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Abstract

One of the most prominent features of global climate change is the reduction in Arctic
sea ice thickness. The main tool to derive sea ice thickness on an Arctic wide scale is al-
timetry from satellites, yet current estimates are associated with high uncertainties. In
this thesis we present a new quantification of uncertainties in Arctic sea ice thickness
and volume and identify the main sources of uncertainty. Furthermore, we explore the
possibility for sea ice classification based on data from radar altimeters, which can be
used to improve current estimates of sea ice thickness.

We quantify uncertainties in Arctic sea ice thickness and volume using freeboard re-
trievals from ICESat and investigate different assumptions on snow depth, sea ice density
and area. These geophysical parameters are needed when converting freeboard measure-
ments from altimeters in estimates of sea ice thickness and volume. We show that these
parameters have an influence on the overall mean, the year-to-year variability, and the
longterm trends. The overall uncertainties appear larger than previous studies suggest,
and the recent dramatic ice loss appears smaller. We find the total uncertainty in sea ice
volume to be around 13% during the cold season. Uncertainties in ice area are of minor
importance for the estimates of sea ice volume and thickness. The uncertainty in snow
depth contributes up to 70% of the total uncertainty, and the ice density up to 30–35%.

We analyze radar altimeter data over different Arctic sea ice regimes to develop a method
for sea ice classification for CryoSat-2. Information about sea ice type is needed to be
able to use ice type dependent values for snow and ice properties while converting free-
board into thickness. CryoSat’s payload instrument is the SAR/Interferometric Radar
Altimeter (SIRAL), which uses the synthetic aperture radar (SAR) technique to enhance
the resolution along track. First we present a case study based on data from the airborne
synthetic aperture radar ASIRAS, which is a replica of SIRAL on-board CryoSat-2. We
analyze different parameters that characterize the radar signal waveforms and identify
parameters that are most sensitive to sea ice type. With a bayesian based method we
are able to classify more than 80% of the signal waveforms correctly as First- or Multi-
Year-Ice. In the final step we analyze signal waveforms from CryoSat-2 on an Arctic
wide scale. We find several of the waveform parameters to be significantly different over
First- and Multi-Year-Ice. Analyzing the spatial distribution, some discrepancies occur
compared to other retrievals of sea ice type. CryoSat-2 waveform parameters have values
typical for Multi-Year-Ice over large areas of First-Year-Ice. These areas of First-Year-Ice
contain strong gradients in drift speed, indicating that the radar signal is mainly sensi-
tive to surface roughness. The information about surface roughness can potentially be
used to remove biases in current freeboard retrievals from CryoSat-2.
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Chapter 1

Scientific background and motivation
for this study

This chapter is divided in four sections. In the first two sections I present a general
overview about the role of Arctic sea ice in the climate system and about changes in
Arctic sea ice during the last decades. The third section briefly describes the concept of
sea ice altimetry and its limitations. In the last section I give further technical details
on the processing of radar altimeter signals.

1.1 Role of sea ice in the climate system

Arctic sea ice is an important component of the global climate system as it keeps the
Arctic region cool and helps moderate global temperatures. During the dark cold winter
it insulates the warm ocean from the cold atmosphere and therefore reduces the release of
heat from the ocean to the atmosphere. By keeping the Arctic atmosphere cool it drives
the temperature gradient and the exchange of heat between the high and mid-latitudes.
In boreal summer, when the sun never sets, the high albedo of sea ice significantly re-
duces the absorption of incoming solar radiation and prevents a heating of the Arctic
ocean (Serreze and Barry, 2005).

In the last decades, however, observations show that Arctic sea ice cover has become
smaller (Cavalieri et al., 1997; Parkinson and Comiso, 2013; Serreze et al., 2007), thin-
ner (Kwok and Untersteiner, 2011; Kwok et al., 2009; Laxon et al., 2013) and younger
(Fowler et al., 2004; Maslanik et al., 2011, 2007). These changes have been found to
be caused by a combination of natural climate variability and external forcing (Stroeve
et al., 2012b). Natural variability that can influence Arctic sea ice has been observed
in surface temperatures (e.g. Kay et al., 2011) as well as in atmospheric (Ogi and Wal-
lace, 2007) and oceanic circulation and heat transport (Morison et al., 2012; Polyakov
et al., 2011; Shimada et al., 2006). Changes in external forcing are mainly man-made by
rising concentrations of atmospheric greenhouse gases. These changes in the concentra-
tion of greenhouse gases lead to a warming of the atmosphere (Arrhenius, 1896; Stern
and Kaufmann, 2014), which has been found to be particularly pronounced in the Arc-
tic (AICA, 2005; Manabe and Stouffer, 1980).

This so called ’Arctic Amplification’ is in part caused by the ice-albedo feedback over
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the Arctic ocean (e.g. Screen and Simmonds, 2010; Serreze and Francis, 2006, see also
Pithan and Mauritsen (2014) for a recent contribition to the discussion on Arctic Ampli-
fication). The ice albedo feedback is a well known positive feedback (Curry et al., 1995;
Perovich et al., 2007): reduced sea ice extent enhances absorption of radiation, causes
warming of the ocean and a further reduction of the sea ice cover (and vice versa). Many
other feedbacks such as the influence of clouds on, and response to, sea ice loss are in
turn, only partly quantified (Kay and Gettelman, 2009; Kay et al., 2008; Liu et al., 2012;
Schweiger et al., 2008), mainly due to a lack of reliable data sources (Kay and L’Ecuyer,
2013; Zygmuntowska et al., 2012). Changes in sea ice can also influence other compo-
nents of the climate system: larger areas of open water may influence European weather
patterns (Francis and Vavrus, 2012; Outten and Esau, 2012; Overland and Wang, 2010)
and the freshwater input from melting ice influences the water masses in the adjacent
seas and the ocean circulation (e.g Aagaard and Carmack, 1989; McPhee et al., 2009,
1998). A recent review about effects of Arctic sea ice decline on weather and climate is
given in Vihma (2014).

Sea ice is considered to be one of the main indicators of global climate change (Stocker
et al., 2013). Since the early 90’s, it has been an important component in the climate
change debate, both in the scientific community (Chapman and Walsh, 1993; Johan-
nessen et al., 2004) but also in public media (e.g. www.bbc.com - Climate Change,
www.nytimes.com). The changes also cause new economical possibilities and political
disputes. Smaller sea ice extent and longer ice free summers over large areas of the Arc-
tic ocean allow for new shipping routes through the Arctic (Stephenson et al., 2013), and
stimulate new plans for exploration of oil and gas in the Arctic region (www.bbc.com -
North Pole, www.arctic-council.org).

1.2 Observed changes in Arctic sea ice

Scientific interest concerning the change of Arctic sea ice started in the late 19th century.
A modern basis of Arctic science, including many international cooperations, was already
established during the first International Polar Year (IPY) 1882-1883 (Weeks and Ackley,
1986; Wood and Overland, 2006). Since then many famous expeditions, such as Fram
and Maud (Nansen, 1897), provided new insight into the Arctic climate system. In
the 1930s the first Soviet Union Arctic Ocean drifting stations were established. This
program was continued until the beginning of the 1990s and provides the most continuous
measurements of the Arctic climate system (the program was re-established after a few
years by the Russian federation 2003, www.aari.ru). The last apex of scientific research
concerning the Arctic was the International Polar Year 2007 to 2009 (www.ipy.org).

On an Arctic wide scale sea ice and the observed changes can only be monitored with
satellites. Already from the beginning of the satellite era in the 1970s, passive microwave
measurements have been used to derive information about the sea ice concentration (Cav-
alieri et al., 1984; Comiso et al., 2007; Meier et al., 2012). For the last decades significant
negative trends have been found, which have accelerated in the most recent years (see
Figure 1.1). The largest decline is observed in September when the annual sea ice min-
imum is reached. Meier et al. (2012) observed a decline of -84100 ± 9600 km2/yr in
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Figure 1.1: Annual mean of Arctic sea ice area based on different algorithms. Trends are calculated for
the mean of these algorithms for three different time periods 1979-2012 (five algorithms), 1992-2012 (11
algorithms as used in paper I) and 2003-2012. Data for sea ice area provided by N. Ivanova (see Ivanova
et al., 2014, and paper I of this thesis for more information about algorithms).

September for the period 1979-2011. Despite this long time period of measurements,
absolute values of sea ice area still have high uncertainties. Uncertainties in sea ice con-
centration are particularly large in summer, where in some areas uncertainties of more
than 20% are reached (Meier and Notz, 2010). The spread in annual mean sea ice area,
caused by the use of different algorithms, is shown in Figure 1.1 (see e.g. Andersen et al.,
2007; Ivanova et al., 2014; Kattsov et al., 2010, for more information about algorithm
uncertainties).

Sea ice thickness can be monitored on an Arctic wide scale with altimeters on-board
satellites (Kwok et al., 2006; Laxon, 1994a,b; Zwally et al., 2002). The first Arctic wide
estimate of sea ice thickness was published by Laxon et al. (2003, see Figure 1.2). Ex-
ploring radar altimeter measurements from ERS-1/2 and Envisat from the 1990s, they

Figure 1.2: First ever published figure showing Arctic wide
(circumpolar) sea ice thickness. Average winter (October
to March) Arctic sea ice thickness from October 1993 to
March 2001 is shown. Results are based on Envisat/ERS
satellite altimeter measurements of ice freeboard. Data are
only available south of 81.58 N and not in the marginal ice
zone. Figure from Laxon et al. (2003).
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Figure 1.3: The thinning of Arctic
sea ice from 1978 to 2008. From
1978 to 2001 results are based on
measurements from upward look-
ing sonars mounted on submarines.
From 2003 till 2008 data is based on
NASA’s Ice, Cloud and Land Eleva-
tion Satellite (ICESat). The overall
mean winter thickness in the 80’s of
3.64 m is 1.75 m higher than at the
end of the ICESat period, when it
was 1.89 m. The rate of decline has
also increased. Figure from Kwok
and Untersteiner (2011).

found a strong inter-annual variability in sea ice thickness (Laxon et al., 2003), and cir-
cumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum (Giles
et al., 2008). In addition, laser altimeter measurements from NASA’s Ice, Cloud, and
land Elevation Satellite ICESat are available for the last decade. Analysing these mea-
surements from ICESat, Kwok et al. (2009) found a decline in Arctic sea ice thickness
of 0.18 m/yr between 2003 and 2008. At the end of the ICESat period in 2008, a win-
ter thickness of 1.89 m has been found, which is 1.75 m lower than found in the 80’s
based on submarine data in the central Arctic (Kwok and Untersteiner, 2011, see also
Figure 1.3). In 2010 CryoSat-2 was launched, providing information about sea ice thick-
ness up to high latitudes of 88◦N (see section 1.4 for detailed information on CryoSat-2).
Preliminary results, using unvalidated data available from the Alfred-Wegener-Institute
(www.meereisportal.de, see also Hendricks et al. (2013) for more details), show a mean
sea ice thickness of 1.87 m in the central Arctic in winter 2012/2013 (October - March).

Additionally to these changes in sea ice thickness, sea ice has also become younger within
the Multi-Year-Ice pack. Fowler et al. (2004) calculated the sea ice age back to 1979,
based on passive microwave retrievals of sea ice drift. Following this apparoach, Maslanik
et al. (2007) found a clear decline in the fraction of the oldest ice north of Greenland
and the Canadian Archipelago. The strongest decline of 0.19×106 km2/yr has been ob-
served for the ice older than 5 years from 2004 to 2011 (Maslanik et al., 2011). However,
their approach has some limitations, and I will discussed the accuracy of these results in
chapter 3.

Changes in sea ice concentration and thickness eventually influence the large-scale drift
pattern of sea ice. This main drift pattern has been well known for decades: ice cir-
culates in the Beaufort Sea Gyre and is transported out of the Arctic through Fram
Strait by the Transpolar Drift Stream (e.g. Colony and Thorndike, 1984). In the last
years, however, an increase in deformation and drift speed has been observed (Rampal
et al., 2009). While several studies focused mainly on the wind speed as possible forcing
(Kwok et al., 2013; Spreen et al., 2011; Vihma et al., 2012), more recently Olason and
Notz (manuscript submitted to JGR 2014, personal comunication) analyzed the influ-
ence of sea ice concentration and thickness. They found changes in sea ice concentration
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to be the main driver for changes in drift speed for areas with low ice concentration in
the summer months, while changes in sea ice thickness are found to be the main driver
in winter, when concentrations are above 90%. A general overview about sea ice dynam-
ics and it’s kinematics is further given in Kwok (2011).

Decline in sea ice area and thickness also result in a reduction of sea ice volume. Based
on data from the laser altimeter on board ICESat, Kwok et al. (2009) found a net loss
of 5400 km3 in October-November and 3500 km3 in February-March during the ICESat
period from 2003 to 2008. Recent results, exploring new data from the radar altime-
ter on-board CryoSat-2, report a further decline in Arctic sea ice volume (Laxon et al.,
2013). The average sea ice volume in October-November for 2010 and 2011 was esti-
mated to be 7560 km3, i.e. 64% of the 2003-2008 mean value estimated from ICESat
(Kwok et al., 2009). However, all these findings are associated with large uncertainties.
Paper I presents a detailed analysis of the uncertainties in sea ice thickness and volume
as well as their implications for trends between the ICESat and CryoSat period. More
information about the concept of sea ice altimetry is given in section 1.3.

Debates are still ongoing as to whether we have already reached a ’tipping point’ and
sea ice will disappear very soon (Holland et al., 2006; Lenton, 2012; Wadhams, 2012) or
if recovery mechanisms may largely outbalance the abrupt decline (Notz, 2009; Tietsche
et al., 2011, see also (Serreze, 2011) for more discussions). However, in the last years
the discussion about the future of Arctic sea ice and its disappearance in summer has
generally shifted: it is no longer a question whether we will have a ’blue’ ice free Arctic in
the future, but rather when this event will occur. Overland and Wang (2013) categorized
the recent contributions to this discussion as coming from trendsetters, modelers and
stochasters. While trendsetters extrapolate sea ice volume data to calculate the first
occurrence of a ’blue’ Arctic (e.g. Maslowski et al., 2012; Schweiger et al., 2011), modelers
use climate model ensemble projections (e.g. Massonnet et al., 2012; Stroeve et al., 2007,
2012a; Wang and Overland, 2009). Stochasters assume several more rapid ice loss events
(so called RILEs) such as 2007 and 2012 that will lead to an ice free Arctic (e.g. Holland
et al., 2006; Kay et al., 2011; Vavrus et al., 2012). Based on these studies, the Arctic
could be ice free in summer by the end of this decade or latest by the end of the first
half of this century.

1.3 Concept of sea ice altimetry

The primary objective of altimetry is to measure the elevation of a target or a surface
below the instrument. The principle is that the instrument emits a signal in nadir di-
rection and measures the echo reflected from the surface. The time the signal takes is
proportional to the altitude (range) of the satellite over the surface (Fetterer, 1992), and
can be used to retrieve the surface elevation. Sea ice altimetry relies further on the abil-
ity to discriminate accurately between return signals originating from leads (cracks in
the sea ice) and signals originating from ice floes (Laxon, 1994a,b). For radar altimetry
this is done by looking at the strength and shape of the returned signal: For smooth sur-
faces, such as leads, the signal is strong and specular while over rougher surfaces, such
as sea ice and ridges, the signal becomes weaker and more diffuse (see Figure 1.4 for ex-
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Figure 1.4: Typical waveform shapes over sea ice and leads from the radar altimeter SIRAL on-board
CryoSat-2. The return signal from leads is specular while over sea ice the echo signal is diffuse.

ample of radar altimeter waveforms). More information about the signal processing of
radar altimeters is given in Section 1.4 and information about the signal processing from
laser altimeters can be found in Kwok et al. (2006).

The freeboard, the part of the ice above the water level, can be obtained by using
the elevation over leads as the instantaneous sea surface height and calculating the
difference between the sea surface height and ice floes (see Section 1.4 or Hendricks et al.,
2013; Kwok et al., 2007; Zwally et al., 2002, for more details). For radar altimeters the
signal is assumed to be reflected from the snow and ice interface (Beaven et al., 1995),
thus provides the ice freeboard, while the laser signal is reflected from the air-snow
interface, and provides the snow-plus-ice freeboard. Assuming hydrostatic equilibrium,
the freeboard can be converted into an estimate of sea ice thickness (see Figure 1.5).

The following formula can be used to convert ice freeboard into sea ice thickness:

Figure 1.5: Schematic illustration
of sea ice measurements from al-
timetry. The signal from laser al-
timeters is reflected from the snow-
air interface, and thus gives in-
formation about the snow-plus-ice
freeboard fs (e.g. ICESat). Radar
altimeters have a wider footprint
compared to laser altimeters. For
dry snow conditions the signal is
reflected from the snow-ice inter-
face giving information about the
ice freeboard fi (e.g. CryoSat-2).
To estimate ice thickness hi, hydro-
static equilibrium is assumed, and
the density of water ρw, ice ρi and
snow ρs as well as the snow depth
hs have to be known.
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hi =
fiρw

(ρw − ρi)
+

hsρs
(ρw − ρi)

(radar)

where fi is the ice freeboard as retrieved from radar altimeters, hs is the snow depth,
and ρw, ρs, and ρi are the densities of water, snow and ice, respectively.

To convert the snow-plus-ice freeboard into sea ice thickness, the following formula can
be used:

hi =
fsρw

(ρw − ρi)
+

hs(ρs − ρw)

(ρw − ρi)
(laser)

where fs is the snow-plus-ice freeboard.

Limitations and uncertainties of the conversion of freeboard into sea ice thickness by this
method are discussed in detail in paper I.

1.4 CryoSat-2 and the concept of synthetic aperture
radar altimeters

CryoSat-2 was launched in 2010 and is ESA’s first satellite mission specifically designed
to measure changes in the Earth’s cryosphere. The advantage of CryoSat-2, compared
to previous satellite radar altimeter missions, is the high inclination of the satellite orbit
of 92◦N and the increased resolution of the measurements. The satellite has an orbit re-
peat cycle of 369 days, but sub-cycles every 30 days, which allows to monitor the Arctic
ocean on a regular grid on a monthly basis.

CryoSat’s payload instrument is the SAR/Interferometric Radar Altimeter (SIRAL).
It has a center frequency of 13.575 GHz and a receive bandwidth of 320 MHz. The
instrument operates in three different modes: Low Resolution Mode (LRM), Synthetic
Aperture Radar mode (SAR), and the SAR/Interferometric mode (SARIn). LRM mode,

Figure 1.6: Comparison be-
tween sampling of conventional
radar altimeter (left) and Delay
Doppler/SAR (right) as used by
CryoSat-2 in SAR mode. The
along track processing increases the
resolution and offers a multi-look
processing with two indepen-
dent dimensions: along-track and
across-track (range). The resulting
smaller footprint size is visual-
ized in the lower figures. Figure
adapted from Raney (1998).
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Figure 1.7: Concept of multi-looking
and the resulting radar altimeter
echo waveforms. The delay time is
always longer for all surface loca-
tions that are not at minimum range
position. For conventional altime-
ters this results in the step function.
The delay/doppler altimeter or syn-
thetic aperture radar altimeter com-
pensates for this extra delay, result-
ing in much sharper waveforms. Fig-
ure from Raney (1998).

which is equivalent to conventional altimeters, is used over oceans and glacier interiors.
In SAR mode the synthetic aperture radar technique is used to enhance the resolution
along-track over sea ice. In SARIn mode two receiving antennas are used, and from in-
terferometry in across-track direction information about surface slopes, i.e. over ice caps
and ice sheet margins, can be derived.

The application of the synthetic aperture technique to conventional radar altimeters was
first introduced by Raney (1998). Figures 1.6 and 1.7 illustrate the formation of the re-
turn signal. For conventional altimeters the footprint is very large, i.e. between 2 to 10
km for Envisat, depending on surface roughness. For CryoSat-2, operating in it’s SAR
mode, the nominal footprint is reduced to around 300 m in along-track and 1700 m in
across-track direction. For SIRAL, the radar altimeter on-board CryoSat-2, 64 bursts
of phase-coherent pulses are transmitted and the corresponding received echoes are pro-
cessed to form 64 beams in along track direction (see strips arranged across the track in
Figure 1.6), by looking at the frequency shift (doppler effect). Echoes from forward and
backward looking parts of the beams are corrected to account for the additional travel
time (’slant-range’ correction). As subsequent bursts are transmitted and received along
the satellite path, all of the echoes from beams directed at individual along track lo-
cations are superimposed (multi-looked) to reduce radar speckle noise (see Figure 1.7).
For CryoSat-2 these beams are separated by approximately 300 m. The returning echos
are sampled in 128 bins each 1.563 ns resulting in a range resolution of 0.486 m. The
final processed return signal is usually referred to as waveform (see Figure 1.7 and 1.4),
and can be interpreted to get information about the surface elevation and the surface
properties. More information about the signal processing from CryoSat-2 can be found
in the paper by Wingham et al. (2006). The advantages of the SAR approach are the
decreased footprint size (finer resolution, see also Figure 1.6) and the more efficient use
of the instrument’s energy. The increased resolution means that the instrument can re-
solve smaller ice floes, resulting in a better retrieval of sea ice freeboard.

For accurate retrieval of surface elevation, further geophysical and re-tracking correc-
tions have to be applied. Geophysical corrections include the ionospheric delay time,
wet and dry tropospheric delay, inverse barometric effect, dynamic atmospheric correc-
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Figure 1.8: Idealized response
waveform for delay/doppler altime-
ter as recorded in the instruments
range window. To find the surface
elevation the waveform has to be
’re-tracked’ to retrieve the posi-
tion along the leading edge which
belongs to the surface (diamond).
Often a fixed threshold is used
such as e.g. 50% of the maximum
power (common value used for
conventional altimeters).

tions, ocean equilibrium tide, and solid earth tide. Re-tracking refers to the process of
identifying the point along the leading edge of the signal waveform which belongs to the
surface (see Figure 1.8). Currently, over sea ice different approaches are used: fitting a
simple spline function to the measurement points in combination with a fixed threshold
(Hendricks et al., 2013), fitting idealized waveforms to the measurements in combination
with a fixed threshold (Giles et al., 2007) or using a semi-empirical model, taking into
account surface roughness and incidence angle (Kurtz et al., 2014).

Additionally to surface elevation, the magnitude and shape of the signal waveform con-
tain information about the characteristics of the surface e.g. significant wave height over
oceans or wind speed (e.g. Fedor and Brown, 1982; Gourrion et al., 2002). For sea ice
the waveform shape is generally used to identify leads between the ice floes. This dis-
tinction is done by looking at the ’pulse peakiness’ factor, the ratio of the accumulated
power to the power maximum (Laxon, 1994b). For CryoSat-2 also the ’stack standard’
deviation is used, i.e. the variability of the multi-looked signals at one location (Hen-
dricks et al., 2013; Laxon et al., 2013). How the signal shape can additionally be used
to obtain information about sea ice type, is presented in paper II and paper III.
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Chapter 2

Objectives and summary of the papers

The observed changes in Arctic sea ice thickness and volume are two of the main indi-
cators of global climate change. Yet remotely sensed estimates of these parameters are
associated with high uncertainties. The first objective of this thesis was thus to quantify
the current uncertainties in sea ice thickness and volume and to identify the main sources
of uncertainty. The second objective was to develop a sea ice classification method based
on the shape of radar altimeter signal waveforms. This method could be used to convert
freeboard into thickness more accurately and to improve the estimates of sea ice thick-
ness and volume.

Below I will briefly summarize the scientific results of each paper:

PAPER I:
Uncertainties in Arctic sea ice thickness and volume: New estimates and
implications for trends, Zygmuntowska, M.; Rampall, P.; Ivanova, N. ; Smed-
srud, L.H., in press, accepted for publication in The Cryosphere, March 2014.

In paper I we provide a new quantification of uncertainties in remotely sensed
estimates of sea ice thickness and volume and identify the main sources of uncer-
tainty. To quantify these uncertainties we use freeboard retrievals from NASA’s
Ice, Cloud, and land Elevation Satellite ICESat and investigate different assump-
tions on snow depth, sea ice density and area. Uncertainties in sea ice thickness
and volume are calculated with a Monte-Carlo-approach based on probability dis-
tribution functions for these three parameters. Our approach is different to earlier
methods as we take into account the spatial auto-correlation of uncertainties.

We show that these geophysical parameters have influence on the overall mean,
the year-to-year variability, and the longterm trends. The mean total sea ice
volume and its uncertainty are 10120 ± 1280 km 3 in October/November and
13250 ± 1860 km3 in February/March for the time period 2005–2007. Based on the
found uncertainties we obtain trends in sea ice volume of -1450±530 km 3/yr in Oc-
tober/November and -880±260 km 3/yr in February/March over the ICESat period
(2003–2008). Taking into account the uncertainties, our results further indicate
that the decline in sea ice volume in the Arctic between the ICESat (2003–2008)



12 Objectives and summary of the papers

and CryoSat-2 (2010–2012) periods may have been less dramatic than reported in
previous studies. However, more work and validation is required to quantify these
changes and analyse possible unresolved biases in the freeboard retrievals.

PAPER II:
Waveform classification of synthetic aperture radar altimeter over Arc-
tic sea ice, Zygmuntowska, M.; Khvorostovsky, K.; Helm, V. and Sandven, S.,
The Cryosphere, 7, 1315 - 1324, 2013.

Paper II presents a method to derive sea ice type based on the shape of the return
signal waveform from radar altimeters. The shape of the radar signal waveform is
known to be dependent on surface properties, but so far no method exists to iden-
tify the sea ice type based on the waveform alone. Information about sea ice type,
however, is needed to be able to use ice type dependent values for snow and ice
properties while converting freeboard into thickness. For our study we use data
from the Airborne Synthetic Aperture Radar and Interferometric Radar Altimeter
System ASIRAS, which is a replica of the radar altimeter on-board ESAs satellite
CryoSat-2.

We present a first case study, analyzing data from validation campaigns per-
formed mainly north of Greenland and Canada in late winter 2007 and 2008.
We parametrize the waveform shape and identify parameters most suitable for
sea ice classification. We show that the waveform maximum and the width of the
trailing edge are the best parameters to distinguish between Multi-Year-Ice and
First-Year-Ice. By applying a bayesian based method to these parameters we are
able to detect 80% of the waveforms correctly. We also show that the false classifi-
cation rate of leads can be reduced by using the waveform maximum instead of the
widely used Pulse Peakiness parameter. For the Pulse Peakiness the rate of false
classification of leads is 13%, but is reduced to 6% when using the power maximum.

How our method can be used for CryoSat-2 is presented in paper III.

PAPER III:
Analysis of CryoSat’s radar altimeter waveforms over different Arctic
sea ice regimes, Zygmuntowska, M. and Khvorostovsky, K. manuscript to be
submitted, 2014.

Paper III presents an analysis of CryoSat’s radar altimeter waveforms over differ-
ent surface regimes. Encouraged by the positive results based on airborne data
presented in paper II, in this study we analyze signal waveforms from satellite
based radar altimeters. The difference between the two instruments is mainly the
increased footprint size for CryoSat-2 as well as the increased sampling interval
compared to the ASIRAS data used in paper II.
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We define several parameters to account for the difference in the shape of radar al-
timeter waveforms over different sea ice regimes. The parameters with the largest
difference between the two ice types are the Pulse Peakiness, Stack Standard De-
viation and Leading Edge Width. These waveform parameters can thus be used to
classify First- and Multi-Year-Ice over large areas of the Arctic Ocean. However,
analyzing the spatial distribution we find some discrepancies to other retrievals of
sea ice type. CryoSat-2 waveform parameters have values typical for Multi-Year-Ice
over large areas of First-Year-Ice. These areas are co-located with strong gradi-
ents in drift speed, indicating, that the radar signal is mainly sensitive to surface
roughness. Potentially this information could be used to reduce biases in the free-
board retrievals and to improve estimates of sea ice thickness.
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Chapter 3

Discussion and future perspectives

Aside from the findings mentioned in chapter 2, and discussed in detail in the respective
papers, a number of general lessons, implications, and questions have arisen from our
work. Below I will first highlight the importance of snow for the radar altimeter mea-
surements over Arctic sea ice. Then I briefly outline the planned, or already ongoing,
work to address the unresolved questions from the three presented papers.

Currently the main barrier to deriving accurate information about sea ice thickness
from radar altimetry is a lack of information about snow depth, it’s properties and it’s
influence on the radar signal. The lack of information about snow is mentioned in all
three studies, but herein I will explain in more detail how snow influences the estimates
of range, freeboard and thickness. Where possible I describe how the resulting problems
should be addressed in the future.

1. The snow on sea ice influences the speed of the radar signal and thus the estimates
of range and freeboard (fb). Current operational algorithms do not, however,
account for this bias, hc (fb=fbradar+hc). hc can be described as hc=hs(1- csnow

c ),
where c is the speed of the radar signal through vacuum, hs is the snow depth
and csnow the speed through the snow. Following Tiuri et al. (1984), csnow can be
described as csnow = c

1+1.7ρs+0.7ρ2s
(with ρs being the density of snow in g cm−3).

Given typical values for snow density and snow depth for the Arctic, this introduces
a bias of several centimeters to the estimates of sea ice thickness (see also Kurtz
et al., 2014, for more discussions). To derive correct information about sea ice
thickness and its changes, this correction has to be applied in the future.

2. Ice layers within the snow after refreezing can act as scattering surfaces and thus
influence the estimates of range and freeboard. In ideal conditions, with cold and
dry snow, the radar signal penetrates through the snow and is reflected from the
snow ice interface (Beaven et al., 1995). In warmer conditions, however, this is not
always the case, and the signal has been found to be reflected within the snow layer
(Willat et al., 2011). Hendricks et al. (2013) thus assumed a maximal penetration
depth of 23 cm into the snow layer in mid winter. More work is required to test
this assumption and improve this simple parametrization.

3. Wrong assumptions on snow depth introduce a bias into the estimates of sea ice
thickness. The majority of studies, in which sea ice thickness is estimated from
radar altimetry, assume a snow depth taken from the climatology from Warren
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et al. (1999). The use of this climatology does introduce biases, as 1) these val-
ues overestimate snow depth in the recent years, both over First-Year-Ice (Kurtz
and Farrell, 2011b) and Multi-Year-Ice (Zygmuntowska et. al, 2014; paper I of this
thesis) and 2) the climatology does not capture the year-to-year variability. This
is particularly important when analyzing short term changes in sea ice thickness.
Such year-to-year changes in sea ice thickness, estimated from CryoSat-2 measure-
ments (preliminary results presented at the AGU Fall meeting 2013 Tilling et al.,
2013), recently caught a lot of media attention (www.bbc.com - CryoSat). How-
ever, these findings are not necessarily real changes in sea ice thickness but can -
at least partly - be explained by an over- or underestimation of snow depth. To
derive accurate estimates of sea ice thickness real-time data should be used. Such
measurements are already available from the Advanced Microwave Scanning Ra-
diometer AMSR-E over First-Year-Ice (Brucker and Markus, 2013; Markus and
Cavalieri, 1998, 2008) and methods are being developed for Multi-Year-Ice based
on measurements from the Soil Moisture Ocean Salinity satellite SMOS (Maaß
et al., 2013).

In the three presented studies a few questions remained open, which still deserve some
closer attention. These are in particular the unresolved biases in the freeboard retrievals
(paper I) and the discrepancies in existing retrievals of sea ice type and age (paper III).
While it was clearly beyond the scope of the respective studies to analyze these issues,
I will describe below how they can, or will, be addressed in the future.

1. In paper I we found potential biases in the freeboard retrievals from ICESat and
CryoSat-2. In the presented study we primarily analyze uncertainties in sea ice
thickness and volume stemming from geophysical parameters such as snow depth,
ice density and sea ice area. Using consistent choices for these parameters we ob-
tain a decline in sea ice volume in the Arctic between the ICESat (2003–2008) and
CryoSat-2 (2010–2012) periods that is less dramatic than reported in a previous
study by Laxon et al. (2013). On the one hand our findings are consistent with
synoptic airborne measurements showing little change in sea ice thickness in this
period (Haas et al., 2010; Richter-Menge and Farrell, 2013), but on the other hand,
the underlying thickness estimates used by Laxon et al. (2013) have been evalu-
ated and agree well with independent in-situ data. Consequently an alternative
interpretation of our findings is that there are biases in the freeboard retrievals and
these biases are mitigated by the choices made for sea ice density and snow depth.
In paper I, we did not analyze these uncertainties and biases stemming from free-
board estimates as this analysis was beyond the scope of our study. At present
we try to quantify and resolve potential biases, and below I will briefly outline our
approach:

(a) To quantify uncertainties and biases in the freeboard retrievals from ICESat
we currently reproduce the two main existing algorithms developed by Kwok
et al. (2009) and Yi et al. (2011). Many studies already exist, analyzing
the freeboard uncertainties arising from lead detection algorithms (e.g. Kwok
et al., 2007) or the sampling size (e.g. Connor et al., 2013; Farrell et al., 2011).
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(a) September 15th 2012 (b) September 30th 2012

(c) October 15th 2012 (d) November 15th 2012

Figure 3.1: Comparison of sea ice age (in years) based on the algorithm outlined in Fowler et al. (2004)
and the retrieval from the EUMETSAT Ocean and Sea Ice Satellite Application Facility on ice type
and ice edge for autumn 2012 (see paper III for more information about the data product). The colored
pattern shows the sea ice age, the white contour line shows the border between First- and Multi-Year-Ice
and the black contour line indicates the ice edge.

Yet a detailed comparison of the two main ICESat data sets available from
JPL (Kwok et al., 2009) and NSIDC (Yi et al., 2011) is so far missing.

(b) In paper III we outline a potential method how biases in freeboard retrievals
from CrySat-2 can be reduced by using information about surface roughness.
Biases in freeboard retrievals have been reported in several studies: Armitage
and Davidson (2013) found a potential bias in the freeboard retrievals due
to off-nadir reflection from leads, Tonboe et al. (2010) found a bias due to
preferential sampling of thin ice, Hendricks et al. (2013) found a bias due to
an incomplete penetration of the radar signal through the snow (see above
for more detailed discussion) and Kurtz et al. (2014) show a bias due to
the use of a fixed threshold while re-tracking the surface elevation from the
radar altimeter waveforms. With our method we are potentially able to re-
solve this last bias. While Kurtz et al. (2014) suggest the use an empirical
model for waveform simulation to remove this bias, we suggest the use of
information about surface roughness to correct existing re-trackers that are
using a fixed threshold (also see paper III for a detailed discussion). A sim-
ilar ad-hoc correction has been used for freeboard retrievals from ICESat,
e.g. to account for unresolved biases due to snow accumulations on refrozen
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leads (Kwok and Cunningham, 2008) and the width of leads (Kwok et al.,
2009). To develop this correction, freeboard estimates from CryoSat-2 could
be validated against data from airborne instruments, and differences could
be compared to waveform parameters, as described in paper III. Potential
airborne measurements are, for example, laser altimeter measurements from
Operation IceBridge (Kurtz et al., 2013), snow-plus-ice measurements with
electromagnetic induction (’EMBird’ Haas et al., 1997, 2011; Renner et al.,
2013, see also ESA CryoVex blog, 2014) and radar and laser altimeter data
from CryoSat’s validation campaigns (see e.g ASIRAS, CryoVex blog 2014 for
current campaign)

2. In paper III we found large discrepancies between the age of sea ice, as derived
from Lagrangian tracking (e.g. described in Fowler et al., 2004), and the sea ice
type retrieval based on instantaneous passive and active microwave measurements
(Eastwood, 2012, obtained from the EUMETSAT Ocean and Sea Ice Satellite Ap-
plication Facility). In Figure 3.1 both datasets are compared for autumn 2012, from
the minimum ice extent in September to the freeze-up of the entire Arctic ocean in
November. The discrepancy between the two data sets increases at the beginning
of the freeze-up in September and then remains at this high level throughout large
parts of the winter. While Figure 3.1 only briefly illustrates the problem, a de-
tailed analysis should be performed, quantifying the discrepancy of the retrievals
with respect to ice area, ice edge and its dynamic behavior over several years.

3.1 Conclusions

The main conclusions of this study are the following:

1. Assumptions on geophysical parameters such as snow depth, ice density and area
introduce an uncertainty in sea ice volume of around 13%. The uncertainty in
snow depth contributes up to 70% of the total uncertainty and the ice density up
to 30%. Uncertainties in ice area are of minor importance for the estimates of sea
ice volume and thickness. The assumptions made further influence the estimated
year-to-year variability, and longterm trends.

2. Parameters which describe the radar altimeter signal waveform from CryoSat-2 are
significantly different over First- and Multi-Year-Ice over large areas of the Arctic
Ocean. However, the radar signal is mainly sensitive to surface roughness and ar-
eas of strongly deformed First-Year-Ice can be falsely classified as Multi-Year-Ice.
Potentially the information about surface roughness can be used to reduce biases
in the freeboard retrievals and to improve estimates of sea ice thickness.
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Uncertainties in Arctic sea ice thickness and volume: new estimates

and implications for trends
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1Nansen Environmental and Remote Sensing Center, Bergen, Norway
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Abstract. Sea ice volume has decreased in the last decades,

evoked by changes in sea ice area and thickness. Estimates

of sea ice area and thickness rely on a number of geophysi-

cal parameters which introduce large uncertainties. To quan-

tify these uncertainties we use freeboard retrievals from ICE-

Sat and investigate different assumptions on snow depth, sea

ice density and area. We find that uncertainties in ice area

are of minor importance for the estimates of sea ice volume

during the cold season in the Arctic basin. The choice of

mean ice density used when converting sea ice freeboard

into thickness mainly influences the resulting mean sea ice

thickness, while snow depth on top of the ice is the main

driver for the year-to-year variability, particularly in late win-

ter. The absolute uncertainty in the mean sea ice thickness is

0.28m in February/March and 0.21m in October/November.

The uncertainty in snow depth contributes up to 70 % of the

total uncertainty and the ice density 30–35 %, with higher

values in October/November. We find large uncertainties

in the total sea ice volume and trend. The mean total

sea ice volume is 10120±1280 km3 in October/November

and 13250±1860 km3 in February/March for the time pe-

riod 2005–2007. Based on these uncertainties we obtain

trends in sea ice volume of −1450±530 km3a−1 in Octo-

ber/November and −880±260 km3a−1 in February/March

over the ICESat period (2003–2008). Our results indicate

that, taking into account the uncertainties, the decline in sea

ice volume in the Arctic between the ICESat (2003–2008)

and CryoSat-2 (2010–2012) periods may have been less dra-

matic than reported in previous studies. However, more work

and validation is required to quantify these changes and anal-

yse possible unresolved biases in the freeboard retrievals.

Correspondence to: M. Zygmuntowska

(marta.zygmuntowska@nersc.no)

1 Introduction

Remotely sensed estimates of sea ice area and thickness re-

veal a dramatic decline in Arctic sea ice volume in the last

decades (Kwok et al., 2009b; Laxon et al., 2013). This de-

cline mirrors changes in the Arctic heat budget (e.g. Kurtz

et al., 2011b; Perovich et al., 2011) and alters the exchange

of freshwater between sea ice and the ocean (e.g. Aagaard

and Carmack, 1989; McPhee et al., 2009). As they are of

primary importance for the Arctic (Screen and Simmonds,

2010) and the global climate system (Outten and Esau, 2012)

these remotely sensed data have been analysed in many stud-

ies. Unfortunately, many of the studies lack a detailed es-

timate of uncertainties. We fill this gap and quantify total

uncertainties in sea ice thickness and volume in the Arctic

basin. We further identify the main factors contributing to

the uncertainties, analysing snow depth, sea ice density and

area. We provide uncertainties averaged over the Arctic basin

and analyse the spatial and seasonal variability.

Arctic sea ice area has been observed from satellites over

the last 40 yr starting with the Nimbus 5 electrically scanning

microwave radiometer (ESMR) in 1972. A decrease in sea

ice area was detected in the early 1990’s (Serreze et al., 1995;

Parkinson et al., 1999) and has continued at an increased rate

in the last decade (Cavalieri and Parkinson, 2012). The aver-

age difference in daily sea ice extent among the most known

algorithms can reach up to ±1 million km2 , but it seems

difficult to get a grip on which algorithm produces the most

correct estimates.

Until the 1990s, our knowledge of Arctic sea ice thickness

was determined by sparse field campaigns or submarine mea-

surements giving only limited insight into the overall Arctic

sea ice thickness. Based on submarine data from the cen-

tral Arctic region Rothrock et al. (1999) found a decline in

Arctic sea ice draft, the part of the ice below the water level,

of 1.3m from the 1960’s to 1980’s. Over the last decade

both laser and radar altimeters have been used to estimate
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sea ice thickness on a basin wide scale (Laxon et al., 2003;

Kwok et al., 2004b). Analysing measurements from the laser

altimeter on-board ICESat Kwok et al. (2009b) found a de-

cline in Arctic sea ice thickness of 0.18ma−1 between 2003

and 2008. Spatially the strongest decline was found in the

region covered by Multi-Year-Ice between Greenland and

the North Pole. These results were consistent with sea ice

thickness estimates from ERS and EnviSat radar altimeters

reporting strong inter-annual variability in sea ice thickness

(Laxon et al., 2003), and circumpolar thinning of Arctic sea

ice following the 2007 record ice extent minimum (Giles

et al., 2008). Combining sea ice thickness estimates from

satellites and submarines, Kwok and Rothrock (2009a) de-

termined that, in the central Arctic where submarine data was

released, the mean ice thickness in fall declined from 3.02m

in the 1960’s to 1.92m in the 1990’s, and then to 1.43m dur-

ing the ICESat period 2003–2007.

Sea ice thickness is a quantity that cannot be measured

directly by satellite based instruments. Altimeters on board

satellites measure the elevation of the Earth surface and by

identifying leads between the ice floes, the freeboard (the

height of the ice above the water level) can be derived. The

thickness is calculated by assuming hydrostatic equilibrium

and estimating the density of sea ice and snow and the snow

depth on top of the ice. These quantities may vary both in

space and time and introduce large uncertainties in the sea

ice thickness estimates.

Decline in sea ice area and thickness results in a reduc-

tion of sea ice volume. Based on data from the laser altime-

ter on board ICESat, Kwok et al. (2009b) found a net loss

of 5400 km3 in October/November and 3500 km3 in Febru-

ary/March during the ICESat record from 2003 to 2008. Re-

cent results, exploring new data from the radar altimeter on-

board CryoSat-2, report a further decline in Arctic sea ice

volume (Laxon et al., 2013). The average sea ice volume in

October/November for 2010 and 2011 was estimated to be

7560 km3, i.e. 64 % of the 2003–2008 mean value estimated

from ICESat (Kwok et al., 2009b). For the maximum annual

value in February/March, the sea ice volume was estimated

to be 14 819 km3, i.e. 91 % of the previous ICESat value

(Laxon et al., 2013).

To investigate the influence of snow depth, sea ice den-

sity, and area on sea ice thickness and volume estimates we

use freeboard retrievals from ICESat, together with different

assumptions on snow and ice properties, and sea ice con-

centration derived from different algorithms. Uncertainties

are calculated with a Monte-Carlo-approach based on prob-

ability distribution functions for the three parameters. Our

approach is different to earlier methods as we take into ac-

count the spatial auto-correlation of uncertainties. We also

provide, for the first time on an Arctic-wide scale, contribu-

tions of each of the analysed parameters to the total volume

uncertainty. Our paper is outlined as follows: In Sect. 2 we

describe the data sets used for ice sea freeboard, area, type

and snow depth. In Sect. 3 we describe how sea ice thickness

is estimated and provide a description of the Monte-Carlo

approach used to calculate uncertainties in sea ice thickness

and volume. Results on the uncertainties in sea ice thickness

and volume are given in Sect. 4 and a detailed discussion, in-

cluding implications on the trend in sea ice volume, is given

in Sect. 5.

2 Data

To calculate sea ice thickness and volume, we combine satel-

lite based retrievals of sea ice freeboard, type and area. In this

section we will describe the data sets and the processing steps

used to derive the necessary parameters for our analysis.

2.1 Sea ice freeboard

The starting point of this paper is the ICESat freeboard re-

trieval. The Geoscience Laser Altimeter System (GLAS) on

ICESat is using a 1064nm laser channel for surface altime-

try, with an expected accuracy of 15 cm. The satellite orbit

has an inclination of 94◦, measurements have a resolution of

70m and the surface was sampled every 170m (Zwally et al.,

2002). ICESat was in orbit for almost six years from 2003 to

2009 but was generally operating only for two separated pe-

riods each year in February/March and October/November.

The laser measures the top of the snow on the ice, if snow

is present, and the freeboard value retrieved is thus the com-

bined value for sea ice and snow.

The data set mainly used in our study is available from

NSIDC (Yi and Zwally, 2009) and based on the original

data processing described by Zwally et al. (2002). The

data set is only available for the campaigns from Octo-

ber/November 2005 to 2007 (see Table 1 for more informa-

tion) and provides sea ice freeboard information along track.

Sea ice thickness is also available in this data set but has not

been used in our analysis. In this algorithm the freeboard has

been obtained by defining leads as the lowest 1% of elevation

along a 50 km running mean. Further detail on the original

processing and the freeboard retrieval are provided in Zwally

et al. (2002) and at NSIDC (http://nsidc.org/data/docs/daac/

nsidc0393 arctic seaice freeboard/index.html).

For comparison we also use the gridded sea ice thick-

ness data set from JPL (available at http://rkwok.jpl.nasa.

gov/icesat/download.html). To get information about sea ice

freeboard a slightly different approach has been used for this

data set. Kwok et al. (2007) used the standard deviation of

surface elevation together with values of reflectivity to iden-

tify leads. Additionally, Kwok et al. (2009b) included two

corrections to account for possible unresolved biases, such as

due to the size of leads and snow accumulation on refrozen

leads. A detailed description of this data set can be found in

Kwok and Cunningham (2008) and Kwok et al. (2009b).

As no freeboard data are available from JPL, we did not

perform an analysis of freeboard uncertainties. In our study
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Fig. 1: Arctic sea ice properties and the Arctic sea ice area

as defined in this study. Annual mean sea ice thickness from

ICESat is shown in color [m]. The line of 50% Multi-Year-

Ice fraction is plotted as thick contour line. Both parameters

are given as the average during the ICESat campaigns 2005

to 2007. Climatological winter (October-April) snow depth

from Warren (1999) from 1954 to 1991 is given as the labeled

thin contour lines in centimeter.

we focus on how snow depth, sea ice density, and area influ-

ence sea ice thickness estimate. In this way the word “uncer-

tainty” as used in this study covers the “geophysical assump-

tions” of the sea ice thickness estimate and not instrumental

“errors”. A detailed analysis of the freeboard retrievals and

its associated uncertainties for each algorithm were described

in a clear and concise manner by Zwally et al. (2002), Kwok

et al. (2007) and Kwok and Cunningham (2008).

2.2 Sea ice type

Information about sea ice type is derived from QuikSCAT

scatterometer data. QuikSCAT provides normalized radar

cross section (sigma0) measurements of the Earth’s surface.

In this study we use daily averaged gridded QuikSCAT

data processed at the Brigham Young University (BYU)

for each mid-day of the evaluated periods (ftp://ftp.scp.byu.

edu/data/qscat/SigBrw). The small hole around the North

Pole (0.5◦ N) is filled with a nearest neighbor interpola-

tion. Backscatter is converted into Multi-Year-Ice (MYI)

fraction using the method described in Kwok (2004a). This

method is based on a relationship between the MYI fraction

from high resolution RADARSAT/RGPS images and sigma0
backscatter from QuikSCAT (see Fig. 6 in Kwok, 2004a).

We checked that our results are consistent with the fields

published in Kwok (2004a) and Polyakov et al. (2011) for

1 January from 2000 to 2008.

Table 1: ICESat campaigns as used in this study.

Survey Period

ON05 21 Oct to 24 Nov 2005

FM06 22 Feb to 27 Mar 2006

ON06 25 Oct to 27 Nov 2006

MA07 12 Mar to 14 Apr 2007

ON07 2 Oct to 5 Nov 2007

The backscatter from scatterometers is sensitive to the

physical properties of sea ice that change after sea ice has

survived the melting season. Thus the term MYI, as defined

in this study, refers to sea ice that survived one summer, but

may actually be younger than one year. However as scat-

terometers only capture the surface properties, this method

does not allow us to account for the part of (First-Year-Ice)

FYI growing from the bottom during winter freezing, and

therefore underestimates the volume fraction of FYI.

In this study we use two different approaches to define the

sea ice type: a fraction of the ice type per pixel, as described

above, and a binary classification. To get the binary sea ice

classification between FYI and MYI for each pixel we used

a threshold of 50 % for the sea ice type. This binary classi-

fication has been used in previous studies, e.g. Kwok et al.

(2009b).

2.3 Sea ice area

Sea ice area is derived from sea ice concentration estimates

based on brightness temperatures from DMSP SSM/I (Spe-

cial Sensor Microwave Imager). In this study, we use grid-

ded brightness temperatures in polar stereographic projec-

tion available from NSIDC (Maslanik and Stroeve, 2004, up-

dated 2012). Various algorithms exist to derive sea ice con-

centration from this type of measurements. The underlying

theory behind the algorithms is that sea ice and open water

emit differently across the frequency spectrum and polarisa-

tions. The measured brightness temperatures are therefore

a linear combination of these two temperatures, with weights

according to the concentration of sea ice and water. Algo-

rithms differ due to the use of different frequencies, tie-points

for ice and water, and are sensitive to changes in the physi-

cal temperature of the surface and weather filters (Comiso

et al., 1997). Ice concentration products used in this study

are based on 11 different algorithms and are listed in Table 2.

2.4 Snow depth

Our knowledge of snow depth on top of Arctic sea ice is

limited. Snow depth can be measured directly in the field

but these measurements are limited to field campaigns in

a local area during a couple of weeks. The most compre-

hensive compilation of in-situ data so far is based on man-



26 Scientific papers

4 M. Zygmuntowska et al.: Uncertainties in Arctic sea ice thickness and volume

Table 2: Different assumptions on sea ice density as used in this study to assess the possible range of sea ice thickness.

Acronym Sea Ice Density Description used e.g. in

[kgm−3]

D1 916 typical value found for FYI similar to Laxon et al. (2003)

and Alexandrov et al. (2010)

D2 925 density of ice containing Kwok et al. (2009b)

brine inclusions (JPL data set)

D3 882 density of ice containing air inclusions

typical value found for MYI Alexandrov et al. (2010)

D4 900 mean value

FYI MYI

D5 916 882 Laxon et al. (2013)

D6 916 882 weighted by MYI fraction in each pixel

made observations taken during soviet drifting stations be-

tween 1954 and 1991. Warren et al. (1999, W99 here af-

ter) created a climatology of monthly snow depth by fitting

a two-dimensional quadratic function for each month inde-

pendently of the year. The mean winter (October–April)

snow depth from W99 is shown in Fig. 1 as thin contour

lines. Because MYI was the dominating ice type during those

decades, the climatology represents snow depth on MYI.

Another way to obtain information about snow depth on

a basin wide scale are retrievals from passive microwave sen-

sors (Markus and Cavalieri, 1998). In this case snow depth is

calculated using the spectral gradient ratio of the 18.7GHz

and 37GHz vertical polarization channels. In our study we

use the data sets based on AMSR-E (Markus and Cavalieri,

2008) for which the algorithm is applied over FYI. Evalu-

ation studies found the retrieval to be accurate over smooth

first year ice, while over rougher FYI or MYI it needs fur-

ther development (Markus et al., 2006; Brucker and Markus,

2013).

In our freeboard estimates we require that the freeboard

should always be positive. Negative freeboard, as a result of

e.g. ice flooding is common in Antarctica due to the large

snow fall in that region (Lytle and Ackley, 2001), but this

has not been observed to a large degree in the Arctic. We

therefore replaced the snow depth with the freeboard value in

the cases where the snow depth was larger than the freeboard.

3 Methods

To combine the data sets we described above, we re-gridded

them following a polar stereographic projection on a 25 km

grid. For snow depth we used the mean value of the two

periods, in fall and late winter (see Table 1) when freeboard

measurements were available. For sea ice area we used the

mean over each ICESat period and for the MYI fraction the

mid-day of each ICESat period. As the export of MYI is only

about 10 % each year (Smedsrud et al., 2011) we believe that

the change in MYI fraction is slow enough to allow for this

simplification.

ICESat has an orbit inclination of 94◦, hence for a consid-

erable percentage of the Arctic Ocean, no freeboard measure-

ments are available. To fill this data gap we use the MYI frac-

tion around the hole as a proxy for sea ice thickness. For each

ICESat period, we fitted a 3rd order polynomial to the values

of sea ice thickness and MYI fraction 2 degrees around the

data hole, and used this function to derive information about

sea ice thickness within the hole. A similar method has previ-

ously been used by Kwok et al. (2009b) and provides a sim-

ple way to get an estimate of sea ice thickness and volume on

a basin-wide scale. Other data gaps, mostly occurring in the

shelf areas, have been filled similarly, using the fraction of

MYI in the adjacent pixels. As done in previous studies, all

results presented in our analysis are restricted to the “ICESat

domain” which does not include the Canadian Archipelago,

Fram Strait, Bering, Barents and Kara Sea.

3.1 Sea ice thickness estimates

To convert sea ice freeboard measurements from ICESat into

sea ice thickness a number of assumptions have to be made.

The first major assumption is that sea ice floats in hydrostatic

equilibrium, which results in the following equation for the

sea ice thickness (SIT):

SIT = fis ·
ρw

ρw−ρi
+hs ·

ρs−ρw

ρw−ρi
(1)

where fis is the snow-ice freeboard as retrieved from ICE-

Sat, hs is the snow depth, and ρw, ρs, and ρi are the densities

of water, snow and ice, respectively. The thickness depends

on the measured freeboard, and the snow and sea ice prop-

erties. For ρw we use a value of 1024 kgm−3 and for ρs
270 kgm−3 in October/November and 330 kgm−3 in Febru-

ary/March, following Warren et al. (1999). To investigate

the influence of ρi and hs on sea ice thickness estimates on

a basin-wide scale we analyse a number of data sets for these

two parameters as described below in Sects. 3.2 and 3.3.

Equation (1) describes the “true” sea ice thickness, which

is the averaged thickness of the ice in a certain area. An

observer on the ice would think this is the most meaningful
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Table 3: Different assumptions on snow depth as used in this study to assess the possible range of sea ice thickness due to snow

depth.

Acronym Snow Depth Description used e.g. in

FYI MYI

S1 W99 W99 snow taken from Laxon et al. (2003),

climatology W99 Giles et al. (2008)

S2 W99/2 W99 Laxon et al. (2013)

S3 W99/2 W99 weighted by MYI fraction

in each pixel

S4 AMSR-E W99 snow depth retrieval from

AMSR-E used over FYI

S5 0 0 lowest possible value

value of ice thickness. We also analyse the effective sea ice

thickness, which is defined as the mean sea ice thickness in-

cluding open water areas. We use the sea ice concentration

to account for the open water in each pixel and compute the

effective sea ice thickness as following:

SIT eff =SIT ·SIC [0,1] (2)

where SIT eff is the effective sea ice thickness, SIT is the

sea ice thickness as described in Eq. (1), and SIC is the sea

ice concentration. This is the most common diagnostic in

current sea ice models in which sea ice mainly grows ther-

modynamically and rather homogeneously over a grid cell.

3.2 Density scenarios

The density of sea ice depends on the amount of brine and air

inclusions, and therefore on temperature and sea state dur-

ing formation and the age of the ice. Ice containing no salt

is expected to have a density of 916 kgm−3. Newly frozen

FYI, however, contains a substantial amount of salt water that

increases the sea ice density. Concentrated sea water with

a salinity higher than 35 is termed brine, and brine salinities

can reach values up to 100 depending on the sea ice tempera-

ture. In course of time the brine drains out and is replaced by

air. Density of MYI is thus expected to be lower than that of

FYI, in particular in the freeboard part above water level, and

values vary largely among sources (e.g Timco and Frederk-

ing, 1996; Kovacs, 1996; Alexandrov et al., 2010; Forström

et al., 2011). To investigate and visualize the influence of sea

ice density on sea ice thickness we explored different values

ranging from 882 kgm−3 to 925 kgm−3 (see Table 2). We

first assumed the sea ice density to be the same over the en-

tire Arctic (D1–D4), and second we varied the sea ice density

dependent on ice type (D5 and D6). For the second approach,

we chose the ice type either by a binary classification (D5)

or by accounting for the fraction of MYI per pixel (D6).

3.3 Snow depth scenarios

To assess the influence of snow depth on sea ice thickness

estimates we used the snow depth retrieval from AMSR-E,
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Fig. 2: Probability distributions for sea ice density and snow

depth. Distributions are shown separately for First-Year-Ice

(FYI) and Multi-Year-Ice (MYI). a) mean sea ice density, b)

mean snow depth in October-November and c) mean snow

depth in February-March. Snow depth over MYI is based

on climatological values from W99, and 50% of these snow

depth is used over FYI. Dotted lines indicate the first standard

deviation (15 and 85 percentile) and dashed lines the second

standard deviation from the mean (2.3 and 97.7 percentile).

and the W99 climatology. Additionally we used a modifica-

tion of W99 based on results from airborne measurements of
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snow depth. Evaluating snow depth data from the Operation

IceBridge campaigns, Kurtz and Farrell (2011a) found that

snow load is reduced by 50 % over FYI compared to clima-

tological values of W99. An overview of our selected values

is presented in Table 3. As for the ice density we either used

the same assumption over FYI and MYI (S1 and S5) or used

different assumptions for the two ice types (S2–S4). Snow

depth weighted by MYI fraction (S3) has been calculated as

follows:

Hs =W99 ·(0.5+0.5 ·MY Ifraction) (3)

where W99 is snow depth based on climatological values

from Warren et al. (1999). The AMSR-E product is avail-

able over FYI but, the classification of sea ice type used is

different from our approach. Therefore the pixels considered

as FYI are slightly different than based on the MYI fraction

derived from QuikSCAT.

3.4 Monte-Carlo approach to calculate uncertainty

The uncertainties of sea ice volume and thickness are calcu-

lated using a Monte-Carlo approach. This is a probabilistic

method based on repeated calculations of the results, using

input parameters changed by a random selection from their

probability distributions. Parameters and their uncertainties

are therefore not simply treated as a mean value and its stan-

dard deviation, but for each input parameter real data, algo-

rithms and distributions are used. In our study the result is

the effective sea ice thickness (or sea ice volume) and the in-

put parameters are sea ice area, density and snow depth. For

sea ice area we assume each of the eleven algorithms to be

equally likely (distribution not shown). The assumed PDFs

of snow depth and sea ice density are shown in Figure 2

and are described in detail in the paragraphs bellow. To cal-

culate total uncertainties we iterate simultaneously through

the PDFs of all three parameters accordingly to their respec-

tive PDF. To calculate the uncertainty coming from a single

parameter we iterate through the PDF of this parameter and

keep the other two fixed at the mean value. As the cross-

correlation between the parameters is not well understood, it

is not included in our approach. Spatial auto-correlation for

each parameter is included by varying the parameters Arctic

wide for each Monte Carlo run, or accordingly to its sea ice

type.

The PDF of snow depth follows the W99 climatology

over MYI and is reduced by 50 % over FYI. For the stan-

dard deviation of the distributions we use the reported inter-

annual variability from the W99 climatology, of i.e. 4.3 cm

in October/November and 6.2 cm in February/March. This

is consistent with uncertainties found for the AMSR-E re-

trieval (Brucker and Markus, 2013), so we believe that our

assumptions are still conservative. In Fig. 2 we show sepa-

rate distributions for MYI and FYI for visualization, but in

reality the correlation between snow depth on FYI and MYI

has to be considered. For each Monte-Carlo calculation we

therefore picked one random value from the MYI distribution

and took half of this value for the FYI. For the campaign in

spring 2007 we used a PDF which was one centimeter higher

then shown in Fig. 2, because the campaign took place in

March/April. Because snow depth can not be negative we set

a lower bound at 0 cm.

For the PDF of sea ice density we also assumed differ-

ent values for FYI and MYI. For FYI we assumed a mean

value of 916 kgm−3 and a standard deviation of ±10 kgm−3

which is smaller than reported in other studies (Alexandrov

et al., 2010; Forström et al., 2011). For the Monte-Carlo-

approach we seek a value that would correspond to a basin-

wide average over a number of years, while the reported val-

ues are based on field observations from a local area and

a given time. For the MYI density we assume a slightly

skewed distribution as MYI generally includes areas of FYI,

both from bottom freezing and refrozen leads, and literature

values vary widely among sources. The mode of the density

distribution is 882 kgm−3, while the mean is slightly higher,

i.e. 890 kgm−3.

4 Results

In this section we first illustrate the influence of selected val-

ues for density and snow depth on the sea ice thickness es-

timates. We further show uncertainties in effective sea ice

thickness due to sea ice area, density and snow depth, and

how they are distributed over space and time. Finally we use

these estimates to calculate the total sea ice volume and its

uncertainties, and show implications for reported trends in

sea ice volume.

4.1 Sea ice density influence on sea ice thickness

Mean sea ice thickness calculated over the whole Arctic

basin using different assumptions on sea ice density is shown

in Fig. 3. The assumptions are listed in Table 2. The same

snow depth was used for all calculations, and corresponds to

climatological values from W99 over MYI, and half of the

values over FYI weighted by MYI fraction per pixel (S3 in

Table 3).

We show that the mean sea ice thickness is strongly influ-

enced by the choice of sea ice density, while the trend and the

annual cycle are hardly affected. The resulting mean values

in October/November range between 1.39m and 2.00m. At

the end of winter, in February/March sea ice thickness has

increased and ranges between 1.53m and 2.20m. Because

the influence of sea ice density increases with sea ice thick-

ness, we found the range to be smaller for FYI (about 55 cm),

and larger for MYI (about 80 cm). The difference in sea ice

density due to different sea ice classification methods, only

influences the mean sea ice thickness by a few centimeters,

and the difference between D5 and D6 in Fig. 3 is too small

to be visible.
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Fig. 3: Spatially averaged Arctic sea ice thickness calculated with different values for ice density. In a) the total mean thickness

is shown, in b) the thickness of Multi-Year Ice (MYI) and in c) the thickness of First-Year Ice (FYI). Density values used are

described in section 3.2 and can be found in table 2. The brown line (D6) is the same as S3 in Fig. 5.

The trend in FYI and MYI thickness is diametric: While

thickness of MYI is decreasing over the period (Fig. 3b) the

thickness of FYI is increasing (Fig. 3c). A number of pro-

cesses could contribute to such an increase in thickness and

we will come back to these in the discussion section.

From October/November to February/March the FYI

thickness increases by about 0.25m, representing “normal

winter growth” over areas that were open water in the be-

ginning of the freezing season. However it is surprising

and rather counter-intuitive to see that the mean thickness

of MYI does not increase between October/November 2006

and February/March 2007 (Fig. 3b). To get more insight into

this peculiarity and the inter-annual variability we proceed

with analyzing the impact of snow depth on the mean sea ice

thickness estimates.

4.2 Snow depth estimates over Arctic sea ice

Figure 4 compares the climatology from W99 represent-

ing snow depth on MYI, and the snow depth retrieval from

AMSR-E over FYI. Based on the W99 climatology the mean

snow depth on the Arctic sea ice increases from near zero

in August to a maximum in spring. The accumulation rate

is as high as 5 cmmonth−1 from August to January, before

lowering to about 2 cmmonth−1 until March. The snow in-

creases somewhat further until May, before solar radiation is

strong enough to melt the snow in June and July. At the end

of summer only a few cm of snow are left. The inter-annual

variability in the W99 climatology ranges from 3–8 cm, and

is largest in the winter period.

Based on the AMSR-E snow depth retrieval the snow ac-

cumulation over the winter season has a similar shape, with

a maximum in late winter, in phase with the W99 climatol-

ogy. The accumulation rate, however, is much lower and

the maximum value of about 19 cm is only 54 % of the cli-

matological value from W99. One can speculate, that this

is not only a result of snow falling into water, but is addi-

tionally caused by changed atmospheric conditions and a re-

duction in snow fall (Screen and Simmonds, 2012). These

might also have influenced the snow depth on MYI and can

explain some of the peculiarities mentioned in the previ-

ous section. The absence of MYI thickening between Oc-
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Fig. 4: Annual evolution of the spatially averaged snow depth

on the Arctic sea ice. The spatial pattern is shown in Fig. 1,

and the W99 climatology is based on observations between

1954 and 1991 on Multi-Year-Ice (MYI). The AMSR-E snow

depth retrievals cover First-Year-Ice (FYI) and is averaged

for the IceSat period between 2003 and 2008. For both data

sets the standard deviation is plotted around the mean value

of any given month.

tober/November 2006 and February/March 2007 (Fig. 3b)

could partly be explained by an overestimation of snow depth

in February/March, which results in an underestimation of

sea ice thickness. More information about the influence of

snow depth on sea ice thickness estimates is given in the next

section.

4.3 Snow depth influence on sea ice thickness

Mean sea ice thickness calculated from ICESats’ freeboard

observations over the whole Arctic ocean using different as-

sumptions on snow depth is shown in Fig. 5. The different

assumptions are given in Table 3. For sea ice density we used

the ice-type-dependent method (D6 in Table 2) weighted by

MYI fraction per pixel.

Mean sea ice thickness in October/November ranges be-

tween 1.28m and 2.45m, but goes down to 1.62m if we ex-

clude the “no snow” assumption, which is unrealistic but still

considered as a reference. In February/March the mean sea

ice thickness ranges between 1.33m and 3.00m, or 1.79m

if the no-snow assumption is left out. The effect of sub-grid

scale variability of snow depth due to sea ice type is about

a few cm only (compare S2 and S3 in Fig. 5), which is sim-

ilar to the results found for the sub-grid scale variability of

ice density (Fig. 3).

Using climatological snow depth from W99 for FYI we

found no increase in sea ice thickness in the winter season

(S1 in Fig. 5). This is a counter intuitive and an unrealistic

result, indicating that the W99 snow depth needs revision, as

sea ice is indeed expected to increase in thickness during an

Arctic winter. Reducing the climatological values from W99

by half or using available passive microwave retrievals from

AMSR-E over FYI results in a increase of winter growth to

about 40 cm (S2–S4 in Fig. 5).

For MYI we can only use the W99 climatology for snow

depth as no other data sets are available. The resulting spread

in Fig. 5b is due to the different MYI classifications in the re-

trievals. As mentioned above, the absence of MYI thickening

between October/November 2006 and February/March 2007

(Fig. 3b), could be a result of an overestimation of snow

depth in February/March.

4.4 Spatial distribution and absolute uncertainties

So far we have shown the range of spatially averaged sea ice

thickness estimates over the Arctic Ocean as the results of

different selected values for sea ice density and snow depth.

To get more insight into how the uncertainties in ice density,

snow depth and sea ice area contribute quantitatively to the

total uncertainty in the sea ice thickness estimates, we intro-

duce results from the Monte-Carlo approach. As the sea ice

area is considered now, the results represent uncertainties in

the effective sea ice thickness. The single uncertainties are

calculated keeping two of the parameters fixed at the mean

values, while varying the third according to the PDFs shown

in Fig. 2. We used the MYI fraction in each pixel when cal-

culating the ice type dependent values for sea ice density and

snow depth (see Eq. 3).

Averaged absolute uncertainties and the contributions

from sea ice density, snow depth, and sea ice are shown

in Fig. 6. Mean absolute uncertainty of effective sea ice

thickness is close to ±0.25m for each ICESat campaign. It

is smaller in October/November (±0.21m) than in Febru-

ary/March (±0.28m), and we found snow depth to be the

largest contributor to the total uncertainties with up to 70 %.

Ice density contributes with 30–35 % with higher values

in October/November due to the small snow cover at that

time of year. The area contribution also increase in Octo-

ber/November but remains below 10 %.

The spatial distributions of these uncertainties in absolute

values and their relative contribution to the total uncertainties

are shown in the maps of Fig. 6. We show only results for Oc-

tober/November but the spatial distribution of uncertainties

are very similar in winter. Overall, the absolute uncertainty

resulting from sea ice density is around 0.1m to 0.2m for

FYI, with uncertainties increasing for the thicker sea ice be-

tween the North Pole and Greenland (Fig. 6a). The transition

from FYI to MYI also marks the transition from the smaller

to the larger uncertainties, stemming from the larger uncer-

tainty in density for MYI that we assumed in our analysis
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Fig. 5: Spatially averaged Arctic sea ice thickness calculated with different assumptions on snow depth. In a) the total mean

thickness is shown, in b) the thickness of Multi-Year Ice (MYI) and in c) the thickness of First-Year Ice (FYI). Values are based

on available data sets described in section 4.2, and can be found in table 3. The brown line (S3) is the same line as D6 in Fig. 3.

(see Fig. 2). For MYI the uncertainties in the sea ice thick-

ness estimates resulting from sea ice density are therefore

up to 70 %, while over FYI its relative contribution remains

mostly below 40 %.

The absolute uncertainties resulting from uncertainties in

snow depth show a similar pattern, with smaller values for

thin FYI (from 0.1m) and increasing for the thicker part be-

tween the North Pole and Greenland to 0.25m. The relative

contribution from uncertainties in snow depth accounts for

only about 40 % of the total uncertainty for the MYI but up

to more than 70 % for FYI.

Uncertainty in effective sea ice thickness resulting from

the different sea ice area algorithms is less than 5 % or 10 cm

(Fig. 6c). This is caused by the high ice concentrations

inside our selected Arctic Ocean area of interest (Fig. 1).

When ice concentrations approach 100 %, there is little dif-

ference between the algorithms, and the related uncertainties

become small. Some larger values are visible in Fig. 6c in the

marginal ice zone north of Svalbard and in the vicinity of the

Bering Strait. In these locations the uncertainties in sea ice

area drive the relative uncertainty in effective thickness up to

60 %. However, in this regions the sea ice is very thin and

concentrations are low, the large values therefore hardly con-

tribute to the uncertainty in mean effective sea ice thickness

and volume (Fig. 7).

4.5 Sea ice volume uncertainties

The evolution of sea ice volume over time and the related

uncertainties calculated using a Monte-Carlo approach are

shown in Fig. 9. We estimate the mean Arctic sea ice vol-

ume between 2005 and 2007 to be 10120± 1280 km3 in

October/November, and to increase to 13250±1860 km3 in

February/March (see green curve in Fig. 9).

The ice volume in October/November 2007 stands out as

a major anomaly, following the steady reduction in MYI

for the length of our record, and a large decrease in FYI

volume since February/March 2007. The loss of FYI ice

volume from February/March 2007 to October/November

is more than 50 % or about 4700 km3. This is especially

remarkable as FYI volume actually increased from Octo-

ber/November 2005 until February/March 2007. In Octo-
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Fig. 6: Spatial distribution of uncertainties in effective sea ice thickness in October-November as a result of uncertainties in a)

sea ice density b) snow depth and c) sea ice area. The gray contour line indicates 50 % Multi-Year-Ice fraction. In the upper

line relative values of the total uncertainties are shown, and in the lower line absolute values of uncertainty.
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Fig. 7: Absolute uncertainties of the effective sea ice thick-

ness. Contributions from uncertainties in sea ice density,

snow depth, and sea ice area are included and given for the

the mean in February-March (FM) and October-November

(ON). Additionally October-November 2007 (ON07) is

shown separately. Note that the distributions of sea ice den-

sity and snow depth are non-gaussian for the total sea ice

(see PDFs in Fig. 2) and therefore the contributions from

the three parameters over First-Year-Ice (FYI) and Multi-

Year-Ice (MYI) do not sum up for the total sea ice thickness

(ALL).

ber/November 2005 MYI was the dominant ice type, but has

lost almost 50 %, or ∼ 3000 km3 of its volume until 2007.

Because of this decrease, relative uncertainties in sea ice vol-

ume are increasing, and exceed 30 % at the end of the analy-

sis period.

Absolute uncertainties and the relative contributions aris-

ing from uncertainties in sea ice density, snow depth and sea

ice area are shown in Fig. 8. In February/March 73 % of the

uncertainty is caused by uncertainties in snow depth. The

snow contribution reduces to 55 % in October/November be-

cause of the thinner snow cover during this time of the year,

similar to the absolute uncertainties for thickness (Fig. 7).

Density thus plays a larger role during October/November

but remains smaller than uncertainties resulting from uncer-

tainties in snow depth. The sea ice area contribution is visible

in October/November, but remains small throughout. This is

however dependent on the area covered by sea ice, and par-

ticularly visible in October/November 2007 when it increases

to around 5 %.

5 Discussion

We have calculated uncertainties in the estimates of Arctic

sea ice thickness and volume. The uncertainties represented

in this study arise from three different parameters that are set
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Fig. 8: Absolute uncertainties in Arctic sea ice volume. Con-

tributions from uncertainties in sea ice density, snow depth,

and sea ice area are included and given for the the mean

in February-March (FM) and October-November (ON). Ad-

ditionally October-November 2007 (ON07) is shown sepa-

rately. Note that the distributions of sea ice density and snow

depth are non-gaussian for the total sea ice (see PDFs in Fig.

2) and therefore the contributions from the three parameters

over First-Year-Ice (FYI) and Multi-Year-Ice (MYI) do not

sum up for the total sea ice volume (ALL).

up when estimating sea ice thickness and volume: sea ice

density, snow depth and sea ice area. Below we will first dis-

cuss the findings for sea ice thickness and its uncertainties

and then discuss our results for sea ice volume, its uncertain-

ties, and implications for its recent trend.

5.1 Sea ice thickness

We found that the choice of sea ice density significantly

changes the estimated mean sea ice thickness. Our mean sea

ice thickness ranges from 1.45m to 2.09m using a range for

sea ice density in accordance with the values seen in the lit-

erature. While the density affects the mean sea ice thickness,

the snow depth affects its annual cycle and the inter-annual

variability. The W99 snow depth climatology results in a un-

derestimation of winter growth and indicates that the clima-

tology is outdated, also over MYI.

The range of densities we used captures the real ice den-

sity, but it remains an unresolved issue whether the density

has changed, or will be changing, due to a change in sea ice

type over the Arctic Ocean, or due to changing weather con-

ditions like warming temperatures and later ocean freeze-up.

The snow depth has already been affected by these changes

(Hezel et al., 2012; Kurtz and Farrell, 2011a), and our study

confirms that the climatological values from W99 do not rep-

resent the current snow conditions over the Arctic sea ice.

Absolute changes in snow depth do not have to be consid-

ered solely, but to derive accurate estimates for sea ice thick-

ness, it is additionally important to capture its inter-annual

variability. Passive microwave retrievals seem to be reliable

over smooth FYI and have been found to be within ± 0.05 m

of snow depth measurements from the Operation Ice Bridge

(Brucker and Markus, 2013). For large snow depths and

rougher surfaces the uncertainties may however be larger

(Markus et al., 2006). With thinning of the sea ice comes

weakening and increased deformation (Rampal et al., 2009),

so the retrievals may actually become less accurate in the fu-

ture. Over MYI, the lack of more recent and accurate snow

depth retrievals remains an issue, and explains why we have

used the climatological values from W99 for this ice type

in all our analysis. Recently, a new snow depth algorithm

for thick ice has been developed (Maaß et al., 2013), based

on brightness temperatures from the longwave passive mi-

crowave radiometer on-board SMOS. The algorithm requires

more validation, but first results show very good agreement

with airborne campaigns. The second way to retrieve infor-

mation about snow depth on Arctic sea ice is to combine pre-

cipitation from atmospheric reanalysis and ice drift data from

satellite products (used in e.g Kwok and Cunningham, 2008;

Kurtz et al., 2011b). The accuracy of the reanalysis data de-

pends on the model set up and the data assimilation method

which is not always reliable over the Arctic ocean (Screen

and Simmonds, 2011) and also varies significantly between

different data sources (Bitz and Fu, 2008). Our results show

that snow significantly affects the sea ice thickness estimates

and an accurate method to retrieve snow depth will be essen-

tial to derive absolute values and trends in sea ice thickness

in the future.

Using the Monte-Carlo approach we estimate the mean

absolute uncertainty of effective sea ice thickness to be

±0.21m in October/November and ±0.28m in Febru-

ary/March. Previous studies estimate the uncertainty in sea

ice thickness to be e.g. 0.5m (Kwok et al., 2009b), 0.7 m

(Kwok and Rothrock, 2009a), 0.76m (Giles et al., 2007) or

0.93m (Forström et al., 2011). In all these studies the uncer-

tainty has been calculated with the variance formula, which

is the common method to calculate uncertainties from un-

correlated parameters. The difference to our uncertainty es-

timates can be explained by two main reasons: Our uncer-

tainty estimates are for effective sea ice thickness and we did

not include uncertainties resulting from freeboard and snow

density. Freeboard has been found to be the main source of

uncertainty and by not including it we clearly underestimate

the uncertainties in sea ice thickness. However, the results

are consistent with our findings, that besides the freeboard,

the snow depth is the main source of uncertainty. The differ-

ent values found in the mentioned studies result from differ-

ent assumptions made on the uncertainties of single parame-

ters. In particular, there is large disagreement in the influence

of snow density into the total uncertainty, ranging from 1 cm

(Giles et al., 2007) to more then 20 cm (Kwok and Rothrock,

2009a).

Sea ice thickness can also be estimated with sea ice mod-

els, which are an important tool to understand and predict

the state of Arctic sea ice. Evaluating results from the Pan-

Arctic Ice-Ocean Modeling and Assimilation System (PI-
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OMAS) Schweiger et al. (2011) found a bias to the ICE-

Sat derived sea ice thickness estimates from JPL of 0.26m

in fall and 0.1m in spring. In spring this bias is within the

range of our uncertainties while in fall it is slightly larger

than uncertainties found in our study. Our analysis provides

some possible explanation for the discrepancies found be-

tween the sea ice thickness estimates from ICESat and PI-

OMAS. Schweiger et al. (2011) found a larger difference be-

tween the two data sets north of Greenland and the Canadian

Archipelago than in other areas, with ICESat giving values

around 0.7m larger than results from PIOMAS. As estimates

from PIOMAS agree better with in-situ data in this area, they

hypothesized that ICESat retrievals may overestimate the sea

ice thickness in this area of the Arctic ocean. A part of this

discrepancy could be explained by the choice of sea ice den-

sity. In the data set from JPL the sea ice density is chosen

to be 925 kgm−3 and reducing it to 882 kgm−3 lowers the

sea ice thickness about 0.5m (see Fig. 3). This explanation

is supported by the apparently lower difference between sea

ice thickness estimates from PIOMAS and CryoSat-2 (Laxon

et al., 2013), where the reduced value for sea ice density has

been used to convert freeboard into thickness. More compar-

ison, however, is needed for verification.

5.2 Sea ice volume

We calculated the sea ice volume for the three years be-

tween 2005 and 2007 with a Monte-Carlo approach using

probability distribution functions for sea ice density, snow

depth and area as described in Sect. 3.4. We estimate

a mean sea ice volume of 10120±1280 km3 (12.7 %) in Oc-

tober/November, increasing to 13250±1860x km3 (14 %) in

February/March. In February/March snow depth accounts

for more than 70 % of the uncertainty. In October/November,

when snow depth is lower, the density becomes more impor-

tant and accounts for 43 % of the total uncertainty.

These large uncertainties resulting from sea ice density can

be illustrated using the selected values for the density as de-

scribed in Sect. 3.2. Using a sea ice density of 925 kgm−3

as done in the JPL data set (see line 2 and 3 in Table 4 and

green dashed line in Fig. 9) increases the sea ice volume by

15 % on a yearly average. Using values of 882 kgm−3 and

916.7 kgm−3, as done in Laxon et al. (2013) for the CryoSat-

2 data, produces a sea ice volume about 5 % smaller than our

Monte-Carlo based volume estimates (see green dotted line

in Fig. 9 and line 4 in Table 4).

ICESat data have been freely available and have there-

fore been analyzed in many studies (e.g. Spreen et al., 2006;

Kwok and Cunningham, 2008; Farrell et al., 2009; Kurtz

et al., 2011b; Schweiger et al., 2011). Only a minority of

them, however, conducted detailed calculations of uncertain-

ties and errors. A detailed but completely different approach

to calculate the uncertainty in sea ice volume based on ICE-

Sat data was used by Kwok et al. (2009b). The uncertainty

was calculated as the sum of uncorrelated errors for each

pixel: σT =N1/2(A2

c
σ2

h
+h2σ2

Ac

)1/2, where σh and σAc
are

the uncertainties in cell thickness (h) and cell area (Ac), σT

uncertainties in total thickness, and N the number of grid

cells. Assuming an error of 0.5m for sea ice thickness, the

resulting sea ice volume uncertainty in this study was given

as 33 km3. This approach is valid for uncertainties in sea ice

thickness stemming from uncorrelated errors, and as stated

by Kwok et al. (2009b), should be considered as best case

scenario. In our analysis we did not account for such uncor-

related errors, but uncertainties resulting from the mean val-

ues of snow depth, sea ice density and area. The uncertainties

in these geophysical parameters should be understood more

as a bias - not as uncorrelated errors. This explains why our

ice volume uncertainty becomes as high as ±1860 km3 in

February/March, a value 56 times higher than the uncertainty

calculated by Kwok et al. (2009b). In the future more work

needs to be done to analyse to which extent parameters and

their uncertainties are correlated and to which extent retrieval

errors are indeed random as assumed by Kwok et al. (2009b).

Both would lower the estimates of uncertainty. However con-

sidering the lack of current knowledge on the absolute values,

our uncertainty estimates can be assumed to be in the right

range.

A bias in sea ice thickness as measure of uncertainty that

propagates into the estimates of uncertainty in sea ice vol-

ume has been previously used to assess uncertainties in mod-

eled Arctic sea ice volume with PIOMAS (Schweiger et al.,

2011). This is comparable to the uncertainties in our stud-

ies, and the resulting uncertainties in sea ice volume of 6.3 %

in spring and 10 % in fall are of the same order (14 % and

12.7 % in our study for the two season, respectively). While

Schweiger et al. (2011) used the differences between model

results and validation data to identify the bias, in this study

we provide additional physical insight, quantifying uncer-

tainties resulting from geophysical parameters such as area,

snow depth and sea ice density.

5.3 Implications for trends in sea ice volume

The calculated uncertainties have implications on trends in

sea ice volume. Our time series of ICESats’ freeboard mea-

surements from NSIDC is rather short, ranging from 2005

to 2007, which is admittedly too short to allow for ro-

bust calculations of trends. We therefore applied our cal-

culated uncertainties of 12.7 % in February/March and 14 %

in October/November to the longer time series processed at

JPL (Kwok and Cunningham, 2008). Using a weighted re-

gression to account for the obtained uncertainties (weighted

by 1 std−2), we calculate a trend of −1450± 530 km3a−1

in October/November and −880± 260 km3a−1 in Febru-

ary/March. The calculated trends are close to previous find-

ings from Kwok et al. (2009b) of −1240 km3a−1 in Octo-

ber/November and −860 km3a−1 and February/March, re-

spectively.
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Fig. 9: Sea ice volume and its uncertainties calculated with different methods. For comparison ICESat results based on sea ice

thickness data from JPL are included as a black dashed line, and CryoSat-2 values (Laxon et al., 2013) as the gray dashed line.

ICESat operated until 2008, and efforts to produce long-

term trends by merging ICESat data with recent CryoSat-

2 data is ongoing. Laxon et al. (2013) produced the first

estimates and concluded on a loss of ice volume in Octo-

ber/November of 4290 km3 between the mean of the ICESat

period (2003–2008) and the CryoSat-2 period (2010–2012),

which is a loss of about 36 %. In February/March they esti-

mated a smaller loss of about 1480 km3. In Table 4 we com-

pare our results to the ICESat values from JPL (Kwok and

Cunningham, 2008) and CryoSat-2 values from Laxon et al.

(2013) illustrating the importance of the density estimate.

Despite a consistent long-term change between ICESat and

CryoSat-2 there are also differences that can be elucidated

by our new results on uncertainties. The main difference is

the high density of 925 kgm−3 in the JPL dataset used when

converting freeboard measurements to thickness, compared

to the values of 882 kgm−3 and 916 kgm−3 used by Laxon

et al. (2013) for CryoSat-2. Adjusting the values for sea ice

density in the ICESat period accordingly (see Table 4) allows

for a more consistent comparison between the ICESat and

CryoSat-2 periods. For the October/November this adjust-

ment lowers the ice loss between the two periods consider-

ably, and the ice loss becomes smaller than 2000 km3, corre-

sponding to a rate of −390 km3a−1. For February/March we

Table 4: Sea ice volume as calculated in this study using

different assumptions of the density in comparison with pre-

vious publications. Same values are given in Fig. 9.

Source Volume [km3]

Oct–Nov Feb–Mar

Monte-Carlo-Mean 10 120 13 254

JPL data 2005–2007b 11 705 14 842

ρi =925 kgm−3 11 461 15 587

ρi =916 kgm−3 & 882 kgm−3 9312 12 870

JPL data 2003–2008b 12 054 15 999

CryoSat 2010/11a 8283 15 424

CryoSat 2011/12a 6838 14 215

a Using ρi =916kgm−3 for FYI and 882 kgm−3 for MYI.
b Using ρi =925kgm−3.

find that the Arctic ice volume has even increased from the

end of the considered ICESat period 2007 up to March 2011.

The low loss, and in particular the increase, of sea ice vol-

ume between the ICESat and CryoSat-2 period is an interest-

ing and somewhat surprising result, raising questions about

the accuracy of our methods. Indeed, the increase in Febru-
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ary/March may partly be an artifact due to the snow depth

assumed and the differences in the measurement techniques.

The ice freeboard from ICESat is measured using a laser

whose signal is reflected from the snow–air interface, while

the radar signal from CryoSat-2 is assumed to be reflected

from the snow–ice interface. Hence for ICESat data, more

snow results in thinner sea ice, while for CryoSat-2 more

snow results in thicker sea ice estimate. As stated above, the

W99 climatology is overestimating the snow depth on Arc-

tic sea ice, not only over FYI (as previously found by Kurtz

and Farrell, 2011a) but also over MYI. Therefore our esti-

mates of ice thickness and volume from ICESat might be too

low and estimates based on CryoSat-2 too high, which could

artificially lead to the low loss, or increase, of ice volume

between the two periods.

Sea ice thickness estimates from JPL (e.g. Kwok and Cun-

ningham, 2008)) and Laxon et al. (2013) have been evaluated

and agree well with independent in-situ data. Assuming that

these data sets represent the real state of the Arctic sea ice it

implies that there are large biases in the freeboard retrievals

and these biases are mitigated by the choices made for sea

ice density and snow depth. Biases can indeed be expected,

in particular for CryoSat-2 due to preferential sampling of

leads (Tonboe et al., 2010) or the unknown penetration depth

of the radar signal into the snow layer (Willat et al., 2011).

The evaluation data, however, are still highly limited in space

and time, and do not cover all ice types and seasons. There-

fore, more work is required to separate between the different,

seasonally changing biases.

However, the moderate ice loss as found in our study

in fall is consistent with synoptic airborne measurements

during summer showing little change in sea ice thickness

(Haas et al., 2010) and with satellite based retrievals show-

ing a slight recovery of MYI fraction from 2008 till 2010

(Stroeve et al., 2012). On year-to-year timescales a temporal

recovery of Arctic sea ice is indeed possible given e.g. an

effective loss of insulation caused by the autumn snow end-

ing in the ocean and not on the sea ice (Notz, 2009; Tietsche

et al., 2011).

To get more robust results on long term trends, further

evaluation of the freeboard retrievals, in particular from

CryoSat-2, is needed and more reliable estimates of sea ice

density and snow depth on the Arctic sea ice are necessary.

Our results indicate a less dramatic decline of Arctic sea ice

volume than reported in previous studies, but it is not pos-

sible to draw quantitative conclusions about changes in sea

ice volume between the ICESat period (2003–2008) and the

CryoSat-2 (2010–2012) period.

6 Conclusions

Remotely sensed observations of Arctic sea ice thickness and

volume are available for the last decade. In accordance with

documented loss of sea ice area over the last 30 yr, avail-

able studies point to a dramatic loss of sea ice volume. We

have shown here that such estimates of Arctic sea ice volume

rest on a number of geophysical parameters that have influ-

ence on the overall mean, the year-to-year variability, and the

trends. The overall uncertainties appear larger than previous

studies suggest, and the dramatic ice loss appears smaller.

Despite the large number of algorithms available, and the

associated uncertainties of ∼ 1.3 million km2, uncertainties

in area do not carry on to the sea ice volume estimates in cold

seasons over the Arctic Ocean. They become important when

concentrations are well below 100 %, like in the marginal

ice zone, and may therefore become more important in the

future, caused by the ongoing sea ice retreat in the Arctic.

The choice of the mean density used when converting ICE-

Sat derived freeboard measurements to sea ice thickness has

a major influence on the resulting mean thickness, but does

not alter the year-to-year variability. To obtain accurate es-

timates of changes in sea ice volume and thickness in the

future, the change from mainly Multi-Year-Ice to First-Year-

Ice and the corresponding changes in sea ice density also has

to be considered.

The snow loading on top of Arctic sea ice greatly effects

the estimated thickness and volume during the winter and is

a likely driver for year-to-year variability. Our results indi-

cate that climatological values from Warren et al. (1999) not

only overestimate the snow load on First-Year-Ice compared

to the present day climate, but also give incorrect values for

Multi-Year-Ice.

The absolute uncertainty in mean effective sea ice thick-

ness derived from the laser altimeter on-board ICESat is

0.28m in February/March and 0.21 in October/November.

The uncertainty in snow depth contributes up to 70 % of the

total error, and the ice density 30–35 % with higher values in

October/November.

We find large uncertainties in total sea ice volume and

trend. For the total sea ice volume the mean is 10120±

1280 km3 in October/November and 13250± 1860 km3 in

February/March for our time period from 2005 till 2007. We

obtain a trend of −880±260 km3a−1 in February/March and

−1450± 530 km3a−1 in October/November in the ICESat

period 2003–2008.

Our results still reveal a decline in sea ice volume between

the ICESat (2003–2008) and the CryoSat-2 (2010–2012) pe-

riods, but less dramatic than reported in previous studies.

However, final quantitative conclusions about a change of

sea ice volume are hard to make, considering the large un-

certainties and unresolved biases found in our study.
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Abstract. Sea ice thickness is one of the most sensitive
variables in the Arctic climate system. In order to quan-
tify changes in sea ice thickness, CryoSat-2 was launched in
2010 carrying a Ku-band radar altimeter (SIRAL) designed
to measure sea ice freeboard with a few centimeters accu-
racy. The instrument uses the synthetic aperture radar tech-
nique providing signals with a resolution of about 300 m
along track. In this study, airborne Ku-band radar altime-
ter data over different sea ice types have been analyzed. A
set of parameters has been defined to characterize the dif-
ferences in strength and width of the returned power wave-
forms. With a Bayesian-based method, it is possible to clas-
sify about 80 % of the waveforms from three parameters:
maximum of the returned power waveform, the trailing edge
width and pulse peakiness. Furthermore, the maximum of
the power waveform can be used to reduce the number of
false detections of leads, compared to the widely used pulse
peakiness parameter. For the pulse peakiness the false clas-
sification rate is 12.6 % while for the power maximum it is
reduced to 6.5 %. The ability to distinguish between differ-
ent ice types and leads allows us to improve the freeboard
retrieval and the conversion from freeboard into sea ice thick-
ness, where surface type dependent values for the sea ice den-
sity and snow load can be used.

1 Introduction

While Arctic sea ice extent and its changes have been stud-
ied widely in the last decades (Kwok, 2002; Comiso et al.,
2007; Stroeve et al., 2012), sea ice thickness and its de-
crease remain one of the least observed variables of the Arc-

tic climate system (Laxon et al., 2003; Maslanik et al., 2007;
Giles et al., 2008; Kwok and Rothrock, 2009). Ice thick-
ness data are sparse and only available from a few cam-
paigns with upward-looking sonar on submarines and moor-
ings (Rothrock et al., 1999, 2008) or helicopter surveys using
electro-magnetic induction (Haas et al., 1997, 2010, 2011;
Hendricks et al., 2011). Satellite laser and radar altimeters
have provided large-scale coverage of ice thickness data in
the Arctic, but the operations were limited to certain pe-
riods and regions. ICESat’s high-resolution laser altimeter,
with a footprint of 70 m, covered the area up to 86◦ N, while
its temporal coverage was limited to two five-week opera-
tion periods per year from 2003 to 2009 (Kwok et al., 2004;
Kwok and Untersteiner, 2011). Conventional radar altime-
ters on board ERS-1/2 and Envisat provided continuous high-
density measurements from 1992 to 2012, but have a rela-
tively coarse resolution, with a footprint of several kilome-
ters, and only cover the polar regions up to 81.6◦ N (Laxon
et al., 2003). In 2010 CryoSat-2 was launched addressing
the shortcomings of previous altimeter missions (Wingham
et al., 2006; Laxon et al., 2013). CryoSat’s payload instru-
ment is the SAR/Interferometric Radar Altimeter (SIRAL),
which uses the synthetic aperture radar (SAR) technique
to enhance the resolution along track. When operating in
SAR mode over sea ice, CryoSat-2 has a footprint of about
270 m × 1000 m, which is a significant improvement com-
pared to the previous ERS and Envisat altimeters. CryoSat-2
orbits the earth with an inclination of 92◦, which enables the
measurement of sea ice thickness at high latitudes.

Radar altimeter signals from sea ice have been analyzed
in many studies since the 1980s (Dwyer and Godin, 1980;
Onstott et al., 1987). Dwyer and Godin (1980) published the
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first analysis of radar altimeter waveform signals over sea
ice using data from the GEOS-3 satellite. They found altime-
ter power waveforms over smooth sea ice to rise to a higher
value than over the rough open ocean. Drinkwater (1991) and
Ulander (1987) found correlations between radar backscatter
in SAR images and radar altimeter echo strength and width.
Fedor et al. (1989) observed a reduction of the signal re-
sponse from flat to ridged sea ice. The strongest return signal
has been found to come from leads with calm, open water
or thin ice, producing specular echo power waveforms (Fet-
terer, 1992). Encouraged by these findings, the possibility for
sea ice classification based on radar altimeter data alone has
been discussed in several studies (Chase and Holyer, 1990;
Drinkwater, 1991; Laxon, 1994a). Even though the results
were promising, the methods have not been developed any
further. The current Envisat algorithm for example only dis-
tinguishes between leads and ice floes, and large open water
areas are masked out by the use of passive microwave data
(Laxon et al., 2003; Giles et al., 2008; Ridout et al., 2012).
Leads are most commonly identified by the pulse peakiness
parameter – the ratio of signal maximum and accumulated
power (Peacock and Laxon, 2004; Giles et al., 2007). Sea ice
thickness is calculated using prescribed values for ice density
and climatological snow depth (Warren et al., 1999).

All the assumptions used in this algorithm are based on
conventional altimeters where the waveform is essentially
a step function. Once the power has reached the maximum,
it remains there for many delay intervals as the area con-
tributing to the power echo is constant over time (Brown,
1977). For synthetic aperture radar altimeters, the signal de-
cays more rapidly after the peak as the area contributing to
the response signal decreases with the square root of time
(Raney, 1998). The different sampling techniques, and the
resulting different echo shape, suggest that a classification of
different sea ice types using only waveform data from syn-
thetic aperture radar altimeters may be possible.

In this paper we present a method to distinguish between
first-year ice and multi-year ice based on the shape of the
radar echo waveform alone. The data used in the study were
obtained by an airborne synthetic aperture radar altimeter,
ASIRAS, during pre-launch calibration and validation cam-
paigns for CryoSat-2. Different parameters to describe the re-
turned signal and techniques for classification have been ex-
plored. The paper contains the following sections: in Sect. 2
we describe the radar altimeter ASIRAS as well as the valida-
tion data sets used. Parametrization of the echo power wave-
forms is described in Sect. 2.2 and the used classification
methods in Sect. 2.3. The distribution of each parameter for
different surface types and the resulting classification rates
are given in Sect. 3. In Sect. 4 our results are compared to
previous findings, and perspectives for further applications
are discussed.

2 Data and methods

2.1 Instrument and data campaigns

To examine the possibilities of surface classification based on
radar altimeter data, measurements from ESA’s CryoSat cal-
ibration and validation experiments CryoVEx 2007 and Cry-
oVEx 2008 have been used. Both airborne operations were
coordinated by the National Space Institute, Danish Tech-
nical University (DTU Space) and the Alfred Wegener In-
stitute (AWI). In 2007 the campaign took place from April
15 to April 25 while in 2008 it lasted from April 15 un-
til May 8. In this study we mainly use data from the Air-
borne Synthetic Aperture and Interferometric Radar Altime-
ter System (ASIRAS). The instrument operates at a cen-
ter frequency of 13.5 GHz (Ku-band) and features along-
track resolution enhancement by using the synthetic aperture
radar technique like its satellite counterpart SIRAL on board
CryoSat-2. ASIRAS operates with an antenna beam pattern
of 10 degrees along track and 2.5 degrees across track. The
footprint size depends on flight altitude but can be consid-
ered to be around 10 m × 50 m at a flight altitude of 300 m.
Synthetic aperture radar processing is used to increase the
resolution along track, which results in a sampling resolution
of 3 m. The return echo power for each data point is recorded
with a vertical resolution of approximately 0.095 m and sam-
pled in a 24 m range window, corresponding to 256 bins.

Since CryoSat-2 was primarily designed to measure trends
in perennial sea ice, the main validation campaigns took
place north of Greenland and Canada, which is an area
known to be mostly covered by this type of ice. Single flights
have also been performed in areas covered by first-year ice
such as Baffin Bay and around the Svalbard archipelago.
Therefore we were able to analyze the returned signal wave-
form over different surfaces such as leads, first-year ice (FYI)
and multi-year ice (MYI) (see Table 1). In the area of acqui-
sition, surface types have been identified on contemporary
Envisat ASAR wide-swath images (see Fig. 2). In some of
the areas, as in the first-year and multi-year ice cases north of
Alert, detailed in situ measurements were also available. The
area has also been surveyed by an airborne electromagnetic
induction device (EM-Bird), which measures the combined
snow and ice thickness. Additionally, data from downward-
looking optical cameras on board the airplanes were avail-
able. The combination of these data sets gives an excellent
knowledge of the ice conditions and allows for a detailed
study of the waveform signal over different surface regimes.
More information about the campaigns can be found in tech-
nical reports (Helm and Steinhage, 2008; Hvidegaard et al.,
2009). An overview of the location of the cases analyzed is
given in Fig. 1. Further details of the study areas are provided
in Table 1.
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Table 1. Overview of the study areas and numbers of available echo waveforms for each case. We evaluated nine cases: two for leads (L),
four for first-year ice (FYI) and three for multi-year ice (MYI), each containing several hundred waveforms. Additional data sets, which have
been used for obtaining information about the surface type, are listed in the right column. ASAR indicates that an Envisat ASAR wide-swath
image was available.

Cases Date Description No. of echoes Additional data sets

L1 27.04.2008 Leads northeast of Greenland 566 ASAR, photo camera
L2 01.05.2008 Leads north of Alert 1635 ASAR, photo camera
FYI 1 21.04.2007 Svalbard Walenbergfjorden, fast ice 3273 ASAR
FYI 2 06.05.2008 Baffin Bay 10755 ASAR
FYI 3 01.05.2008 Thin, flat, snow-covered ice north of Alert 5248 ASAR, in situ, EM-Bird, photo camera
FYI 4 01.05.2008 Validation area north of Alert 513 ASAR, photo camera
MYI 1 27.04.2008 Big ice field northeast of Greenland 7223 ASAR, photo camera
MYI 2 01.05.2008 Sea ice field north of Alert 7205 ASAR, photo camera
MYI 3 01.05.2008 Validation area north of Alert 796 ASAR, in situ, EM-Bird, photo camera
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Fig. 1.Map showing the approximate location for each of the evalu-
ated cases (see detailed description in Table 1). Cases with leads (L)
are marked in red colors, first-year ice (FYI) in blue and multi-year
ice (MYI) in green.

2.2 Parametrization of waveform shape

The return signal from the airborne radar altimeter is sam-
pled in a range window of 256 bins, each with a size of
about 0.095 m. The signal is usually referred to as power
echo waveform or simply waveform. To be able to describe
the shape of the waveform quantitatively and account for the
differences in strength and width of the signal, the following
parameters have been used (see Fig. 3):

– Maximum (Max) value of the power echo.

– Pulse peakiness (PP) is the ratio of the maximum power
to the accumulated echo power (first defined by Laxon,
1994b).

PP =

max(power)
∑256

i=1 power(i)
(1)

Fig. 2. Example of background information available to retrieve sea
ice type north of Alert. Left: Envisat ASAR wide-swath image over-
laid with contemporary ASIRAS track from 1 May 2008. In green
the ASIRAS track over MYI is shown, in blue FYI and in red the
leads. Right: example of camera images used for identifying leads
within the ice.

– Leading edge width (LeW) is obtained by fitting a Gaus-
sian curve to the leading edge (starting at the bin con-
taining an echo power larger than 1 % of the power max-
imum and ending two bins after the bin with the max-
imum value). The distance between 1 % and 99 % of
maximum power echo is defined as the leading edge
width (e.g., Legresy et al., 2005).

– Trailing edge width (TeW) is obtained by fitting an ex-
ponential decay function to the trailing edge starting
with the bin containing the maximum power. The trail-
ing edge width is the distance between the 99 % and 1 %
of the power maximum.

www.the-cryosphere.net/7/1315/2013/ The Cryosphere, 7, 1315–1324, 2013



44 Scientific papers

1318 M. Zygmuntowska et al.: Waveform classification of radar altimeter over Arctic sea ice

range bin 

ec
ho

 p
ow

er

LeW

TeW

  Max

Fig. 3. Subset of the averaged waveform for first-year ice, calculated
as the mean of all waveforms retrieved over first-year ice (specified
in Table 1). The approximate width of the leading edge and trailing
edge are indicated for visualization of these two waveform parame-
ters.

– Trailing edge slope (TeS) is the decay factor for the ex-
ponential fit (e.g., Legresy et al., 2005).

2.3 Classification parameters and methods

To evaluate which parameters are most distinct for each sur-
face type, and therefore suitable to distinguish between sur-
face classes, the Kolmogorov–Smirnov test (KS test) has
been applied. In statistics, the KS test makes it possible to
determine if two data sets differ significantly by quantifying
the distance between the empirical cumulative distribution
functions of two samples. No assumption about the distribu-
tion of the two data samples is made, but the test is sensitive
to differences in location and shape of the distribution func-
tions.

After analyzing the probability distributions and finding
the parameters that are most suitable for classification, two
different classification methods have been explored: (1) rule-
based threshold method and (2) Bayesian classifier. The
threshold method is the one most commonly applied to de-
tect leads within sea ice. The Bayesian classifier is a simple
and robust classification method based on supervised learn-
ing that formulates the classification problem in probabilistic
terms.

2.3.1 Rule-based threshold

By analyzing the distribution functions for different surface
classes and waveform parameters, it seems straightforward
to base a classification on simple thresholds between the
classes. This is a widely used method to identify leads, and
usually the pulse peakiness parameter or the Maximum are
used (Peacock and Laxon, 2004; Giles et al., 2007; Röhrs

et al., 2012). We selected an equal number of waveforms
from each surface class and set the threshold by maximizing
the number of correct classified waveforms from this selec-
tion. To minimize the number of false detections, a margin
was set around the threshold. The size of the margin equals
approximately 2 % of the range of each parameter. Wave-
forms with classification parameters within this margin are
labeled as not classified. The advantages of this rule-based
threshold method are that no assumption on the distribution
is made and, after setting the threshold, it is very easy to im-
plement.

2.3.2 Bayesian classifier

For the classification with the Bayesian approach, our data
set has been divided into two different parts: a learning data
set with 40 % of all available waveforms and a testing set
with 60 %. The Bayesian classifier is based on Bayes’ theo-
rem (Hanson et al., 1991), which formulates the classification
problem in probabilistic terms: based on the probabilities of
each surface class and probabilities of the waveform param-
eters for each class, a probability calculation is used to make
a classification decision. The used parameters are PP, Max,
TeW, TeS and LeW, and the classes are the three surface
types, FYI, MYI and leads. In our study we used Gaussian
kernel density estimates to model the parameter densities for
each class. It is assumed that parameters are conditionally
independent and their class distributions are calculated inde-
pendently. This is a simplification but as the parameters are
partly depending on different surface properties, it is reason-
able for our purpose. To reduce the number of wrong classi-
fications, we added the requirement that the probability be-
longing to one class has to be higher than 70 %; otherwise
waveforms were labeled as not classified.

3 Results

3.1 Typical waveform

As a first qualitative analysis we show mean waveforms for
different surface types in Fig. 4. To account for the difference
in surface elevation, all waveforms have been moved so that
their maximum values are located in the same sampling bin.
The mean of the maximum echo power resulting from reflec-
tion over leads is more than 8 times higher than from those
coming from sea ice; and even 4 times higher than the mean
maximum coming from flat first-year ice (Fig. 4a). The dif-
ference in the maximum from the waveforms coming from
first-year ice and multi-year ice is less distinct. In Fig. 4b
normalized waveforms are shown in order to visualize the
difference in the width of the power echo.

Based on the visual analysis of the waveforms, there is a
clear difference in the decay after the peak, with multi-year
ice having a lower decay rate and a wider trailing edge than

The Cryosphere, 7, 1315–1324, 2013 www.the-cryosphere.net/7/1315/2013/
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Fig. 4. Averaged waveforms for the three evaluated surface types:
leads (red), FYI (blue) and MYI (green). Additionally the mean
waveform over flat FYI is shown (black). The waveforms have been
calculated as a mean of all available measurements for these surface
type as listed in Table 1. (a)Mean reflected waveform for each sur-
face type. (b) Normalized mean waveform to show the difference in
the width of the reflected signal.

first-year ice and leads. Reflection over flat FYI (black line)
does not result in a wider signal than over leads.

3.2 Distribution of the parameters

For each of the waveforms for the analyzed cases, we calcu-
lated the five parameters PP, Max, TeW, TeS and LeW. The
cumulative probability distributions for each parameter and
case are shown in Fig. 5. The more separated the distribu-
tions are from one surface type to another, the easier it is to
classify the surface type.

For all parameters the spread of the distributions coming
from FYI is quite large. Since the term first-year ice refers to
a wide range of conditions – ranging from undeformed thin
ice to ice that has undergone a high rate of deformation – this
is in accordance to our expectations.

The spread of the Max parameter for the FYI distribu-
tions is very wide and reaches both extremes: distributions
are observed with much smaller and higher values than com-
ing from the MYI cases. The two cases of sea ice with the
strongest signal are flat new ice (FYI3) and fast ice (FYI1).
In all cases the distributions differ substantially from those
obtained over leads (L1 and L2).

The distributions for PP coming from MYI and leads
closely resemble each other within these classes. The distri-
butions for FYI in turn largely differ from case to case. The
PPs resulting from the power echo waveforms of flat thin ice
(FYI3) are almost as high as those resulting from the wave-
form of leads, while all other cases clearly show smaller PP
values. On average, reflection from FYI results in higher PP

values than from MYI, but the cumulative probability dis-
tributions from FYI and MYI largely overlap. For all cases
a clear difference between the distributions from MYI and
leads can be found.

The distributions of the parameters related to the leading
and trailing edge (the TeW, LeW and TeS) look much alike.
We find narrow and similar distributions for the two evalu-
ated cases of leads: a wide spread in the distributions for FYI
and wide distributions with long tails for the MYI.

However, even though we found a large spread in the dis-
tributions for each class and sometimes large overlaps be-
tween single cases from different classes, the KS test shows
the averaged distributions for each class are significantly dif-
ferent at a 5 % level for each of the five parameters. To find
the parameters best suitable for surface classification, we an-
alyzed the difference between the waveform shapes coming
from different surface types more quantitatively. We calcu-
lated the mean difference in the cumulative probability dis-
tributions for each parameter (Table 2). The difference be-
tween the distributions is much larger between leads and sea
ice (0.72) than between FYI and MYI (0.52), making it much
easier to detect leads within the ice than to distinguish be-
tween the two sea ice classes. Differences between the pa-
rameters are very small, but they might be large enough to
increase the rate of correct classification.

The largest difference between leads and sea ice can be
found for the distribution of the Max and the LeW and TeW.
Since flat ice is the biggest challenge for the lead detection
– flat ice results in a waveform similar to that obtained over
leads – we analyzed the difference in the distributions from
leads and flat first-year ice (FYI3) more closely (right column
in Table 2). We found the larger difference for the Max and
TeW and selected these two parameters for lead detection
within the ice. Together with the Max and the TeW, we found
the TeS to be an adequate parameter to distinguish between
MYI and FYI (Table 2). However, as the TeW and TeS are
highly correlated, the TeS has been excluded from further
analysis.

3.3 Detection of surface types

Results from the two classification methods based on PP,
Max and TeW are shown in Table 3. A simple threshold
method based on PP is the approach used in the Envisat pro-
cessing chain (Ridout et al., 2012). Therefore, PP has been
included in the analysis for comparison. In Table 3 we do not
show all possible parameter combinations but present only
those leading to the best classification rates. Our classifica-
tion rates are calculated as described in the following para-
graphs.

The rates of correct classification for the different surface
classes are the percentage of the waveforms coming from one
class that have been correctly classified:

correct classificationclass1 =

#(classclass1 ∩ knownclass1)

#knownclass1
. (2)
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Fig. 5. Cumulative probability distributions for the nine cases (see Table 1) for the five waveform parameters: Max, PP, LeW, TeW and TeS.
Distributions obtained from waveforms resulting from leads are shown in red colors, from first-year ice in blue and multi-year ice in green
colors.

The rates of false detection are the percentage of wave-
forms classified as one class while actually belonging to an-
other one:

false classificationclass1 =

#(classclass2 ∩ knownclass1)

#classclass2
. (3)

As we selected and divided our waveforms by random
choice (for the threshold method we selected an equal num-
ber of waveforms of each class, and for the Bayesian ap-
proach our data set has been divided into a learning and test-
ing data set), each method has been performed 100 times.
The presented classification rates are mean values, and the
standard deviation of our results did not exceed 2 %.

Almost 95 % of the leads can be identified correctly based
on the PP (Table 3). We found a lower average rate of correct
classification of 87 % and a detection rate for leads around
83.8 % based on the Max. The percentage of waveforms re-
flected from sea ice, but falsely classified as a lead, is strongly
reduced for the Max parameter (6.5 %) compared to results
obtained with the PP (12.6 %). Our Bayesian approach does
not significantly increase the detection rate of leads, but does
lead to a decrease in false classifications for both leads and

Table 2. Mean distances between the empirical cumulative distri-
bution functions of the five parameters determined from KS test:
pulse peakiness (PP), trailing edge slope (TeS), leading edge width
(LeW), trailing edge width (TeW), and the power maximum (Max).

Leads vs. FYI vs. Leads vs.
sea ice MYI flat FYI

PP 0.718 0.518 0.236
TeS 0.716 0.523 0.250
LeW 0.721 0.511 0.251
TeW 0.720 0.527 0.269
Max 0.737 0.521 0.307

sea ice. The advantage of the Bayesian method can also be
shown by analyzing the critical case of flat first-year ice
(FYI3 in Fig. 5 and Table 1). For the basic threshold method
based on the PP parameter, more than 97 % of the waveforms
coming from flat ice have been classified as leads, while for
the Bayesian approach combining TeW and PP only 87 % are
(not shown in the Table).

Results for the two methods for the classification of FYI
and MYI are shown in Table 3. Here the use of the Bayesian
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Table 3. Results for the two different classification methods: rule-based threshold and Bayesian classifier. The overall classification rates,
the probabilities of correct and false detection for ice and leads (left) and for first-year ice and multi-year ice (right) are presented. The
classification rates are defined in Eqs. (2) and (3). The used parameters are the pulse peakiness (PP), the power maximum (Max) and the
trailing edge width (TeW).

Method Threshold Bayes’ Method Threshold Bayes’

Parameter PP Max TeW Parameter PP TeW TeW
and and and
max Max PP

Correct classifications [%] Correct classifications [%]
All 88.0 87.3 91.3 all 72.4 80.3 79.9
Leads 94.2 83.8 94.9 FYI 72.6 78.7 80.5
Ice 79.5 90.8 89.1 MYI 68.6 81.7 75.5

False classifications [%] False classifications [%]
Leads 12.6 6.5 6.2 FYI 26.0 10.4 23.7
Ice 5.6 12.0 2.3 MYI 19.2 9.1 15.7
Not classified 4.6 3.7 6.9 not classified 6.2 11.3 12.8

method allows for a strong improvement of the classification
by about 8 %, resulting in an average detection rate of almost
80 %. The rate of false classification can be lowered to about
10 % by using a combination of TeW and Max. The simple
threshold method results not only in a poor classification rate
but also in a high rate of false classification, where 26 % of
the waveforms classified as FYI are actually MYI.

4 Discussion

In this study we present a method to distinguish between
different sea ice types and leads using airborne Ku-band
radar altimeter power waveforms. A method to distinguish
between FYI and MYI is presented based on the waveform
parameters PP and TeW. With a Bayesian-based method, we
were able to classify around 80 % of the waveforms correctly.
We can further confirm that a simple threshold method based
on the PP parameter is a sufficient method to detect leads.
Adding more parameters or using a more advanced method
such as the Bayesian classifier does not significantly improve
the rate of correct classification. Using Max instead of PP
can increase the accuracy in distinguishing leads from unde-
formed first-year ice, but it also leads to a reduction in the
detection rate of leads.

A related analysis was performed by Drinkwater (1991),
who analyzed data from a conventional pulse-limited radar
altimeter in the marginal ice zone. He found similar results
to ours: bare first-year ice results in a high peak value of
backscatter and a steep decay; deformed first-year ice re-
sults in a lower backscatter and a lower decay gradient; and
multi-year ice results in a low peak and a low decay gradient.
Despite these findings and even some clustering results that
show a clear separation between FYI and MYI, he was skep-
tical about the possibilities of sea ice classification. In con-
trast to our study, his analysis was performed in the marginal

ice zone where ice floes were smaller than the footprint size.
Fedor et al. (1988, 1989) also published sea ice classification
results based on conventional airborne radar altimeter wave-
forms in the Beaufort Sea. They showed that the returned
signal decreases from dark nilas over gray ice to more de-
formed ice types such as rough first-year ice and multi-year
ice. Laxon (1994a) presented a method for sea ice classifica-
tion based on the ERS data by parameterizing the waveform
shape, but the method has only been used to distinguish be-
tween leads and sea ice. In addition to a qualitative analysis,
as done in previous studies, the classification method pre-
sented here provides quantitative results. We show that the
selected waveform parameters differ significantly for various
surface classes and present a method where a combination of
waveform parameters leads to a correct classification of 80 %
of the waveforms.

Numerous studies have been performed to understand the
shape of the radar altimeter waveform and its sensitivity to
surface conditions. Laboratory experiments have shown that
close to nadir the influence of electrical properties can be ne-
glected (Beaven et al., 1995). The influence of surface rough-
ness has been described by Brown (1977) and Raney (1998).
Based on the same laboratory experiments, Beaven et al.
(1995) showed that the radar return originates at the snow/ice
interface, and snow influence – as long as the snow is dry and
cold – can be neglected. Dielectric properties of water have
been found to dominate over those of dry snow for volumet-
ric water contents of 1 % (Howell et al., 2005), which can
occur at temperatures above −5 ◦C (Garrity, 1992). Based
on forward modeling of the reflected radar signal, Makynen
and Hallikainen (2009) found that this wet snow cannot be
neglected because it alters the waveform shape substantially
by adding more volume scattering to the power echo. Willat
et al. (2011) confirmed the influence of snow on the radar
signal based on data from a dedicated field campaign. The

www.the-cryosphere.net/7/1315/2013/ The Cryosphere, 7, 1315–1324, 2013



48 Scientific papers

1322 M. Zygmuntowska et al.: Waveform classification of radar altimeter over Arctic sea ice

influence of surface roughness cannot be separated from the
influence of snow properties in the analysis presented. We
can only conclude that the combination of difference in ice
and snow properties is sufficient to generate a significant dif-
ference in the waveform shape.

Therefore more analyses are required to test how our find-
ings can be adapted to satellite-borne altimeter systems. The
main difference between the ASIRAS data used in this study
and CryoSat-2 data is the resolution. While ASIRAS has a
bin width of 9 cm and a footprint of tens of meters, SIRAL
on board CryoSat-2 has a bin width of 45 cm and a resolu-
tion ranging from hundreds to thousands of meters. With this
large footprint size, it is more likely that a mixture of differ-
ent sea ice types occurs within each footprint, which makes
a clear separation more difficult. The narrow bin width in
the ASIRAS data allows for a detailed record of the returned
power. For CryoSat-2 the wide bin width only allows for a
detection of large-scale changes in surface structure and sig-
nal strength. This further limits the possibility of distinguish-
ing between surface types. A more detailed study is needed
to analyze the impact of the different resolutions as well as
the influence of snow and roughness on the SIRAL wave-
form. This has to include measurements from radar and laser
altimeters, snow radar, and EM measurements, as well as
large-scale information about surface roughness (e.g., AS-
CAT scatterometer data Andersen et al., 2007) and snow re-
trievals from passive microwave measurements.

As with any other sea ice classification technique based
on remote sensing, the method presented here might be lim-
ited to the central Arctic in cold seasons (e.g., Kwok et al.,
1992; Zakhvatkina, 2012), where ice types are more distinct
and a sufficient area of the radar footprint is covered by ice.
The possibility of distinguishing FYI from MYI by radar al-
timeter data alone is not intended to replace well-established
large-scale classification methods based on scatterometer or
passive microwave data (Fetterer et al., 1994; Fowler et al.,
2004; Andersen et al., 2007; Maslanik et al., 2011). The
main benefit of ice classification from radar altimeter data
is for improvement of freeboard retrieval and sea ice thick-
ness calculation. Freeboard, the height of the ice above the
water level, is retrieved by detecting leads between the ice
and finding the difference in elevation of ocean and ice floes.
To retrieve the elevation, a re-tracker needs to be applied to
determine the position on the leading edge belonging to the
surface. For the current Envisat algorithm, different meth-
ods are applied for waveforms from sea ice and leads (Rid-
out et al., 2012). In our study we found the shape of the
radar echo waveform to differ significantly between first- and
multi-year ice. Therefore we suggest that the identification of
different sea ice types can be used to develop a more accurate
re-tracker. This could be done by using different fitting pro-
cedures to the waveforms depending on surface type. More
work is required to test this possibility. The calculation of
sea ice thickness from the freeboard measurements is based

on the assumption of hydrostatic equilibrium

hi =

fiρw

ρw − ρi
+

hsρs

ρw − ρi
, (4)

where fi is the ice freeboard, ρi the ice density, ρw the den-
sity of water, ρs density of snow and hs the snow load. The
highest uncertainties in sea ice thickness have been found
to come from the freeboard retrieval itself, the snow load and
from the density of the ice (Forström et al., 2011; Alexandrov
et al., 2010). So far snow load has been taken from climatolo-
gies (Warren et al., 1999) that are based on measurements
on multi-year ice. Recent results from IceBridge laser data
over Arctic sea ice reveal a significantly smaller snow load
on first-year ice compared to multi-year ice where the snow
accumulates over the entire season (Kurtz and Farrell, 2011).
Therefore the method presented allows not only the possi-
bility of improving the freeboard retrieval but also using ice
type dependent values for the sea ice density and snow load.
Previously this has been done by using large-scale sea ice
classification retrievals based on scatterometer or passive mi-
crowave retrievals. Our method has the benefit of not being
dependent on other instruments and providing synchronous
information about the surface type. It can improve the sea ice
thickness estimates, both on regional and Arctic-wide scales,
and improve our knowledge about changes in sea ice thick-
ness.

5 Conclusions

In this study, airborne Ku-band radar altimeter data over dif-
ferent sea ice types have been analyzed. It was found that the
radar altimeter waveforms retrieved over first-year ice and
multi-year ice differ significantly. Various parameters to de-
scribe the shape of the radar echo waveforms coming from
first-year ice, multi-year ice and leads were evaluated. The
maximum of the returned power echo and the trailing edge
width were selected as the most suitable ones for sea ice clas-
sification. A Bayesian approach used in combination with the
waveform parameters was found to be a successful method
to distinguish between first-year ice and multi-year ice. With
this method it was possible to detect 80 % of the waveforms
correctly. In addition, a simple threshold method based on
the pulse peakiness parameter was used for lead detection.
It was shown that the use of the maximum parameter could
lower the rate of false detection of leads. For the pulse peak-
iness parameter, the false classification rate is 12.6 % while
for the power maximum it is reduced to 6.5 %. More analyses
are required to test the presented method for satellite-based
altimeters. The method has the potential to improve the free-
board retrieval by developing a more accurate re-tracker al-
gorithm and improve the conversion of freeboard into sea ice
thickness by applying surface-dependent values for sea ice
density and snow load.
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Abstract

Satellite altimetry has been used to derive information about sea ice thickness in the Arctic already for

several decades. As part of the algorithms applied the shape of the radar signal is used to identify leads,

the open water between ice floes. Analysis of airborne altimeter data reveals that the waveform shape can

additionally be used to identify different sea ice types. In this study we analyze signal waveforms from

ESA’s CryoSat-2 satellite, to test the possibility of sea ice classification based on radar altimeter waveforms

on an Arctic wide scale. We define six parameters to account for the difference in the shape of the radar

waveforms obtained over First- and Multi-Year-Ice and find significant differences for several of these

parameters. The Pulse Peakiness, Stack Standard Deviation and Leading Edge Width show the largest

difference. These waveform parameters can thus be used to classify First- and Multi-Year-Ice over large

areas of the Arctic Ocean. However, analyzing the spatial distribution we find some discrepancies compared

to other retrievals of sea ice type. CryoSat waveform parameters have values typical for Multi-Year-Ice

over large areas classified as First-Year-Ice. These areas are co-located with strong gradients in drift speed,

indicating, that the radar signal is mainly sensitive to surface roughness. Potentially this information

could be used to reduce biases in the freeboard retrievals and to improve estimates of sea ice thickness.

I. Introduction

Decline in sea ice thickness is one of the main indicators of climate change (Stocker et al., 2013),

and radar altimetry is one of the main tools used to measure this decline (Giles et al., 2008; Laxon

et al., 2013). Consequently in the last decade, many attempts have been made to improve the

algorithms used to derive sea ice thickness from radar altimetry. Algorithms have to consider how

to detect open water between ice floes (Laxon, 1994; Laxon et al., 2013; Armitage and Davidson,

2013), retrieve freeboard, and then convert these measurements into an estimate of sea ice thickness

(Wadhams et al., 1992; Giles et al., 2007). Sea ice thickness is then assumed to be around 10 times

the sea ice freeboard (Wadhams et al., 1992). With the launch of CryoSat-2 in 2010 (Drinkwater

et al., 2004) a new generation of radar altimeters is utilized (Wingham et al., 2006). The synthetic

aperture approach used for the SAR/Interferometric Radar ALtimeter (SIRAL) onboard CryoSat-2

enhances the resolution along track (Raney, 1998; Wingham et al., 2006) and thus provides more

detailed information about the surface properties.
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Already for conventional altimeters it is well known, that the returned signal waveforms are

sensitive to surface properties (Fetterer, 1992). Over oceans it is thus a well established method

to use the shape and strength of the signal to retrieve information about wave height or wind

speed (e.g. Fedor and Brown, 1982; Gourrion et al., 2002). Over sea ice it has been found that

the strongest return comes from leads (Fetterer, 1992) and the signal strength is decreasing from

flat to ridged sea ice (Fedor et al., 1989). Ulander (1987) and Drinkwater (1991) additionally

found a correlation between radar backscatter from SAR images and the radar altimeter signal

strength and width. Even though these results indicated that a distinction between ice types

is possible based on the shape of the radar altimeter signal waveform, the methods have not

been developed any further for a long time . Just recently, encouraged by the new capabilities

resulting from the SAR technique used for CryoSat-2, Zygmuntowska et al. (2013a) presented a

classification method based on measurements from an airborne synthetic aperture radar altimeter.

The method is able to distinguish between First- and Multi-Year-Ice, using only the characteristics

of the radar altimeter signal waveforms. They were able to classify 80% of the waveforms correctly

using a combination of different waveform characteristics and applying a Bayesian based approach.

For satellite-based altimeters there is so far no algorithm that is able to distinguish between

different sea ice types. The current algorithms for Envisat and CryoSat-2 use the waveform shape

only to distinguish between leads and ice floes (Laxon et al., 2003, 2013; Hendricks et al., 2013).

However, for accurate retrieval of sea ice thickness from freeboard data, information about sea

ice type is needed. The type of sea ice determines the snow and ice properties which can highly

influence the estimates of sea ice thickness (Alexandrov et al., 2010; Zygmuntowska et al., 2013b).

In this study we therefore analyze waveform characteristics over different sea ice regimes, to check

if sea ice classification is possible based on signal waveforms from CryoSat’s radar altimeter SIRAL.

We analyze one winter of CryoSat-2 data over the entire Arctic ocean, and compare waveform

characteristics to other retrievals of sea ice type.

This paper is outlined as follows: First we describe the CryoSat-2 data, and the parameters

used to characterize the shape of the radar signal waveforms. We compare our results to other

satellite retrievals of sea ice type and discuss the ice properties which influence the different

instruments used. Finally we discuss the potential applications and limitations of this work.

II. Data

In this section we describe the radar waveform parameters analyzed over different surface regimes

in the Arctic. Additionally we describe different data sets used for comparison with our results,

such as other ice type retrievals, and sea ice drift.
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1. CryoSat-2 waveform parameters

The primary data set in this study is from ESA’s CryoSat-2 satellite. CryoSat-2 was launched in

2010 and was ESAs first satellite mission specifically designed to measure changes in the Earth’s

cryosphere. The satellite orbit has an inclination of 92 degrees, and a repeat cycle of 369 days.

Additional sub-cycles every 30 days enable to monitor the Arctic on a regular grid on a monthly

basis. CryoSat’s payload instrument, the SAR/Interferometric Radar Altimeter (SIRAL), operates

with center frequency of 13.575 GHz and has a receiving bandwidth of 360 MHz. After processing

the footprint size is around 1700 m across track and 300 m along track. The returning echo is

sampled in 128 bins each 1.563 ns resulting in a range resolution of 0.486 m.

For this study we use baseline B Level 1b (SIR_SAR_L1B) and Level 2 (SIR_SAR_L2) SAR

mode data for the winter 2012/2013 (November - March). Level 1b data, containing the radar

altimeter signal waveforms, can be used to retrieve quantities such as surface elevation, freeboard

or thickness. Based on the waveforms in the level 1b data set we calculate the following parameters:

− Maximum (Max) value of the waveform power.

− Leading Edge Width (LeW) is obtained by fitting a cubic spline to each waveform and calculat-

ing the distance between the first bins containing a signal strength above 5% and 99% of the

maximum power.

− Trailing Edge Width (TeW) is obtained by fitting a cubic spline to each waveform and calculating

the distance between the last bins containing a signal strength above 99% and 5% of the

maximum power.

Level 2 data does not yet contain information about freeboard, but contains some parameters

which give information about the returned signal waveform. From the level 2 data set we analyse

the following parameters:

− Pulse Peakiness (PP) is the ratio of the maximum power and the accumulated signal power

(first defined by Laxon (1994)):

PP =

max(power)

∑
128
i=1 power(i)

(1)

− Stack Standard Deviation (SSD) is the standard deviation of the multi-looked waveforms used

at each location.

− Sigma0 is the radar backscatter coefficient.

The objective of the study is to analyze waveform characteristics over sea ice, so waveforms

reflected from leads are excluded from further analysis. We identify leads using the Pulse Peaki-

ness and the Stack Standard Deviation as done previously by Laxon et al. (2013) and Hendricks
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(a) GR(19,37,V) (b) ASCAT Backscatter [dbz]

Figure 1: Spatial distribution of remote sensing retrievals used to identify sea ice type (December 2012). a) Gradient of
vertically polarized 19 and 37 GHz brightness temperatures GR(19,37,V). b) ASCAT sigma0 backscatter.
Black contour line in both plots shows the border of First and Multi-Year-Ice (based on the OSI SAF retrieval)
with Multi-Year-Ice north of Greenland.

et al. (2013). Waveforms are rejected if the Pulse Peakiness is larger than 15 or the Stack Standard

Deviation smaller than 4.

All parameters are averaged and gridded to a polar stereographic projection on a 25 km

grid. Outliers, defined by a distance of more than 3 standard deviations from the mean, are

removed to reduce noise. So far we only use data retrieved in SAR mode. Thus a data gap occurs

north of Greenland in the so-called ’Wingham Box’ (see https://earth.esa.int/web/guest/-/

geographical-mode-mask-7107 for updated mode map). SARIn mode is originally designed for

operations over ice caps and ice sheet margins but is also used for algorithm testing over this area

of the Arctic ocean (e.g. Armitage and Davidson, 2013).

2. Other data

A. Sea ice type

For comparison we use the binary sea ice classification (First-Year-Ice vs. Multi-Year-Ice) available

from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF, www.osi-saf.org).

Ice classes are based on SSMIS and ASCAT measurements, using a Bayesian approach. From

SSMIS data the algorithm uses the gradient ratio of the 19 and 37 GHz vertically polarized channels

GR(19,37,V) = (Tb37v - Tb19v) / (Tb37v + Tb19v), and from ASCAT the sigma0 backscatter. The

signal from the two instruments and the resulting sea ice type is visualized in Figure 1. More

information about this product can be found in Eastwood (2012) and in Breivik and Eastwood

(2009). In all Figures the sea ice type is given as black contour line for each respective month.
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(a) Pulse Peakiness (b) SSD

(c) sigma0 (d) Max

(e) LeW (f) TeW

Figure 3: Spatial distribution of the different CryoSat-2 SIRAL parameters in December 2012: a) Pulse Peakiness, b)
Stack Standard Deviation, c) sigma0, d) Max), e) Leading Edge Width f) Trailing Edge Width. Black contour
line shows the border of First and Multi-Year-Ice (based on the OSI SAF retrieval) with Multi-Year-Ice north
of Greenland.
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III. Results

The probability distributions of the six analyzed parameters - Pulse Peakiness, Stack Standard

Deviation, Simga0, Maximum, Leading Edge Width and Trailing Edge Width - is shown in Figure 2.

Distributions are calculated separately for First-Year-Ice and Multi-Year-Ice using the sea ice type

retrieval from OSI SAF for classification. The PDFs are shown for December 2012 but results are

similar for the other months.

For the Pulse Peakiness (Fig. 2 a) a clear difference can be found in the distributions from the

two ice types, with waveforms reflected from First-Year-Ice having larger values of Pulse Peakiness

than from Multi-Year-Ice. Also for the Stack Standard Deviation (Fig. 2 b) a clear difference in

the distributions can be found, but waveforms reflected from First-Year-Ice have smaller values

than from Multi-Year-Ice. For both parameters the distribution are not only different visually

but also statistically: The null hypothesis, that measurements over First-Year-Ice and Multi-Year-

Ice are from the same continuous distribution, can be rejected at 5% significance level (2 sided

Kolmogorov-Smirnov test). The Leading and Trailing Edge width are larger from waveforms

reflected from Multi-Year-Ice than First-Year-Ice, and show significantly different distributions

over these two ice types (5% significance level) (Fig. 2 e & f). The distributions of backscatter

sigma0 are closer to each other but have a tendency towards higher values for First-Year-Ice (Fig. 2

c). The maximum of the signal waveform is larger for waveforms reflected over First-Year-Ice but

the distribution from First- and Multi-Year-Ice overlap to a large extent (Fig. 2 d).

The spatial distributions of the six CryoSat-2 parameters for December 2012 are shown in

Figure 3. In particular the Pulse Peakiness, Stack Standard Deviation, Leading and Trailing Edge

have a similar spatial pattern. For the Pulse peakiness clearly smaller values can be found in the

western part of the Arctic Ocean north of Greenland and the Canadian Archipelago, and higher

values towards the southern part of the Beaufort see, the Chuckchi, Siberian and Laptev Sea. For

the other three parameters Stack Standard Deviation, Leading and Trailing Edge the same pattern

can be found, but higher values are observed in the western part of the Arctic Ocean. The spatial

distribution of the Maximum power and the sigma0 backscatter show a more blurry distributions

(Fig. 3 c) & d)), with no clear borders between different surface regimes.

In Figure 3 we also show the border of Multi-Year-Ice and First-Year-Ice based on the sea ice

type retrieval from OSI SAF. In the Beaufort Sea for all parameters a clear discrepancy can be

found with respect to the border of the two expected sea ice types. To analyze this in more detail,

Figure 4 shows the spatial distribution of the Pulse Peakiness for the months November 2012

until March 2013. While in autumn the largest discrepancy can be found in the Beaufort Sea, in

February 2013 a difference mainly occurs north of Svalbard. In March, this pattern disappears,

but the values of Pulse Peakiness from CryoSat-2 are lower in the swath from the North Pole to

the East Siberian Sea than previously found over the First-Year-Ice in this region. For the other

7
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(a) November 2012 (b) December 2012

(c) January 2012 (d) Februray 2013 (e) March 2013

Figure 4: Spatial distribution of Pulse Peakiness for different months. Black contour line shows the border of First and
Multi-Year-Ice (based on the OSI SAF retrieval) with Multi-Year-Ice north of Greenland.

parameters we found a very similar pattern for each month (not shown).

IV. Discussion

We have analyzed different waveform characteristics from CryoSat’s synthetic aperture radar

altimeter SIRAL over Arctic sea ice. To be able to quantify the waveform characteristics over

different surface regimes we used the following parameters: Pulse Peakiness, Stack Standard

Deviation and sigma0, Maximum, Leading Edge Width and Trailing Edge Width. Below we will

first discuss our findings with respect to the physical and dynamical properties of sea ice and

further discuss how our results can be used in future studies.

We found a statistically significant difference between the waveform parameters Pulse Peak-

iness and Stack Standard Deviation, Leading Edge Width and Trailing Edge Width from the

waveform signal reflected from First- and Multi-Year-Ice (Figure 2). For sigma0 the difference is

not that distinct, but larger values can be found for waveforms coming from First-Year-Ice. For the

power Maximum the distributions are even closer but smaller values are found for Multi-Year-Ice.

Our results are consistent with previous studies (Ulander, 1987; Fedor et al., 1989; Drinkwater,
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1991; Fetterer, 1992) showing that the radar signal decreases and becomes wider from First- to

Multi-Year-Ice. However, in their analysis of airborne synthetic aperture radar waveforms, Zyg-

muntowska et al. (2013a) concluded that the power Maximum and the Trailing Edge Width are

the most suitable parameters to use for sea ice classification. In our study, based on the waveform

shape from satellite based altimeters, we identified the Stack Standard Deviation, Leading Edge

Width and Pulse Peakiness as the best parameters to distinguish between First- and Multi-Year-Ice.

The power Maximum could not be confirmed as a reliable parameter for sea ice classification.

The spatial distribution generally shows a pattern that is consistent with the ice type retrieval

from OSI SAF. However, we find discrepancies over large regions, which differ over the winter

season (see Figure 4). In autumn the discrepancy is largest in the Beaufort Sea and in February

2013 it mainly occurs north of Svalbard. In March, this pattern disappears, but the values of Pulse

Peakiness from CryoSat-2 are lower along the swath from the North Pole to the East Siberian Sea

than previously found over the First-Year ice in this region.

To understand the inconsistencies found it is important to understand the physical properties

of the surface that influence the sensors or algorithms. As shown in Figure 1 the sea ice type

dataset from OSI SAF is driven by backscatter from ASCAT and brightness temperatures measured

by SSMIS. For ASCAT a difference in sea ice types can be expected from a combination of dielectric

properties of the surface and the roughness of the surface. Dielectric properties are dominated by

relative proportions of ice, brine and air in the ice, as well as the shapes and spatial arrangements

of brine and salt inclusions (Weeks, 2010). The roughness is driven by deformation and is thus

often associated with the age of sea ice. For First-Year-Ice, the dielectric properties do not allow

the signal to penetrate. Thus mainly surface scattering occurs and the returned signal is highly

sensitive to surface roughness. Multi-Year-Ice in turn has survived one summer and is more

porous and less saline. The signal can penetrate in the upper layer of the ice and so in addition to

surface scattering, volume scattering also occurs. Brightness temperature from passive microwave

measurements is defined by the physical temperature and the dielectric properties of the surface,

as described above. The physical temperature is higher for thicker snow and thinner ice (Perovich

and Elder, 2001) but it is hard to quantify a difference between ice types. However, the dependency

of the brightness temperature on these properties varies for different frequencies, and the gradient

between different frequencies can be used to derive information about the sea ice type (Steffen

et al., 1992, also visualized in Fig. 1a) for December 2012).

The radar signal waveform from CryoSat-2 is dependent on the properties of sea ice and snow

(Fetterer, 1992). The snow properties that most influence the signal are snow depth and snow

density. Besides the snow fall that determines the snow depth, the atmospheric temperature

influences the snow via two different mechanism: 1) Warm temperatures lead to melt and higher

density of snow, 2) Extreme warm events, that caused surface melting followed by a freeze up,

result in internal ice layers within the snow. The first effect changes the speed with which the
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signal penetrates through the layer, and the second changes the scattering surface. Both effects

have been found to influence significantly the scattering surface and the shape of the radar

waveform (Tonboe et al., 2006), in particular the Leading Edge. From the sea ice itself no volume

scattering occurs and mainly the surface roughness influences the returned signal waveform. The

dependency of backscatter on surface roughness has previously been found to be non-linear and

highly variable (Fetterer, 1992).

Due to a lack of data we are neither able to perform a detailed analysis of the snow properties

nor the actual surface roughness. To get more information about the snow properties, we analyzed

surface temperatures from ERA-Interim. We checked if the monthly mean of the daily maximum

temperature and the monthly maximum vary for the regions where discrepancies occur, but did

not find any anomalies (not shown). To get information about sea ice roughness we analyzed sea

ice drift in different months. We found areas with values more typical for Multi-Year-Ice for the

CryoSat-2 parameters over regions with First-Year-Ice, where a strong gradient in the ice drift

can be observed (see Fig. 5 for examples and Figure and 4). This indicates that the waveform

characteristics from CryoSat’s radar altimeter SIRAL are dependent on the surface ’type’ but

hereby meaning flat and deformed ice. As long as this surface properties go together with sea ice

age (meaning First-Year-Ice and Multi- Year-Ice) a classification of these two ice types is possible.

In some areas, however, this is not the case, which makes a definite classification with respect to

sea ice age difficult.

The discrepancy found in the Beaufort Sea region in November occurs only over a small area.

One could thus argue that the binary classification from OSI SAF provides a simplified picture,

while CryoSat-2 parameters provide more details about the fraction of each ice type. However,

the underlying, non-binary retrievals used for the classification from OSI SAF (see Figure 1 for

December) do not resemble the spatial distribution of the CryoSat-2 parameters. Thus we can

refute the hypothesis that discrepancies are only due to the difference between a binary and

fractional classification (compare Figure 4 b and Figure 1 for December).

A limitation of our work is the lack of a reliable information about the sea ice type. The large

scale pattern is the same for the two instruments OSI SAF is based on, but on a basin or sub basin

scale quite a few discrepancies can be found. Another widely used sea ice type retrieval is the ice

age retrieval developed by Fowler et al. (2004) and Maslanik et al. (2011). The retrieval is based on a

completely different approach, identifying sea ice with radiometers (AVHRR, SSMIS) and tracking

its movement on a weekly basis. As the method is so different, it could provide an independent

evaluation. However, the distribution of sea ice age neither corresponds to ASCAT backscatter,

nor the gradient from the brightness temperatures nor the different surface regimes found from

CryoSat-2 parameters (comparison not shown). As the data set is based on a Lagrangian tracking

approach, errors in sea ice drift may accumulate and potentially introduce large errors in the final

retrieval. In our analysis we therefore use the well validated retrieval from OSI SAF as ground
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(a) November 2012

(b) February 2013

Figure 5: Sea ice drift from OSI SAF for a) November, 20th 2012 and b) February, 10th 2013. Colour gives the drift
’speed’ in km per two days. Black contour line in both plots shows the border of First and Multi-Year-Ice
(based on the OSI SAF retrieval) with Multi-Year-Ice north of Greenland. Areas of First-Year-Ice (from
OSI SAF classification) with high gradients in drift velocity correspond to areas with values typical for
Multi-Year-ice for the CryoSat-2 parameters shown in Figure 3. In a) this is particularly the case in the
Beaufort Sea and in b) north of Svalbard.
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truth, and believe, that, on large scales, this is currently the best available product.

Our findings regarding sea ice type and roughness could be evaluated using SAR images. SAR

images are limited in their coverage over the Arctic ocean, but when available, they can provide

information about ice type and deformation. The SAR signal is highly sensitive to the dielectric

properties of sea ice, as described for ASCAT, and deformation and roughness are well captured

due to its high resolution.

The information about surface roughness based on the radar signal waveform is a valuable

piece of information in itself. Above all, it can be used to reduce biases in current freeboard

retrievals. The current ’operational’ algorithms (Ridout et al., 2013; Hendricks et al., 2013; Laxon

et al., 2013) use fixed thresholds to derive the position along the leading edge corresponding to

the surface elevation. The use of a fixed threshold, however, can generate a positive bias for the

freeboard retrieval, since with increasing roughness, the selected threshold should be closer to

the waveform peak. This theoretical argument has been recently confirmed by Kurtz et al. (2014).

They found a positive bias of almost 45 cm using freeboard estimates from a fixed threshold

re-tracker comapared to estimates based on an empirical model for re-tracking that takes into

account for surface roughness, incidence angle and backscatter coefficient. Hendricks et al. (2013)

found indeed a positive bias comparing freeboard estimates based on a fixed re-tracker to in-situ

data. They argued that this bias results from an incomplete penetration of the radar signal into

the snow pack. More work is required to test these two assumptions and to improve the final

freeboard estimates.

V. Conclusions

We analyze the distributions of the parameters describing the shape of altimeter waveform

from CryoSat-2 and find them to be significantly different over Arctic First and Multi-Year-Ice.

The parameters with the largest difference between the two ice types are the Pulse Peakiness,

Stack Standard Deviation and Leading Edge Width. These waveform parameters can be used

to classify First- and Multi-Year-Ice over large areas of the Arctic Ocean, but in some regions

clear discrepancies occur. These regions of First-Year-Ice are co-located with areas of strong

gradients in drift speed, which are associated with a high rate of deformation. We find waveform

parameters typical for Multi-Year-Ice in these areas and thus conclude that the radar signal is

mainly sensitive to surface roughness. The information about surface roughness from radar

altimeters can potentially be used to reduce biases in the freeboard retrievals.
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