an unsubscribe message is sent, and pv removes the sender from its list
of processes owning edges incident on v. If pv detects that v has become a singleton
vertex, and pv does not own the only remaining edge, a global singleton message is
sent to the owner of the remaining edge, pu. Upon receiving the message, pu matches
v with its only remaining neighbour, u, if it has not been matched already.

7.2 The edge partitioned algorithm
As with the vertex-partitioned algorithm, it is divided into three phases: message
processing, queue processing and local matching operations. As such, only the new
elements are discussed in this section.

37

Algorithm 6 Overview of parallel Karp-Sipser algorithm with vertex partition-
ing

procedure Parallel Karp-Sipser with edge partitioning(Graph G)
Current process: pu
Mlocal := ∅
while termination not requested by master do

for i := 1→ |messages| do
handle message
if messages[i].type == master requests result then

send Mlocal to master and terminate
end if
if messages[i].type == match ok then

add edge to Mlocal

end if
if messages[i].type == local singleton u then

Check if u is a global singleton, notify sender if it is
end if
if messages[i].type == unsubscribe from u then

Check if u is a global singleton, hand over if necessary
end if

end for
handle queue
for i := 1→MPR do

if All locally owned vertices are exhausted then
break

end if
Pick an edge e = (u, v) from the local graph
if pv = pu then

Mlocal := Mlocal ∪ {e}
end if
if pv 6= pu then

Send a matching request to pv, remove u from local graph
Add u to queue

end if
end for
if no activity then

notify master
end if
if master notified by all processes of no activity then

master process requests result
end if
bsp_sync()

end while
end procedure

38

7.2.1 Vertex ownership
With several processes possibly owning edges incident on the same vertex, a mechanism
of vertex ownership is employed for communication. Vertices are referred to as pure or
shared, and shared vertices are further classified as owned or ghost vertices. A ghost
vertex, as described in Section 4.3, is a vertex for which the current process owns one
or more incident edges, but does not own the vertex:

1) pure Pure vertices are vertices for which only one process owns incident edges.
As such, the owner may remove them from the graph without any communication
taking place.

2) owned If several processes own edges incident on the same vertex, the processor
owning the most such edges is designated as the owner. If no single process owns
the most incident edges, ownership is assigned to the processor with the lowest ID.
The owner of a vertex v records the process ID(s) of all processes having v as a ghost
vertex, and keeps track of whether their local edge count for v is nil, one or many.
These processes are refered to as ghost processes.

3) ghost The vertices for which a process owns incident edges, but it is not the
owner. For ghost vertices, a process records the owner’s process ID and notifies the
owner when the local edge count is one or nil, so that it may be detected at the earliest
point whether or not a vertex is a singleton.

7.2.2 Singleton vertices
For a pure vertex, determining whether it is singleton is trivial. For a shared vertex,
the owner needs to know about the local edge counts on the ghost processes. A shared
vertex is a singleton vertex if: 1) the number of ghost processes is zero and the local
edge count is one; 2) or the number of ghost processes is one and the ghost process’
local edge count for that vertex is one.

If a process pu detects that u has become a singleton vertex, and its local edge
count for u is zero, it sends a global singleton message to the last remaining process
owning an edge incident on u, pv. Upon receiving the message, pv adds u to its set of
singleton vertices. If v is not involved in an ongoing matching operation, pv matches
u with v the next time it examines its local graph.

7.2.3 Message types
The messages may be divided into two parts: the ones sent by the main algorithm, and
those generated by the graph framework in order to maintain a synchronized graph
state, such as detecting global singleton vertices. Message parameters are shown in
parentheses:

Algorithm messages

EPM_IDLE (sender) Sent to the master process, indicating that sender did not
perform any work in the previous superstep.

EPM_MATCH (u, v) Sent by pv to pu, requesting that u and v should be
matched. A reply of EPM_MATCH_OK is sent if the matching succeeds. If u
is involved in another matching request, EPM_MATCH_BUSY is sent, unless the
pending request is to match u with v; if no reply is sent, the matching failed because
u is already part of the matching.

EPM_MATCH_BUSY (u, v) Indicates that v was not available for matching
with u because it was involved in another matching operation.

EPM_MATCH_NONOWNED (u) Sent by pu to a random ghost process
owning edges incident on u, requesting that u be matched with any adjacent vertex.

39

Sent if pu ran out of edges incident on u. If the receiver does not own any vertex
adjacent to u, the message is forwarded. An example where this message is needed is
discussed in Section 7.2.4.

EPM_MATCH_FORWARDED (u, v, pv) If a process p(u,v) owning the edge
(u, v) receives an EPM_MATCH_NONOWNED message from pv for the vertex u,
but p(u,v) does not own the vertex u, it forwards the request to pu. As pu might not
know about the vertex v and its owner, the information is sent along with the matching
request. Upon receiving an EPM_MATCH_FORWARDED message, pu handles it
similarly to an EPM_MATCH message. An example where this message is needed is
discussed in Section 7.2.4.

EPM_MATCH_OK (u, v) Indicates that v was available for matching, and
that u and v are now matched and should be removed from the graph.

EPM_REQUEST_RESULT Sent by the master process to indicate that all
processes should send their result and terminate execution in the following superstep.

EPM_RESULT (sender, size, matching) The (partial) matching sent to the
master process.

Framework messages

EPM_GLOBAL_SINGLETON (u) Sent by pu to the last process owning
edges incident on u, i.e. if pu’s edge count for u is zero, the ghost process count is one,
and an EPM_LOCAL_SINGLETON message has been received from the last ghost
process. The receiving process immediately matches u with its only adjacent vertex,
v; if v is part of an ongoing matching request, u is added to the vertex queue and
matched if v becomes available; if not, u is permanently removed from the graph.

EPM_LOCAL_SINGLETON (sender, u) Sent to pu, indicating that sender ’s
local edge count for u has been reduced to one.

EPM_REMOVE_VERTEX (u) Sent by pu to all processes owning edges in-
cident on u to notify them that u has been permanently removed from the graph.

EPM_UNSUBSCRIBE (sender, u) Notifies pu that sender no longer owns any
edges incident on u. Upon receiving the message, pu removes sender from the list of
ghost processes for u.

7.2.4 A special case
This section describes a special case where the need for the EPM_MATCH_NONOWNED
and EPM_MATCH_FORWARDED messages is demonstrated.

Consider the graph shown in Figure 7.1. As neither u, v, nor x is a singleton,
and neither pu, pv, nor px owns any edges incident on these vertices, a message of
EPM_MATCH_NONOWNED is sent to a process owning incident edges, in
this case either pblue or pred. A message of EPM_MATCH_FORWARDED is
then sent to a vertex owner, which in turns sends a reply to the process originally
sending the EPM_MATCH_NONOWNED message.

Given that the graph is sufficiently large compared to the number of processes, the
need for EPM_MATCH_NONOWNED and EPM_MATCH_ FORWARDED
messages should be limited. As such, a process only sends an EPM_MATCH_
NONOWNED message if it was not able to perform any matching operations in a
given step, in order to avoid the extra message volume incurred when an intermediary
process has to forward the matching request.

When sending an EPM_MATCH_NONOWNED message, a process may
not receive a reply for four supersteps, while the normal queue data structure only
allows vertices to be queued for two rounds. This is solved by having a second queue,
delayQueue. It stores pairs of integers, as for the queue described in Section 6.4: the
first integer, used for indexing, is the local ID of the queued vertex, while the second

40

u v

x

Figure 7.1: A graph consisting of a single cycle (u, v)(v, x)(x, u), where the
edges (u, x)(v, x) are owned by pblue, the edge (u, v) by pred, vertices v and x
are owned by pmagenta and u is owned by pgreen, demonstrating the need for an
EPM_MATCH_NONOWNED message.

integer is the number of the round in which the vertex should be added back into the
local graph.

7.3 Analysis
The analysis of the edge partitioned algorithm consists of the same factors as that of the
vertex partitioned algorithm, described in Section 6.3: the sequential work performed
in a computation step, the communication volume and the number of supersteps. The
expression for the number of supersteps is the same as for the vertex partitioned algo-
rithm; however, as described in Section 4.3, the vertex partitioned algorithm should
allow for a more even load balancing, which should decrease the number of supersteps.

7.3.1 Communication volume
An analysis of the communication volume for edge partitioned parallel matching was
performed by Patwary et al. [6] for their implementation, where they obtained an
upper bound for the communication volume, V ol, in terms of the communication
volume for sparse matrix-vector multiplication:

V ol ≤ 3

2
V olSpMV (7.1)

The algorithm presented in this thesis differs in the communication volume in two
ways:

1) When a process pu accepts a matching request from pv to match v with u, pu
will send an EPM_REMOVE_VERTEX message for u to pv in addition to a
message signalling that the match succeeded.

2) When a process pu accepts a matching request from pv to match v with u, pu
will send an EPM_UNSUBSCRIBE message for v to pv in addition to a message
signalling that the match succeeded.

This extra communication volume is redundant; however, it is the intention that
the graph framework that was developed should be suitable for implementing other
parallel algorithm, and adding special handling for matching operations would entail
a loss of generality. It should be noted that in both cases described above, the extra
messages are sent in the same round as their non-redundant counterparts. Assuming
that the cost of a bsp_sync() operation is significant compared to the cost of sending

41

a single message, the extra message volume should not impair the running time of the
algorithm to a significant extent.

Given that a maximum matching has size at most |V |/2, at most |V |/2 redundant
messages are sent by a vertex owner to a ghost process when accepting a matching
request, and at most |V |/2 redundant messages are sent by a ghost process to a vertex
owner when accepting a matching request. This gives the following communication
bound:

V ol ≤ 3

2
V olSpMV + |V | (7.2)

7.3.2 Sequential work
The work performed in a computation step is greater for the edge partitioned algorithm
than the vertex partitioned one, mainly for two reasons:

1) Each process maintains an adjacency list for its ghost vertices. Thus when a
process pu removes a vertex u that it owns from the graph, adjacent to a ghost vertex
v owned by pv, pu needs to check whether its local edge count for v has been reduced
to one or zero, and notify pv accordingly.

2) The graph representation does not distinguish between local and shared edges;
thus when a process pu wants to match a vertex u with a random neighbour that it
owns, it needs to iterate over u’s adjacency list, costing O(davg) time instead of O(1)
as for the vertex partitioned algorithm. This is discussed further in Section 7.4.

7.4 Data structures

7.4.1 Graph representation
The data structures for the edge partitioned graph is based on the EP_Graph frame-
work developed by Martin Tofteberg [29] under the supervision of Prof. Dr. Fredrik
Manne. As a work in progress, the data structures had to be modified in order to
support the following operations:

1) Removing edges and vertices.
2) Changing vertex ownership, limited to the special case of changing the owner

of a singleton vertex and permanently removing a vertex.
3) Removing ghost processes.

In the original format, the edges were stored using two arrays: one for the storing
the edge endpoints, of size 2mi, where mi = |Ei| is the number of edges assigned to
process i, and another array of size ni + 1, where ni = |Vi|. To accommodate 1), a
new array, currentDegree, of size ni was introduced to store the current degree of each
vertex, as for the sequential Karp-Sipser implementation described in Section 3.2.2.

To accommodate 2), an array newOwnerPid, of size equal to the number of pure
+ owned vertices, was added.

For accommodating 3), the list of ghost processes was modified by adding a new
array for storing the current ghost process count, analogous to the changes made for
accommodating 1).

7.4.2 Vertex sets
The algorithm uses five vertex sets: the sets of singletons, vertices with local neighbours
and vertices with nonzero local degree are used in a similar manner to the vertex

42

partitioned algorithm. The fourth set is a set of active vertices, i.e. the vertices
that have not been queued due to them being part of an ongoing matching request.
The final set is the set of non-purged vertices; the set of vertices that have not been
permanently removed from the graph.

This set is used in order to send EPM_MATCH_NONOWNED messages; these
are sent when a process was not able to perform any local matching operations in a
given round, for vertices that have local degree 0 but that are not global singletons.

43

Chapter 8

Experimental results

This chapter presents the experimental results of both parallel algorithms, as well as
results of the sequential Karp-Sipser algorithm for comparison. Section 8.1 gives a
description of the setup that was used to perform the experiments, while Section 8.2
gives an overview of the graphs that the algorithms were tested on. The experimental
results follow: Section 8.3 presents results for the sequential algorithm, that are used
when calculating the speedup of the parallel implementations; results from the vertex
partitioned algorithm are given in Section 8.4; while results from the parallel algorithm
with edge partitioning are given in Section 8.5.

8.1 Experimental setup
All three algorithm were implemented in C++ and compiled with the GNU GCC
compiler version 4.8.0 using the -O2 optimization option. For the parallel versions,
communication was provided by the BSPOnMPI library version 0.3, with the addition
of thread safety and global memory extensions by Peter Krusche, as available from the
BSPOnMPI SourceForge page [4]. BSPOnMPI was linked and run with the OpenMPI
library, version 1.6.1.

The tests were executed on a system with 40 Intel Xeon E7 4850 cores with a clock
frequency of 2.0 GHz, running 64 bit Linux (CentOS, kernel version 2.6.32) with 126
GB of total memory.

For the vertex partitioned algorithm, the input graphs were partitioned using the
METIS partitioning software [2]. The SCOTCH graph partitioner [3] was tested in
early experiments; however, the resulting differences in matching quality and running
time were not found to be sufficient to merit a separate set of test runs. For the edge
partitioned algorithm, the Mondriaan matrix partitioner [7] was utilized.

In the following tables, the number of matches performed in each round is desig-
nated by MPR. Negative values, such as an MPR of −500, indicates that the strategy
of performing as many local matches as possible (described in Section 6.2.2) was used.

For each set of test parameters the algorithm was run twice, using the same random
seed, and the run with the lowest execution time was used. This was done to alleviate
the effects of sudden load changes that may have occurred due to system services and
other background jobs running.

To compute the matching quality, a maximum matching for each graph was com-
puted using the LEMON C++ library [37].

44

8.2 Data set
The data set (Table 8.1) was chosen to represent a diverse set of applications. nether-
lands_osm, from the DIMACS10 implementation challenge, is a graph representation
of a street network, and as such has a very low average vertex degree. audikw_1 is a
structural problem with a larger number of edges per vertex. as-Skitter is an Internet
topology graph from Stanford Network Analysis Platform (SNAP), generated by run-
ning traceroute. These data sets were obtained from the University Florida Matrix
Collection [32]

The data set also includes a random graph, previously generated by Fredrik Manne
usin the GTGraph package [38]. Although the graph was symmetric, it was stored in
a directed graph format, and was converted for the purpose of these experiments by
discarding any edges with vertex IDs (i, j) where i < j.

Graph Group |V | |E| Avg. degree |Mmaximum|
netherlands_osm DIMACS10 2,216,688 2,441,238 2.20 1,090,219
audikw_1 GHS_psdef 943,695 39,297,771 83.28 471,847
as-Skitter SNAP 1,696,415 11,095,298 13.08 513,304
random21_16 Random 2 097 152 16 776 643 16.00 1,048,575

Table 8.1: The graphs used for performing the experiments. |Mmaximum| is the
size of the maximum matching for the graphs, as calculated by LEMON.

8.3 Sequential algorithm
The results from the sequential algorithm are shown in Table 8.2. As can be seen from
the matching quality, the algorithm produces a nearly maximum matching for all the
graphs that were tested.

The running time is seen to increase with the number of edges in the graph;
the graph audikw_1 has approximately 20 times the number of edges as the graph
netherlands_osm, and the difference in running time is approximately 20.

Graph Time Matching size Matching quality (%)
netherlands_osm 0.496921 1,086,107 99.623
audikw_1 11.497590 469,388 99.479
as-Skitter 2.631596 506,354 98.646
random21_16 4.831498 1,048,567 99.999

Table 8.2: Results for the sequential implementation.

8.4 Vertex partitioning
The results from the parallel Karp-Sipser algorithm using vertex partitioning are given
in Tables 8.3, 8.4, 8.5, and 8.6 for p = 10, 20, 30, and 40 processes.

The tables show the total running time, the number of messages sent, the message
volume in bytes, the communication time, the number of supersteps (Rounds) is used
in the table for limiting column width), and finally the matching size.

This section focuses on describing the speedup and the matching quality, and how
they are affected by the values of MPR and the number of processes. The number of
rounds and communication time/volume are discussed in Section 8.6.

45

p MPR Time Messages Bytes sent Comm. time Rounds |Matching
10 -500 0.074868 1231 39392 0.00939353 7 1086031
10 500 0.088469 862 27584 0.022873 222 1086063
10 1500 0.08032 884 28288 0.015411 77 1086066
20 -500 0.0335591 2230 71360 0.00970085 7 1085956
20 500 0.046943 1567 50144 0.01737 112 1085923
20 1500 0.039102 1604 51328 0.010439 41 1086009
30 -500 0.0211871 3339 106848 0.00625397 7 1085956
30 500 0.035186 2307 73824 0.017872 77 1085963
30 1500 0.028056 2352 75264 0.011196 29 1085999
40 -500 0.0186779 3886 124352 0.0125031 7 1085847
40 500 0.03404 2852 91264 0.021554 60 1085980
40 1500 0.027183 2867 91744 0.014905 24 1085987

Table 8.3: Results with vertex partitioning for the graph netherlands_osm,
|V | = 2216688, average degree = 2.20

p MPR Time Messages Bytes sent Comm. time Rounds |Matching
10 -500 0.775224 1917849 61371168 0.134255 83 469003
10 500 0.793072 1022717 32726944 0.158397 181 469287
10 1500 0.737932 1043861 33403552 0.113889 113 469288
20 -500 0.380827 3099897 99196704 0.05752 95 468917
20 500 0.354897 1633877 52284064 0.040089 112 469188
20 1500 0.354737 1701625 54452000 0.041058 79 469118
30 -500 0.320152 3983117 127459744 0.072481 77 468761
30 500 0.28961 2109107 67491424 0.052098 113 469139
30 1500 0.286617 2235301 71529632 0.050767 122 469007
40 -500 0.333343 4690341 150090912 0.111416 95 468645
40 500 0.305244 2509072 80290304 0.09358 101 469015
40 1500 0.314437 2708064 86658048 0.10447 113 468869

Table 8.4: Results with vertex partitioning for the graph audikw_1, |V | =
943, 695, average degree = 82.28

8.4.1 Speedup
To get a clearer picture of the speedup and matching quality, the results are presented
graphically. The speedup is shown in Figures 8.1, 8.2, 8.3, and 8.4 for different values
of MPR. In Chapter 6, the hypothesis is that a higher value of MPR, or the use of
strategy 2 from Section 6.2.2, could reduce the number of rounds, but at the potential
cost of improper load balancing, leading to an overall longer running time.

This is indeed the observed behaviour of the algorithm. For all graphs except
netherlands_osm (Figure 8.1), a higher value of MPR, or strategy 2, results in a
lower speedup. netherlands_osm has a low average vertex degree compared to the
other graphs, and as such the number of edges shared between processes is expected
to be small, thus each process can do a large amount of local matching operations
without any communication, a scenario in which matching strategy 2 is superior. The
small number of shared edges for netherlands_osm can be confirmed by looking at the
message count in Table 8.3.

The speedup is lowest for the graph random21_16; in the random graph, each edge
is present with a constant probability, and thus a lower speedup compared to the real

46

p MPR Time Messages Bytes sent Comm. time Rounds |Matching
10 -500 0.415825 2273286 72745152 0.171701 71 497086
10 500 0.294541 1392141 44548512 0.111969 175 494028
10 1500 0.328393 1422185 45509920 0.128501 89 494267
20 -500 0.331269 2582765 82648480 0.199776 85 495200
20 500 0.217734 1539823 49274336 0.124738 148 492713
20 1500 0.224628 1605775 51384800 0.128043 99 492976
30 -500 0.364507 2808411 89869152 0.268464 93 494658
30 500 0.171872 1713863 54843616 0.109733 79 492373
30 1500 0.180195 1807789 57849248 0.115922 62 492910
40 -500 0.304243 2920349 93451168 0.227879 99 493592
40 500 0.18687 1816083 58114656 0.134608 97 491715
40 1500 0.194503 1936284 61961088 0.140316 72 492673

Table 8.5: Results with vertex partitioning for the graph as-Skitter, |V | =
1, 696, 415, average degree = 13.08

p MPR Time Messages Bytes sent Comm. time Rounds |Matching
10 -500 1.84 20768220 664583040 0.432526 58 998860
10 500 1.122928 12032264 385032448 0.188238 264 1037639
10 1500 1.211263 12145872 388667904 0.227864 116 1031838
20 -500 0.882883 22298927 713565664 0.173335 59 1001702
20 500 0.538406 13042310 417353920 0.087336 154 1036352
20 1500 0.55806 13278809 424921888 0.091037 80 1026417
30 -500 0.701434 22889756 732472192 0.172437 59 1003106
30 500 0.42536 13522464 432718848 0.094026 117 1033588
30 1500 0.439827 13881008 444192256 0.099757 70 1021085
40 -500 0.698865 23227289 743273248 0.254544 57 1004302
40 500 0.452538 13834350 442699200 0.163215 100 1030970
40 1500 0.467051 14311370 457963840 0.173549 66 1016914

Table 8.6: Results with vertex partitioning for the graph random21_16, |V | =
2, 097, 152, average degree = 16

world graph suggests that the structural properties of a graph has a profound effect
on the performance of the algorithm.

47

0 10 20 30 40 50
0

5

10

15

20

25

30

netherlands_osm, vertex partitioning

MPR = -500
MPR = 500
MPR = 1500

p

S
p

ee
du

p

Figure 8.1: Speedup for the graph netherlands_osm with vertex partitioning

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

audikw_1, vertex partitioning

MPR = -500
MPR = 500
MPR = 1500

p

S
p

ee
du

p

Figure 8.2: Speedup for the graph audikw_1 with vertex partitioning

48

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

as-Skitter, vertex partitioning

MPR = -500
MPR = 500
MPR = 1500

p

S
p

ee
du

p

Figure 8.3: Speedup for the graph as-Skitter with vertex partitioning

0 10 20 30 40 50
0

2

4

6

8

10

12

random21_16, vertex partitioning

MPR = -500
MPR = 500
MPR = 1500

p

S
p

ee
du

p

Figure 8.4: Speedup for the graph random21_16 with vertex partitioning

49

8.4.2 Quality
The hypothesis presented in Chapter 6 is that a higher value of MPR, or matching
strategy 2 as described in Section 6.2.2, increases the number of local matching op-
erations performed before a vertex is detected to be a singleton, thus reducing the
matching quality.

The same holds for the number of processes: given that the local matching op-
erations perform in each step can be described by p ×MPR, a higher process count
should have a negative impact on the matching quality.

Examining the effect of MPR first, the following may be observed: for the graph
netherlands_osm, there is no clear winner as for the choice of MPR and matching
quality; however, all results are within 0.4 percentage points of the optimal solution,
and as such any variations may be due to the random nature of the algorithm. For the
graph audikw_1, a lower value of MPR clearly leads to a better matching quality;
however, all results differ by at most 0.7 percentage points of the optimal solution.

The results for as-Skitter are special in that the higher value of MPR, and espe-
cially matching strategy 2, consistently produces a better matching quality. However,
the difference in quality (for the values of MPR) is merely around 0.5 percentage
points. The random graph produces the expected result: that a higher value of MPR,
or especially matching strategy 2, produces a considerably lower matching quality (4
percentage points for p = 10 processes), although the difference is reduced as the
number of processes increases.

0 10 20 30 40 50
0,99585

0,9959

0,99595

0,996

0,99605

0,9961

0,99615

0,9962

0,99625

netherlands_osm, vertex partitioning

MPR = -500
MPR = 500
MPR = 1500

p

Q
u

a
lit

y

Figure 8.5: Quality for the graph netherlands_osm with vertex partitioning

50

0 10 20 30 40 50
0,9925

0,993

0,9935

0,994

0,9945

0,995

audikw_1, vertex partitioning

MPR = -500
MPR = 500
MPR = 1500

p

Q
u

a
lit

y

Figure 8.6: Quality for the graph audikw_1 with vertex partitioning

0 10 20 30 40 50
0,952

0,954

0,956

0,958

0,96

0,962

0,964

0,966

0,968

0,97

as-Skitter, vertex partitioning

MPR = -500
MPR = 500
MPR = 1500

p

Q
u

a
lit

y

Figure 8.7: Quality for the graph as-Skitter with vertex partitioning

51

0 10 20 30 40 50
0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

random21_16, vertex partitioning

MPR = -500
MPR = 500
MPR = 1500

p

Q
u

a
lit

y

Figure 8.8: Quality for the graph random21_16 with vertex partitioning

52

8.5 Edge partitioning
The results for the edge partition based algorithm are give in Tables 8.7, 8.8, 8.9, and
8.10. for p = 10, 20, 30, and 40 processes.

To better illustrate the results, the speedup is shown graphically and discussed in
Section 8.5.1, while a graphical representation and discussion of the matching quality
is presented in Section 8.5.2.

p MPR Time Messages Bytes sent Comm. time Rounds |Matching
10 -500 0.566059 2178662 35457996 0.246382 14 958493
10 500 0.458841 2157491 37184724 0.136917 229 1083510
10 1500 0.455092 2160120 37179716 0.12109 86 1078960
20 -500 0.242866 2258779 36750540 0.087696 15 956720
20 500 0.21291 2255066 38837420 0.048398 119 1080880
20 1500 0.216439 2257656 38783948 0.041154 49 1072061
30 -500 0.17378 2289420 37231500 0.068864 13 956240
30 500 0.154285 2290065 39410292 0.039459 83 1078384
30 1500 0.15932 2294335 39351796 0.035254 35 1065844
40 -500 6.675678 2294603 37326400 6.63181 17 956170
40 500 0.156992 2300319 39561936 0.065302 66 1076046
40 1500 0.155852 2306127 39496672 0.055708 31 1059916

Table 8.7: Results with edge partitioning for the graph netherlands_osm, |V | =
2, 216, 688, average degree = 2.20

p MPR Time Messages Bytes sent Comm. time Rounds |Matching
10 -500 6.095041 158192 2531988 0.31195 9 469003
10 500 6.22226 74850 1200496 0.400557 102 469326
10 1500 6.235245 76261 1223188 0.373039 39 469313
20 -500 3.067785 266128 4259856 0.099699 9 468767
20 500 3.22782 130261 2087796 0.201737 72 469245
20 1500 3.188601 134310 2153664 0.171381 37 469116
30 -500 2.495847 333898 5344368 0.40669 12 468654
30 500 2.57654 165817 2652812 0.435869 104 469246
30 1500 2.556064 172052 2758452 0.427252 30 469003
40 -500 1.773914 397000 6353856 0.226824 12 468593
40 500 1.82948 194958 3125844 0.241285 33 469137
40 1500 1.813586 208134 3338992 0.233579 21 468821

Table 8.8: Results with edge partitioning for the graph audikw_1, |V | =
943, 695, average degree = 82.28

8.5.1 Speedup
As described in Sections 7.3 and 7.4, maintaining a synchronized graph state for the
edge partitioned graph requires extra work in each computation step, and in addi-
tion, the selection of local edges is not done in an optimal manner. However, edge
partitioning should allow for better load balancing.

Although the speedups obtained are for the most part an order of magnitude

53

p MPR Time Messages Bytes sent Comm. time Rounds |Matching
10 -500 1.675946 1135631 18863612 0.795284 16 484433
10 500 2.16061 837435 13828468 1.231791 147 504587
10 1500 2.179157 866818 14325148 1.240654 61 504254
20 -500 0.834983 1273781 21145712 0.436326 21 482939
20 500 1.53156 979900 16161940 1.110773 130 503445
20 1500 1.577438 1025991 16967992 1.15436 45 502629
30 -500 0.932082 1391933 23081388 0.669083 19 481500
30 500 1.30441 1089274 17950124 1.022305 104 503004
30 1500 1.283835 1151492 19052472 1.00563 41 501555
40 -500 0.756817 1499303 24853940 0.554343 18 479034
40 500 0.97595 1196831 19748940 0.766329 102 502179
40 1500 0.887403 1273678 21104924 0.682353 40 499175

Table 8.9: Results with edge partitioning for the graph as-Skitter, |V | =
1, 696, 415, average degree = 13.08

p MPR Time Messages Bytes sent Comm. time Rounds |Matching
10 -500 1.892022 9528723 153826796 0.444592 59 1028187
10 500 1.9819 8042404 130505276 0.415548 230 1038642
10 1500 1.857619 8108996 131592724 0.307976 103 1028194
20 -500 1.10598 12557275 203051408 0.283414 68 1029972
20 500 1.13055 11083372 179863236 0.22752 129 1032906
20 1500 1.139437 11262469 182860016 0.240786 68 1015618
30 -500 0.819532 14183380 229372568 0.201184 75 1023579
30 500 0.849227 12582519 203948736 0.178404 91 1026363
30 1500 0.842293 12899985 209407840 0.176506 54 1007486
40 -500 23.290801 15154479 245412676 20.66995 46 1019846
40 500 0.695007 13709598 222433128 0.145768 79 1021053
40 1500 0.700256 14159578 230291160 0.150923 72 1003762

Table 8.10: Results with edge partitioning for the graph random21_16, |V | =
2, 097, 152, average degree = 16

lower than those of the vertex partitioned algorithm presented in Section 8.4, they
will nevertheless be described here.

For the graph netherlands_osm (Figure 8.9), a maximum speedup of 3.25 is ob-
tained; the speedup is roughly equivalent for p = 30 and p = 40 processes. While
there is little difference between MPR values of 500 and 1500, the matching strategy
2 (described in Section 6.2.2) produces a speedup of near zero for p = 40 processes.
Looking at the Communication time in Table 8.7, it appears that all but one process
stays mostly idle. As netherlands_osm has a very low average vertex degree compared
to the other graphs, it does not provide for the same load balancing opportunities.

On the graph audikw_1 (Figure 8.10), the algorithm obtains a speedup of 6.5
using p = 40 processes; the choice of MPR has little effect on the overall running
time, and the speedup is almost linear.

For as-Skitter (Figure 8.11), matching strategy 2 provides the best speedup: 3.5
using 40 processes, while an MPR value of 500 and 1500 show little difference in
running time. The best speedup is obtained for the random graph (Figure 8.12): both
for MPR = 500 and MPR = 1500, a speedup of 7 is obtained for 40 processes;

54

it should be noted that speedup is almost linear from p = 10 to p = 40 processes,
indicating that the algorithm scales very well when the graph does not have any
special structure.

0 10 20 30 40 50
0

0,5

1

1,5

2

2,5

3

3,5

netherlands_osm, edge partitioning

MPR = -500
MPR = 500
MPR = 1500

p

S
p

ee
du

p

Figure 8.9: Speedup for the graph netherlands_osm with edge partitioning

8.5.2 Quality
Consider the matching quality for the graph netherlands_osm, shown in Figure 8.13.
The strategy of perform as much local work as possible has a profound negative effect
on the matching quality, giving a result that is around 12 percentage points below the
optimal. For an MPR value of 500, the quality is within 1 (p = 10) to 2 (p = 40)
percentage points of the optimal.

A quality within less than 0.6 percentage points of the optimal is obtained for the
graph audikw_1 (Figure 8.14), with an MPR value of 500. For p = 10 processes,
there is no difference in the quality between an MPR value of 500 and 1500, but for
40 processes an MPR value of 1500 produces a matching quality that is 1 percentage
points lower.

For the graph as-Skitter (Figure 8.15), a matching quality of around 98 % is ob-
tained with an MPR value of 500; the negative impact of a higher MPR value in-
creases along with the number of processes. The matching quality obtained when the
algorithm is run on the random graph is within 1 percentage point of the optimal for
10 processes, but decreases to roughly 97.5 % for p = 40, with an MPR value of 500.

55

0 10 20 30 40 50
0

1

2

3

4

5

6

7

audikw_1, edge partitioning

MPR = -500
MPR = 500
MPR = 1500

p

S
p

ee
du

p

Figure 8.10: Speedup for the graph audikw_1 with edge partitioning

0 10 20 30 40 50
0

0,5

1

1,5

2

2,5

3

3,5

4

as-Skitter, edge partitioning

MPR = -500
MPR = 500
MPR = 1500

p

S
p

ee
du

p

Figure 8.11: Speedup for the graph as-Skitter with edge partitioning

56

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

random21_16, edge partitioning

MPR = -500
MPR = 500
MPR = 1500

p

S
p

ee
du

p

Figure 8.12: Speedup for the graph random21_16 with edge partitioning

0 10 20 30 40 50
0,8

0,85

0,9

0,95

1

1,05

netherlands_osm, edge partitioning

MPR = -500
MPR = 500
MPR = 1500

p

Q
u

a
lit

y

Figure 8.13: Quality for the graph netherlands_osm with edge partitioning

57

0 10 20 30 40 50
0,992

0,9925

0,993

0,9935

0,994

0,9945

0,995

audikw_1, edge partitioning

MPR = -500
MPR = 500
MPR = 1500

p

Q
u

a
lit

y

Figure 8.14: Quality for the graph audikw_1 with edge partitioning

0 10 20 30 40 50
0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

as-Skitter, edge partitioning

MPR = -500
MPR = 500
MPR = 1500

p

Q
u

a
lit

y

Figure 8.15: Quality for the graph as-Skitter with edge partitioning

58

0 10 20 30 40 50
0,94

0,95

0,96

0,97

0,98

0,99

1

random21_16, edge partitioning

MPR = -500
MPR = 500
MPR = 1500

p

Q
u

a
lit

y

Figure 8.16: Quality for the graph random21_16 with edge partitioning

59

8.6 Comparison
This section compares the results for the vertex and edge partitioned algorithms. From
the results presented in Section 8.4 and Section 8.5, it is obvious that the vertex parti-
tioned algorithm is fastest, and as such no further comparison is performed. However,
the lower speedup values for the edge partitioned algorithm may be due to inefficien-
cies in the implementation, as noted in Sections 7.3 and 7.4. As such, this section will
compare the number of messages sent by each algorithm, the number of supersteps
required to compute the matching and finally the communication time/total running
time ratio, as an indicator of how well the algorithms scale with a higher number of
processors.

The graphs used are audikw_1 and random21_16, as they were the ones where
the edge partitioned algorithm performed most comparably to the vertex partitioned
algorithm, both in terms of speedup and matching quality. The values plotted are those
with an MPR of 500, which on average was the best setting for both algorithms.

As can be seen in Figure 8.17, the vertex partitioned algorithm sends a large
amount of messages compared to the edge partitioned algorithm. For the random
graph, however, the message volumes converge with an increasing number of processes.

0 10 20 30 40 50
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Message count

Audikw_1, vertex
Audikw_1, edge
Random, vertex
Random, edge

p

Figure 8.17: Message count for the graphs audikw_1 and random21_16 for
both parallel algorithms, using an MPR value of 500.

The number of supersteps required by both algorithms for the graphs audikw_1
and random21_16 are shown in Figure 8.18. In general, the edge partitioned algo-
rithmn requires fewer supersteps to compute a matching; for the graph audikw_1
using p = 40 processes, the edge partitioned algorithm requires approximately half the
number of steps as its vertex partitioned counterpart.

The ratio between communication time and the total running time, shown in Figure
8.19 shows that the edge partitioned algorithm does not suffer from an increased
communication burden when the number of processors is increased. However, this

60

0 10 20 30 40 50
0

50

100

150

200

250

300

Number of supersteps

Audikw_1, vertex
Audikw_1, edge
Random, vertex
Random, edge

p

Figure 8.18: Number of supersteps for the graphs audikw_1 and random21_16
for both parallel algorithms, using an MPR value of 500.

may be due to algorithm performing an unnecessary amount of local computation in
the first place.

61

0 10 20 30 40 50
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Communication/Total time ratio

Audikw_1, vertex
Audikw_1, edge
Random, vertex
Random, edge

p

Figure 8.19: The ratio communication time / total running time for the graphs
audikw_1 and random21_16 for both parallel algorithms, using an MPR value
of 500.

62

Chapter 9

Conclusion

This chapter is structured as follows: Section 9.1 summarizes the findings made in this
thesis, while Section 9.2 gives suggestions for further work that can be done, either by
improving on shortcomings of the implemented algorithms, or by following up on new
ideas.

9.1 Summary
The speedup obtained with the vertex partitioned algorithm (Section 8.4) is for some
graphs an order of magnitude greater than that of the edge partitioned algorithm (Sec-
tion 8.5); however, the matching quality offered by the two algorithms is comparable.

The edge partitioned algorithm obtains better speedups when the average vertex
degree is higher; in hindsight, it might have been an idea to test the algorithms on
graphs with a greater average degree than those presented in Table 8.1.

The experimental results show that the ratio of communication time vs total run-
ning time is favourable for the edge partitioned algorithm, as it does not increase
significantly as the number of processes is increased. While this indicates that it of-
fers better load balancing, the algorithm needs to be more efficient when performing
operations on the local graph before any decisive conclusion can be made.

9.2 Further work
As noted in Sections 7.3 and Section 7.4, and as confirmed by the experimental results
presented in Section 8.5, the EP_Graph framework for an edge partitioned graph
should be extended to ensure that the work done in each computation step is as efficient
as possible. By separating the storage of local and global edges, a local neighbour to
a vertex may be found in constant time, instead of a time proportional to the local
vertex degree.

Given that the vertex partitioned algorithm, with a higher message volume, out-
performs the edge partitioned one, it is worth investigating whether the EP_Graph
framework could be made more lightweight, by storing less information about the
graph state locally and instead relying on redundant messages in some cases, such as
by not maintaining an adjacency list for ghost vertices.

Alternatively, the algorithms should be tested on graphs with a higher average
vertex degree; as summarized in Section 9.1, the edge partitioned algorithm performed
comparably better for more dense graphs.

63

On another note, given that the algorithms have been implemented using an ab-
straction layer for communication, new experiments could be performed using the
novel MulticoreBSP library [39], which avoids running a BSP library on top of MPI.

64

Chapter 10

References

[1] Karp, R. M., and M. Sipser: Maximum matching in sparse random graphs. In
Proceedings of the 22nd Annual Symposium on Foundations of Computer Science,
pp. 364-375. IEEE Computer Society, 1981.

[2] Karypis, George, and Vipin Kumar: A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, no. 1
(1998): 359-392.

[3] Pellegrini, François, and Jean Roman: Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture graphs. In
High-Performance Computing and Networking, pp. 493-498. Springer Berlin Hei-
delberg, 1996.

[4] Suijlen, Wijnand J.: BSPonMPI: An implementation of the BSPlib standard on
top of MPI, version 0.3. http://bsponmpi.sourceforge.net/ 2010.

[5] Bisseling, Rob H.: Parallel Scientific Computation: A structured approach using
BSP and MPI. Oxford University Press. 2004.

[6] Patwary, Md Mostofa Ali, Rob H. Bisseling, and Fredrik Manne: Parallel greedy
graph matching using an edge partitioning approach. In Proceedings of the fourth
international workshop on High-level parallel programming and applications, pp.
45-54. ACM, 2010.

[7] Vastenhouw, Brendan, and Rob H. Bisseling: A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication. SIAM review 47, no. 1
(2005): 67-95.

[8] Auer, Bas O. Fagginger, and Rob H. Bisseling: A GPU algorithm for greedy
graph matching. In Facing the Multicore-Challenge II, pp. 108-119. Springer Berlin
Heidelberg, 2012.

[9] Mucha, Marcin, and Piotr Sankowski: Maximum matchings via Gaussian elim-
ination. In Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pp. 248-255. IEEE, 2004.

[10] Micali, Silvio, and Vijay V. Vazirani: An O(
√
|v||E|) algoithm for finding max-

imum matching in general graphs. In Foundations of Computer Science, 1980.,
21st Annual Symposium on, pp. 17-27. IEEE, 1980.

[11] Shokoufandeh, Ali, and Sven Dickinson: Applications of bipartite matching to
problems in object recognition. In Proceedings, ICCV Workshop on Graph Algo-
rithms and Computer Vision, vol. 18. 1999.

[12] Berge, Claude: Two theorems in graph theory. Proceedings of the National
Academy of Sciences of the United States of America 43, no. 9 (1957): 842.

65

[13] Hopcroft, John E., and Richard M. Karp: An n5/2 algorithm for maximum match-
ings in bipartite graphs. SIAM Journal on computing 2, no. 4 (1973): 225-231.

[14] Edmonds, Jack: Paths, trees, and flowers. Canadian Journal of mathematics 17,
no. 3 (1965): 449-467.

[15] Coppersmith, Don, and Shmuel Winograd: Matrix multiplication via arithmetic
progressions. Journal of symbolic computation 9, no. 3 (1990): 251-280.

[16] Williams, V. Vassilevska: Breaking the coppersmith-winograd barrier. Unpub-
lished manuscript, Nov (2011).

[17] Robinson, Sara: Toward an optimal algorithm for matrix multiplication. SIAM
news 38, no. 9 (2005): 1-5.

[18] Strassen, Volker: Gaussian elimination is not optimal. Numerische Mathematik
13, no. 4 (1969): 354-356.

[19] Korte, Bernhard, and Dirk Hausmann: An analysis of the greedy heuristic for
independence systems. Algorithmic Aspects of Combinatorics 2 (1978): 65-74.

[20] Alt, Helmut, Norbert Blum, Kurt Mehlhorn, and Markus Paul: Computing a
maximum cardinality matching in a bipartite graph in time O(n1.5

√
m/logn).

Information Processing Letters 37, no. 4 (1991): 237-240.

[21] Kaya, Kamer, Johannes Langguth, Fredrik Manne, and Bora Uçar: Push-relabel
based algorithms for the maximum transversal problem. Computers & Operations
Research (2012).

[22] Aronson, Jonathan, Alan Frieze, and Boris G. Pittel: Maximum matchings in
sparse random graphs: Karp-Sipser revisited. Random Structures and Algorithms
12, no. 2 (1998): 111-177.

[23] Wilkinson, Barry, and Michael Allen: Parallel Computers. In Programming:
Techniques and Applications Using Networked Workstations and Parallel Com-
puters, 3 - 42. Upper Saddle River: Pearson Prentice Hall, 2005. Pearson Prentice
Hall (2005): 3-42

[24] Goldberg, Andrew V., and Robert E. Tarjan: A new approach to the maximum-
flow problem. Journal of the ACM (JACM) 35, no. 4 (1988): 921-940.

[25] Setubal, João C.: New experimental results for bipartite matching. Proceedings of
netflow93 (1993): 211-216.

[26] Langguth, Johannes, Md Mostofa Ali Patwary, and Fredrik Manne: Parallel algo-
rithms for bipartite matching problems on distributed memory computers. Parallel
Computing 37, no. 12 (2011): 820-845.

[27] Azad, Ariful, Mahantesh Halappanavar, Sivasankaran Rajamanickam, Erik G.
Boman, Arif Khan, and Alex Pothen: Multithreaded Algorithms for Maxmum
Matching in Bipartite Graphs. In Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pp. 860-872. IEEE, 2012.

[28] Dufossé, Fanny, Kamer Kaya, and Bora Uçar: Randomized matching heuristics
with quality guarantees on shared memory parallel computers. (2013).

[29] Tofteberg, Martin: Parallel computing using edge partitioning. Master’s thesis,
University of Bergen, 2011.

[30] Catalyurek, Umit V., Florin Dobrian, Assefaw Gebremedhin, Mahantesh Halap-
panavar, and Alex Pothen: Distributed-memory parallel algorithms for matching
and coloring. In Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pp. 1971-1980. IEEE, 2011.

[31] Manne, Fredrik, and Rob H. Bisseling: A parallel approximation algorithm for
the weighted maximum matching problem. In Parallel Processing and Applied
Mathematics, pp. 708-717. Springer Berlin Heidelberg, 2008.

66

[32] Davis, T.A., and Y. Hu: The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software, Vol 38, Issue 1, 2011, pp 1:1 -
1:25. http://www.cise.ufl.edu/research/sparse/matrices

[33] Intel Corporation: Intel Xeon Phi Product Family. Accessed 6th Decem-
ber 2013. http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-
detail.html

[34] Cray Inc.: Cray XMT. Accessed 6th December 2013.
http://www.cray.com/Assets/PDF/products/xmt/CrayXMTBrochure.pdf

[35] Message Passing Interface Forum: Message Passing Interface Forum. Accessed
6th December 2013. http://www.mpi-forum.org/

[36] Devine, Karen D., Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling,
Umit V. Catalyurek: Parallel Hypergraph Partitioning for Scientific Computing.
IPDPS’06. IEEE. 2006.

[37] LEMON: LEMON. Accessed December 2013. http://lemon.cs.elte.hu/

[38] Bader, David A., and Kamesh Madduri: GTgraph: A suite of synthetic graph
generators. http://www.cse.psu.edu/ madduri/software/GTgraph/

[39] MulticoreBSP: MulticoreBSP homepage. Accessed December 2013.
http://www.multicorebsp.com/

67

	Introduction
	Matching
	Definitions
	Bipartite graphs

	Bipartite matching
	Matching in general graphs
	Heuristics
	Summary

	The Karp-Sipser algorithm
	A simple greedy heuristic
	The sequential Karp-Sipser algorithm
	Analysis
	Data structures

	Parallelization
	The need to go parallel
	Computation model
	Bulk-Synchronous Processing (BSP)

	Data partitioning
	Load balancing

	Implementation
	Communication
	Graph partitioning

	Parallelization - related work
	Speedup
	Bipartite matching
	Shared memory
	Distributed memory

	Matching for general graphs
	Shared memory
	Distributed memory

	Karp-Sipser using vertex partitioning
	Overview
	Terminology
	The algorithm at a glance

	The vertex partitioned algorithm
	Queue processing
	Examination of the local graph
	Message processing

	Analysis
	Communication volume
	Number of supersteps
	Sequential work

	Data structures
	Graph representation
	Vertex sets and states
	Vertex queue

	Karp-Sipser using edge partitioning
	Overview
	The edge partitioned algorithm
	Vertex ownership
	Singleton vertices
	Message types
	A special case

	Analysis
	Communication volume
	Sequential work

	Data structures
	Graph representation
	Vertex sets

	Experimental results
	Experimental setup
	Data set
	Sequential algorithm
	Vertex partitioning
	Speedup
	Quality

	Edge partitioning
	Speedup
	Quality

	Comparison

	Conclusion
	Summary
	Further work

	References

