
74 Scientific results

Direct data transfer between

SOAP web services in Orchestration

Sattanathan
Subramanian

Uni Computing, Uni Research,
Bergen, Norway
sat@uni.no

Paweł Sztromwasser
Department of Informatics,

University of Bergen, Norway
Uni Computing, Uni Research,

Bergen, Norway
pawels@uni.no

Pål Puntervoll
Uni Computing, Uni Research,

Bergen, Norway
pal.puntervoll@uni.no

Kjell Petersen
Uni Computing, Uni Research,

Bergen, Norway
kjell.petersen@uni.no

ABSTRACT
In scientific data analysis, workflows are used to integrate
and coordinate resources such as databases and tools. Work-
flows are normally executed by an orchestrator that invokes
component services and mediates data transport between
them. Scientific data are frequently large, and brokering
large data increases the load on the orchestrator and reduces
workflow performance. To remedy this problem, we demon-
strate how plain SOAP web services can be tailored to sup-
port direct service-to-service data transport, thus allowing
the orchestrator to delegate the data-flow. We formally de-
fine a data-flow delegation message, develop an XML schema
for it, and analyze performance improvement of data-flow
delegation empirically in comparison with the regular or-
chestration using an example bioinformatics workflow.

Keywords: Orchestration, Bioinformatics Workflow, Web
service, and Workflow Management.

1. INTRODUCTION
The complex requirements of scientific data analysis and
knowledge discovery can rarely be satisfied by a single database
or a tool [15]. Workflows originating from business ap-
plications have been considered to be a solution satisfying
these requirements. By integrating and coordinating geo-
graphically separated resources, workflows automate scien-
tific analysis in a structured and controlled manner. Scien-
tific workflows differ from its business predecessors, mostly
in being data-oriented, i.e., “data is considered as a first-
class citizen” [21]. The two widely proposed approaches for
executing workflows are orchestration (also known as cen-

tralized coordination) and choreography (also known as de-

centralized coordination). The orchestration approach, as

used by BPEL [3], requires a centralized coordinator (i.e.,
orchestrator) to establish the control and communication
between two or more resources. In contrast, the choreog-
raphy allows peer-to-peer communication between activities
without a separate coordinator, as given in e.g., WS-CDL1.
Most of the scientific workflow engines use orchestration to
execute workflows, e.g., Taverna [22]. There are several rea-
sons for this, including ease in handling component service
failures [16]; in controlling [4], monitoring [18] and validat-
ing [10] workflow executions; in collecting the history of a
workflow execution [4]; in reusing the existing open-source
(e.g., ActiveBPEL2) and industry (e.g., Microsoft WinWF3)
based workflow engines, and last but not the least, the lack
of choreography supportive engines and services. For these
reasons and despite the fact that the choreography is pro-
posed as a more efficient method for data-oriented work-
flows, choreography-based methods for executing workflows
(e.g., MAP [5]) have not gained wide acceptance and popu-
larity in the scientific community.

The web service technology is advocated as a convenient so-
lution to expose various scientific resources (i.e, tools and
databases) to the web [14], also in the field of bioinformat-
ics [19] which has our prime interest. Bioinformatics focuses
on developing algorithms and tools for analysis of biolog-
ical data. Integral parts of the field are also storage, re-
trieval, and integration of the data and the tools. Using
web services, bioinformaticians can describe the tools they
develop in a machine-readable format, publish them into one
or more registries, discover and access tools developed by
other groups, and compose complex workflows, if a single
resource doesn’t meet scientific requirements. For the last
couple of years, many of the bioinformatics data and tool
providers have been publishing their resources in the form
of programmatically accessible web services. BioCatalogue
provides a curated catalogue of life science web services hav-
ing 2319 services4 from 169 providers, in which the majority
of services are SOAP web services [7], i.e., web services de-

1
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

2
http://www.activevos.com/community-open-source.php

3
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx

4
visited on 13th Aug 2012



Paper II 75

scribed by WSDL5 and communicating using SOAP6 over
HTTP7 protocol. In line with this technological evolution,
bioinformatic resources are considered SOAP web services
in this paper.

In bioinformatics, workflows often process large amounts of
data, e.g. DNA sequencing experiment produces tens of
gigabytes of data for every sequenced person. The central-
ized coordination requires that the orchestrator sends and
receives the input and output data of the component web
services, in addition to the services invocation. Mediating
the large data-transfer between the component services in-
creases use of the coordinator’s resources excessively (e.g.,
memory, bandwidth), and increases the workflow execution
time. In [20], we have proposed an approach called Data-

Flow Delegation to overcome this data-flow bottleneck. In
that paper, we have given a theoretical foundation, for sepa-
rating the control and the data-flow in a workflow execution
in order to delegate the data-flow responsibilities to the com-
ponent services. The data-flow delegation happens on the
fly according to the workflow requirements, i.e., the coordi-
nator instructs the component services where the input data
will be sent from, and where to send the output data. In
this paper, we show that the data-flow delegation proposed
in our previous paper [20] can be applied to delegate data
between plain SOAP web services. We used concept of oper-
ation overloading to inject data-flow delegation instructions
into service requests. In consequence the changes in the ser-
vice interface do not break existing clients and allow use of
the service in a regular manner. Our approach was imple-
mented on top of a web service framework, showing that it
is independent of the framework and does not require any
changes to it. Our contributions in this paper include:

(i) an XML schema developed to support data-flow dele-
gation between plain SOAP web services, and used to
overload web-service operations

(ii) empirical analysis showing performance improvement
of the data-flow delegating workflow in terms of mem-
ory, CPU, network traffic, and runtime

The organization of the remaining paper is as follows: Sec-
tion 2 reports the related work available in the literature for
overcoming data-flow bottleneck of orchestrator. Section 3
provides a background about the regular and the data-flow
delegated orchestration. Section 4 presents an usecase from
the domain of bioinformatics. Section 5 explains the con-
cept of implementation including the formal definition of
data-flow delegation message. Section 6 shows the work-
flow execution results and analyzes them in detail. Finally,
Section 7 concludes the paper and outlines our future work.

2. RELATED WORK
Several approaches have been proposed to overcome the data-
flow bottleneck of the orchestrator. We classify them into
three categories and list those here.

5
http://www.w3.org/TR/wsdl

6
http://www.w3.org/TR/soap/

7
http://www.w3.org/Protocols/

Introducing a middle-layer between orchestrator and compo-

nent services. Triggers and proxies are suggested as data-
brokers between orchestrator and component services in [8]
and [6], respectively. They are responsible for buffering the
intermediate data and for invoking the component services
on behalf of the coordinator. Authors of [13] propose to
use a cloud infrastructure as a service in between the or-
chestrator and component services, similarly to the proxy
approach. Since the cloud can offer high amount of stor-
age and processing, this broker can handle much more data
than proxies and triggers. In [1, 11], a shared data storage is
proposed for sharing the intermediate data between the com-
ponent services. A clear advantage of the above approaches
is that the proposed middle layer, that brokers the data-flow
on behalf of the orchestrator, relieves the orchestrator from
sending and receiving the intermediate data. On the other
hand it restricts the coordinator to fully rely on the bro-
kers for communicating with the component services. For
example, a coordinator cannot invoke a component service
when a proxy is down. The data to and from a component
service always flows through a broker, which can potentially
reduce the performance of the workflow. Moreover, since the
brokers are separate entities from the component services,
those will require additional maintenance and monitoring in
addition to the development.

Using stateful web services to pass data as resources. Seiler
et al. in [17] and Heinzl et al. in [12] proposed to pass
data as a reference between services through orchestrator,
i.e., after receiving a data reference from a producer ser-
vice, the coordinator forwards the reference to a consumer
service. The consumer service is responsible for getting
the data using the reference. The idea was realized using
WSRF8 resources. Zhang et al. [24] came up with a simi-
lar approach suggesting to forward the intermediate data as
WSRF resources directly from one web service to another
in the process of orchestration. It is realized by extending
an existing WSRF-compliant web services framework with
data-forwarding capabilities. Although both solutions are
very elegant they are not easily applicable to bioinformatics,
where the WSRF services are rarely used. Lack of support
for WSRF in open-source web service stack implementations
is one of the reasons for it. Use of WSRF services has also
been discouraged in the bioinformatics community, for in-
stance by the EMBRACE Technology Recommendations9.

Upgrading component services to workflow engines. In a dif-
ferent proposal in [23], component services are upgraded to
workflow engines. They can identify and perform their tasks
(including data transfer) by examining the workflow descrip-
tion (i.e., script), like in choreography. Unfortunately, not
only the flow of data is delegated from one service to another
at runtime, but also the control. This contrasts with the
most of scientific workflow systems where the orchestrator
is required to keep the control for retaining the advantages of
centralized coordination, i.e., monitoring, validating, fault-
handling, and provenance.

8
Web Services Resource Framework https://www.oasis-open.org/

committees/tc_home.php?wg_abbrev=wsrf
9
http://www.embracegrid.info



76 Scientific results

Figure 1: (a) A Pipelined Workflow, (b) Regular Orchestration, and (c) Data-flow Delegated Orchestration

3. BACKGROUND: REGULAR AND DATA-

FLOW DELEGATED ORCHESTRATION
We assume that a DAG (Directed Acyclic Graph) workflow
is limited by the slowest (or most resource-demanding) path
of services through the graph. Such a path of services in a
DAG is a pipelined sub-part of the workflow. Improving per-
formance of the pipelined sub-part elevates in effect overall
performance of the workflow. Thus we focus on improving
pipelined workflows, and expect that the results can easily
be transferred on any DAG workflow.

Figure 1(a) presents a pipelined workflow used for illustrat-
ing the execution style of the regular and the data-flow del-
egated orchestrations. The pipelined workflow w consists
of n number of services, i.e., s1, s2, ..., sn. The service s1

begins the workflow w receiving the initial input in. After
processing, the output of s1 is send as input to service s2.
Likewise, the output of service sk−1 is the input to service
sk, where, 2 ≤ k ≤ n. The service sn ends the workflow and

sends out the final output out.

Figure 1(b) shows the regular approach of orchestration used
to execute workflow w, given in Figure 1(a). The orchestra-
tor invokes service s1 and feeds the respective input data
(1 ). After processing the request, service s1 provides the
response including the output data to the orchestrator (2 ).
Next, the orchestrator invokes service s2 with the input data
received from service s1 (3 ). After processing this request,
s2 delivers the output data with the response to the orches-
trator (4 ). In general, the orchestrator supplies the output
data of service sk−1 to service sk (where, k ∈ {2, 3, ..., n})
as the input data during the invocation of service sk (2k-1 ),
and service sk returns the response with the output data to
the orchestrator (2k).

Figure 1(c) shows the execution of data-flow delegated or-
chestration. The orchestrator invokes service s1 along with
the respective input data, and delegates the responsibility



Paper II 77



78 Scientific results

elements of a service are an Interface that allows for access
to the service, and the Functional Support that provides the
functionality of the service. The communication between
the Interface and Functional Support is internal and bidirec-
tional. Operations in the Interface have FunctionalArgu-

ments that are required to execute service’s functionality.
To enable data-flow delegation we propose to overload oper-
ations in the service’s Interface with an optional argument—
DF-Delegation. The purpose of the DF-Delegation param-
eter is to instruct the service to (i) wait for its input data
from a given source; (ii) send its output data to a given
destination. The details of the DF-Delegation parameter
are given in Definition 1. The overloading enables the ser-
vice invoker to access the same Interface of the service for
satisfying three different aims:

(i) To receive the functionality of the service without del-
egating the flow of data, e.g., the orchestrator makes
the service request with the input data and receives
the service response with the output data. The Func-

tionalArguments are used for this.

(ii) To send the delegated data without requiring the func-
tionality of the service, e.g., the service si transfers its
output data to the service sj as required by the or-
chestrator. The DF-Delegation parameter is used for
this.

(iii) To receive the functionality of the service with the del-
egation of data-flow, e.g., the orchestrator makes the
service request to si with the instruction to wait for in-
put data (or transfer the output data) from (or to) sj .
This requires both parameters, i.e., FunctionalArgu-
ments and DF-Delegation.

The DataFlow Support is the proposed element for support-
ing the data flow between services according to the del-
egation instruction (DF-Delegation) provided by the or-
chestrator. As shown in Figure 3, the DataFlow Support

should have the capability to: (i) invoke an external ser-
vice interface for transferring the ouput data according to
the requirements of data-flow delegation; (ii) receive the
input data from another service through the local service
interface; and (iii) interact with the Functional Support for
providing the received input data. The transfer of delegated
data can optionally end with an acknowledgement from the
recipient service.

Definition 1 (DF-Delegation). A DF-Delegation

is a 4-tuple Ddf = 〈C, W, Data in, Data out〉 where:

- C is a description of the orchestrator. It is a 2-tuple

〈c name, c id〉, where, c name is the name of orches-

trator, and c id is an identification of orchestrator.

- W is a description of the workflow. It is a 2-tuple

〈w name, w id〉, where, w name is the name of work-

flow, and w id is the identification of workflow.

- Data in contains the details for receiving and recog-

nizing the data from another service of a workflow. It

is a 5-tuple 〈s id, d id, d type, d size, v time〉, where,

s id is the identification of service from which the input

data comes, d id is the identification of data, d type is

the data type, d size is the data size, and v time is

the time validity of data. In this, d id and s id are

mandatory, and the remaining are optional.

- Data out provides the details for sending out the data.

It is a 5-tuple 〈s id, s link, d id, d type, a time〉, where,

s id is the identification of the service which requires

the output data, s link is a URL of the data receiver in

s id, d id is the identification of the data, d type is the

data type, and a time is the time allocated for send-

ing the data to the service which has the identification

s id. In this, s id, s link, and d id are mandatory,

and the remaining are optional.

5.2 XML Schema to Delegate Data-Flow
The input messages of the WSDL operations were extended
(overloaded) with a new element to support the data-flow
delegation. A fragment of the WSDL from the Hit-Select

service is given in Listing 1. The snippet contains defini-
tion of an input message to the selectBest operation. The
message contains two elements: BlastOutput and dataDele-

gation. The BlastOutput is the functional argument of the
operation, i.e. the input data. The dataDelegation element
has been added to enable data-flow delegation. The argu-
ment is optional allowing invocation of the operation with-
out data-flow delegation. The dataDelegation element is of
type DFDelegation and contains all the information that is
required to delegate flow of the data, as specified in Defini-
tion 1. XML schema for the DFDelegation type represent-
ing the DF-Delegation tuple is presented in Listing 2.

Listing 1: An Operation from the Hit-Select

<xsd :e l ement name=”se l e c tBes tReques t ”>
<xsd:complexType>

<xsd : sequence>
<xsd :e l ement name=”BlastOutput ” type=

”blast :BlastOutputType ” minOccurs
=”0 ”/>

<xsd :e l ement name=”dataDelegat ion ”
type=”dd:DFDelegation ” minOccurs=
”0 ”/>

</ xsd : sequence>
</xsd:complexType>

</ xsd :e l ement>
. . .

<wsdl :message name=”se l e c tBes tReques t ”>
<wsd l :pa r t element=”tn s : s e l e c tBe s tReque s t

” name=”parameters ”/>
</wsdl :message>

. . .
<wsdl :portType name=”Bes tH i tSe l e c t ”>

<wsd l : ope ra t i on name=”s e l e c tB e s t ”>
<wsd l : i nput message=”

tn s : s e l e c tBe s tReque s t ”/>
<wsdl :output message=”

tn s : s e l e c tBe s tRe spon s e ”/>
</ wsd l : ope ra t i on>

</wsdl :portType>



Paper II 79

Listing 2: XML Schema of DFDelegation

<schema targetNamespace=”ht tp : //www. e sy sb i o
. org / dataDelegat ion ” elementFormDefault
=”q u a l i f i e d ”>

<complexType name=”DFDelegation ”>
<sequence>

<element name=”coord ina to r ” type=”
tns :CoordinatorType ”/>

<element name=”workflow ” type=”
tns:WorkflowType ”/>

<element name=”dataIn ” type=”
tns:DataInType ” minOccurs=”0 ”/>

<element name=”dataOut ” type=”
tns:DataOutType ” minOccurs=”0 ”/
>

</ sequence>
</complexType>
<complexType name=”CoordinatorType ”>

<sequence>
<element name=”id ” type=” s t r i n g ”/>
<element name=”name” type=” s t r i n g ”/>

</ sequence>
</complexType>
<complexType name=”WorkflowType ”>

<sequence>
<element name=”id ” type=” s t r i n g ”/>
<element name=”name” type=” s t r i n g ”/>

</ sequence>
</complexType>
<complexType name=”DataInType ”>

<sequence>
<element name=”se rv i c e ID ” type=”

s t r i n g ”/>
<element name=”dataID ” type=” s t r i n g ”/

>

<element name=”dataType ” type=” s t r i n g
” minOccurs=”0 ”/>

<element name=”dataS ize ” type=” in t ”
minOccurs=”0 ”/>

<element name=”v a l i d i t y ” type=”
dateTime ” minOccurs=”0 ”/>

</ sequence>
</complexType>
<complexType name=”DataOutType ”>

<sequence>
<element name=”Rec ip i en tSe rv i c e ” type

=”tns :Rec ip i en tSe rv i c eType ”/>
<element name=”dataID ” type=” s t r i n g ”/

>

<element name=”dataType ” type=” s t r i n g
” minOccurs=”0 ”/>

<element name=”al locatedTime ” type=”
dateTime ” minOccurs=”0 ”/>

</ sequence>
</complexType>
<complexType name=”Rec ip ientServ iceType ”>

<sequence>
<element name=”se rv i c e ID ” type=”

s t r i n g ”/>
<element name=”serviceName ” type=”

s t r i n g ”/>
<element name=”serviceWSDL ” type=”

anyURI”/>

<element name=”s e rv i c ePo r t ” type=”
s t r i n g ”/>

<element name=”se rv i c eOpera t i on ” type
=” s t r i n g ”/>

<element name=”delegatedArgumentName ”
type=” s t r i n g ”/>

</ sequence>
</complexType>

</schema>

6. EMPIRICAL ANALYSIS
Two versions of the Simple Gene Annotation Workflow shown
in Figure 2 were implemented to compare the performance
of the regular and the data-flow delegating approaches.

6.1 Technology, Hardware, Input, and Mea-

sured Factors
The technologies used in this implementation were the Python

v2.6.4 language and the ZSI v2.1 a1 12 library, for the de-
velopment of a workflow orchestrator and four component
web services, i.e., Dataset Provider, BLASTx, Hit-Select,
and QuickGO. ZSI supports dynamic generation of the web
services client code needed for satisfying the requirements
of the data-flow delegation approach proposed in this paper.
The Unix system monitoring tool top was used to monitor
processor and memory usages, and the IBM developerworks’
nmon13 tool was used to assess network traffic usage. Both
monitoring tools were invoked in an automated manner trac-
ing resource utilization with 1 second intervals.

The orchestrator and the component web services were ex-
ecuted on separate Linux machines, sharing a 1Gbit/s net-
work. The orchestrator and two of the component services
(i.e., BLASTx and Hit-Select) were deployed on duo core
2.4GHz processor machines with 4GB of RAM, and the
other component web services (i.e., Dataset Provider and
QuickGO) were hosted on separate duo core 2.4GHz proces-
sor machines with 2GB of RAM.

Input to the Simple Gene Annotation Workflow (Fig. 2)
were 10 sets of nucleotide sequences, used as query sequences
in the BLAST search provided by the BLASTx service, and
a database identifier used to specify which database of pro-
tein sequences to search against. The 10 sets of nucleotide
sequences were sampled from a set of 400, and contain 1,
2, 4, 6, 12, 25, 50, 100, 200, and 400 nucleotide sequences,
respectively. The data size of the subsets ranged from ∼1
KB to ∼550 KB. The protein sequence database used in all
runs, and provided by the Dataset Provider service, was
the UniProt/SwissProt database (Release 2010 06), which is
a 230.7 MB text file containing 517,100 protein sequences.
The size of the database is constant and does not change
with the input size of the workflow.

The factors considered during the performance measure-
ments were: network traffic (KB), memory usage (MB),
CPU usage (CPU-seconds), and run-time (s).Network traf-

fic is the sum of the data received and transmitted by the
web service stacks of the coordinator and component web

12
http://pywebsvcs.sourceforge.net/

13
http://www.ibm.com/developerworks/aix/library/au-analyze_aix/



80 Scientific results

services. Memory usage is the sum of memory required by
the web service stacks of the coordinator and component web
services. We measured accumulated memory usage with one
second intervals to emphasize also the time the memory is
allocated for, and not only the peak memory use. CPU us-

age is the number of CPU-seconds consumed by the web
service stacks of the coordinator and component web ser-
vices. The CPU-seconds are calculated by summarizing the
fraction of maximum CPU load multiplied by one second
of measurement interval. Run-time is the time it takes to
complete the full workflow execution, which is the time that
elapses from the departure of the initial input data to the
arrival of the final output data. Workflow runs were moni-
tored by performing measurements every second. Each test
was repeated five times to ensure reliable results.

6.2 Results and Analysis
The overall difference in performance between the two work-
flow approaches are shown in Fig. 4, and demonstrates that
the data-flow delegating approach is superior to the regular

approach for all considered performance factors.

The network traffic usage (Fig. 4(c)) increases with increas-
ing data size for both approaches as expected, but the pace
of the increase and almost identical difference between the
approaches regardless of the input size warrants an expla-
nation. The protein database transfer between the Dataset

Provider service and the BLASTx service is responsible for
a substantial part of the network traffic. The size of the
database is constant (approx. 230MB) and does not depend
on the input size, thus it has a larger effect on network traffic
figures for smaller input sizes. The workflow delegating the
data transfer can skip one transmission of all the interme-
diate data (including the large database), reducing network
traffic by half, i.e., for data sets with 1 to 100 sequences
the data-flow delegating workflow required 49.4%-49.7% less
bandwidth than the regular workflow. For larger input sizes,
the input and output of the workflow (which are not dele-
gated) constitute a larger part of the total data traffic, so
the percentage improvement achieved by delegating the in-
termediate data drops minimally, i.e., for 200 sequences it
was 48.7%; and for 400 sequences it was 47.7%.

Memory, CPU, and run-time also increases with data size
for both approaches, but unlike for network traffic the differ-
ence is negligible for small data sets and becomes significant
with larger data. The CPU usage improvement for the data-
flow delegating approach gradually increases from 7.6% to
37.9% for 1 to 50 sequences, and then it apparently levels
off: 42.4% for 100 sequences; 44.7% for 200 sequences; and
44.9% for 400 sequences. This indicates that the delegating
approach close to halves the workflow CPU usage for larger
data sets. Differences in memory usage shows a slightly dif-
ferent pattern. The delegating workflow consumes around
25% less memory than the regular approach for data sets
of 1 to 50 sequences. For larger data sets, the difference
becomes more pronounced: 29.2% for 100 sequences; 37.0%
for 200 sequences; and 52.8% for 400 sequences. The rapid
growth of memory optimization for 100 and more sequences
is caused by a shift in what the memory is used for. For
the input size up to 50 sequences, the protein database (see,
Figure 2) uses significantly larger part of memory than the
input and output data. The memory requirement of protein

Figure 5: Performance Analysis of the orchestrator



Paper II 81

Figure 4: Performance Improvement for the Workflow.

database is constant (as its size), which keeps the percent-
age of optimization at around 25%. But from 50 sequences,
the growing input, output and intermediate data use larger
part of memory than the protein database. Therefore, we
observe a rapid growth in memory optimization for large in-
put data. This suggests that the delegating approach scales
very well with regards to memory, and that it will signifi-
cantly outperform the regular approach for large input data.
The run-time of the two smallest data sets are slightly longer
for the delegating approach than for the regular approach:
1.8% for 1 sequence; and 0.2% for 2 sequences. However,
from 4 to 400 sequences, the delegating approach is faster,
with reduced run-times ranging from 0.4% to 12.7%. The
difference in run-time seems to level off, and is not expected
to change significantly for larger data sets, in this case. It
is because the workflow that we chose for this experiment
requires far more time for computation than for the data-
transfer, and communication optimizations have limited in-
fluence on the run-time improvement. We expect that the

run-time improvement will be larger and it will be growing
steadily according to the input size, when the data-transfer
constitutes a larger share of the total workflow run-time.

The results described in the previous section clearly demon-
strate that the delegating workflow outperforms the regular
approach. However, to resolve the impact of the delegat-
ing approach on the orchestrator some of the performance
measurements are presented in more detail. The BLASTx and
Hit-Select services have both input and output data del-
egated, in contrast to the Dataset Provider and QuickGO

services, where only the output or input data is delegated.
In the following, we discuss only on the middle section of
the workflow where the fully delegated services are invoked,
i.e. between BLASTx and Hit-Select services. The coor-
dinator is expected to be more severely affected when in-
voking these services with data-flow delegation, compared
to the partially delegated ones. Also, the following analysis
excludes the protein database transfer between the Dataset



82 Scientific results

Provider service and BLASTx service (see, Figure 2) to im-
prove the clarity of results.

The performance details for the orchestrator is shown in
Fig.5. The immediate observation one can make is that the
data-flow delegation has a significant impact on the orches-
trator. Memory usage for the orchestrator is reduced for
all data sets, ranging from 1/6 for 1 sequence to 1/25 for
400 sequences. The reduction in memory usage seems to
be close to linear with data size. CPU usage shows an even
more dramatic improvement—it is not at all affected by data
size in the data-flow delegating approach, in stark contrast
to the regular approach, where it increases significantly. The
network traffic usage is 6 times higher for the orchestrator

in the delegating approach for 1 sequence, but is ranging
from no change to 1/8 in favor of the delegating approach
for 2 to 400 sequences. The improvement in network traffic
seems to level out from 100 sequences onwards—with 1/8
reductions for 100, 200, and 400 sequences.

7. CONCLUSION AND FUTURE WORK
We have shown in practice how direct data transfer between
standard SOAP web services can be implemented in a cen-
trally orchestrated workflow. The XML schema that we have
developed and used to overload service operations, allows
the orchestrator to delegate the data-flow to component ser-
vices, providing the necessary information to the component
services for them to exchange the data directly. The changes
made to the service interface retain the possibility of access-
ing the service in a regular manner, so extending a web ser-
vice with data-flow delegation support does not break exist-
ing clients. Moreover, a workflow developer can decide which
intermediate data is delegated and which passes through the
orchestrator, thus allowing to store data provenance in key
steps of the pipeline.

The empirical results confirmed that the data-flow delega-
tion considerably improves the performance of the orches-
trator and the entire workflow. The performance gains are
higher when the workflow process larger data, similarly to
the trend shown by Zhang et al in [24] where data was for-
warded as WSRF resources. In contrast to Zhang et al’s
implementation, our data-flow delegation support is built
on top of a standard web service framework. It is a design
decision, making our solution framework-independent and
applicable to a wider range of services.

Our future plans include adding functionality for handling
component service failures during the workflow execution,
and support for DAG14 structured workflows.

Acknowledgement
This work was carried out as part of the eSysbio project
(No: 178885) funded by the Research Council of Norway.
The authors thank I. Jonassen for comments and sugges-
tions regarding the initial manuscript, and the anonymous
reviewers of this conference.

8. REFERENCES
[1] D. Abramson, J. Kommineni, and I. Altintas. Flexible io

services in the kepler grid workflow system. In the

14
Directed Acyclic Graph

International Conference on e-Science and Grid
Computing (e-Science), Melbourne, Australia, 2005.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. Basic local alignment search tool. Journal of
Molecular Biology, 215(3):403–410, 1990.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1.
Standard proposed by BEA Systems, IBM Corporation,
and Microsoft Corporation, 2003.

[4] R. Barga and D. Gannon. Workflows for e-Science, chapter
2 and 15, pages 9–16. Springer London, 2007.

[5] A. Barker, C. D. Walton, and D. Robertson.
Choreographing web services. IEEE Transactions on
Services Computing, 2(2):152–166, 2009.

[6] A. Barker, J. B. Weissman, and J. I. van Hemert. The
circulate architecture: avoiding workflow bottlenecks
caused by centralised orchestration. Cluster Computing,
12(2):221–235, 2009.

[7] J. Bhagat, E. Nzuobontane F. Tanoh, T Laurent,
J. Orlowski, M. Roos, K. Wolstencroft, S. Aleksejevs,
R. Stevens, S. Pettifer, R. Lopez, and C. A. Goble.
Biocatalogue: a universal catalogue of web services for the
life sciences. Nucleic Acids Research, 38(2), 2010.

[8] W. Binder, I. Constantinescu, and B. Faltings.
Decentralized orchestration of compositeweb services. In
the Proceedings of the International Conference on Web
Services (ICWS), Los Alamitos, CA, USA, 2006.

[9] The Gene Ontology Consortium. Gene ontology: Tool for
the unification of biology. Nature Genetics, 25:25–29, 2000.

[10] S. B. Davidson and J. Freire. Provenance and scientific
workflows: challenges and opportunities. In the Proceedings
of the ACM International Conference on Management of
data (SIGMOD), Vancouver, Canada, 2008.

[11] D. Habich, S. Preissler, W. Lehner, S. Richly, U. Aßmann,
M. Grasselt, and A. Maier. Data-grey-box web services in
data-centric environments. In the International Conference
on Web Services (ICWS), Utah, USA, 2007.

[12] S. Heinzl, D. Seiler, E. Juhnke, T. Stadelmann, R. Ewerth,
M. Grauer, and B. Freisleben. A scalable service oriented
architecture for multimedia analysis, synthesis and
consumption. International Journal of Web Grid Services,
5(3), 2009.

[13] B. Javadi, M. Tomko, and R. O. Sinnott. Decentralized
orchestration of data-centric workflows using the object
modeling system. In International Symposium on Cluster,
Cloud and Grid Computing (ccgrid 2012), Washington,
DC, USA, 2012.

[14] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai,
F. Fotouhi, and J. Hua. A reference architecture for
scientific workflow management systems and the view soa
solution. IEEE Transactions on Services Computing, 2(1),
2009.

[15] B. Ludäscher, M. Weske, T. Mcphillips, and S. Bowers.
Scientific Workflows: Business as Usual? In the
International Conference on Business Process Management
(BPM), Ulm, Germany, 2009.

[16] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir,
J. Ferris, K. Glover, C. Goble, A. Goderis, D. Hull,
D Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger,
R. Stevens, A. Wipat, and C. Wroe. Taverna: lessons in
creating a workflow environment for the life sciences:
Research Articles. Concurrency and Computation: Practice
and Experience, 18(10):1067–1100, 2006.

[17] D. Seiler, S. Heinzl, E. Juhnke, R. Ewerth, M. Grauer, and
B. Freisleben. Efficient data transmission in service
workflows for distributed video content analysis. In
Proceedings of the 6th International Conference on
Advances in Mobile Computing and Multimedia (MoMM),
Linz, Austria, 2008.

[18] S. Sfakianakis, L. Koumakis, G. Zacharioudakis, and



Paper II 83

M. Tsiknakis. Web-Based Authoring and Secure Enactment
of Bioinformatics Workflows. In the Workshops at Grid and
Pervasive Computing Conference, Geneva, Switzerland,
2009.

[19] L. Stein. Creating a bioinformatics nation. Nature,
417(6885):119–120, 2002.

[20] S. Subramanian, P. Puntervoll, and P. Sztromwasser.
Optimizing the data-traffic of centrally coordinated
scientific workflow systems. In the International Conference
on Web Services (ICWS), Miami, Florida, USA, 2010.

[21] W. Tan, P. Missier, I. Foster, R. Madduri, D. D. Roure,
and C. Goble. A comparison of using taverna and bpel in
building scientific workflows: the case of cagrid.
Concurrency and Computation: Practice and Experience
(CCPE), In-press, Accepted in Oct 2009.

[22] D. Turi, P. Missier, C. Goble, D. De Roure, and T. Oinn.
Taverna workflows: Syntax and semantics. International
Conference on e-Science and Grid Computing, 2007.

[23] W. Yu. Scalable services orchestration with
continuation-passing messaging. In the International
Conference on Intensive Applications and Services
(INTENSIVE), Valencia, Spain, 2009.

[24] D. Zhang, P. Coddington, and A. Wendelborn. Web
services workflow with result data forwarding as resources.
Future Generation Computing System, 27(6), 2011.




