
Throughput and robustness of
bioinformatics pipelines for genome-scale

data analysis

Paweł Sztromwasser

Dissertation for the degree of Philosophiae Doctor (PhD)

Department of Informatics
University of Bergen

2014

Scientific environment

The work presented in this thesis was funded by a PhD grant from the University
of Bergen, and carried out at the Department of Informatics (II) of the University of
Bergen, and at the Computational Biology Unit (CBU) of the Uni Computing depart-
ment of Uni Research AS. I worked in a close collaboration with the eSysbio project
managed through Uni Computing, and funded by the Norwegian Research Council. I
was also affiliated with the Molecular and Computational Biology Research School at
the University of Bergen. My work was supervised by Dr. Kjell Petersen employed at
CBU, who was assisted by two co-supervisors: Dr. Pål Puntervoll at CBU, and profes-
sor Inge Jonassen at II and CBU.

My affiliation with the eSysbio project is important for the scope of contributions pre-
sented in this thesis. In the eSysbio project, we explored the possibility of using stan-
dard Web service technologies for building a virtual workspace for collaborative sys-
tems biology research. One of the open questions was applicability of the Web ser-
vice technology to high-throughput data analysis. This thesis attempts to answer this
question, and also promote the potential of Web services for building bioinformatics
infrastructure.

Acknowledgements

Although the cover page of this thesis bears only my name, there is a number of people
that deserve a share of the credit. Here is a non-exhaustive list of those that supported
me with their knowledge, advice, and heart during the last five years.

First, and foremost I would like to thank my supervisor, Kjell Petersen, for the excellent
work he has done mentoring me in the course of the studies. I appreciate the indepen-
dence I was provided with, the systematic and dedicated supervision, and the trust in
the final success. Kjell, you have an enormous capacity to manage multiple projects,
and despite a frequently busy schedule, you were always able to find time to discuss
with me. Even when I stormed into your office and flushed a torrent of unstructured
thoughts, you were always able to make sense of it. And most remarkably, you were
able to restore my hopes and trigger new ideas for attacking a problem, every time I
nearly gave up on solving it.

I owe my deepest gratitude to Inge Jonassen, both for the active co-supervision of my
work, and for being an excellent leader for the CBU, making it such a great workplace.
Inge, your overview of the diverse areas in bioinformatics and detailed knowledge about
them has impressed me from the beginning. Above all, thank you for replying to my
email “a while” back. If it were not for this email, I might have never had the opportu-
nity to come to the beautiful Bergen and start this adventure. A great deal of credit goes
to my co-supervisor Pål Puntervoll, who has often surprised me with outside-the-box
thinking, and the ability to take a step back and reconsider the choices made. Pål, thank
you for introducing me to the world of Web services, and for showing that a concise
and informative abstract can be made more concise and more informative at the same
time.

I would like to thank all the present and former colleagues at CBU for creating such
a great working environment, and for the after-work retreats in the fjords and moun-
tains. My colleague and office-mate, Sattanathan, for the productive collaboration and
many interesting discussions ranging from service computing to house renovation. The
entire eSysbio team consisting of Anne-Kristin, Armin, Håkon, Francisco, Inge, Ki-
dane, Kjell, Matuš, Michi, Prabu, Pål, Sattanathan, and Siv, for the spirit and mutual
help in the struggle with the Web service technology. I am deeply grateful to profes-
sor Ingvar Eidhammer, and my colleagues Sandhya and Matuš, who all reviewed this
thesis on a very short notice, and provided highly valuable input. Also, many thanks to
the members of the Norwegian Microarray/Genomics Consortium in Bergen, where I
spent a quarter of my work-time during the studies. I hope that I was of more help than
trouble:)

iv Acknowledgements

Many of the projects carried out as part of this thesis required heavy computing. I am
grateful for the access to the high-performance computing resources, and the support
I received from the engineers at Parallab, NOTUR, and CSC in Helsinki. Saerda, you
can breathe easy, I am not planning to use fimm in a while.

Huge thanks to my fantastic wife Aneta, who patiently supported my postponing of the
thesis hand-in, taking care of our little daughters, and providing me with valuable time
to eventually finish this work. NG, if you are reading this, I can confidently say that
I am done now. Thank you for joining me in the Bergen-adventure, and bringing to
the world the two lovely angels, Julia and Jagoda, whose company was a sought-after
getaway after the long workdays these last months.

Heartfelt thanks to: my parents, who supported my choice of bioinformatics from the
very beginning, carefully monitoring the progress of my studies, and ensuring that I
was not excessively delayed with the thesis; to my grandfather for being a role-model
of a researcher; and to my entire family for the support, and frequent visits to rainy
Bergen to bring the feeling of being home.

Also, many thanks to my friend Rafał for sending the ’are we there yet?’ cards every
few days during the last month of the thesis writing, and to all other people who have
supported me in the course of the PhD studies and in the writing process.

Summary

The post-genomic era has been heavily influenced by the rapid development of high-
throughput molecular-screening technologies, which has enabled genome-wide analy-
sis approaches on an unprecedented scale. The constantly decreasing cost of produc-
ing experimental data resulted in a data deluge, which has led to technical challenges
in distributed bioinformatics infrastructure and computational biology methods. At the
same time, the advances in deep-sequencing allowed intensified interrogation of human
genomes, leading to prominent discoveries linking our genetic makeup with numerous
medical conditions. The fast and cost-effective sequencing technology is expected to
soon become instrumental in personalized medicine. The transition of the methodol-
ogy related to genome sequencing and high-throughput data analysis from the research
domain to a clinical service is challenging in many aspects. One of them is provid-
ing medical personnel with accessible, robust, and accurate methods for analysis of
sequencing data.

The computational protocols used for analysis of the sequencing data are complex,
parameterized, and in continuous development, making results of data analysis sensi-
tive to factors such as the software used and the parameter values selected. However,
the influence of parameters on results of computational pipelines has not been sys-
tematically studied. To fill this gap, we investigated the robustness of a genetic vari-
ant discovery pipeline against changes of its parameter settings. Using two sensitivity
screening methods, we evaluated parameter influence on the identified genetic variants,
and found that the parameters have irregular effects and are inter-dependent. Only a
fraction of parameters were identified to have considerable impact on the results, sug-
gesting that screening parameter sensitivity can lead to simpler pipeline configuration.
Our results showed, that although a simple metric can be used to examine parameter
influence, more informative results are obtained using a criterion related to the accu-
racy of pipeline results. Using the results of sensitivity screening, we have shown that
the influential pipeline parameters can be adjusted to effectively increase the accuracy
of variant discovery. Such information is invaluable for researchers tuning pipeline pa-
rameters, and can guide the search for optimal settings for computational pipelines in
a clinical setting. Contrasting the two applied screening methods, we learned more
about specific requirements of robustness analysis of computational methods, and were
able to suggest a more tailored strategy for parameter screening. Our contributions
demonstrate the importance and the benefits of systematic robustness analysis of bioin-
formatics pipelines, and indicate that more efforts are needed to advance research in
this area.

Web services are commonly used to provide interoperable, programmatic access to

vi Summary

bioinformatics resources, and consequently, they are natural building blocks of bioin-
formatics analysis workflows. However, in the light of the data deluge, their usability
for data-intensive applications has been questioned. We investigated applicability of
standard Web services to high-throughput pipelines, and showed how throughput and
performance of such pipelines can be improved. By developing two complementary ap-
proaches, that take advantage of established and proven optimization mechanisms, we
were able to enhance Web service communication in a non-intrusive manner. The first
strategy increases throughput of Web service interfaces by a stream-like invocation pat-
tern. This additionally allows for data-pipelining between consecutive steps of a work-
flow. The second approach facilitated peer-to-peer data transfer between Web services
to increase the capacity of the workflow engine. We evaluated the impact of the en-
hancements on genome-scale pipelines, and showed that high-throughput data analysis
using standard Web service pipelines is possible, when the technology is used sensi-
bly. However, considering the contemporary data volumes and their expected growth,
methods capable of handling even larger data should be sought.

Systematic analysis of pipeline robustness requires intensive computations, which are
particularly demanding for high-throughput pipelines. Providing more efficient meth-
ods of pipeline execution is fundamental for enabling such examinations on a large-
scale. Furthermore, the standardized interfaces of Web services facilitate automated
executions, and are perfectly suited for coordinating large computational experiments.
I speculate that, provided wide adoption of Web service technology in bioinformat-
ics pipelines, large-scale quality control studies, such as robustness analysis, could be
automated and performed routinely on newly published computational methods. This
work contributes to realizing such a conception, providing technical basis for building
the necessary infrastructure and suggesting methodology for robustness analysis.

List of publications

Paper I
Paweł Sztromwasser, Pål Puntervoll, and Kjell Petersen. Data partitioning en-
ables the use of standard SOAPWeb Services in genome-scale workflows. Journal
of Integrative Bioinformatics, 8(2), 2011.

Paper II
Sattanathan Subramanian, Paweł Sztromwasser, Pål Puntervoll, and Kjell Pe-
tersen. Direct data transfer between SOAP web services in Orchestration. In
the International Conference on Information Integration and Web-based Applica-
tions & Services (iiWAS). ACM, 2012.

Paper III
Sattanathan Subramanian, Paweł Sztromwasser, Pål Puntervoll, and Kjell Pe-
tersen. Pipelined Data-flow Delegated Orchestration for Data-Intensive eScience
Workflows. International Journal of Web Information Systems, 9(3), 2013.

Paper IV
Paweł Sztromwasser, Kjell Petersen, and Inge Jonassen. Sensitivity screening
reveals influential parameters of a variant calling pipeline. Manuscript in prepa-
ration.

viii List of publications

Related publications not included in the scientific results

Sattanathan Subramanian, Pål Puntervoll, and Paweł Sztromwasser. Optimizing the
Data-Traffic of Centrally Coordinated Scientific Workflow Systems. In the International
Conference on Web Services (ICWS). IEEE, 2010.

Håkon Sagehaug, Prabakar Venkataraman, Armin Topfer, Kidane Tekle, Matuš Kalaš,
Paweł Sztromwasser, Anne-Kristin Stavrum, Michael Dondrup, Sattanathan Subrama-
nian, Francisco Roque, Siv Midtun Hollup, Inge Jonassen, Kjell Petersen, and Pål
Puntervoll. eSysbio: an adaptable workbench for collaborative life science research.
Manuscript in preparation.

Abbreviations

API Application Programming Interface

BPEL Business Process Execution Language

DNA Deoxyribonucleic Acid

EXI Efficient XML Interchange

GWAS Genome-Wide Association Study

HTTP Hypertext Transfer Protocol

MIME Multipurpose Internet Mail Extensions

PCR Polymerase Chain Reaction

REST Representational State Transfer

SNP Single Nucleotide Polymorphism

SNV Short Nucleotide Variant

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

W3C World Wide Web Consortium

WSDL Web Service Description Language

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

Contents

Scientific environment i

Acknowledgements iii

Summary v

List of publications vii

Abbreviations ix

I Synthesis xiii

1 Background 1
1.1 Bioinformatics analysis pipelines . 1

1.1.1 Characteristics . 1
1.1.2 Methods of pipeline composition 5
1.1.3 High-throughput pipelines of Web services 9

1.2 Genetic variants . 12
1.2.1 Bioinformatics pipeline for genetic variant discovery 13
1.2.2 Metrics of accuracy - recall and precision 14

1.3 Reproducibility and robustness of pipelines 15
1.3.1 Evaluating robustness with sensitivity analysis methods 16
1.3.2 Elementary effects method . 17

2 Aims of the thesis 21

3 Contributions 23
3.1 Performance and throughput of data-intensive workflows composed of

Web services . 23
3.1.1 Partitioning and pipelining of the data 23
3.1.2 Direct data-transfer between Web services 24

3.2 Robustness to parameter changes in bioinformatics pipelines 25

4 Discussion 27
4.1 High-throughput bioinformatics pipelines 27

4.1.1 Improving throughput of pipelines composed of Web-services . 28

xii CONTENTS

4.1.2 Other mechanisms of optimizing data transport in standard
Web services . 30

4.1.3 Distributed versus centralized data analysis 31
4.1.4 Outlook . 32

4.2 Robustness of bioinformatics pipelines 33
4.2.1 Influential parameters . 33
4.2.2 Optimization prospects . 34
4.2.3 Sensitivity screening . 35

5 Conclusion 37

Bibliography 39

II Scientific results 51

Paper I 53

Paper II 73

Paper III 85

Paper IV 101

III Appendices 135

eSysbio manuscript 137

Part I

Synthesis

Chapter 1

Background

1.1 Bioinformatics analysis pipelines

Bioinformaticians develop computational methods that extract biologically relevant in-
formation from experimental data. These methods are frequently complex processes
composed of elementary tasks that transform the input data step-by-step into meaning-
ful knowledge. The chain of tasks is referred to as a pipeline, or a workflow.

Similar to an algorithm represented in a pseudo-code, bioinformatics pipelines have ab-
stract representations. Most commonly, workflows are depicted as directed graphs with
nodes representing interleaving data and data-processing steps, and edges outlining the
sequence of steps (Figure 1.1). The source nodes represent pipeline inputs, including
input data and parameters, whereas the sink nodes mark pipeline output. In concrete
pipeline implementations, the data-processing nodes are bioinformatics programs or
databases, and the workflow itself is a program coordinating the sequence of execution
and the flow of the data between the components.

Workflows are often used to systematically automate computational protocols [1], and
as a generic method of resource integration, they are prevalent in many areas of scien-
tific computing [2]. In this thesis, I focus particularly on bioinformatics pipelines that
are used for analysis of high-throughput data. To delineate the challenges involved in
the development of such pipelines, I review their most important characteristics.

1.1.1 Characteristics

Geographical distribution and heterogeneity of resources

The basic components of bioinformatics pipelines are biological databases and bioin-
formatics programs. Both, the databases and the programs, are developed by re-
searchers and shared with the public domain freely available. The Nucleic Acid Re-
search journal keeps a record of these resources, and publishes updated collections an-
nually. Most recently, over 1500 distinct data repositories [6] and nearly 1500 unique
tools [7] were listed. This wealth of resources constitutes a diverse, complex and dis-
tributed [1] infrastructure for life science research. The Internet makes it easy to publish

2 Background

Figure 1.1: The figure shows an example of a bioinformatics pipeline - a simplified approach to pre-
dicting functions of uncharacterized gene sequences. The depicted workflow exploits the fact that all
organisms and their genes are related through the process of evolution. This implies that if a newly se-
quenced gene has a high degree of sequence similarity to a gene of known function from a different
species, it is likely to have the same or a similar function. The figure (a) depicts an abstract representa-
tion of the annotation pipeline, with the data in oval boxes, and processing steps in square boxes. From
the top: the input sequence of an unknown gene (pipeline input) is first associated with a similar gene
from another specie using sequence similarity search; next, functional annotations of the similar se-
quence (intermediate data) are retrieved from a database; in the end, the retrieved annotations (pipeline
output) can be used to assign putative functions to the unknown gene. In figure (b) the data processing
nodes show concrete tools used in the pipeline; the input, output, and intermediate data are presented in
oval boxes. Tool parameters are also considered important input, but to distinguish them from primary
inputs, the parameters are shown in a lighter color. The sequence similarity search is performed us-
ing BLAST [3], querying three distinct databases in the order of decreasing quality of annotation (and
increasing size), i.e. UniProt/SwissProt, UniProt/TrEMBL, and NCBI NR. Each of the three database
queries can be customized (using parameters exposed by the BLAST tool) to yield best possible results
in identifying evolutionary related sequences. When a similar sequence is found, its functional (Gene
Ontology [4]) annotations are retrieved using the QuickGO service [5]. The pipeline output includes
both, putative annotations and sequences that failed to match a known gene in any of the databases, and
thus could not be annotated.

new resources, both for the central data providers in the field (European Bioinformat-
ics Institute (EBI) in UK, National Center for Biotechnology Information (NCBI) in
USA, and DNA Data Bank of Japan (DDBJ)), and for smaller institutes and research
groups around the world that make a reputation as service providers [1]. Collectively,
these resources host vast amounts of biological information, and although partly over-
lapping [1], they represent a great value for the research community. However, the
degree of fragmentation and geographical dispersion is challenging with respect to in-
tegrating the data resources [8], which also holds true for their use as building blocks
in bioinformatics pipelines.

1.1 Bioinformatics analysis pipelines 3

Standalone
application Library Web

application Web service

Installation and
administration user user provider provider

Access constraints
operating
system,

dependencies

programming
language Internet access Internet access

Programmatic access yes / no yes no yes

Table 1.1: Comparison of four classes of resource interfaces. In standalone applications, programmatic
interface is available depending on type of the user interface, i.e. command-line applications can be
invoked programmatically, in contrast to applications with graphical user interface.

The distribution of efforts in building the infrastructure for research in life sciences, in
combination with autonomy of individual research groups [1], has resulted in a very di-
verse spectrum of resources. The heterogeneity, although enriching the field, creates a
major challenge for resource interoperability and data integration [9, 1]. The diversity
among resources is only partly caused by semantically diverse data-types present in
bioinformatics. It is also (and mostly) due to syntactically different representations of
the data, software design choices (platforms, programming languages), and technical
skills of the implementers [1]. Lack of canonical data formats for biological informa-
tion has led to proliferation of miscellaneous representations, modifications, and exten-
sions of existing formats. For instance, multiple sequence alignments can be found in
over 20 different representations according to EDAM1, an ontology of bioinformatics
data and operations [10]. Abundance of distinct representations of semantically iden-
tical data makes implementation of conceptually simple pipelines difficult, due to the
necessary format conversions [11, 12]. Such interoperability problems are greatly al-
leviated by standardization [1]. Thus, several initiatives have promoted common data
exchange formats, both for everyday data-types such as sequences, alignments, and
annotations [11], and for more specialized types like systems-biology models [13] or
protein structures [14].

Heterogeneity of resource interfaces

The heterogeneity of the resources is also manifested on the level of user interfaces,
which in case of bioinformatics software also include programmatic interfaces (APIs).
Four classes of interfaces can be distinguished for bioinformatics resources (Table
1.1): standalone applications, Web applications, programming libraries, and Web ser-
vices. Standalone applications are locally installable programs providing interactive
user-interface, either via a command-line (e.g. BWA [15], BLAST [3]), or a graphical
user interface (e.g. JExpress [16], JalView [17], Cytoscape [18]). The command-line
applications are suitable for embedding in scripts, in particular if they consume and
produce data in canonical formats (e.g. VCF [19] or BAM [20]), while applications
with graphical user interface usually do not offer programmatic execution. Locally in-
stalled standalone applications require an operating system supported by the program,

1http://edamontology.org

4 Background

sufficient hardware resources, installation of necessary dependencies, and performing
periodic updates. Also downloadable databases have similar requirements. In contrast,
Web applications (also referred to as Web servers) which are also used to provide in-
teractive access to biological databases (e.g. Uniprot [21], ELM [22], OMIM [23]) and
computational tools (e.g. NCBI BLAST [24], WEBnm@ [25]), are maintenance free
from the user perspective. They combine great user experience tailored to the offered
functionality with effortless availability (no installation nor maintenance is needed).
Since Web servers are intended for interactive, manual use, and do not provide pro-
grammatic access per se, their usability in automated pipelines is limited. In the past
this lack of proper programmatic access has led to a wide-spread ’web-scraping’ prac-
tice [9], i.e. an automatic parsing of Web content formatted and intended for visual
display to humans. Despite emergence of alternative methods, this practice continues
[26].

Resources designed to be programmatically accessed are provided as libraries (e.g.
Bioconductor [27], Biopython [28], Bioperl [29]), or Web services2 [30]. The libraries
are installed locally, and can only be used from the programming language they are
written in. In contrast, Web services are platform- and language-independent and offer
remote, automatic access using standard Internet protocols such as the HTTP. A Web
service ”is a software system designed to support interoperable machine-to-machine
interaction over a network” 3, or simply a programmatic interface [30, 31]. Today, many
institutions offer tools [32] and access to data [33] using Web service interfaces, and
the technology has become a de facto standard for data integration in the bioinformatics
community [26, 34]. It should be noted that prior to Web services, the standard for
interoperable communication between machines was CORBA4, but in contrast to Web
services [31], it has not become widely used [1].

Data size

Many bioinformatics analysis pipelines are unarguably low-throughput. However,
since the wide-spread adoption of microarrays, and later deep-sequencing technolo-
gies, genome-wide analyzes have become a routine. The fields of genomics, transcrip-
tomics, and proteomics are flourishing, and high-throughput instruments generate enor-
mous amounts of data, challenging existing software and hardware infrastructures [35].
DNA sequencing capacity doubles every 9 months [35] and has outpaced the growth
in computer power [36] approximated by Moore’s law (Figure 1.2). As the trend con-
tinues, it is not data production, but data management and computational data analysis
that becomes the technical bottleneck of research in life sciences [36].

Analysis of high-throughput data requires efficient computational methods, that aid ex-
traction of relevant information from the deluge of data. Due to the complexity of the
assessed problems and the increasing data sizes, many of the programs and pipelines
require long-running calculations and powerful computer resources. Software develop-
ers focus strongly on increasing performance of their programs, and runtime is among
the most frequently benchmarked qualities of bioinformatics tools and algorithms (e.g.

2http://www.w3.org/TR/ws-arch
3http://www.w3.org/TR/ws-arch (cited Nov 2013)
4http://www.omg.org/spec/CORBA/Current

1.1 Bioinformatics analysis pipelines 5

Figure 1.2: The decreasing cost of DNA sequencing in comparison with the Moore’s law. Graphics
taken with permission from http://www.genome.gov/SequencingCosts [37].

[38],[39]). In consequence, many programs support parallel computing, often taking
advantage of a key property of biological data - cardinality. Typically, sizable datasets
consist of large numbers of small or medium-size entities, that represent individual
molecules or measurements. If these entities are independent, the dataset can easily be
split for concurrent processing to effectively reduce the time necessary for the analysis
[40]. Parallel programs need to be executed on infrastructure that supports concurrent
processing on a large scale, for instance high-performance computing centers, compu-
tational grids, or clouds. For particularly critical applications, like for instance short
read mapping to a reference sequence, additional efforts are made to boost the perfor-
mance further, by for instance custom-made hardware [41, 42]. A recently proposed
concept of compressive algorithms [36] addresses the challenges of searching and stor-
ing large genomic datasets, i.e. taking advantage of great redundancy of information in
re-sequenced human genomes, the data can be compressed in a manner allowing effi-
cient similarity searches using customized versions of BLAST and BLAT algorithms.
Still, the expected data growth puts forward strong requirements for software systems
that support high-throughput data analysis in life sciences.

1.1.2 Methods of pipeline composition

The previous section described bioinformatics workflows as automated data analy-
sis processes that integrate distributed and heterogeneous resources. High-throughput
pipelines can be further characterized as computationally-expensive, long-running, and
data-intensive. The explorative and collaborative nature of research raises additional
requirements regarding pipeline management systems. The workflows need to be rapid

6 Background

in prototyping and flexible in adapting to continuously evolving analysis practices
[12, 43]. Sharing workflows between researchers should be easy to avoid duplica-
tion of efforts and simplify collaboration. The researchers should have the possibility
to document the execution of a pipeline, together with exact versions of resources used,
parameter values, and provenance of the data, to ensure reproducibility of the experi-
ments [44, 45]. In practice, these pose challenges with respect to the workflow tech-
nology, as it needs to flexibly orchestrate diverse distributed resources in an efficient
manner.

Scripting

Scripts are the most basic method of automating data analysis in bioinformatics. They
are short programs written ad-hoc; ”quick-and-dirty” [46] one-offs that allow to quickly
get an answer to a question [9, 27]. All scripting and programming languages can be
used for this purpose, but shell scripts, Perl, Python, and R are probably most com-
monly used. Shell scripts are very useful in automating execution of command-line
programs, file operations, and they provide access to rich text-processing support in
the Unix shell. Scripting languages, like Perl and Python, provide in addition more
advanced programming constructs, and comprehensive libraries for diverse purposes
(e.g. database access, Web service invocation). More importantly, toolkits of bioin-
formatics methods, such as Bioperl [29] and Biopython [28], are available for these
languages. These toolkits help to parse files, convert between common data formats,
and access external data resources, effectively limiting the duplication of efforts among
bioinformaticians [9] The statistical programming language R [47] displays a similar
strength, providing arguably the most comprehensive data analysis library for biolog-
ical data (i.e. Bioconductor [27]), in addition to a rich set of statistical and plotting
functionalities.

Data analysis pipelines developed directly in a programming language can easily ac-
cess both local and remote components, and provide greater control over implemen-
tation details, which can help, for instance, in optimizing performance. Developing
one-off scripts is quick and it facilitates rapid prototyping, but the resulting code is
hardly reusable [27, 48, 9]. These frequently undocumented scripts [9] are not read-
ily accessible for fellow programmers, hamper transparency and reproducibility, and
cannot easily be used to document data provenance. They can also be inaccessible for
researchers unfamiliar with programming [49, 50].

Workbenches

Streamlining data analysis with scripting languages requires programming skills, which
are not very common among life science researchers [50, 49]. For them, applications
called workbenches offer a possibility to perform multi-step data analysis using a pre-
defined set of tools and resources, without the need for coding. The workbenches can
also provide visualization utilities, data storage and management, transparent prove-
nance tracking; altogether creating a powerful integrated environment for data analy-
sis. Examples of such applications are Galaxy [50–52], Chipster [53], and GenePattern
[49].

Galaxy is focused on making genomic data analysis accessible and reproducible. The

1.1 Bioinformatics analysis pipelines 7

workbench provides a virtual workspace where users can store the data, analyze it with
a set of genome analysis tools, and save the history of a step-by-step analysis as a work-
flow. The workflows can be conveniently shared, both for reuse by other researchers,
and for documenting analysis history. Galaxy has a Web-based client application where
users interact with the tools and data, and a back-end server where the computations
are executed. While a public instance of the Galaxy server is freely available5, re-
searchers who need better performance, or custom tools and resources can download
Galaxy and deploy it locally. Chipster is a platform for high-throughput data analysis;
it offers a spectrum of computational and visualization methods, predefined workflows
and the possibility of creating user-defined pipelines based on execution history. Chip-
ster workflows can be saved as files and shared with other users of the system. The
system has a client-server architecture consisting of a graphical desktop application,
and one or more computational servers. GenePattern was initially used for gene ex-
pression analysis [49], but currently its scope covers also proteomics, flow-cytometry,
and SNP analysis. The workbench supports connecting individual analysis steps into
pipelines, which can subsequently be added to the tool inventory or exported for shar-
ing with other users of the system. Users interact with the system using a Web-based
application, while the computations and analysis is performed on a server, similarly to
Galaxy. An attractive feature of GenePattern is the programmatic interface that allows
using the analysis modules in an automated fashion outside of the application.

Workbenches are convenient and accessible environments for data analysis in bioinfor-
matics. They focus primarily on interactive analysis, but each one of them supports
automation of repetitive analysis processes in a form of pipelines. The default selection
of tools and resources in these workbenches corresponds to the research area they are
focused on, but all the workbenches have a possibility of extending the default toolbox.

Workflow management systems

Another type of applications that can facilitate automation of data analysis without re-
quiring programming skills are (scientific) workflow management systems. In a work-
flowmanagement system, workflows are defined, managed, and executed on computing
resources [2]. Instead of aggregating tools and resources to perform data analysis cen-
trally (like workbenches), workflow systems provide means of coordinating distributed
analysis components. Workflow management systems are popular in grid environments
(e.g. Kepler [55], Pegasus [56], and Triana [57]), but are also used in bioinformatics
where the dominant workflow engine is Taverna [58].

The distributed analysis components invoked during workflow execution are frequently
services of various sorts, e.g. Web services, Grid services, cloud services [58]. Com-
bining distributed (and heterogeneous) services is a complex procedure [8], and the
workflow systems assist the user by providing graphical environments for workflow
design (Figure 1.3) [57, 55, 58]. This theoretically makes it possible to develop com-
posite pipelines with no programming skills. In practice however, considering that the
bioinformatics Web services alone are not a uniform group of software systems [30, 8],
it is challenging to ensure interoperability between them. In Taverna, the heterogeneous
data representations and technical differences are taken care of using shims [58, 54, 8] -

5http://usegalaxy.org

8 Background

Workflow Outputs

GI_number

Get_Nucleotide_FASTA

BLASTp

BLAST

SWISS

repeatmasker

blast_out

genscan

genscansplitter

RepeatMasker_reportpeptides cds genscan_report

Figure 1.3: A genome annotation pipeline implemented as a Taverna workflow [54].
c©Duncan Hull, Hannah Tipney / myExperiment / CC BY-ND 3.0

small programs that align the input and the output of connected services [12]. Another
challenge are services with poorly documented interfaces, which can require manual in-
vestigation of service capabilities, including formats of the input and output data [54].
Also stability of the tools in a distributed inventory can be a concern [54, 1], in contrast
to locally maintained resources.

The numerous scientific workflow management systems lack a common standard for-
mat for describing workflows [2]. Proliferation of peculiar formats [59] hinders reuse of
workflow designers [2], and prevents reuse of pipelines between the environments. In
the IT industry a de facto standard [60] for defining workflows is the Business Process
Execution Language (BPEL)6 [61] specified by the standardization organization OA-
SIS7. Several engines that are able to execute BPEL workflows have been developed,
with the most prominent open-source representative being Apache ODE8, jBPM9, and
OW2 Orchestra10. Although BPEL is a standardized format capable of expressing sci-
entific workflows [60], it has nearly no recognition in the bioinformatics community.
The reasons for it could include: exclusive support for the standard Web services [62],
making it difficult to build pipelines using local computations and other types of ser-
vices; limited selection of open-source tool support [62], besides workflow execution
[60] and design [59]; verbosity of the language [62, 59]; and performance problems
related to processing large data using Web services [63, 64].

6http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
7http://www.oasis-open.org
8http://ode.apache.org
9http://www.jboss.org/jbpm
10http://orchestra.ow2.org

1.1 Bioinformatics analysis pipelines 9

eSysbio

The eSysbio project11 explored the possibility of building a Web-based bioinformatics
workbench using standard Web service technologies. We have built a proof-of-concept
system that combines rich data management functionality, allowing to store, visualize,
and share data, with a distributed analysis toolbox consisting of standard Web services,
R scripts, and BPEL workflows (the manuscript describing the eSysbio system is in
Appendices, in Part III). Similar to Taverna, a user of eSysbio can extend his or her
toolbox by providing a URL to a service interface, taking advantage of the wealth of
utilities gathered, for instance in BioCatalogue [65]. The modules of the system are
standard Web services themselves, allowing programmatic access to the systems from
external applications, as well as the default Web-based user-interface. As a member of
the project, the author studied performance of high-throughput pipelines composed of
standard Web services.

1.1.3 High-throughput pipelines of Web services

Data analysis using distributed and heterogeneous bioinformatics resources requires a
technology that allows interoperable communication over the Internet. The interoper-
ability of the programmatic interfaces implemented using Web services, empowered
by the ”alphabet soup of standards” that accompanies the technology [9], and ability to
communicate over the network, matches perfectly the needs of distributed and diverse
bioinformatics resources. Thus, the technology of Web services was recognized early
as a promising platform for integration in bioinformatics [9]. Since the landmark com-
mentary by Lincoln Stein [9] who envisioned ”bioinformatics nation” united by Web
services exchanging data in common formats, the technology has spread in the field in
many forms [30, 31, 8, 66, 67, 34]. Today, many groups offer their tools and access
to data using Web service interfaces, and the technology is considered a de facto stan-
dard for data integration in the community [26, 8, 34]. Initiatives like EMBRACE12
[30], BioHackathon13[34], and recently ELIXIR14 actively helped in promoting use of
Web services by contributing guidelines, training, tools, and service registries. Previ-
ously, the EMBRACE registry of Web services [68], and at present the BioCatalogue
[65] list over 230015 bioinformatics services deployed around the world. The impor-
tance of Web services was also marked by the Nucleic Acid Research journal, which
since year 2010 has been including a separate Web service category in its annual Web
Server issue [69].

Although the World Wide Web Consortium (W3C)16 defines Web services as a con-
crete standard17, in bioinformatics the termWeb services covers a heterogeneous group
of programmatic interfaces accessed over the Web [30]. Among these, two main types

11http://esysbio.org
12http://www.embracegrid.info
13http://www.biohackathon.org
14http://www.elixir-europe.org
15accessed Nov 2013
16http://www.w3c.org
17http://www.w3.org/TR/ws-gloss

10 Background

can be distinguished: REST and SOAP-based [30]. Both types of services are com-
monly used to implement programmatic interfaces to bioinformatics resources, for in-
stance the DAS services [66] belong to the REST category, while BioMoby services
[67] are SOAP-based. Depending on the requirements of the resource, one type can be
more suitable than the other [70], and ”both technologies can be used to achieve useful
results” [30]. The SOAP-based Web services are carefully specified by a set of W3C
standards, including SOAP18 messaging protocol, machine-readable interface descrip-
tion format WSDL19, XML20 for data representation, and XML Schema21 for defining
the data formats. These specifications are further constrained by the guidelines of the
OASIS Web Service Interoperability (WS-I)22 profile [30] that provides a ’gold stan-
dard’ which allows the service providers to improve the quality of their Web service
interfaces, and increase their interoperability [30]. Supporting the claim that ”stan-
dardization can largely alleviate interoperability issues” [1], we have concentrated our
efforts on the SOAP-based Web services. Consequently, from this point onwards the
term Web services will denote SOAP Web services compliant with the WS-I profile.

The critics of Web services argue that the technology is getting heavier than it needs to
be to support flexible integration [1], and that it does not meet the requirements of large-
data processing. Using a Web service interface, it is not straight-forward to provide
long-running computations due to the limited time a HTTP connection can be open
[34] (this applies also to the REST services). The issue is often circumvented using so-
called status-polling [30, 34], which allows the service invocations to be short-lived: in
response to sending input data, a job (session) identifier is returned; the identifier can be
used to repetitively check the status of the started job, while waiting for its completion;
and in the end, it is used to retrieve the result of the computation.

More challenging for high-throughput applications is the poor performance of Web
services in handling large data [63, 64, 31, 34]. Although the management of siz-
able data is generally problematic in distributed computing, the XML used for Web
service communication aggravates the issue on two levels. First, information encoded
in XML is inflated making a SOAP message 4 to 10 times larger in size than a ma-
chine representation of the data it contains [63]. Second, conversion from in-memory
to textual representation of the data (serialization) and vice-versa (de-serialization) are
both resource-demanding processes [63, 64, 71], that limit the amount of data that can
be handled by existing Web service libraries [34]. Several standardized mechanisms
are able to increase efficiency of data handling in Web services [64], including Mes-
sage Transfer Optimization Mechanism (MTOM)23 which allows to send bulky data
as an attachment to a SOAP message, and thus avoid the expensive serialization and
de-serialization [34]. Still, it is challenging to apply the regular Web service paradigm
directly in data-intensive applications, and enabling high-throughput pipelines of Web
services requires increasing performance and throughput of Web service communica-
tion.
18http://www.w3.org/TR/soap
19http://www.w3.org/TR/wsdl
20http://www.w3.org/TR/xml11
21http://www.w3.org/TR/xmlschema-0
22http://www.oasis-ws-i.org
23http://www.w3.org/TR/soap12-mtom

1.1 Bioinformatics analysis pipelines 11

Improving performance and throughput of Web service pipelines

Various efforts address efficiency in handling voluminous data on the pipeline level,
and many of them question the applicability of the typically centralized workflow co-
ordination (orchestration) to data-intensive workflows. (Note the difference between
centralized computations in bioinformatics workbenches, and centralized coordination
of decentralized services). In orchestration, a central workflow engine controls the
invocation order of distributed component services, and acts as a broker for all data ex-
change. Centralized coordination makes it easier, for instance, to execute the workflow,
monitor progress, and handle failures. However, in high-throughput pipelines, the cen-
tral data broker can become a communication bottleneck constraining scalability [72]
and performance [73]. In contrast, in decentralized coordination (choreography), the
services are more autonomous and communicate directly with each other. Choreogra-
phy is a more natural model for the data-driven scientific analysis pipelines, but due to
the decentralized control, it is difficult to implement in practice [74, 72].

To combine the advantages of orchestration (i.e. central control) and choreography
(i.e. peer-to-peer data transfer), a hybrid model that separates the control-flow from
the data-flow was proposed [72]. The centralized control-flow decentralized data-flow
model was shown to have lower aggregated cost than the purely centralized approach
[72], and it was used in several solutions that aimed at improving performance of data-
intensive workflows. Liu et al. [75] developed an infrastructure and protocol support-
ing the centralized control-flow decentralized data-flow approach to building composite
services. Barker et al. [73] and Binder et al. [76] suggested that data can be exchanged
between intermediate components (proxies) positioned between the workflow engine
and the service. Similarly, in Data-Grey-Box Web services [77], the data-part of the
message was separated from the part containing functional parameters, and exchanged
separately using more efficient means. Zhang et al. [78] proposed and implemented re-
sult forwarding to the next service in the pipeline, using Web Service Resource Frame-
work (WSRF)24 resources. Also a pragmatic approach of sending a link to the data (a
reference, or a handle) instead of the actual data [55, 34], can be considered as a variant
of this model, since the data is retrieved using a separate transport channel.

Parallelization on different levels of workflow execution can also increase pipeline
throughput. The ability to concurrently execute independent branches of a workflow
graph is referred to as workflow-parallelism, and is implemented in many workflow
engines [79]. Data-parallelism, so simultaneous processing of independent data ele-
ments with minimal performance loss, can be implemented on the service [79] and
the workflow engine level, e.g. intra-processor parallelism in Taverna [80]. The third
type of parallelism, service-parallelism [79], allows for overlapping computation and
communication during pipeline execution, and has been implemented for instance in
Kepler [81], Taverna [80], and grid services [82]. In workflows where data processing
is more expensive than communication, service-parallelism (also called pipelining) can
nearly eliminate the influence of communication on the workflow runtime. Addition-
ally, pipelining allows for production of the first batches of final results much faster,
which can be helpful in for instance debugging workflows.

All the above strategies address efficiency of data-handling in pipelines and facilitate
24https://www.oasis-open.org/standards#wsrfv1.2 (accessed Nov 2013)

12 Background

increase of throughput. However, none of them is focused on standard Web services
exchanging data in XML. Section 3.1 presents two approaches that aim at optimizing
data-handling in pipelines composed of such Web services.

1.2 Genetic variants

The building recipe for any living organism is encoded in a chain of DNA. The se-
quence of nucleotides that make up DNA is unique to every person, and it is called a
genome. The differences between genomes of people, genetic variants, underlie the bi-
ological diversity among us. On average 1% of the 3 billion nucleotides that make up a
human genome are variants differing from the human reference genome [83]. The ge-
netic variants range from single nucleotide substitutions (Figure 1.4), short insertions
and deletions of DNA fragments (indels), to larger rearrangements. Single nucleotide
substitutions that occur frequently in a population are referred to as single nucleotide
polymorphisms (SNPs), whereas the term short nucleotide variants (SNVs) also en-
compasses indels.

Figure 1.4: Two double-stranded
DNA molecules differing in one
nucleotide-pair display a single
nucleotide substitution (SNP in
this case). The DNA strands are
composed of four types of nu-
cleotides: adenine (A), cytosine
(C), guanine (G), and thymine
(T).
c©David Hall / Wikimedia Com-
mons / GFDL / CC-BY-SA-3.0 /
CC-BY-2.5

Genetic variants have been found to be the causes of many rare genetic disorders [84].
Also common diseases, such as type-2 diabetes, are linked to hundreds of genetic vari-
ants through genome-wide association studies (GWAS) [85, 86]. Somatic (not inher-
ited) mutations found in patients diagnosed with cancer point to genes that can be
involved in tumor progression [87–89]. The advent of deep-sequencing technologies,
allowing for rapid and cost-effective interrogation of genomes in the search for ge-
netic variation, can thus be seen as a milestone in biology and biomedicine [90]. The
sequencing technology is an excellent tool for finding genetic causes of inherited dis-
eases [91], classifying cancer patients for the most promising drug-treatment [92, 93],
and molecular diagnostics of diseases with ambiguous symptoms [94]. The advances
in sequencing technology has made it accessible enough to consider transferring the
technology to the clinic [95, 92, 93]. However, the bioinformatics analysis of deep-
sequencing data is challenging [44], and currently ”the $1000 genome sequence comes

1.2 Genetic variants 13

with $20000 analysis price tag” [96].

1.2.1 Bioinformatics pipeline for genetic variant discovery

Deep-sequencing data used for genetic variant discovery consists of millions of short
sequences called reads. Depending on the platform used for sequencing, the reads have
different properties (pairing, length, error-rate) [90, 97], and they can be more, or less
suitable for genome re-sequencing and variant calling. The reads are produced by a
sequencer from a sample of amplified genetic material, which depending on a partic-
ular application, can either represent an entire genome (whole genome sequencing),
or regions of interest (targeted sequencing). A commonly targeted part of the genome
are the protein-coding regions (exome), as they contains the best-understood functional
elements [98]. This approach is referred to as exome-sequencing, and relies on a labo-
ratory procedure that is able to selectively capture the targeted part of the genome.

Assuming an appropriate sequencing platform is chosen, a generic data analysis
pipeline for discovering small nucleotide variants (genotyping) using deep exome-
sequencing is depicted in Figure 1.5. A detailed explanation of the steps involved is
provided together with the figure. Briefly, the analysis starts with aligning reads to a
reference genome, followed by several steps where the alignment is refined, to even-
tually be used for calling variants. Depending on the aim of the study, the resulting
variants can be the final result (e.g. in association or population studies), or input to a
rigorous manual analysis by a geneticist (e.g. search for the causal mutation). In the lat-
ter case, the causative variants identified need to be confirmed using lower-throughput
laboratory methods, such as Sanger sequencing or PCR [95, 92].

Accurate determination of genetic variants is challenging [105], and the complex com-
putational methods employed at every step in the pipeline are unfamiliar to many
biomedical researchers [44]. The analysis programs process considerably large data,
are computationally intensive, and frequently use parallel processing [100, 15, 101].
All this makes it difficult to offer routine analysis of deep-sequencing data without a
powerful computing infrastructure, and assistance from bioinformaticians. Sustaining
the growing application of deep-sequencing in biomedicine will require accurate [92],
robust [92, 95], and more accessible bioinformatics tools [95, 92, 44], transparency of
the computational details [44], and reproducibility of the results [44]. Together with
concerns regarding data privacy [35] these are also the main bioinformatical challenges
that need to be addressed before deep-sequencing data can be used on a large scale in
health care.

As part of this thesis, robustness of a state-of-the-art genetic variant calling pipeline
was studied. Section 3.2 summarizes results of the study, and their implications for
the accuracy of the variant calling. For reference, definitions of the terms used in that
section, are presented below.

14 Background

Figure 1.5: The Best Practices workflow [99] for variant calling with the GATK [100]. The processing
starts with the alignment (mapping) of reads to a reference genome. This step results in an alignment
file, documenting the most likely original position in the genome for each sequenced read. Due to
mismatches between reads and the reference sequence, which can stem from sequencing errors or bi-
ological differences, this is a challenging step and often a read cannot be mapped unambiguously to
a single position [15]. The alignment step has a critical effect on quality of variant calling [97], and
must be done carefully. Several programs that implement distinct mapping algorithms [39] are available
[15, 101–104], and offer variable performance and accuracy [38]. After the alignment is generated, it
can be refined by for instance: removing duplicate reads being artifacts of the DNA amplification (util-
ities in toolkits SAMTools [20] or Picard25can be used for this); correcting erroneously aligned bases
around indels (using GATK [105]); and recalibrating of base quality scores (GATK [105]). Next, the
alignment is used to call variants, i.e. find mismatches between the analyzed sample and the reference
sequence. This is done using variant calling software (e.g. GATK UnifiedGenotyper [105], SAMtools
mpilup [20], SOAPsnp [106]) using either a single sample, or multiple samples (alignments) together to
improve sensitivity of the process [105]. The resulting raw variant calls can contain considerable por-
tion of calls that are artifacts of sequencing errors or data processing [105]. Hence, in order to increase
specificity, calls with quality scores indicating a false-discovery can be filtered out based on either raw
quality values provided by the genotyper, or better, recalibrated variant quality scores [105]. Also pub-
licly available SNP datasets, like HapMap [107] or dbSNP [108], can serve as reference information
in the filtering. Finally, the refined set of variants is ready for evaluation by a geneticist in the light of
other functional information linked to the genome sequence.
(source: Broad Institute, http://www.broadinstitute.org/gatk)

1.2.2 Metrics of accuracy - recall and precision

The accuracy of a method describes the ability of the method to provide correct results.
Accurate variant calling requires both the capacity to find the locations where the an-
alyzed genome differs from the reference (real biological variants), and the ability to
discard sequencing and misalignment errors. The correctly called genetic variants are
true positives. A variant call in a location where the analyzed genome is equal to the
reference is a type I error, and the call is a false positive. Missing a real genetic variant
25http://picard.sourceforge.net

1.3 Reproducibility and robustness of pipelines 15

is a type II error, and the call is a false negative.

To formally define these terms, let L be the set of all locations in the considered frag-
ment of a genome, V ⊆ L be the set of locations of real genetic variants, and C ⊆ L be
the set of locations identified by a variant calling method. Perfect variant calling would
yieldC =V . If TP is the set of true positives, FP the set of false positives, and FN the
set of false negatives, then:

TPC,V = {c : c ∈C∧ c ∈V}
FPC,V = {c : c ∈C∧ c /∈V}
FNC,V = {c : c /∈C∧ c ∈V}

Recall rate of the calls inC, also known as sensitivity (of the variant calling), describes
the ability to detect the biological variants (V), and is defined as

Recall(C,V) =
|TPC,V |

|TPC,V |+ |FNC,V |
=

|TPC,V |

|V |

Precision of the calls in C (positive predictive value), describes the capacity to avoid
erroneous calls, and is defined as:

Precision(C,V) =
|TPC,V |

|TPC,V |+ |FPC,V |
=

|TPC,V |

|C|

Another frequently used accuracy metric (more relevant for binary classifiers) is speci-
ficity. Specificity describes the ability to identify negative results, so in case of variant
calling, the locations with no real variants and no variant calls (true negatives, TN):

TNC,V = {c : c /∈C∧ c /∈V}

Speci f icity(C,V) =
|TNC,V |

|TNC,V |+ |FPC,V |

In this thesis (Section 3.2), we used recall and precision to describe accuracy of variant
calling.

1.3 Reproducibility and robustness of pipelines

The reproducibility of analysis results is a recognized concern in genomics research
[109, 44], and evidently it is even more critical in a clinical setting. An unambiguous
and detailed description of the data processing pipeline including input data, as well
as access to exact versions of software and parameter settings used for the analysis is
required to reproduce a computational analysis [44]. The peer-review process helps im-
proving the situation by making such documentation compulsory for publication, but
the extent of the information provided varies greatly, making it frequently impossible
to reproduce the computational analysis [44]. The analysis environments that trans-
parently document the history of the data analysis, and allow for publishing it together
with the results [58, 50, 49], are promising steps towards increasing reproducibility.

16 Background

The attention given to the details of the computational analysis in order to reproduce
results suggests that results of computational pipelines can be fragile. Indeed, it has
been shown that the software programs used in the analysis and their parameterization
have considerable impact on the results [110, 111]. Individual tools are rigorously
evaluated in benchmarks (e.g. [38, 112, 90, 113]), and increasingly more often studied
in the context of pipelines [114, 110]. But the influence of distinct program settings
is not examined, since the benchmarks use default or ”near-default” parameter values,
e.g. [38, 114, 110]. The parameters of individual tools are usually documented, but the
quality of the documentation varies between different software [95], making informed
selection of settings difficult. In essence, the extent of parameter influence on the results
of bioinformatics pipelines remains largely unknown, and needs to be explored to meet
the demand for robust analysis-methods in the clinical setting [95, 92].

1.3.1 Evaluating robustness with sensitivity analysis methods

The robustness of a method is ”a measure of its capacity to remain unaffected by small,
but deliberate variations in method parameters” [115]. It provides an indication of
method reliability during normal usage [115], but it is not directly related to the quality
of the findings. A robust pipeline produces stable and predictable results irrespective
of small perturbations in the input (both input data and parameters). In contrast, results
of a sensitive pipeline can heavily depend on the parameter values used, and small
variations in the input data. The connection between robustness and sensitivity allows
us to use sensitivity analysis methods to evaluate robustness of the pipeline and its
sensitivity to varying parameter values.

Sensitivity analysis tries to explain ”how uncertainty in the output of a model can be
apportioned to different sources of uncertainty in the model input” [116]. If we con-
sider a pipeline as a computational model, that for given inputs (including parameters)
produces an output, the sensitivity analysis can help in explaining the relations be-
tween varying parameter values and the result changes. Depending on characteristics
of the model (pipeline), its inputs and outputs, different sensitivity analysis methods
can be used. In computational pipelines the relationship between inputs and outputs
of a pipeline are collectively described in the algorithms of the component programs,
and little can be assumed about them (e.g. linearity). A standard strategy is to view the
model as a black box [116] which converts a set of inputs into a set of outputs. In such
an approach, the relationships between inputs and outputs are identified and quantified
using repetitive executions of the model (pipeline) with varying inputs, and observing
the effects on the output.

Focusing on the pipeline settings, the number of possible parameter value combina-
tions grows exponentially with the number of parameters, ruling out exhaustive analy-
sis even for insignificant number of parameters. Instead, Monte Carlo or quasi-Monte
Carlo methods are commonly used to randomly sample a reasonable number of input
settings for evaluation. The latter provides a more even distribution of pseudo-random
points in the sampled multidimensional space, by using for instance a low-discrepancy
Sobol’ sequence [117] or the Latin Hypercube design [118]. Based on pipeline eval-
uations for the sampled settings, the sensitivity can be quantified using local methods

1.3 Reproducibility and robustness of pipelines 17

based on partial derivatives, or global methods that rely on variance decomposition
(e.g. FAST [119, 120], Sobol’ indices [121]). Local analysis methods, although cost-
efficient, are only applicable to models where linear relationships between inputs and
outputs can be assumed [122]. In contrast, global methods for sensitivity analysis can
quantify sensitivity of non-linear models, but are more complex and require hundreds
or thousands of model evaluations per parameter [122]. Using such methods for long-
running bioinformatics pipelines, that may have tens of parameters, is impracticable.
Approximating approaches rely on meta-modeling methods that can emulate execution
of expensive models [116], High-Dimensional Model Representations [123], or group
sampling [116]. A two step approach has also been proposed [122, 124], where first, the
problem dimensionality is reduced by screening for influential parameters [125, 126],
then subsequently only these are examined in a quantitative analysis.

Although the analogy between computational models and scientific workflows is rather
clear, we were not able to find published examples of sensitivity analysis methods being
applied to computational pipelines. The promising potential of these methods needs to
be explored, and if necessary, the methods should be adapted to specific needs of testing
robustness of computational pipelines. As part of this thesis (Section 3.2), a sensitiv-
ity screening method was applied to a bioinformatics pipeline, to study influence of
pipeline parameters on the results. The details of the methods used are described below
for reference.

1.3.2 Elementary effects method

The elementary effects method (also called the Morris method) [125] is a sensitivity
screening technique designed to classify parameters of computational models into three
categories: non-influential, having linear influence, and influential with non-linear or
dependent effect. The method describes a strategy for global sampling of multidimen-
sional parameter space, that allows to efficiently compute effects of individual param-
eters (elementary effects). In addition, Morris proposed to characterize the parameters
of a model using simple statistics over the computed elementary effects.

In this section, first, the elementary effect is defined. Next, two strategies of sampling
the multidimensional parameter space are presented: a local nominal-range sampling,
and an efficient global strategy of the Morris methods [125]. The description of the
global sampling strategy is followed by a brief summary of the improvements sug-
gested by Campolongo et al. [126]. The approach to modification of parameter values
suggested by Morris is presented next. In the end, the measures of parameter influence
based on elementary effects are defined. As here the methods were used to screen for
influential parameters in a computational pipeline, the terminology is chosen accord-
ingly.

Elementary Effect

Let P be a pipeline that processes input in and produces output out. P is controlled
by k parameters p1, p2, ..., pk, that together with input have influence on the result, and
thus out = P(in, p1, p2, ..., pk). In analysis of parameter influence, all the input except
parameter values is kept constant, so in can be omitted from the list of arguments. An

18 Background

elementary effect (eei) is a change in the result introduced by a modification (Δ) of a
single parameter value (pi), relative to the modification:

eei =
Pin(p1, p2, ..., pi+Δ, ..., pk)−Pin(p1, p2, ..., pi, ..., pk)

Δ
(1.1)

An inherent requirement for computing an elementary effect is the possibility of quanti-
fying the difference between the results of two pipeline runs. Although pipeline results
rarely are scalar values that can be directly subtracted, a function capturing essential
characteristic of the results can frequently be defined to return a scalar. For a variant
calling pipeline it could be the number of variants called, or accuracy of the result (such
as recall or precision rates defined in Section 1.2.2). And if a single result cannot be
represented as a number, the difference between two pipeline result can possibly be
quantified and inserted into the equation, e.g. cardinality of the symmetric difference
between two sets of variant calls.

Sampling the parameter space

According to Equation 1.1 the calculation of an elementary effect requires that the two
contrasted pipeline runs differ in exactly one parameter value. Then, the elementary
effect describes change caused by modification of exactly one parameter, which facil-
itates straight-forward interpretation. Different strategies exist for sampling parameter
values, such that only one parameter value is different for a pair of settings. In a nom-
inal range analysis which uses a local method for sampling parameter values, the pa-
rameter values are changed individually, always starting from the nominal parameter
values [122] (in pipelines, the nominal values are the default parameter settings). In
such an analysis, the search space is very limited and concentrates around the default
(nominal) parameter values. Settings where two parameter values differ from the de-
fault are not evaluated, and thus the sensitivity screening provides a limited picture of
parameter influences [122].

In contrast, a global sampling method probes settings from entire multidimensional
parameter space. In the Morris method [125], the sampling is done in the following
way. For a set of k parameters (p1, ..., pk) to be analyzed, let X be a matrix of k+ 1
rows of length k. First row of X is filled with a vector of random parameter values
X1 = x1,x2, ...,xk, where xi (i ∈ {1,2, ...,k}) is a valid value of parameter pi. In k steps,
k subsequent rows of X are filled by copying the preceding row and modifying exactly
one random parameter value, e.g.

X2 = x1,x2, ...,xi+Δi, ...,x j, ...,xk−1,xk
X3 = x1,x2, ...,xi+Δi, ...,x j+Δ j, ...,xk−1,xk

where Δi is a predefined modifier for parameter pi, and xi+Δi is a valid value of param-
eter pi, for any i ∈ {1,2, ...,k}. The order of changed parameter values is determined
by a random permutation σ · (1, ..,k), ensuring value of each parameter is changed ex-
actly once. After the k steps, the matrix X contains k+1 rows of valid pipeline settings
(parameter values for all the parameters) with the following property:

Xi+1−Xi = 0,0, ...,Δσ(i), ...,0,0,
for i ∈ {1,2, ...,k−1}

1.3 Reproducibility and robustness of pipelines 19

This property guarantees that exactly one parameter value is modified between any pair
of adjacent rows in X . Hence, any such pair satisfies the requirement for calculating
an elementary effect (Equation 1.1), and from k+ 1 pipeline settings in X , exactly k
elementary effects can be computed. In the space of possible pipeline settings, X repre-
sents a trajectory starting in the random point X1, and traversing the space by jumping
k-times a Δσ(i) distance in the σ(i)-th dimension. Each of the k jumps produces an el-
ementary effect for a different parameter, and a trajectory can generate one elementary
effect for each pipeline parameter requiring k+1 pipeline executions.

Computing multiple trajectories allows to sample the parameter space better, and pro-
duce several elementary effect per parameter. In consequence, the estimates of param-
eter effects are more accurate. The random starting point in each trajectory (i.e. X1)
provides incidental spread of the trajectories in the multidimensional parameter space,
but cannot guarantee even coverage of all its areas. An improvement aiming at more
exhaustive scan of the parameter space, without increasing computational cost was
proposed by Campolongo et al. [126]. The enhancement depends on generating a con-
siderable number of trajectories to provide a background for choice of a smaller subset
of trajectories with maximal dispersion. The distance between two trajectories was de-
fined as a sum of geometric (e.g. Euclidean) distances between every pair of points of
the two trajectories. Computing the distances between every pair of trajectories in the
background set, allows to find a subset with highest sum of distances, providing maxi-
mal dispersion of points in the parameter space. In the sensitivity screening presented
in this thesis (Section 3.2), we used the improved sampling strategy.

Parameter value modifications

The parameter values in X must be valid parameter values, before and after modification
with Δ. Assuming that parameter pi takes values from range [mini,maxi], we define a
set Pi such that:

Pi = {
j · (maxi−mini)

qi−1
+mini, f or j ∈ {0,1, ...,qi−1}}

Pi is a set of qi points uniformly distributed within the range of possible pi values. Ran-
dom values of parameter pi are sampled from Pi. To ensure that the modified parameter
values (xi+Δi) also belong to Pi, and to facilitate uniform sampling of the values in Pi,
the following two constrains are proposed:

qi mod 2= 0 (1.2)

Δi = ±
(maxi−mini)

2
(1.3)

Satisfying constraint in Equation 1.2 ensures that Pi can be split into equally-sized
halves, i.e. xi < mini+ Δi and xi > maxi−Δi. A randomly sampled xi originates with
equal probability in any of the halves. Constraint 1.3 guarantees that after modification
with an appropriate sign, xi+ Δi is in the other half. Together, 1.2 and 1.3 assure that

20 Background

each pair of corresponding pi values (i.e. xi and xi+ Δi), and thus each value in Pi has
equal probability of being sampled.

Classification of parameters

In [125] the influence of the parameters was classified using two statistics: mean of
effects (μ) and standard deviation of the effects (σ). For a parameter pi analyzed in r
trajectories, these statistics are defined as:

μ =
r

∑
i=1
eei (1.4)

σ =

√
∑ri=1(μ − eei)2

r
(1.5)

Highly influential parameters are characterized by high μ , while high σ indicates non-
linearity of parameter effect, or dependence on values of other parameters. However, as
observed in [126], non-monotonous parameter effects can nullify each other, resulting
in insignificant values of μ . To eliminate such possibility, the authors suggested using
mean of absolute effect values (μ∗), as a more representative measure:

μ∗ =
r

∑
i=1

|eei| (1.6)

In the sensitivity screening carried out as part of this thesis (Section 3.2), we used σ
and μ∗ to describe influence of the parameters.

Chapter 2

Aims of the thesis

1. Investigate the feasibility of using standard Web services in high-throughput
pipelines.

2. Improve performance and throughput of pipelines composed of Web services.

3. Explore methods for testing robustness of high-throughput bioinformatics pipelines.

4. Analyze the influence of pipeline parameters on the results of a genetic variant
discovery pipeline.

The feasibility of using standard Web services for high-throughput pipelines (Aim
1) is addressed in Paper I. Approaches that contribute to improved performance and
throughput of Web service pipelines (Aim 2) are presented in Paper I, Paper II, and
Paper III. In Paper IV, Aims 3 and 4 are addressed by using two sensitivity screening
methods to study robustness of a variant discovery pipeline, and the influence of its
parameters on the resulting variant calls.

Chapter 3

Contributions

The results of this thesis are described in detail in four articles. Three of the articles
address the technical challenges of using Web services in high-throughput bioinformat-
ics pipelines. The fourth demonstrates suitability of sensitivity screening methods to
identify influential parameters in a pipeline for genetic variant discovery. Below, the
motivation and the results of the individual articles are summarized.

3.1 Performance and throughput of data-intensive work-

flows composed of Web services

Efficient use of the distributed bioinformatics programs and databases requires a tech-
nological platform that will enable seamless integration of heterogeneous resources.
The standard Web service technology was identified as such a platform, and proposed
to unify the bioinformatics resources by increasing their interoperability. As described
in Section 1.1.3, theWeb services fit perfectly for this purpose in many aspects, but they
lack support for efficient communication of large data encoded in XML. Hence, one of
the concerns of the bioinformatics community with respect to Web service technology
is related to the possibility of using Web services in high-throughput data processing
pipelines. We set out to investigate the feasibility of executing genome-scale pipelines
composed of standard Web-services, and explore methods that allow increased perfor-
mance and throughput of such pipelines, while retaining the highest level of interoper-
ability.

3.1.1 Partitioning and pipelining of the data

Genome-wide data often consists of thousands of elements (e.g. biological molecules,
measurements), that although individually small, when aggregated over a genome, be-
come considerable in size. In some analysis workflows, such as sequence annotation
or read alignment, these data elements are completely independent. In many others,
although the individual data elements are coupled, they can be split sensibly without
hindering analysis (e.g. alignment in variant calling). This feature of biological data is
frequently used to accelerate time-consuming computations by parallel processing. In

24 Contributions

Paper I and Paper III we used the data-partitioning strategy to reduce size of individ-
ual input portions, making them easier to transfer and handle by Web services.

Paper I presented the pattern of communication for standard Web services that enables
partitioning of input and output data. The new pattern of communication was evaluated
on a genome-scale bioinformatics workflow for annotation of DNA sequences. The
partitioned data case had lower memory requirements, which improved performance of
the data-handling by the Web services, allowed for the reduction in workflow run-time,
and thus increased throughput. Most importantly, we found that partitioning facili-
tates processing of unlimited size of data, that is otherwise constrained by the available
memory of the Web services. Thus, we could conclude that when used sensibly the
standard Web services can be used for genome-scale data analysis.

We discovered that a common way of iterating over single data elements (i.e. par-
titioning into single units), although scaling well and also eliminating the data-size
constraint, was highly inefficient. Too frequent communication resulted in consider-
able message processing overheads, reduced throughput, and when unrestrained, could
break the service. Corresponding observations were made in Paper III, where we
found that balancing the partition size has a considerable influence on workflow run-
time. Also, the experiments in Paper III, which were designed to measure the benefits
of data partitioning solely in Web service communication, confirmed the findings of
Paper I.

The partitioned communication presented in Paper I was enabled by an extension of
the status-polling mechanism for service interaction (Section 1.1.3). The extended in-
terface transformed the service-job into a data-processing stream, allowing to append
new data partitions to the already started computation, and at the same time retrieve
completed output parts, while the remaining computations were continuing. This way,
a Web service could be seen as a processor on a stream of data, enabling overlap of
data-processing and transfer (pipelining or service parallelism). To facilitate straight-
forward development, Paper I was accompanied with a software framework that sup-
ports implementation of data-partitioning Web services.

3.1.2 Direct data-transfer between Web services

Centralized coordination is the typical model for workflow execution, where a central
workflow engine invokes distributed component services, and is an intermediary in the
data-traffic between them. In data-intensive workflows, brokering the voluminous data
traffic is resource demanding, and limits performance and scalability of the workflow
system. To remove this bottle-neck and reduce the cost of workflow execution, the
responsibility for the data transfer can be distributed between component services. In
[127] and Paper II, we proposed how this can be implemented in standard SOAP Web
services.

The Data-Flow Delegation was theoretically defined and evaluated in [127], and it al-
lows the workflow engine to dynamically instruct a service to forward its output data
to another service. Paper II contributed a non-intrusive implementation of the Data-
Flow Delegation model for Web services, and experimentally examined performance

3.2 Robustness to parameter changes in bioinformatics pipelines 25

improvement on a genetic sequence annotation pipeline. The results showed that by
delegating responsibility for data-communication to the services, resource consump-
tion of the workflow engine is nearly eliminated. At the same time, we did not observe
any significant decrease in performance of the component services, despite the added
functionality for data-forwarding. Workflows that use the Data-Flow Delegation have
lower aggregated cost of execution, and shorter run-time. We found that these perfor-
mance gains are proportional to the data-size.

The dynamic invocation of services for the purpose of forwarding the data was based
on automatic parsing of the standard Web service interface description (WSDL), and
could easily be abstracted into a generic library. The support for Data-Flow Delegation
on the service level requires overloading the service operation with an optional element,
allowing it to be invoked with and without the Data-Flow Delegation functionality. In
Paper III, we have shown that with a minor extension to the overloading element, Web
services could support data partitioning to allow scalability with respect to data-size,
and to further improve workflow run-time and throughput.

3.2 Robustness to parameter changes in bioinformatics

pipelines

The results of high-throughput bioinformatics analysis pipelines are increasingly more
often seen as relevant in a clinical context, and thus ensuring accuracy and robustness
of the computational methods is critical. Pipeline parameters are a known source of
variability in the results, but the extent of their influence and robustness against pa-
rameter changes have not been explored systematically. A method that can evaluate
pipeline robustness and identify the most influential parameters, could help assessing
pipeline quality and guide informed selection of pipeline settings.

In Paper IV, we used a method for global sensitivity screening to assess robustness, and
identify influential parameters in a pipeline for genetic variant discovery. We discov-
ered that effects of the parameters were highly inter-dependent or non-linear, and that
only a few of the 24 tested parameters had a substantial effect on the results. Four out
of five of the most influential parameters tuned the variant calling step of the pipeline.
To compare the effects of parameter changes on the resulting variant calls, we devel-
oped a set of metrics to quantify the difference between the calls. Irrespective of the
metric used, the same parameters were indicated as being highly influential.

By using a reference set of variants in one of the metrics, we were able to relate the
parameter effects to variant calling accuracy. This metric also enabled quantification
of precision and recall rates for all of the tested combinations of parameter values.
We found that modifying parameter values can considerably change the accuracy of
variant calling, but the pipeline was robust to modest changes in the default settings.
Although the default pipeline settings offered very good compromise between accuracy
and recall, we identified combinations of parameter values that yielded higher precision
and higher recall rate, in comparison with the default settings. Using these results, we
showed and proved on a different sample, that the influential parameters effectively

26 Contributions

controlled the balance between recall and precision in variant calls, and that they are
promising targets for parameter settings optimization.

Finally, to evaluate the global sensitivity screening method, we contrasted it with a
cost-efficient local-screening approach. The local method identified nearly the same
parameters, but it was not able to quantify the predictability and monotonicity of pa-
rameter effects, nor provide the comprehensive results that laid ground for settings
optimization. On the other hand, the results of the local screening showed robustness
of the pipeline for ’near-default’ settings. Considering the advantages of the local and
the global screening methods, we outlined an efficient sampling strategy dedicated to
evaluating sensitivity of parameters, and robustness of computational pipelines.

Chapter 4

Discussion

The accessibility of deep-sequencing and the prospects it offers for personalized
medicine, pushes the technology into the clinic [93]. Consequently, one of the main
challenges in modern biomedicine is to bridge the gap between ease of data generation,
and the complexity of processing and analyzing it [96], for the purpose of explaining
genetic causes of diverse medical conditions [92, 94]. Addressing this challenge re-
quires providing complex bioinformatics methods in an accessible manner [92, 95, 44].
The standardized Web service technology promoted in Papers I-III facilitate building
a modularized infrastructure, that uses interoperable components; allows for flexible
scaling; and can hide complexity of computations, integration, and distribution of re-
sources. Provided easy-to-use integration frameworks, even complex bioinformatics
analysis (such as the genetic variant discovery pipeline studied in Paper IV) could be
executed by medical personnel from hospital premises. The contributions from Papers
I-III help to increase the throughput of pipelines composed of standard Web services,
allow to produce computational results faster and cheaper, and contribute to bridging
the cost-gap between data generation and its analysis [96]. The increased through-
put, together with standardized interfaces that ease automation, are fundamental for
enabling in silico experiments that previously were unfeasible or down-prioritized due
to the costs involved, such as the study of parameter sensitivity presented in Paper IV.

4.1 High-throughput bioinformatics pipelines

High-throughput data analysis using distributed bioinformatics resources requires a
technology that would allow interoperable communication over the Internet, and at
the same time provide a mechanism for efficient data transport. The technology of Web
services meets the requirements for building the interoperable infrastructure, but the
usability of Web services for high-throughput bioinformatics pipelines is limited due
to inefficient data-handling. To investigate the applicability of the technology to data-
intensive pipelines, we proposed and evaluated two approaches that improve through-
put of pipelines of Web services. In Paper I, we showed that throughput of a Web
service, and consequently a pipeline, can be largely improved by partitioning the data
and stream-like invocation pattern. Paper II showed that the capacity of a workflow
engine can be increased by relieving it from the data-transport mediation, in conse-

28 Discussion

quence allowing orchestration of larger number of workflows. And finally, in Paper
III we demonstrated that the two approaches are complementary, and applying them
together results in greatest performance gain.

4.1.1 Improving throughput of pipelines composed of Web-services

Data partitioning

The approach presented in Paper I was based on the observation that high-throughput
datasets are frequently composed of thousands of independent elements of the same
type (e.g. genes, proteins). Processing of such data can be easily parallelized,
and hence, data-parallelism [79] is a commonly practiced technique for optimizing
pipelines [40]. Web services processing large data, although having access to power-
ful high-performance computing resources, can be constrained by the throughput of
their Web service interfaces. To aid this, we proposed a stream-like interface and a
communication pattern that allow highly-scalable Web service messaging using par-
titioned data. We showed that communication with partitioned data has considerably
lower resource demands with respect to XML serialization and de-serialization, and al-
lows for transferring arbitrarily large data in appropriately-sized partitions. Lowered
resource demands, increase responsiveness and throughput of the Web service commu-
nication, and consequently, decrease workflow runtime. In addition, the independent
data partitions enable pipelining of the data between consecutive services in a work-
flow (service-parallelism [79]), which further contribute to reduction in workflow run-
time by overlapping computation and data-transport. Overall, Paper I demonstrated
that using data partitioning, execution of genome-size pipelines composed of standard
Web services is feasible.

A workflow engine supporting both data- and service-parallelism (e.g. Taverna [58]),
could provide similar benefits as data-partitioning, when invoking batch-processing
services. However, the limitation on the number of concurrently open service ses-
sions (and threads controlling them) [80] largely constrains scalability and throughput
of such a pipeline. The stream-like Web service interface proposed in Paper I is free
of this constraint and allows higher throughput. Implementing a workflow that uses
the stream-like interfaces is equally easy as other standard Web services, but handling
the data-streams can be rather complex, requiring two threads for every service. A
pipeline composed of several data-partitioning services would require that the work-
flow engine handles multiple threads, each sending and receiving many messages with
data partitions. Hence, although the approach scales in terms of data size, the number
of partitioning services that can be efficiently coordinated by one workflow engine is
limited. Using the Data-Flow Delegation method proposed in Paper II can alleviate
this limit.

Data-Flow Delegation

For classical service orchestration, it has been shown that a direct data-traffic between
services, instead of via the workflow engine, can improve aggregated performance of
a workflow system [72]. The model of distributed data-flow was applied to many dif-
ferent types of services [75, 77, 78], including proxies to standard Web services [73].

4.1 High-throughput bioinformatics pipelines 29

In Paper II, we proposed how this model can be implemented in standard SOAP Web
services, using Data-Flow Delegation. The evaluation of the implemented solution was
carried out on a gene annotation pipeline, and it supported the findings of the previ-
ous studies that assessed the distributed data-flow model using other types of services
[72, 78]. We observed that Data-Flow Delegation nearly eliminated the load on the
workflow engine, without making a noticeable difference to the services. The minimal
resources required to coordinate one pipeline allow the workflow engine to coordinate
multiple pipelines in parallel, considerably increasing its throughput.

The approach of Data-Flow Delegation is neutral to existing clients, since it is based
on overloading operation signatures in the service interface (WSDL). This allows the
workflow system to use both regular (centralized) and the distributed data-flow model,
depending on the requirements; makes it easy to mix and match in one pipeline Web
services supporting Data-Flow Delegation and regular Web services; and allows to
route the intermediate data via the coordinator for data-provenance purposes. It can be
argued that peer-to-peer communication between services increases coupling between
workflow components. However, the connection is established dynamically based on
the instruction obtained from the workflow engine, and services have no prior knowl-
edge about their interaction partners. The support for on-the-fly data conversion offered
by the workflow engines that mediate the data-flow (e.g. ”shims” in Taverna [54], or
XSLT in BPEL engines), was not included in the implementation proposed in Paper
II. However, this could easily be supported: simple data conversions described using
standard methods for XML manipulation (e.g. XQuery1, XSLT2) could be sent as part
of the data-delegation instruction from the engine, and be executed by the service.

While experimenting with data-partitioning (Paper I) we found that the granularity
of Web service communication is an important factor in the overall performance of
a workflow system. Consequently, the software framework we provided allowed for
custom sizes of data partitions, helping to balance the frequency of messaging and
partition sizes. In Paper III, we combined data-partitioning and Data-Flow Delegation,
and showed that the messaging granularity has an optimum. This optimum can be found
by probing different message (data partition) sizes, and ideally, in a workflow system
that supports data-partitioning, the granularity and the frequency of communication
should dynamically adapt to the varying load in the system.

Complementarity of the two approaches, data-partitioning and Data-Flow Delegation,
was demonstrated in Paper III. Data-partitioning enables processing of unlimited data
sizes, data-, and service-parallelism, which are not possible with Data-Flow Delegation
alone. In turn, the Data-Flow Delegation helps in concurrent handling of multiple data-
partition streams in a workflow engine, by reducing the resources required for work-
flow coordination. Both enhancements increase performance of Web service pipelines,
enabling execution of genome-scale workflows, as shown in Paper I. Although seman-
tically similar to other approaches, they are the only ones implemented using standard
Web services. Hence, the optimized services can be used in all systems which support
the execution of standard Web services, such as Taverna, Galaxy [50], and BPEL [61]
engines.

1http://www.w3.org/TR/xquery/
2http://www.w3.org/TR/xslt

30 Discussion

Maintaining full interoperability between the optimized Web services and other com-
ponents of the Web service environment was our main design principle. The proposed
enhancements do not interfere with the Web service communication stack, are designed
on the application level, on top of ordinary Web service libraries, and use exclusively
standard technology assets. The generality of the approaches is also demonstrated
in the fact that the experiments were carried out using implementations in different
programming languages and using different Web service libraries. Ideally, both data-
partitioning and data-flow delegation should be supported on the level of Web ser-
vice definition and communication, including interface description (WSDL), messag-
ing (SOAP), and code generation by Web service libraries. Such support would pro-
vide more transparency to the programmer, reduce software engineering effort needed
to develop and invoke optimized Web services, and possibly further improve the per-
formance.

4.1.2 Other mechanisms of optimizing data transport in standard Web

services

Exchanging data among Web services using textual XML is associated with large per-
formance loss, but it has numerous advantages: complete typing of Web service inter-
face, message validation, and fully transparent transition from the textual to in-memory
representation of the data (data-binding). Thanks to data-binding, the programmer
”can abstract from the textual XML appearance of the data exchanged by SOAP mes-
sages, and regard it as a medium for directly transferring data objects” [11]: the data
is ’parsed-on-arrival’ and accessible as objects in the code. From the interoperability
perspective, these are undoubtedly important features, and they motivated our focus
on Web services exchanging all data in XML. However, considering the rapid growth
in data-production due to the high-throughput technologies, arguing for representing
all data in textual XML is unreasonable, especially if dedicated canonical file formats
exist, for instance SAM and BAM [20] for deep-sequencing data.

The enhancements presented in Papers I-III offer the greatest performance gain for
services that exchange all data in XML, but they can also improve performance when
the bulk of the data is encoded in a more efficient format. As pointed out by van Enge-
len [64], the Web service technology does not necessitate encoding all the data in XML.
Web services provide several standard optimization mechanisms that improve their per-
formance in handling data, e.g. message compression, binary attachments (MTOM3),
and HTTP chunking. For instance, a service being simply the Web interface to a pro-
gram that takes a BAM file as input, could get the input file sent as an attachment to
bypass the costly XML encoding/decoding [34], whereas additional data pertaining to
the request (e.g. parameters), could be encoded directly in the SOAP message. The ap-
proach of isolating the bulky input from the rest of the SOAP message has practically
no drawbacks, if the data is represented in a canonical format. Otherwise, it is diffi-
cult to document the expected format of the attachment, as the Web service interface
description (WSDL) does not allow detailed format definitions for attached files (be-
yond MIME types). Providing support for this could lead to increased interoperability

3http://www.w3.org/TR/soap12-mtom

4.1 High-throughput bioinformatics pipelines 31

of services that exchange data in files instead of XML documents.

A recent development which can considerably advance efficiency of XML processing,
is the new W3C standard for binary encoding of XML - Efficient XML Interchange
(EXI)4 [128]. EXI is a representation of XML, which can be compressed using de-
tailed information about the structure of an XML document (its XML Schema) to
significantly reduce data volume, and at the same time improve performance of en-
coding/decoding [129]. The format may enable use of XML for types of data that
previously could not be represented in XML for practical reasons, allowing them to
take advantage of the XML technology. Providing universal support for EXI in many
Web service libraries will be critical for ensuring interoperability between distinct pro-
gramming languages, and wide-adoption of the standard.

The standardized optimization mechanisms improve performance of Web services con-
siderably [64, 129], and are able to mitigate problems related to data processing in many
pipelines that otherwise could not be implemented using Web services. However, for
multi-step pipelines that process deep-sequencing data, repetitive transmission of large
files over the network, while possible, is not an optimal solution. Approaches that fa-
cilitate co-location of pipeline components, and centralized computations on the data,
can offer much better performance.

4.1.3 Distributed versus centralized data analysis

We chose a distributed model of data analysis, where the pipeline components are ge-
ographically distributed and accessed remotely using Web service interfaces. Such
a model allows for the loose-coupling of the tools and data-sources in composite
pipelines, which are executed by a workflow engine, e.g. Taverna or BPEL servers
[130]. The distributed model of execution nicely mirrors the distributed nature of bioin-
formatics resources, but carries the aforementioned challenge of transmitting large data
between them. Therefore, majority of the bioinformatics workbenches rely mainly on
centralized data analysis, e.g. Galaxy, Chipster [53], and GenePattern [49]. Tools in
these workbenches are installed on the same system as the workbench, and the large
public datasets being part of the analysis are pulled into the system prior to the analysis.
Consequently, all the elements of an analysis pipeline are in proximity and the large
data does not need to be transferred over the network between consecutive pipeline
steps.

However, deploying resources locally on an institutional server is not always possi-
ble [8], for instance due to platform incompatibility, computational demands [131], or
sheer size [35]. From the perspective of a workbench user, the locally-installed toolbox
may seem inflexible and hinder rapid workflow prototyping, since adding and config-
uring tools requires assistance of the system administrator [50]. And last, but not least,
the maintenance of a system with a diverse portfolio of applications is a tedious task,
requiring dedicated personnel and resources. In contrast, the workflow engines that co-
ordinate distributed resources do not need a powerful server, since the computations
are performed remotely; they require no maintenance of the tools since responsibility

4http://www.w3.org/TR/exi/

32 Discussion

for this is distributed among tool providers; and the toolbox can dynamically be ex-
tended by simply providing a link to the interface of a new tool. On the other hand, the
workflow engine has no control over the external pipeline components, so the hetero-
geneity and quirks of the individual resources [9, 34, 30] cannot be easily hidden from
the workflow creator. This is a challenge for the accessibility of such systems, as com-
position of pipelines from Web services frequently requires programming skills (e.g.
”shims” in Taverna [54, 58]).

Geographical data distribution in bioinformatics is a fact, and both, the centralized and
the distributed analysis systems are dependent on accessing external resources. The
distributed systems however make more extensive use of the remote resources, which
in case of high-throughput data can noticeably extend the analysis time. Consequently,
in many cases the centralized approach to high-throughput data analysis is admittedly
more practical, e.g. the variant calling pipeline in Paper IV was implemented as a
shell script invoking locally installed programs. In practice, the two opposite models
of pipeline execution are intermixed; for instance Taverna provides support for compu-
tations using local scripts [58], and Galaxy allows Web service invocation [132]. Also
other analysis environments [27] and workflow systems [55, 57] support both models.
We believe that when practiced sensibly, taking advantage of efficient methods for data
transport (e.g. discussed in Sections 4.1.1 and 4.1.2), the distributed approach to ex-
ecution of high-throughput data analysis pipelines can be an interesting alternative to
the centralized model.

4.1.4 Outlook

In application areas like deep-sequencing data analysis, data exchange using binary
XML or dedicated canonical binary file-formats seems the only viable solution for dis-
tributed analysis. However, there is a tipping point when sending the sizable data over
the network becomes more resource demanding than transferring the program with all
its dependencies, to facilitate local computation where the data resides. Analysis of
such sizable datasets can be facilitated by a dynamic infrastructure where the programs
have the ability to relocate closer to the data [35]. A promising technology for realizing
such a model is hardware virtualization, which facilitates dynamic instantiation of vir-
tual machines (servers). These virtual machines can be pre-configured computational
environments (e.g. CloudBioLinux [131]) ready to be sent for instantaneous deploy-
ment to the cloud where the large data is located. Provided Web service interfaces to
the tools installed on the virtual machine (like in the JABAWS toolkit [133]), both the
management of the cloud infrastructure5 and the analysis could be controlled program-
matically, using a homogeneous technology. Consequently, the transfer of the analysis
to the data could happen transparently to the user, and be decided by the workflow
engine considering feasibility and the cost.

The cloud infrastructure enables dynamic relocation of the computation to the data, but
if the results of the analysis are not much smaller than the input dataset, the approach
is not advantageous. Then, the mobile analysis environment needs to provide tools for

5Amazon, at present the largest provider of cloud computing resources worldwide, offers Web service inter-
faces for managing cloud infrastructure

4.2 Robustness of bioinformatics pipelines 33

interactive manipulation on the large result (e.g. using Galaxy such as in CloudMan
[134]). Also, the size of the experimental input dataset can sometimes be negligible in
comparison with the reference data used, for instance the 1000 Genomes [135] dataset.
The EBI, which hosts major public data repositories (including reference data), offers a
private cloud solution for its collaborating partners6 who need high-throughput access
to one of the resources. It is clear that such a model cannot scale for all the researchers
accessing these data collections.

Sustainable infrastructure for high-throughput data analysis in bioinformatics will re-
quire replication of the major public resources across several compute centers. Ac-
cess must be offered in multiple interoperable ways including, among others, canonical
cloud infrastructure and Web services. In Europe, efforts towards this goal are coor-
dinated by the collaborative ELIXIR initiative [136]. The responsibility of the tool
providers is to enable transparent access to their software, and furnish both, the life sci-
ence researchers and bioinformaticians, with convenient interfaces that hide the techni-
cal complexity of distributed data analysis, and heterogeneity of the data. It is evident
that the Web service technology will play a role in building this infrastructure.

4.2 Robustness of bioinformatics pipelines

Providing easy-to-use infrastructure that facilitates efficient analysis of high-throughput
data is vital to enable the use of deep-sequencing in routine clinical applications
[92, 95, 44]. In addition to accessibility, another challenge is ensuring robustness of
these methods [110, 95, 44]. In Paper IV we investigated the possibility of using sen-
sitivity analysis methods to evaluate robustness of a genetic variant calling pipeline.
The examined pipeline was a state-of-the-art variant calling method employed in many
medical genetic studies [137–139]. It has a potential for becoming a tool supporting
medical decisions [92, 94, 140, 141] and as such, warrants critical evaluation of accu-
racy, robustness, and reproducibility [110, 95, 44]. Complementary to the characteri-
zation of influence of the sequencing technologies [142, 98, 143, 110], and influence
of pipeline components [114, 110] on the variant calling accuracy, Paper IV provided
insights into the robustness of the computational pipeline, and the impact of varying
pipeline parameter values on the result.

4.2.1 Influential parameters

The screening of parameter sensitivity carried out in Paper IV revealed that it is dif-
ficult to reliably predict impact of a single parameter change. Parameter effects in the
studied variant calling pipeline were highly inter-dependent and/or non-linear. Due to
the extent of the comprehensive screening, we could describe these effects more pre-
cisely using 50 single effects per parameter. This way it was possible to identify and
characterize a group of parameters that displayed the largest impact across several effect

6personal communication

34 Discussion

measures. Surprisingly, four out of five of these parameters tuned behavior of the vari-
ant calling step, and only one parameter belonged to the aligner. Counter-intuitively,
this does not stand in contrast to a general belief that an accurate read alignment step
is crucial in the pipeline [97]. Rather it indicates that the parameters of the variant
caller are more sensitive to changes than those of the aligner, and that they should be
tuned with care. Such information is valuable to researchers adjusting pipeline set-
tings and tool providers that can mark sensitive parameters for the benefit of software
users. Correspondingly, the least-influential parameters could be hidden from the users
to decrease interface obscurity. Together with documented sensitive parameters, this
can contribute to improved accessibility of the bioinformatics methods [95]. Also tool
developers would benefit from the feedback aiming at increasing robustness of their
software.

Similarly to a benchmarking study, the results of parameter sensitivity analysis can
depend on the input dataset. Obtaining truly robust results in such an experiment re-
quires analyzing several datasets to compensate for both, technological and biological
variability. In case of deep exome-sequencing, the panel of samples would need to
encompass biological replicates, different exome-capture techniques, and distinct se-
quencing platforms (similarly as in [110]). In Paper IV, a selection of findings was
validated on one biological sample, which limits the generality of conclusions that can
be drawn from the quantitative results. In contrast, the qualitative results pertaining to
the utility of such an analysis to computational pipelines, are more universal. Thus, Pa-
per IV should be viewed as a pilot experiment surveying plausible benefits of applying
sensitivity analysis to bioinformatics pipelines, rather than a detailed characterization
of parameters of a particular pipeline.

4.2.2 Optimization prospects

The variant calling pipeline analyzed in Paper IV was robust to modifications of sin-
gle parameter values in the default settings, and showed good accuracy (both recall
and precision) for the ’near-default’ settings. However, more divergent settings could
produce results with considerably diverse accuracy. Obtaining accurate variant calls
from deep-sequencing data is challenging [105], and in Paper IV we have shown that
the influential parameters identified in the sensitivity screening can play a key role in
customizing variant calling accuracy. Hence, sensitivity analysis can contribute to the
search for settings that yield the desired accuracy of the results.

Naturally, the combinatorial complexity of finding the optimal parameter values can be
reduced by disregarding the non-influential parameters of the pipeline (as suggested for
expensive sensitivity analysis methods [122, 124]). Also, the parameters that are char-
acterized with monotonic influence by the sensitivity analysis can be directly used to
optimize the result. Among the parameter values sampled and evaluated for the pur-
pose of sensitivity analysis, we found combinations of parameter values that yielded
very high precision, and very high recall rate. These settings can serve as seeds for lo-
cal optimization towards any of the two measures, depending on the need: ”Mendelian
disease projects can select settings that provide a more inclusive set of calls with a
higher error rate to avoid missing that single, high-impact variant, whereas commu-

4.2 Robustness of bioinformatics pipelines 35

nity resource projects like the 1000 Genomes Project [135] can prioritize precision”
[105]. Reverting all the non-influential parameters in the high-scoring settings back to
their default values, resulted in nearly no change in accuracy. This is a notable discov-
ery indicating that the values of the few influential parameters can effectively control
recall and precision of genetic variant calling, and that these parameters are the most
interesting candidates in the search of optimal settings.

A critical component of sensitivity evaluation is comparison of pipeline outputs. In
Paper IV we have shown that even elementary measures (like set cardinality and over-
lap) can capture parameter influence and facilitate robustness assessment. However,
in order to maximize utility of the findings, the parameter influence should be repre-
sented in terms pertaining to the quality of the pipeline, for instance result accuracy.
We have proposed an accuracy metric for variant calls, but it is slightly biased towards
the results obtained with the default settings, and in practice only applicable to samples
sequenced to a very high coverage. A similar measure of accuracy was used in [144],
whereas Heinrich et al. [145] proposed a sample- and platform-independent metric
based on genotype frequencies observed in the 1000 Genomes Project [135]. Emer-
gence of such metrics enables the comparison of results across heterogeneous datasets
and is an important step towards standardized quality control of genetic variant discov-
ery.

Considering the likely medical future of variant calling, standardization of the method-
ology must take place at some point. This will require, for instance, decisions that
stabilize the set of tools used and their parameter values. The presented sensitivity
analysis, combined with parameter optimization, can prove useful in the making of
such decisions.

4.2.3 Sensitivity screening

In addition to the global screening that provided the main results, Paper IV also pre-
sented results obtained using a local (nominal range) sensitivity analysis method, which
can be considered an intuitive approach to searching for good parameter values. De-
spite a great difference in the computational cost, both methods showed a surprising
correspondence in the rankings of influential parameters. However, the global screen-
ing method delivered much more comprehensive insights: it identified predictability
of parameter changes, parameter inter-dependency, and monotonicity of the effects; it
provided the ”context” in which the local sensitivity analysis could be recognized as an
effective method; and allowed establishing the relationship between the influential pa-
rameters and accuracy optimization. Although these are relevant merits with practical
utility for pipeline users, the cost of performing a global screening on a high-throughput
pipeline can be daunting. Hence, it is important to identify cost-effective methods that
can comprehensively characterize parameter effects. In Paper IV we suggested that a
screening strategy that concentrates intensive screening on the area close to the default
settings can have desirable properties for the analysis of computational pipelines. Other
relevant sensitivity screening methods should also be identified and evaluated, in order
to broaden the selection of techniques supporting robustness analysis of pipelines.

36 Discussion

The screening methods provide mainly qualitative results for ranking parameters ac-
cording to importance. To precisely gauge parameter sensitivity of a model, the most
influential parameters identified in screening are often studied further using quanti-
tative methods [122]. Since Paper IV settled on the screening alone, the practical
value of performing complete sensitivity analysis of a computational pipeline remains
unknown. Determining it should enable a cost-benefit comparison with screening ap-
proaches, that can suggest if the extra cost involved in quantitative sensitivity analysis
can be translated into a boost in the quality of a pipeline or pipeline results.

Robustness of bioinformatics tools and pipelines have not been extensively studied, and
many details of this practice remain to be established. Paper IV shows utility of sensi-
tivity analysis methods for this purpose, and can hopefully trigger more efforts towards
assessing robustness of bioinformatics pipelines, especially in applications where con-
sistency of pipeline results is critical.

Chapter 5

Conclusion

Web services are popular for providing access to data and computations in bioinformat-
ics. We examined their utility for building high-throughput pipelines, and conclude that
using conventional Web service implementations is highly inefficient, and can even be
unfeasible. By waiving some of the benefits of using the XML technology, which is
at the heart of the problem, standard optimization mechanisms provided with Web ser-
vices are able to mitigate the inefficiency of processing large data. Our contributions
complement these mechanisms by providing two approaches to Web service commu-
nication that can facilitate execution of high-throughput pipelines without losing the
benefits of representing data in XML. Having the choice, developers of bioinformatics
resource can decide to represent the data using canonical file- or XML-based formats,
depending on what is more suitable, as opposed to what is feasible, in high-throughput
pipelines.

Although sensible use of the Web service technology allows for execution of data-
intensive pipelines, the distributed analysis of large data is not the most efficient ap-
proach. The overhead of frequent data transfers between remote sites is a substantial
disadvantage when compared to centralized data processing, and continues to be such
even when weighted with the convenience of distributed responsibility for maintenance
and development of the resources. Processing increasingly larger datasets demands
centralized computing infrastructure equipped with a broad and extensible analysis
toolbox, and convenient remote access methods, both programmatic and interactive.
Due to its flexibility and scalability, the cloud computing paradigm will be popular for
building such infrastructures, and the programmatic coordination of the cloud-based
resources will continue to be realized using Web services.

The cloud can provide the necessary transparency of the complex computational in-
frastructure needed for bioinformatics analysis, and ease development of accessible
and powerful tools for biomedical researchers and clinicians. Increased throughput
and automated interoperable access to resources can lay a solid foundation for large-
scale meta-experiments on high-throughput pipelines, such as the analysis of the im-
pact of parameter settings on pipeline results. In that study, we explored the usability
of two sensitivity screening methods to assess the robustness of a variant discovery
pipeline. We showed that even using relatively low-cost approaches, robustness of a
high-throughput pipeline can be evaluated, but with a more expensive global screening
method, a comprehensive characterization of parameter influence is possible. Although

38 Conclusion

the number of biological replicates used in the experiment did not permit drawing gen-
eral conclusions about the parameters of the analyzed pipeline, our findings clearly
indicate possible application areas for the results of a sensitivity screening in a compu-
tational pipeline. The information about the most influential parameters can be used to
simplify parameterization of complex computational methods, and to document the ef-
fect of prominent parameters in terms of, for instance, accuracy. The discovered link
between the influential parameters and guided accuracy optimization (towards sensi-
tive or precise calls), can be used to tune pipeline settings according to the needs of a
particular study. And finally, the results of the sensitivity screening can aid choice of
components in computational pipelines, and help to fixate pipeline settings to ensure
the most reliable results in a clinical setting.

To our knowledge, the comprehensive and systematic survey of pipeline parameter
effects was a pioneering effort. Consequently, many methodological aspects of ro-
bustness analysis of computational protocols remain to be evaluated and established.
We hope that the outlined prospects of studying parameter sensitivity in computational
pipelines can spark further research in this area, in particular when considering the fu-
ture of deep-sequencing analysis pipelines in routine clinical services. As such exper-
iments on high-throughput pipelines are computationally demanding, systematic eval-
uations of computational methods will require side-by-side developments in both the
methodology for pipeline evaluation, and the computing infrastructure. Taking the full
advantage of the potential of the Web service technology, I expect that such examina-
tions will be largely automated in the future.

Bibliography

[1] Goble, C & Stevens, R. (2008) State of the nation in data integration for bioinfor-
matics. Journal of Biomedical Informatics 41, 687–93. 1.1, 1.1.1, 1.1.1, 1.1.2,
1.1.3

[2] Yu, J & Buyya, R. (2005) A taxonomy of workflow management systems for
grid computing. Journal of Grid Computing 3, 171–200. 1.1, 1.1.2

[3] Altschul, S. F, Gish, W, Miller, W, Myers, E. W, & Lipman, D. J. (1990) Basic
local alignment search tool. Journal of Molecular Biology 215, 403–410. 1.1,
1.1.1

[4] Ashburner, M, Ball, C. A, Blake, J. A, Botstein, D, Butler, H, Cherry, J. M,
Davis, A. P, Dolinski, K, Dwight, S. S, Eppig, J. T, Harris, M. A, Hill, D. P, Issel-
Tarver, L, Kasarskis, A, Lewis, S, Matese, J. C, Richardson, J. E, Ringwald, M,
Rubin, G. M, & Sherlock, G. (2000) Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium. Nature Genetics 25, 25–29. 1.1

[5] Binns, D, Dimmer, E, Huntley, R, Barrell, D, O’Donovan, C, & Apweiler, R.
(2009) QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics
25, 3045–3046. 1.1

[6] Fernández-Suárez, X. M & Galperin, M. Y. (2013) The 2013 Nucleic Acids
Research Database Issue and the online Molecular Biology Database Collection.
Nucleic Acids Research 41, D1–D7. 1.1.1

[7] Brazas, M. D, Yamada, J. T, & Ouellette, B. F. F. (2010) Providing web servers
and training in bioinformatics: 2010 update on the Bioinformatics Links Direc-
tory. Nucleic Acids Research 38, W3–W6. 1.1.1

[8] Smedley, D, Swertz, M. a, Wolstencroft, K, Proctor, G, Zouberakis, M, Bard, J,
Hancock, J. M, & Schofield, P. (2008) Solutions for data integration in functional
genomics: a critical assessment and case study. Briefings in Bioinformatics 9,
532–44. 1.1.1, 1.1.2, 1.1.3, 4.1.3

[9] Stein, L. (2002) Creating a bioinformatics nation. Nature 417, 119–120. 1.1.1,
1.1.1, 1.1.2, 1.1.3, 4.1.3

[10] Ison, J, Kalaš, M, Jonassen, I, Bolser, D, Uludag, M, McWilliam, H, Malone, J,
Lopez, R, Pettifer, S, & Rice, P. (2013) EDAM: an ontology of bioinformatics
operations, types of data and identifiers, topics and formats. Bioinformatics 29,
1325–1332. 1.1.1

40 Bibliography

[11] Kalaš, M, Puntervoll, P, Joseph, A, Bartaševičiūtė, E, Töpfer, A, Venkataraman,
P, Pettifer, S, Bryne, J. C, Ison, J, Blanchet, C, Rapacki, K, & Jonassen, I. (2010)
BioXSD: the common data-exchange format for everyday bioinformatics web
services. Bioinformatics 26, i540–i546. 1.1.1, 4.1.2

[12] Oinn, T, Greenwood, M, Addis, M, Alpdemir, M. N, Ferris, J, Glover, K, Goble,
C, Goderis, A, Hull, D, Marvin, D, & et al. (2006) Taverna: lessons in creating
a workflow environment for the life sciences. Concurrency and Computation:
Practice and Experience 18, 1067–1100. 1.1.1, 1.1.2, 1.1.2

[13] Hucka, M, Finney, A, Sauro, H. M, Bolouri, H, Doyle, J. C, Kitano, H, & et al.
(2003) The systems biology markup language (SBML): a medium for represen-
tation and exchange of biochemical network models. Bioinformatics 19, 524–
531. 1.1.1

[14] Westbrook, J, Ito, N, Nakamura, H, Henrick, K, & Berman, H. M. (2005)
PDBML: the representation of archival macromolecular structure data in XML.
Bioinformatics 21, 988–992. 1.1.1

[15] Li, H & Durbin, R. (2009) Fast and accurate short read alignment with Bur-
rows–Wheeler transform. Bioinformatics 25, 1754–1760. 1.1.1, 1.2.1, 1.5

[16] Dysvik, B & Jonassen, I. (2001) J-Express: exploring gene expression data using
Java. Bioinformatics 17, 369–370. 1.1.1

[17] Waterhouse, A. M, Procter, J. B, Martin, D. M. A, Clamp, M, & Barton, G. J.
(2009) Jalview version 2—a multiple sequence alignment editor and analysis
workbench. Bioinformatics 25, 1189–1191. 1.1.1

[18] Cline, M. S, Smoot, M, Cerami, E, Kuchinsky, A, Landys, N, Workman, C,
Christmas, R, Avila-Campilo, I, Creech, M, Gross, B, et al. (2007) Integration of
biological networks and gene expression data using Cytoscape. Nature protocols
2, 2366–2382. 1.1.1

[19] Danecek, P, Auton, A, Abecasis, G, Albers, C. a, Banks, E, DePristo, M. a,
Handsaker, R. E, Lunter, G, Marth, G. T, Sherry, S. T, & et al. (2011) The
variant call format and VCFtools. Bioinformatics 27, 2156–8. 1.1.1

[20] Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G,
Abecasis, G, Durbin, R, et al. (2009) The sequence alignment/map format and
SAMtools. Bioinformatics 25, 2078–2079. 1.1.1, 1.5, 4.1.2

[21] Magrane, M & Consortium, U. (2011) UniProt Knowledgebase: a hub of inte-
grated protein data. Database 2011, 1–13. 1.1.1

[22] Dinkel, H, Michael, S, Weatheritt, R. J, Davey, N. E, Van Roey, K, Altenberg,
B, Toedt, G, Uyar, B, Seiler, M, Budd, A, et al. (2012) ELM–the database of
eukaryotic linear motifs. Nucleic Acids Research 40, D242–D251. 1.1.1

[23] Hamosh, A, Scott, A. F, Amberger, J. S, Bocchini, C. a, & McKusick, V. a.
(2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of hu-
man genes and genetic disorders. Nucleic Acids Research 33, D514–D517. 1.1.1

41

[24] Johnson, M, Zaretskaya, I, Raytselis, Y, Merezhuk, Y, McGinnis, S, & Madden,
T. L. (2008) NCBI BLAST: a better web interface. Nucleic Acids Research 36,
W5–W9. 1.1.1

[25] Hollup, S. M, Salensminde, G, & Reuter, N. (2005) WEBnm@: a web applica-
tion for normal mode analyses of proteins. BMC Bioinformatics 6, 52. 1.1.1

[26] Glez-Peña, D, Lourenço, A, López-Fernández, H, Reboiro-Jato, M, & Fdez-
Riverola, F. (2013) Web scraping technologies in an API world. Briefings in
Bioinformatics. 1.1.1, 1.1.3

[27] Gentleman, R. C, Carey, V. J, Bates, D. M, Bolstad, B, Dettling, M, Dudoit,
S, Ellis, B, Gautier, L, Ge, Y, Gentry, J, & et al. (2004) Bioconductor: open
software development for computational biology and bioinformatics. Genome
Biology 5, R80. 1.1.1, 1.1.2, 4.1.3

[28] Cock, P. J. a, Antao, T, Chang, J. T, Chapman, B. a, Cox, C. J, Dalke, A, Fried-
berg, I, Hamelryck, T, Kauff, F, Wilczynski, B, & et al. (2009) Biopython: freely
available python tools for computational molecular biology and bioinformatics.
Bioinformatics 25, 1422–1423. 1.1.1, 1.1.2

[29] Stajich, J. E, Block, D, Boulez, K, Brenner, S. E, Chervitz, S. a, Dagdigian, C,
Fuellen, G, Gilbert, J. G. R, Korf, I, Lapp, H, & et al. (2002) The Bioperl toolkit:
Perl modules for the life sciences. Genome Research 12, 1611–1618. 1.1.1, 1.1.2

[30] Stockinger, H, Attwood, T, Chohan, S, Cote, R, Cudre-Mauroux, P, Falquet, L,
Fernandes, P, Finn, R, Hupponen, T, Korpelainen, E, & et al. (2008) Experience
using web services for biological sequence analysis. Briefings in Bioinformatics
9, 493–505. 1.1.1, 1.1.2, 1.1.3, 4.1.3

[31] Neerincx, P. B. T & Leunissen, J. a. M. (2005) Evolution of web services in
bioinformatics. Briefings in Bioinformatics 6, 178–188. 1.1.1, 1.1.3

[32] McWilliam, H, Li, W, Uludag, M, Squizzato, S, Park, Y. M, Buso, N, Cowley,
A. P, & Lopez, R. (2013) Analysis tool web services from the EMBL-EBI.
Nucleic Acids Research 41, W597–W600. 1.1.1

[33] Flicek, P, Ahmed, I, Amode, M. R, Barrell, D, Beal, K, Brent, S, Carvalho-Silva,
D, Clapham, P, Coates, G, Fairley, S, & et al. (2013) Ensembl 2013. Nucleic
Acids Research 41, D48–55. 1.1.1

[34] Katayama, T, Arakawa, K, Nakao, M, Ono, K, Aoki-Kinoshita, K. F, Yamamoto,
Y, Yamaguchi, A, Kawashima, S, Chun, H.-W, Aerts, J, & et al. (2010) The
DBCLS BioHackathon: standardization and interoperability for bioinformatics
web services and workflows. Journal of Biomedical Semantics 1, 1–19. 1.1.1,
1.1.3, 1.1.3, 4.1.2, 4.1.3

[35] Kahn, S. D. (2011) On the future of genomic data. Science 331, 728–729. 1.1.1,
1.2.1, 4.1.3, 4.1.4

[36] Loh, P.-R, Baym, M, & Berger, B. (2012) Compressive genomics. Nature
Biotechnology 30, 627–630. 1.1.1, 1.1.1

42 Bibliography

[37] Wetterstrand, K. (2013) DNA sequencing costs: Data from the NHGRI Genome
Sequencing Program (GSP). 1.2

[38] Ruffalo, M, Laframboise, T, & Koyutürk, M. (2011) Comparative analysis of
algorithms for next-generation sequencing read alignment. Bioinformatics 27,
2790–2796. 1.1.1, 1.5, 1.3

[39] Li, H & Homer, N. (2010) A survey of sequence alignment algorithms for next-
generation sequencing. Briefings in Bioinformatics 11, 473–483. 1.1.1, 1.5

[40] Mohammed, Y, Shahand, S, Korkhov, V, Luyf, A. C, Schaik, B. D. v, Caan,
M. W, Kampen, A. H. v, Palmblad, M, & Olabarriaga, S. D. (2011) Data decom-
position in biomedical e-science applications. 2011 IEEE Seventh International
Conference on e-Science Workshops 1, 158–165. 1.1.1, 4.1.1

[41] Olson, C. B, Kim, M, Clauson, C, Kogon, B, Ebeling, C, Hauck, S, & Ruzzo,
W. L. (2012) Hardware acceleration of short read mapping. 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing Machines
p. 161–168. 1.1.1

[42] Chen, Y, Schmidt, B, & Maskell, D. (2013) A hybrid short read mapping accel-
erator. BMC Bioinformatics 14, 67. 1.1.1

[43] Gil, Y, Deelman, E, Ellisman, M, Fahringer, T, Fox, G, Gannon, D, Goble, C,
Livny, M, Moreau, L, & Myers, J. (2007) Examining the challenges of scientific
workflows. Computer 40, 24–32. 1.1.2

[44] Nekrutenko, A & Taylor, J. (2012) Next-generation sequencing data interpreta-
tion: enhancing reproducibility and accessibility. Nature Reviews. Genetics 13,
667–672. 1.1.2, 1.2, 1.2.1, 1.3, 4, 4.2

[45] Simmhan, Y. L, Plale, B, & Gannon, D. (2005) A survey of data provenance in
e-science. SIGMOD Rec. 34, 31–36. 1.1.2

[46] Altunay, M, Colonnese, D, & Warade, C. (2005) High throughput web services
for life sciences. Health Care p. 1–6. 1.1.2

[47] R Core Team. (2012) R: A Language and Environment for Statistical Computing
(R Foundation for Statistical Computing, Vienna, Austria). 1.1.2

[48] Oinn, T, Addis, M, Ferris, J, Marvin, D, Carver, T, Pocock, M. R, & Wipat,
A. (2004) Taverna: A tool for the composition and enactment of bioinformatics
workflows. Bioinformatics 20, 3045–3054. 1.1.2

[49] Reich, M, Liefeld, T, Gould, J, Lerner, J, Tamayo, P, & Mesirov, J. P. (2006)
GenePattern 2.0. Nature Genetics 38, 500–501. 1.1.2, 1.1.2, 1.3, 4.1.3

[50] Goecks, J, Nekrutenko, A, Taylor, J, & Team, T. G. (2010) Galaxy: a compre-
hensive approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences. Genome Biology 11, R86. 1.1.2, 1.1.2,
1.3, 4.1.1, 4.1.3

[51] Blankenberg, D, Kuster, G. V, Coraor, N, Ananda, G, Lazarus, R, Mangan, M,

43

Nekrutenko, A, & Taylor, J. (2010) Galaxy: A web-based genome analysis tool
for experimentalists. Current Protocols in Molecular Biology pp. 19–10. 1.1.2

[52] Giardine, B, Riemer, C, Hardison, R, Burnharns, R, Elnitski, L, Shah, P, Zhang,
Y, Blankerberg, D, Albert, I, Miller, W, Kent, J, & Nekrutenko, A. (2005)
Galaxy: A platform for interactive large-scale genome analysis. Genome Re-
search 15, 1451–1455. 1.1.2

[53] Kallio, M. A, Tuimala, J, Hupponen, T, Klemela, P, Gentile, M, Scheinin, I,
Koski, M, Kaki, J, & Korpelainen, E. (2011) Chipster: user-friendly analysis
software for microarray and other high-throughput data. BMC Genomics 12,
507. 1.1.2, 4.1.3

[54] Hull, D, Wolstencroft, K, Stevens, R, Goble, C, Pocock, M. R, Li, P, & Oinn, T.
(2006) Taverna: a tool for building and running workflows of services. Nucleic
Acids Research 34, W729–W732. 1.1.2, 1.3, 4.1.1, 4.1.3

[55] Ludäscher, B, Altintas, I, Berkley, C, Higgins, D, Jaeger, E, Jones, M, Lee, E,
Tao, J, & Zhao, Y. (2006) Scientific workflow management and the Kepler sys-
tem. Concurrency and Computation: Practice and Experience 18, 1039–1065.
1.1.2, 1.1.3, 4.1.3

[56] Deelman, E, Blythe, J, Gil, Y, Kesselman, C, Mehta, G, Patil, S, Su, M.-H, Vahi,
K, & Livny, M. (2004) Pegasus: Mapping scientific workflows onto the grid,
Grid Computing. (Springer), pp. 11–20. 1.1.2

[57] Taylor, I, Shields, M, Wang, I, & Harrison, A. (2007) The Triana workflow en-
vironment: Architecture and applications. Workflows for e-Science p. 320–339.
1.1.2, 4.1.3

[58] Wolstencroft, K, Haines, R, Fellows, D, Williams, A, Withers, D, Owen, S,
Soiland-Reyes, S, Dunlop, I, Nenadic, A, Fisher, P, & et al. (2013) The Tav-
erna workflow suite: designing and executing workflows of Web Services on the
desktop, web or in the cloud. Nucleic Acids Research 41, W557–W561. 1.1.2,
1.3, 4.1.1, 4.1.3

[59] Wassermann, B, Emmerich, W, Butchart, B, Cameron, N, Chen, L, & Patel,
J. (2007) Sedna: A BPEL-based environment for visual scientific workflow
modeling. Workflows for e-Science p. 428–449. 1.1.2

[60] Emmerich, W, Butchart, B, Chen, L, Wassermann, B, & Price, S. (2005) Grid
service orchestration using the business process execution language (bpel). Jour-
nal of Grid Computing 3, 283–304. 1.1.2

[61] Jordan, D, Evdemon, J, Alves, A, Arkin, A, Askary, S, Barreto, C, Bloch, B,
Curbera, F, Ford, M, Goland, Y, et al. (2007) Web services business process
execution language version 2.0. OASIS Standard 11. 1.1.2, 4.1.1

[62] Tan, W, Missier, P, Foster, I, Madduri, R, Roure, D. D, & Goble, C. (2010)
A comparison of using taverna and bpel in building scientific workflows: the
case of cagrid. Concurrency and Compututation : Practice and Experience 22,
1098–1117. 1.1.2

44 Bibliography

[63] Chiu, K, Govindaraju, M, & Bramley, R. (2002) Investigating the limits of
soap performance for scientific computing. Proceedings 11th IEEE International
Symposium on High Performance Distributed Computing pp. 246–254. 1.1.2,
1.1.3

[64] Engelen, R. A. V. (2003) Pushing the SOAP Envelope with Web Services for
Scientific Computing, In the Proceedings of the International Conference onWeb
Services (ICWS). (IEEE, Las Vegas, NV, USA), pp. 346–352. 1.1.2, 1.1.3, 4.1.2

[65] Bhagat, J, Tanoh, F, Nzuobontane, E, Laurent, T, Orlowski, J, Roos, M, Wols-
tencroft, K, Aleksejevs, S, Stevens, R, Pettifer, S, Lopez, R, & Goble, C. (2010)
BioCatalogue: a universal catalogue of web services for the life sciences. Nu-
cleic Acids Research 38, W689–W694. 1.1.2, 1.1.3

[66] Prlić, A, Down, T. a, Kulesha, E, Finn, R. D, Kähäri, A, & Hubbard, T. J. P.
(2007) Integrating sequence and structural biology with DAS. BMC bioinfor-
matics 8, 333. 1.1.3

[67] Wilkinson, M. D & Links, M. (2002) BioMOBY: An open source biological
web services proposal. Briefings in Bioinformatics 3, 331–341. 1.1.3

[68] Pettifer, S, Ison, J, Kalaš, M, Thorne, D, McDermott, P, Jonassen, I, Liaquat, A,
Fernández, J. M, Rodriguez, J. M, Partners, I, & et al. (2010) The EMBRACE
web service collection. Nucleic Acids Research 38, 683–688. 1.1.3

[69] Benson, G. (2010) Editorial. Nucleic Acids Research 38, W1–W2. 1.1.3

[70] Pautasso, C, Zimmermann, O, & Leymann, F. (2008) Restful web services vs.
big’web services: making the right architectural decision, In the Proceeding of
the 17th International Conference on World Wide Web. (ACM), p. 805–814.
1.1.3

[71] Davis, D & Parashar, M. (2002) Latency Performance of SOAP Implementations,
2nd IEEE/ACM International Symposium on Cluster Computing and the Grid.
pp. 407–407. 1.1.3

[72] Liu, D, Law, K. H, & Wiederhold, G. (2002) Analysis of integration models for
service composition, Proceedings of the 3rd International Workshop on Software
and Performance (WOSP). (ACM, New York, NY, USA), pp. 158–165. 1.1.3,
4.1.1

[73] Barker, A, Weissman, J. B, & Hemert, J. v. (2008) Orchestrating Data-Centric
Workflows, In the Proceedings of the IEEE International Symposium on Cluster
Computing and the Grid (CCGRID). (Lyon, France). 1.1.3, 4.1.1

[74] Pedraza, G & Estublier, J. (2009) in Trustworthy Software Development Pro-
cesses, Lecture Notes in Computer Science, eds. Wang, Q, Garousi, V, Madachy,
R, & Pfahl, D. (Springer Berlin Heidelberg) Vol. 5543, pp. 75–86. 1.1.3

[75] Liu, D, Law, K. H, & Wiederhold, G. (2003) Data-flow Distribution in FICAS
Service Composition Infrastructure, Proceedings of the 15th International Con-
ference on Parallel and Distributed Computing Systems. 1.1.3, 4.1.1

45

[76] Binder, W, Constantinescu, I, & Faltings, B. (2006)Decentralized Orchestration
of Composite Web Services, In the Proceedings of the International Conference
on Web Services (ICWS). (IEEE, Los Alamitos, CA, USA). 1.1.3

[77] Habich, D, Richly, S, & Grasselt, M. (2007) Data-grey-box web services in
data-centric environments, In the Proceedings of the International Conference
on Web Services (ICWS). (IEEE, Utah, USA), pp. 976–983. 1.1.3, 4.1.1

[78] Zhang, D, Coddington, P, &Wendelborn, A. (2011) Web services workflow with
result data forwarding as resources. Future Generation Computing System 27.
1.1.3, 4.1.1

[79] Glatard, T, Montagnat, J, & Pennec, X. (2006) Efficient services composition
for grid-enabled data-intensive applications. International Symposium on High-
Performance Distributed Computing 0, 333–334. 1.1.3, 4.1.1

[80] Missier, P, Soiland-Reyes, S, Owen, S, Tan, W, Nenadic, A, Dunlop, I, Williams,
A, Oinn, T, & Goble, C. (2010) Taverna, reloaded, Scientific and Statistical
Database Management. (Springer), p. 471–481. 1.1.3, 4.1.1

[81] Abramson, D, Kommineni, J, & Altintas, I. (2005) Flexible IO Services in the
Kepler Grid Workflow System, In the International Conference on e-Science and
Grid Computing (e-Science). (Melbourne, Australia). 1.1.3

[82] Blower, J, Haines, K, & Llewellin, E. (2005) Data streaming, workflow and
firewall-friendly Grid Services with Styx., Proceedings of the UK e-Science All
Hands Meeting. (IEEE), pp. 19–22. 1.1.3

[83] Baker, M. (2012) Functional genomics: the changes that count. Nature p. 4–8.
1.2

[84] Botstein, D & Risch, N. (2003) Discovering genotypes underlying human phe-
notypes: past successes for mendelian disease, future approaches for complex
disease. Nature genetics 33, 228–237. 1.2

[85] Manolio, T. a, Collins, F. S, Cox, N. J, Goldstein, D. B, Hindorff, L. a, Hunter,
D. J, McCarthy, M. I, Ramos, E. M, Cardon, L. R, Chakravarti, A, & et al. (2009)
Finding the missing heritability of complex diseases. Nature 461, 747–753. 1.2

[86] Hindorff, L. a, Sethupathy, P, Junkins, H. a, Ramos, E. M, Mehta, J. P, Collins,
F. S, & Manolio, T. a. (2009) Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Proceedings of the
National Academy of Sciences 106, 9362–9367. 1.2

[87] Puente, X. S, Pinyol, M, Quesada, V, Conde, L, Ordóñez, G. R, Villamor, N,
Escaramis, G, Jares, P, Beà, S, González-Díaz, M, et al. (2011) Whole-genome
sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Na-
ture 475, 101–105. 1.2

[88] Agrawal, N, Frederick, M, & Pickering, C. (2011) Exome sequencing of head
and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1.
Science 333, 1154–1157. 1.2

46 Bibliography

[89] Yan, X.-J, Xu, J, Gu, Z.-H, Pan, C.-M, Lu, G, Shen, Y, Shi, J.-Y, Zhu, Y.-M,
Tang, L, Zhang, X.-W, & et al. (2011) Exome sequencing identifies somatic mu-
tations of dna methyltransferase gene DNMT3A in acute monocytic leukemia.
Nature Genetics 43, 309–315. 1.2

[90] Horner, D. S, Pavesi, G, Castrignanò, T, Meo, P. D. D, Liuni, S, Sammeth, M, Pi-
cardi, E, & Pesole, G. (2010) Bioinformatics approaches for genomics and post
genomics applications of next-generation sequencing. Briefings in Bioinformat-
ics 11, 181–197. 1.2, 1.2.1, 1.3

[91] Ng, S & Nickerson, D. (2010) Massively parallel sequencing and rare disease.
Human Molecular Genetics 19, 119–124. 1.2

[92] Valencia, A & Hidalgo, M. (2012) Getting personalized cancer genome analysis
into the clinic: the challenges in bioinformatics. Genome Medicine 4, 61. 1.2,
1.2.1, 1.3, 4, 4.2

[93] Hayden, E. C. (2012) Sequencing set to alter clinical landscape. Nature 482,
288. 1.2, 4

[94] Ku, C.-S, Cooper, D. N, Polychronakos, C, Naidoo, N, Wu, M, & Soong, R.
(2012) Exome sequencing: dual role as a discovery and diagnostic tool. Annals
of Neurology 71, 5–14. 1.2, 4, 4.2

[95] Lyon, G. J & Wang, K. (2012) Identifying disease mutations in genomic
medicine settings: current challenges and how to accelerate progress. Genome
Medicine 4, 58. 1.2, 1.2.1, 1.3, 4, 4.2, 4.2.1

[96] McPherson, J. (2009) Next-generation gap. Nature Methods 6, S2–S5. 1.2, 4

[97] Nielsen, R, Paul, J. S, Albrechtsen, A, & Song, Y. S. (2011) Genotype and
SNP calling from next-generation sequencing data. Nature reviews. Genetics 12,
443–451. 1.2.1, 1.5, 4.2.1

[98] Asan, Xu, Y, Jiang, H, Tyler-Smith, C, Xue, Y, Jiang, T, Wang, J, Wu, M, Liu, X,
Tian, G, Wang, J, Wang, J, Yang, H, & Zhang, X. (2011) Comprehensive com-
parison of three commercial human whole-exome capture platforms. Genome
Biology 12, R95. 1.2.1, 4.2

[99] Auwera, G. A, Carneiro, M. O, Hartl, C, Poplin, R, del Angel, G, Levy-
Moonshine, A, Jordan, T, Shakir, K, Roazen, D, Thibault, J, et al. (2013) From
fastq data to high-confidence variant calls: The Genome Analysis Toolkit best
practices pipeline. Current Protocols in Bioinformatics pp. 11–10. 1.5

[100] McKenna, A, Hanna, M, Banks, E, Sivachenko, A, Cibulskis, K, Kernytsky, A,
Garimella, K, Altshuler, D, Gabriel, S, Daly, M, & et al. (2010) The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Research 20, 1297–1303. 1.2.1, 1.5

[101] Homer, N, Merriman, B, & Nelson, S. F. (2009) BFAST: an alignment tool for
large scale genome resequencing. PloS One 4, e7767. 1.2.1, 1.5

[102] Langmead, B, Trapnell, C, Pop, M, & Salzberg, S. L. (2009) Ultrafast and

47

memory-efficient alignment of short DNA sequences to the human genome.
Genome Biology 10, R25. 1.5

[103] Li, R, Yu, C, Li, Y, Lam, T.-W, Yiu, S.-M, Kristiansen, K, & Wang, J. (2009)
SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25,
1966–7. 1.5

[104] Rumble, S. M, Lacroute, P, Dalca, A. V, Fiume, M, Sidow, A, & Brudno, M.
(2009) SHRiMP: accurate mapping of short color-space reads. PLoS Computa-
tional Biology 5, e1000386. 1.5

[105] DePristo, M. a, Banks, E, Poplin, R, Garimella, K. V, Maguire, J. R, Hartl,
C, Philippakis, A. a, Angel, G. d, Rivas, M. a, Hanna, M, & et al. (2011) A
framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nature Genetics 43, 491–8. 1.2.1, 1.5, 4.2.2

[106] Li, R, Li, Y, Fang, X, Yang, H, Wang, J, Kristiansen, K, & Wang, J. (2009) SNP
detection for massively parallel whole-genome resequencing. Genome Research
19, 1124–32. 1.5

[107] The International Hapmap Consortium. (2005) A haplotype map of the human
genome. Nature 437, 1299–320. 1.5

[108] Sherry, S. T, Ward, M. H, Kholodov, M, Baker, J, Phan, L, Smigielski, E. M,
& Sirotkin, K. (2001) dbSNP: the NCBI database of genetic variation. Nucleic
Acids Research 29, 308–311. 1.5

[109] Sugden, L. a, Tackett, M. R, Savva, Y. a, Thompson, W. a, & Lawrence, C. E.
(2013) Assessing the validity and reproducibility of genome scale predictions.
Bioinformatics 29, 2844–2851. 1.3

[110] O’Rawe, J, Jiang, T, Sun, G, Wu, Y, Wang, W, Hu, J, Bodily, P, Tian, L,
Hakonarson, H, Johnson, W. E, & et al. (2013) Low concordance of multiple
variant-calling pipelines: practical implications for exome and genome sequenc-
ing. Genome medicine 5, 28. 1.3, 4.2, 4.2.1

[111] Frith, M, Hamada, M, & Horton, P. (2010) Parameters for accurate genome
alignment. BMC Bioinformatics 11, 80. 1.3

[112] Rapaport, F, Khanin, R, Liang, Y, Pirun, M, Krek, A, Zumbo, P, Mason, C. E,
Socci, N. D, & Betel, D. (2013) Comprehensive evaluation of differential gene
expression analysis methods for RNA-seq data. Genome Biology 14, R95. 1.3

[113] Lunter, G & Goodson, M. (2011) Stampy: a statistical algorithm for sensitive
and fast mapping of illumina sequence reads. Genome Research 21, 936–939.
1.3

[114] Farrer, R. a, Henk, D. a, MacLean, D, Studholme, D. J, & Fisher, M. C. (2013)
Using false discovery rates to benchmark SNP-callers in next-generation se-
quencing projects. Scientific Reports 3, 1512. 1.3, 4.2

[115] Heyden, Y. V, Nijhuis, a, Smeyers-Verbeke, J, Vandeginste, B. G, & Massart,

48 Bibliography

D. L. (2001) Guidance for robustness/ruggedness tests in method validation.
Journal of Pharmaceutical and Biomedical Analysis 24, 723–753. 1.3.1

[116] Saltelli, A, Ratto, M, Andres, T, Campolongo, F, Cariboni, J, Gatelli, D, Saisana,
M, & Tarantola, S. (2008) Global sensitivity analysis: the primer. (Wiley. com).
1.3.1

[117] Sobol’, I. (1976) Uniformly distributed sequences with an additional uni-
form property. USSR Computational Mathematics and Mathematical Physics
p. 1332–1337. 1.3.1

[118] McKay, M, Beckman, R, & Conover, W. (1979) Comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics 21, 239–245. 1.3.1

[119] Cukier, R. I, Fortuin, C. M, Shuler, K. E, Petschek, A. G, & Schaibly, J. H.
(1973) Study of the sensitivity of coupled reaction systems to uncertainties in
rate coefficients. i theory. The Journal of Chemical Physics 59, 3873. 1.3.1

[120] Cukier, R, Levine, H, & Shuler, K. (1978) Nonlinear sensitivity analysis of
multiparameter model systems. Journal of Computational Physics 42, 1–42.
1.3.1

[121] Sobol’, I. (2001) Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates. Mathematics and Computers in Simulation 55,
271–280. 1.3.1

[122] Campolongo, F, Tarantola, S, & Saltelli, a. (1999) Tackling quantitatively large
dimensionality problems. Computer Physics Communications 117, 75–85. 1.3.1,
1.3.2, 4.2.2, 4.2.3

[123] Rabitz, H, Aliş, O, Shorter, J, & Shim, K. (1999) Efficient input—output model
representations. Computer Physics Communications 117, 11–20. 1.3.1

[124] Campolongo, F & Saltelli, A. (1997) Sensitivity analysis of an environmental
model: an application of different analysis methods. Reliability Engineering &
System Safety 57, 49–69. 1.3.1, 4.2.2

[125] Morris, M. D. (1991) Factorial sampling plans for preliminary computational
experiments. Technometrics 33, 161–174. 1.3.1, 1.3.2, 1.3.2, 1.3.2

[126] Campolongo, F, Cariboni, J, & Saltelli, A. (2007) An effective screening design
for sensitivity analysis of large models. Environmental Modelling and Software
22, 1509–1518. 1.3.1, 1.3.2, 1.3.2, 1.3.2

[127] Subramanian, S, Puntervoll, P, & Sztromwasser, P. (2010) Optimizing the Data-
traffic of Centrally Coordinated Scientific Workflow Systems, In the Proceedings
of the International Conference on Web Services (ICWS). (Miami, FL, USA).
3.1.2

[128] Kamiya, T & Schneider, J. (2011) Efficient xml interchange (exi) format 1.0.
World Wide Web Consortium Recommendation REC-exi-20110310. 4.1.2

49

[129] Peintner, D, Kosch, H, & Heuer, J. (2009) Efficient XML Interchange for rich
internet applications, IEEE International Conference on Multimedia and Expo
(ICME). (IEEE), pp. 149–152. 4.1.2

[130] Milanovic, N & Malek, M. (2004) Current solutions for web service composi-
tion. Internet Computing 8, 51–59. 4.1.3

[131] Krampis, K, Booth, T, Chapman, B, Tiwari, B, Bicak, M, Field, D, & Nelson,
K. E. (2012) Cloud BioLinux: pre-configured and on-demand bioinformatics
computing for the genomics community. BMC Bioinformatics 13, 42. 4.1.3,
4.1.4

[132] Wang, R, Brewer, D, Shastri, S, Swayampakula, S, Miller, J, Kraemer, E, &
Kissinger, J. (2009) Adapting the Galaxy Bioinformatics Tool to Support Seman-
tic Web Service Composition, 2009 World Conference on Services-I. (IEEE), pp.
283–290. 4.1.3

[133] Troshin, P. V, Procter, J. B, & Barton, G. J. (2011) Java bioinformatics analysis
web services for multiple sequence alignment–JABAWS:MSA. Bioinformatics
27, 2001–2. 4.1.4

[134] Afgan, E, Chapman, B, Jadan, M, Franke, V, & Taylor, J. (2012) Using cloud
computing infrastructure with CloudBioLinux, CloudMan, and Galaxy. Current
Protocols in Bioinformatics pp. 11–19. 4.1.4

[135] The 1000 Genomes Consortium. (2010) A map of human genome variation from
population-scale sequencing. Nature 467, 1061–1073. 4.1.4, 4.2.2

[136] Crosswell, L. C & Thornton, J. M. (2012) ELIXIR: a distributed infrastructure
for European biological data. Trends in Biotechnology 30, 241 – 242. 4.1.4

[137] Gupta, I. R, Baldwin, C, Auguste, D, Ha, K. C. H, Andalousi, J. E, Fahiminiya,
S, Bitzan, M, Bernard, C, Akbari, M. R, Narod, S. a, & et al. (2013) ARHGDIA:
a novel gene implicated in nephrotic syndrome. Journal of Medical Genetics 50,
330–338. 4.2

[138] Samuels, M. E, Majewski, J, Alirezaie, N, Fernandez, I, Casals, F, Patey, N, De-
caluwe, H, Gosselin, I, Haddad, E, Hodgkinson, A, & et al. (2013) Exome se-
quencing identifies mutations in the gene TTC7A in French-Canadian cases with
hereditary multiple intestinal atresia. Journal of Medical Genetics 50, 324–329.
4.2

[139] Bilguvar, K, Tyagi, N. K, Ozkara, C, Tuysuz, B, Bakircioglu, M, Choi, M, Delil,
S, Caglayan, A. O, Baranoski, J. F, Erturk, O, & et al. (2013) Recessive loss
of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset pro-
gressive neurodegeneration. Proceedings of the National Academy of Sciences
110, 3489–3494. 4.2

[140] Lemke, J. R, Riesch, E, Scheurenbrand, T, Schubach, M, Wilhelm, C, Steiner,
I, Hansen, J, Courage, C, Gallati, S, Bürki, S, & et al. (2012) Targeted next
generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53,
1387–1398. 4.2

50 Bibliography

[141] Choi, M, Scholl, U. I, Ji, W, Liu, T, Tikhonova, I. R, Zumbo, P, Nayir, A,
Bakkaloğlu, A, Özen, S, Sanjad, S, & et al. (2009) Genetic diagnosis by whole
exome capture and massively parallel DNA sequencing. Proceedings of the Na-
tional Academy of Sciences 106, 19096–19101. 4.2

[142] Melum, E, May, S, Schilhabel, M. B, Thomsen, I, Karlsen, T. H, Rosenstiel, P,
Schreiber, S, & Franke, A. (2010) SNP discovery performance of two second-
generation sequencing platforms in the NOD2 gene region. Human Mutation 31,
875–885. 4.2

[143] Hedges, D, Guettouche, T, Yang, S, & Bademci, G. (2011) Comparison of three
targeted enrichment strategies on the SOLiD sequencing platform. PLoS One 6,
e18595. 4.2

[144] Meynert, A. M, Bicknell, L. S, Hurles, M. E, Jackson, A. P, & Taylor, M. S.
(2013) Quantifying single nucleotide variant detection sensitivity in exome se-
quencing. BMC Bioinformatics 14, 195. 4.2.2

[145] Heinrich, V, Kamphans, T, Stange, J, Parkhomchuk, D, Hecht, J, Dickhaus, T,
Robinson, P. N, & Krawitz, P. M. (2013) Estimating exome genotyping accuracy
by comparing to data from large scale sequencing projects. Genome Medicine 5,
69. 4.2.2

