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Abstract

In the following study the energy potential associated with tidal energy will be investigated.

A depth integrated model based on the Navier Stokes equations and the continuity equation

will be applied to simulate the tides around the Lofoten area in the northern Norway. The

model applies a 250 m grid resolution. The only tidal component taken into consideration is

the M2-component.

In the study, computations of available potential and kinetic energy fluxes will be performed.

It is computed a potential energy reservoir about 200 times larger than the kinetic energy

for the Lofoten area. A substantial conversion of potential energy to kinetic energy occurs as

the tide propagates from the deep ocean to the channels between the Lofoten islands. The

Lofoten islands make a blocking effect which causes phase differences between the tide on the

inside and the outside of the islands. The kinetic energy in the channels is estimated to 2.45

TWh. The potential energy in the channels is estimated to 72.9 TWh.
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Chapter 1

Introduction

1.1 Tidal flow

The surface elevation of the ocean is affected by the tide. As the tide is created by the

gravitational force from the moon and the sun, a wave called the Kelvin wave (The Kelvin

wave will be explained later in this chapter) will start to propagate. This will make changes

in the surface elevation. The changes in the surface elevation create the tidal currents. The

currents will move the water from one place to another. The tide behaves periodically and

one location experiences high tide and low tide approximately twice per day.

1.2 Tidal energy: Potential and kinetic

If the water has to take the way through a narrow channel, the velocity of the current will

increase. This can make it possible to utilize the tidal energy. The kinetic energy is a

measurement of how much energy that can be utilized from the current as it moves through

the channel. The potential energy is a measurement of how much energy that is available

based on the pressure differences due to the changes in the surface elevation between two

points in the channel.

1.3 Dissipation of energy

The potential energy resources on the deep ocean are of great magnitude. However, some

of it will dissipate due to factors such as bottom friction, viscosity and wind stress. In Eg-

bert and Ray, see [7], it is stated that the estimated total amount of tidal energy that is

dissipated during a year in the earth-moon-system is about 2.5 TW. For the earth-moon-

sun-system this number is about 3,7 TW. This means that during a year there will dissipate



The Kelvin wave

3, 7TW ∗ 365 ∗ 24h ≈ 32000 TWh. The energy consumption in the world in 2011 was about

143000 TWh, see Sælen [21], so we see that the dissipation is a very large number. If we were

able to exploit this we would have a huge energy resource.

In the ocean, most of the energy dissipation is caused by the bottom boundary layer in

shallow seas as stated in [7]. This suggests that most of this dissipation occurs near the

land boundary in the shallow seas. The dissipation occurs directly because of friction but

also because of mixing of water of different densities. When the tide propagates towards or

along a land boundary, it will meet a sloping topography. This produces an internal wave

at the interface between two layers of fluid with different densities. This wave has the same

frequency as the surface tide. This is called an internal tide. As stated in Garrett and Kunze,

see [10], the internal tides cause dramatic vertical displacements of density surfaces in the

ocean interior. Water parcels with different densities will therefore start to do work on each

other and this will lead to energy dissipation.

As already mentioned, most of the energy dissipation occurs near the land boundary. How-

ever, there is also some energy that dissipates in the deep ocean. It is stated in [7] that 1 TW

of the dissipated energy occurs in the deep ocean. Mixing because of rough topography on

the bottom can be one reason for this loss, but it is very difficult to quantify how much this

will affect it.

1.4 The Kelvin wave

The moon and sun are the main causes of the tide. This will be discussed later in this chapter.

When talking about the tide we are actually talking about a wave called the Kelvin wave.

Kelvin waves are waves that require support by a lateral boundary. In this thesis this lateral

boundary will be the Norwegian coast. On the northern hemisphere the Kelvin wave will al-

ways propagate with the coast on its right because of the Coriolis force. This explains why the

Kelvin wave always will propagate northwards along the Norwegian coast and not southwards.

The Kelvin wave has phase speed c =
√

gH where g is the gravity acceleration and H is

the depth. The Kelvin wave in the North Sea comes in from the North of Scotland and

propagates counterclockwise, see Gjevik [12]. This means it will propagate northwards with

the west coast of Norway on its right. The tidal elevation increases as the wave propagates

northwards. From the south of Lofoten to Vester̊alen the elevation decreases. As the wave

continues further north towards Finnmark, the surface elevation will again increase. Both the
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location and size of the channels are very beneficial for Lofoten and Saltstraumen. The narrow

channels make the velocity large. In general we know that the energy flux is proportional to

the velocity cubed so we see that if we double the velocity we will get 8 times as much power.

1.5 Tidal power plants

Exploitation of tidal energy is an increasing research field. The first tidal power plant was

built in 1960 on the estuary of the Rance river in Brittany, France. This works as a basin

that is filled up as the tide increases. When the tide is decreasing again, there will be a height

difference of about 8 meters between the water in the basin and the water outside. The water

is then used to drive turbines. The power plant produces about 240 MW.

When there are channels with strong currents, an option to utilize the energy could be to

place water mills directly into the current. This has been tested in several places. One of

the places is Kvalsundet in Hammerfest. As stated in [12] the turbines are said to be able to

produce about 300 kW each.

1.6 The tidal components

Chapter 8 in [12] describes how the tide is affected by several tidal components. The com-

ponents represent oscillations which can either reinforce each other or weaken each other.

The greatest contribution to the tide is the contribution from the moon. This contribution

is referred to as the M2-component. The index 2 tells that the component has a half-daily

period. The period of this component is 12.42 hours which means that we will have high and

low tide almost twice per day. The second component is the S2-component which represents

the contribution from the sun. The period is 12 hours. The sum of these two components

will mainly decide how the tide behaves. However, there are other components that also have

some impact. The two most important will be explained. The N2-component is the change of

distance between the earth and the moon. This has a period of 12.66 hours. When the moon

is far away, the tidal range is smaller than when the moon is close to the earth. The last

component is the K1-component which is the declination of the moon and the sun compared

to the earth. The index 1 tells that the component has a period of about one day. The period

is 23.93 hours. Between two high tides the elevation can change. This is mainly because the

moon and sun sometimes stand lower than the equator plane and sometimes higher than the

equator plane.

3
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Together, these four components can describe how the tide behaves. In addition to this

we know that some places have larger tidal ranges than other. This can be due to the local

topography. For instance in Bay of Fundy in Canada there can sometimes be tidal ranges of

about 20 meters. This is because the tidal period sometimes can coincide with a local oscilla-

tion, for instance a seiche which is a standing wave(see Chapter 3). The two oscillations can

reinforce each other and give large surface elevations. This will give the extreme tidal ranges.

1.7 The focus of this thesis

This thesis will investigate the tidal currents that are created in the channels in Lofoten and

Saltstraumen. It will study the behavior of the tide in this area and how much kinetic and

potential energy that are available in the Lofoten area.

1.7.1 Box models

A box model is a very simplified model that assumes that the area we are interested in

can be divided into rectangular boxes which make the calculation much easier. Despite this

simplification the model can still be quite realistic. The box model approach has been used

for Saltstraumen. Saltstraumen is different than the other currents in Lofoten. While the

channels in Lofoten are channels that connects two open seas, Saltstraumen is a channel that

connects the open ocean with a fjord on the inside. The box model approach is therefore more

suitable for Saltstraumen since the fjord inside is of a finite size. With open ocean on both

sides of the channels, certain non-accurate boundary conditions have to be considered. These

are conditions such as how much of the ocean on the outside that would have been affected by

the current in the channels. When dealing with a fjord on the inside, these approximations are

avoided. The results developed with the box model will be compared with the same results

obtained from the other model used for this thesis, namely the modified version of the Bergen

ocean model as discussed in the following subsection.

1.7.2 The Lofoten area

The calculation for the Lofoten area will be based on a mathematical model which is a modi-

fied version of the Bergen ocean model(BOM), see [4]. This model calculates the velocity field

and surface elevation of the tide as the tide propagates from just south of Lofoten and further

north to the north end of Lofoten. These calculations are based on the 2-D version of the

Navier Stokes equations, called the shallow water equations. These equations are developed

in Chapter 2.

4
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In the thesis, the model will be applied to understand the behavior of the tide in the Lo-

foten area during a tidal cycle. The velocity field and the surface elevation will be used to

investigate the kinetic and potential energy fluxes through the channels. Furthermore the dis-

tribution of energy for the whole Lofoten area will be studied. Energy losses due to frictional

forces will also be considered.
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Chapter 2

Equations and approximations for

geophysical flows

To describe the motion of a fluid, two main equations are applied. These are the continuity

equation and the Navier Stokes equation. The Navier Stokes equation is a vector equation

which consists of three separate equations, one for each direction. In this chapter the shallow

water equations will be developed. These are based on the Navier Stokes equation and the

continuity equation. The shallow water equations are beneficial to describe geophysical flows

over large areas where the horizontal scale is much larger than the vertical scale.

Conservation of mass can be expressed as

∂ρ

∂t
+∇· (ρU) = 0 . (2.1)

This is called the continuity equation. Furthermore, if we apply Newtons second law to

fluids, we get the Navier Stokes equation. For geophysical flows, rotation is important, and

the equations can be written as

DU
Dt

= −1
ρ
∇p− 2Ω×U + g + F . (2.2)

Here ρ is the density, p is the pressure, U = [u, v, w] is the velocity field, g is the gravity,

Ω is the earth rotation, F are external forces and D
Dt = ∂

∂t + u ∂

∂x + v ∂

∂v + w ∂

∂z is the total

derivative. The term 2Ω×U is the Coriolis acceleration and the earth rotation vector can be

written as Ω = Ω cos(φ)j + Ω sin(φ)k. The cross product in Equation (2.2) then becomes

2Ω×U ∼= 2Ω(w cos(φ)− v sin(φ))i + 2Ωu sin(φ)j− 2Ωu cos(φ)k ,

where φ is the latitude, that is, φ = 0 is on the equator and φ = π
2 is on the north pole.

Furthermore, [i, j, k] denote the unit vectors in the x, y and z-directions respectively. In the
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term multiplied with i we use the condition wcos(φ) � vsin(φ). This is because the thin

sheet approximation, that the horizontal scale is much larger than the vertical scale, requires

w� v as discussed in Kundu et al. [16]. This gives the equation

2Ω×U ∼= −2Ωv sin(φ)i + 2Ωu sin(φ)j− 2Ωu cos(φ)k .

We define the Coriolis parameter to be f = 2Ωsin(φ) and the reciprocal Coriolis parameter

to be f∗ = 2Ωcos(φ). Then we can write the Coriolis acceleration as − f vi + f uj− f∗uk. In

the vertical Navier Stokes equation, the reciprocal Coriolis parameter is usually very small

compared to the other terms and can generally be neglected.

2.1 Underlying approximations

Since the study of hydrodynamics always has to deal with turbulence and fluctuations it is

necessary to study the statistically averaged flow. Reynolds suggested that we can split a

variable into a mean part Ū and a fluctuation part Uf as U = Ū + Uf as stated in [16]. The

same splitting is applied to the pressure and the density. The mean part is found by integrat-

ing the values over a certain time period. From now on, the mean variables will be used and

the bars will be dropped. Furthermore, it will be assumed that the pressure is hydrostatic,

that is, the pressure at a given depth equals the weight of the fluid above. The Boussinesq

approximation, which is explained below, will also be applied.

As stated in [16], the Boussinesq approximation states that the density can be split into

a reference value ρ0 and a perturbation ρ′(x, y, z, t) such that the density changes for the fluid

can be neglected except where ρ is multiplied by the gravity. Before applying the Boussinesq

approximation on Equation (2.1) we notice that

∂ρ

∂t
+∇· (ρU) =

Dρ
Dt

+ ρ(∇·U) . (2.3)

Applying the Boussinesq approximation gives

Dρ
Dt

+ ρ(∇·U) = 0

⇒ 1
ρ

Dρ
′

Dt
+∇·U = 0 .

(2.4)

The approximation suggests that the left term is very small compared to the right in the

second line in Equation (2.4). This gives the incompressible form of the continuity equation.

⇒ ∇·U =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 . (2.5)

8
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Thus the continuity equation states the conservation of volume as well as conservation of mass.

The momentum equation, (2.2) can be written on component form as also stated in Berntsen

[4]. For the x and y-directions, ρ is only included in the pressure terms. According to the

Boussinesq approximation ρ is displaced by ρ0. In Cushman-Roisin and Beckers [6], a scaling

analysis has been done to compare the typical magnitudes for the terms in the equation for

the z-direction. This suggests that the dominating terms are the pressure and gravity terms.

The result is the following system of equations.

∂u
∂t

+ UH· ∇u− f v = − 1
ρ0

∂p
∂x

+ Fx ,

∂v
∂t

+ UH· ∇v + f u = − 1
ρ0

∂p
∂y

+ Fy ,

ρg = −∂p
∂z

.

(2.6)

The velocity field UH denotes the horizontal velocity field UH = [u, v]. See the beginning of

the following section for the explanation why this has been applied. We also notice that for

the equation in the z-direction we have the hydrostatic balance.

2.2 The shallow water equations

As already pointed out, for the development of the shallow water equations, a horizontal scale

that is much larger than the vertical scale is assumed. When the wavelength is much larger

than the depth of the flow, the vertical velocity is much smaller than the horizontal velocities.

We therefore introduce the velocity field UH = [u, v].

To develop the shallow water equations, we consider a homogeneous and non-stratified flow

with layer thickness h(x, y, t) and a reference height H(x, y) from z = 0 to the mean surface

level using positive z-direction upwards. The surface elevation is denoted by η(x, y, t). This

gives h(x, y, t) = η(x, y, t) + H(x, y). The situation is depicted in Figure 2.1.

9
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z = 0

h

η

u H

Figure 2.1: Diagram of the flow

From the previous section we have that the pressure is hydrostatic. This gives that the

pressure at height z from the bottom can be written as p = ρ0g(H + η− z). At the surface

z = H this gives p(H) = ρ0gη. This is the dynamic boundary condition. By substituting this

expression for p, the horizontal pressure terms can be written as
∂p
∂x = ρ0g ∂η

∂x and
∂p
∂y = ρ0g ∂η

∂y .

Since η is independent of z, these expressions are independent of z, which means that the

horizontal motion is also independent of z. Then we have that ∂u
∂x and ∂v

∂y are independent of

z. It follows that w must vary linearly with z. Integrating Equation (2.5) across the water

column, as discussed in [6] and [16] gives

(
∂u
∂x

+
∂v
∂y

)
∫ h

0
dz + [w]h

0 = 0 .

We apply the kinematic boundary condition that the flow cannot penetrate the bottom, which

means that the velocity must be tangent to the land boundary, that is w(0) = 0. At the

surface we require that the velocity of a fluid particle normal to the surface must be the same

as the velocity of the surface itself, that is ∇(z− η)·UH = ∂η
∂t . With these conditions and

after some manipulation we get the depth integrated continuity equation.

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 . (2.7)

10
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For the x and y-directions of the momentum equations we get the following:

∂u
∂t

+ UH· ∇u− f v = −g
∂η

∂x
+ Fx , (2.8)

and
∂v
∂t

+ UH· ∇v + f u = −g
∂η

∂y
+ Fy . (2.9)

Equation (2.7)-(2.9) are called the shallow water equations. The terms Fx and Fy are the

terms treating the stress components, often referred to as the Reynolds stress. The stress

components can be viscosity, bottom friction and wind stress. The model in this thesis will

only take the bottom friction and the viscosity terms into account. They will be presented in

Chapter 4.

2.3 Calculation of energy fluxes

The shallow water equations consist of three equations and three unknowns, namely UH =

[u, v] and η. These variables are useful when calculating energy fluxes. Suppose we have a

flow through some cross section with area A. Then the force F against this cross section can

be written as F = pA where p is the pressure. Since we have assumed that the current does

not propagate in z-direction, the pressure can be written according to Bernoullis equation,

see [16], as

p =
1
2
ρ|UH|2 . (2.10)

Thus the force is expressed as F = 1
2ρ|UH|2 A = 1

2ρ|UH|2Hds where H is the depth and ds is

some length element in the horizontal direction. The kinetic energy flux is force times velocity

so it can be expressed as

EK =
∫ 1

2
ρH|UH|3ds . (2.11)

The unit of EK is W=Js−1 which is energy per time.

The velocity field and surface elevation are also used for the calculation of the potential

energy flux. The expression for the potential energy flux uses the fact that the change of

the potential energy in a grid cell is dependent of the rate of current that comes into and

leaves the cell and also the change of surface elevation in the cell. According to Garrett, see

[11], this can be expressed as EPGRID = O· (gHηUH). Again assuming the flow is through

a cross section area A, we get by integrating over A and taking the density into account,

EP =
∫
ρO· (gHηUH)dA. By applying Gauss theorem this equation can be rewritten as

EP =
∫
ρgHηUH· nds . (2.12)

11



Calculation of energy fluxes

n is the normal of the cross section area A and ds is again a length element in the horizontal

direction. The potential energy flux also has unit W=Js−1.

The volume flux in a channel has been calculated according to the discrete formula

∑ H|UH|∆x . (2.13)

This formula has units [m3s−1]. It states that the volume flux is the volume of water that

flows through a transect during one second.

12



Chapter 3

A box model for inlets

In this chapter, the tidal flow in and out of a closed basin will be investigated using a simple

box model. Even though the box model is very simplified, we can get useful information about

the illustrated problem. We will consider the closed fjord configuration depicted in Figure

3.1:

A2

η2

UC

WC

LC

η1

X

Y

Figure 3.1: Example of a Box model situation

In the figure above, η1 is the surface elevation in the open ocean outside the basin, η2 is

the surface elevation in the basin, UC is the velocity of the current in the channel, WC and LC

are the width and the length of the channel respectively, and A2 is the surface area of the basin.

We use the initial conditions that UC and η2 are both zero at time t = 0. Further, we
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will assume that the current only depends on the M2-component. The tide is periodic so it is

reasonable to assume that the incoming wave has a surface elevation that can be written as

η1 = ηM2 sin(ωM2 t) . (3.1)

In Equation (3.1), ηM2 is the semi-diurnal tidal amplitude in meters while ωM2 is the semi-

diurnal tidal frequency in radians per sec.

3.1 Inlet with a linear drag coefficient

What follows in this section is also discussed in Eliassen [8]. We can assume that the surface

elevation in the basin only will depend on the cross-section area of the channel, the velocity

of the current through the channel and the surface area of the basin. Further, we assume

that the change in velocity depends on the change of tidal elevation outside and inside the

channel, the length of the channel and the gravity acceleration. If we assume the friction term

is linear, we get the two following equations:

dη2

dt
= −ACUC

A2
,

dUC

dt
= g

η2 − η1

LC
− RUC .

(3.2)

In Equation (3.2), AC is the cross-section area in the channel, AC = WC × HC, where HC is

the depth of the channel and R is the friction drag with unit s−1. These two equations can

be solved numerically. Using the trapezoidal rule for the discretization of the equations, we

get

ηn+1
2 − ηn

2
∆t

= −AC

A2

Un+1
C + Un

C
2

,

Un+1
C −Un

C
∆t

=
g

2LC
(ηn+1

2 + ηn
2 − (ηn+1

1 + ηn
1))− R

Un+1
C + Un

C
2

(3.3)

where Un+1
C means the value of UC at time step n + 1. Solving these two equations for Un+1

C

and ηn+1
2 we get the two equations on matrix form.[

1 ∆tAC
2A2

−g∆t
2LC

1+R∆t
2

] [
ηn+1

2

Un+1
C

]
=

[
ηn

2 −
∆tAC
2A2

Un
C

Un
C(1− R∆t

2 ) + g∆t
2LC

(ηn
2 − (ηn+1

1 + ηn
1))

]
. (3.4)

This system can be solved by Cramers rule, see [1], to get the values for the next time step.

14
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To find the exact solution for the velocity field of this problem, we first take the time deriva-

tive of the second equation in (3.2) and then substitute the first one into the second one. This

gives the second order differential equation

d2Uc

dt2 + R
dUC

dt
+ QUC = −Ecos(ωM2 t) . (3.5)

The analytical solution of this equation is

UC = Ae−k1t + Be−k2t + Ccos(ωM2 t) + Dsin(ωM2 t) . (3.6)

The analytical solution of η2 can be found by the second equation in (3.2). This gives

η2 =
LC

g

[
dUC

dt
+ RUC

]
+ ηM2 sin(ωM2 t)

⇒ η2 =
LC

g

[
(−k1 A + RA)e−k1t + (−k2B + RB)e−k2t

]
+

[
LC

g
(−CωM2 + RD) + ηM2

]
sin(ωM2 t)

+
LC

g
[ωM2 D + RC] cos(ωM2 t) .

(3.7)

The first two terms in Equation (3.6) and Equation (3.7) are called the transient terms. The

constants being used in Equation (3.5)-(3.7) are given in Table 3.1

Q = gAC
LC A2

E = g
LC
ηM2ωM2

k1 = R−θ
2

k2 = R+θ
2

θ =
√

R2 − 4Q

D = -
RωM2

R2ω2
M2

+(Q−ω2
M2

)2

C =
E+DRωM2
ω2

M2
−Q

B =
k1C+DωM2

k2−k1

A = −C− B

Table 3.1: The constants

The constants C and D are found by the method of undetermined coefficients, see Boyce

and DiPrima [5], and the constants A and B are found by the initial conditions. Notice that

the solutions of Equation (3.6) and Equation (3.7) show that the value of θ is real for this case.

When modeling the currents and surface elevations in Saltstraumen and Skjerstadfjorden,

the approach given above may be applied. In Figure (3.1) we interpret the fjord with surface
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Inlet with a linear drag coefficient

elevation η1 as Saltfjorden, the other fjord with surface elevation η2 as Skjerstadfjorden and

the channel that connects the two fjords as Saltstraumen. The constants used to calculate

the values in Table 3.1 as given in [8] are the following:

ηM2 = 0.869 m Semi-diurnal tidal amplitude [m]

TM2 = 12.42h = 44712 s Main semi-diurnal period [s]

ωM2 = 2π
TM2

Semi-diurnal tidal frequency [rad· s−1]

WC = 333 m Width of Saltstraumen [m]

HC = 15 m Depth of Saltstraumen [m]

LC = 3330 m Length of Saltstraumen [m]

AC = WC × HC = 4995m2 Cross section area of Saltstraumen [m2]

A2 = 2.16 ∗ 108 m2 Surface area of Skjerstadfjorden [m2]

R = 6.9× 10−4 s−1 Drag coefficient [s−1]

Table 3.2: Parameters for the Saltstraumen and Skjerstadfjorden box model

For these values the variable θ is real and the solution of the problem becomes as stated

in Equation (3.6) and Equation (3.7). The surface elevations η1 and η2 are given over two

tidal cycles:

Figure 3.2: η1 and η2 plotted over two tidal cycles
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Inlet with a linear drag coefficient

The figure shows that the amplitude of the wave η2 is smaller than the amplitude of η1

and that there is a phase lag between the waves. The first maximum of η2 is larger than

the second one. This is because of the transient terms of Equation (3.7). After one tidal

cycle the transient terms will be negligible and the other terms of the differential equation

will dominate. It is then possible to find suitable expressions for the time delay and reduction

factor compared to η1. By using trigonometric relations on Equation (3.7), the time delay

can be expressed by

T = tan−1

 LC DωM2
g + RCLC

g

ηM2 + RDLC
g − LCCωM2

g

 /ωM2 .

This gives T ≈ 131, 5 min which means that the η2 wave is delayed with 131.5 min compared

to the η1 wave. The reduction factor can by the same trigonometric relations be expressed as

RF =

(√
(−LCCωM2

g
+

RDLC

g
+ ηM2 )

2 + (
DLCωM2

g
+

RLCC
g

)2)

)
/ηM2

which gives the value RF = 0.629 so we see from this that the amplitude is clearly decreased

compared to the incoming wave η1.

The velocity UC in the channel is given in Figure 3.3:

Figure 3.3: Velocity UC plotted over two tidal cycles
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Inlet with a linear drag coefficient

We see that the plot suggests a maximum velocity through the channel close to 3.5 m/s.

The maximum velocity occurs when the second derivative of η2 is zero, that is, in the inflec-

tion point for η2.

From Equation (3.4), the numerical solution of the same problem can be calculated. This has

been done to investigate the error involved when computing approximations with the trape-

zoidal method, since this method also will be applied in the next section. From the discussion

in the appendix we have that the trapezoidal method is a stable and neutral method. The

error between the numerical and analytical solution was plotted for several time steps.

Figure 3.4: Error plotted for several Courant numbers

The Courant number is given by C =

√
gH∆t
LC

. The computation was performed with

C=0.4, 0.2, 0.1 and 0.05, and the corresponding errors are given in Figure 3.4. The order of

convergence P was found by taking the amplitude of each error plot and divide it by each

other. The error E for a given difference scheme is given by E = K∆tP where K is a constant.

Suppose E0 is the error corresponding to C = 0.4 and E1 the error corresponding to C = 0.2.

P was estimated by taking

E0

E1
=

∆tP

(∆t
2 )P

= 2P ⇒ P = log2

(
E0

E1

)
. (3.8)
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Inlet with a linear drag coefficient

The same procedure was used for the other errors to give the following table:

C E P

C = 0.4 1.5692 ∗ 10−4

2.0004
C = 0.2 3.9219 ∗ 10−5

2.0000
C = 0.1 9.8050 ∗ 10−6

2.0000
C = 0.05 2.4512 ∗ 10−6

Table 3.3: The order of convergence for the linear case

The order of convergence is approximately two, which is what we expect for the second

order trapezoidal rule.

3.1.1 Neglect of the drag coefficient

If the drag coefficient R was equal to zero, the roots of the two equations in (3.2) would be

imaginary and complex conjugate to each other. This would give the solutions

UC =
b

ω2
M2
− a

cos(ωM2 t)− b
ω2

M2
− a

cos(
√

at) and

η2 =
LC

g

[ √
ab

ω2
M2
− a

sin(
√

at)− ωM2 b
ω2

M2
− a

sin(ωM2 t)

]
+ ηM2 sin(ωM2 t) .

(3.9)

The constants a and b are given as a = g
LC

AC
A2

and b = g
LC
ηM2ωM2 . Thus we see that the

velocity through the channel and the surface elevation in the basin always will be affected by

another local mode as well as the incoming mode ωM2 . This mode is the natural frequency of

the system. Without the friction term this mode is not damped out and gives a contribution to

the solution. The solutions for UC and η2 are given in Figure 3.5 and Figure 3.6 respectively.
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Inlet with a linear drag coefficient

Figure 3.5: η1 and η2 plotted over two tidal cycles without drag

Figure 3.6: UC plotted over two tidal cycles without drag
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Inlets with quadratic drag coefficient

The figures show that the maximum and minimum are generally larger for the solutions

without drag compared with the solutions for the linear drag, which is obvious. We notice the

extra small jumps that occur after approximately 15 hours in the solution for both velocity

and surface elevation. They occur due to the two different modes that drive the solution.

When they have different sign we have negative interference between them and when they

have the same sign we have positive interference between them. At the small peaks we have

negative interference between the modes and they weaken each other.

For the two solutions, we notice that the denominator consists of the M2-frequency and

the local frequency. Suppose they were equal, we would get resonance between the two modes

and the solution would go to infinity. This phenomenon will also be discussed in the section

about seiches.

3.2 Inlets with quadratic drag coefficient

By assuming a quadratic friction term, we get the following equations:

dη2

dt
= −ACUC

A2
,

dUC

dt
= g

η2 − η1

LC
− RUC|UC| .

(3.10)

The constant R still represents the friction drag but now it has unit m−1. The problem is

nonlinear so we are not able to find an analytical solution. However, η2 is not included in

the nonlinear term so we can solve for this without problems. When doing a discretization

with the trapezoidal rule, the problem has been split in a problem A and a problem B with

a predictor-corrector method. The solution has been found in two steps by first finding a

predictor value from problem A. The solution of this problem has been used as the initial

guess when solving problem B. Problem B refined the predictor value by the corrector step.

ηn+1
2 − ηn

2
∆t

= −AC

A2

Un+1,P
C + Un

C
2

,

Un+1,P
C −Un

C
∆t

=
g

2LC
(ηn+1

2 + ηn
2 − (ηn+1

1 + ηn
1)) .

(3.11)

The solution of η2 and Un+1,P
C is found by the same method as for the linear case in section 3.1

so this is a second order method. To find the solution for UC in step 2, Un+1,P
C is substituted
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Inlets with quadratic drag coefficient

for the unknown value in the quadratic term.

Un+1
C −Un+1,P

C
∆t

= −R
2

(Un+1
C + Un+1,P

C )|Un+1,P
C | .

This gives the solution for UC and η2 but due to the implicitness of the method it is now a

first order method. To symmetrize over a double time step, Strang-splitting is applied, see

Istvan [15]. This means that in the next time step the two steps for solving the problem have

been done in the opposite way. This means the value of UC has been found by first finding a

predictor from the equation with the nonlinear term.

Un+1,P
C −Un

C
∆t

= −R
2

(Un+1,P
C + Un

C)|Un
C| .

To find UC and η2, Equation (3.11) has been used, except that Un+1,P
C is substituted with

Un+1
C and Un

C is substituted with Un+1,P
C . The Strang splitting has been applied to make the

results as accurate as possible.

We still consider Saltstraumen so the values for the constants in Table 3.2 in the previ-

ous section are also used here. When the surface elevation was plotted against time we got

the following:

Figure 3.7: η1 and η2 plotted over two tidal cycles with quadratic drag
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Inlets with quadratic drag coefficient

The amplitude of η2 is smaller compared to the linear case. The plot gives that η2 has a

maximum value around 0.38 m. Here we have ignored the first peak because of the contribu-

tion from the transient terms. The reduction factor of η2 is therefore about RF = 0.38
ηM2
≈ 0.44

so we see that the reduction factor is smaller than in the linear case. The phase delay for the

quadratic drag was calculated in matlab by checking for which index the surface elevation

was zero for η1 and η2. Then the indexes were converted to time and the difference between

the two waves was calculated. This gave a phase delay of 2.63 ∗ 60min≈158 min which is a

longer phase delay than for the linear case.

The velocity through Saltstraumen is given in Figure 3.8

Figure 3.8: Velocity UC plotted over two tidal cycles

When the friction is quadratic, we get a maximum velocity of about 2 ms−1 through the

channel when the second derivative of η2 is zero, that is, in the inflection point of η2. This is

less than what we had for the linear case, as we also expect.

The trapezoidal method is stable and neutral. From the previous section, we found that

the method converged to the analytical solution as we chose the time step smaller. In this

case, we cannot compare the numerical solution with an analytical one since the problem
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Inlets with quadratic drag coefficient

makes it impossible to compute an analytical solution. However, we know that the method

still is neutral and stable. To investigate if the method still converges to the correct solution,

the solutions for different time steps can be plotted and the error between them can be found.

The order of convergence can be found in the same way as in the previous section. If the

error between two time steps decreases as the time step gets smaller, it can be concluded that

the method converges for the nonlinear problem as well as the linear problem. The error is

plotted in Figure 3.9.

Figure 3.9: Error for UC for several Courant numbers

The error clearly decreases as the Courant-number gets smaller. On the error plot, small

jumps repeatedly occurs. These are due to phase errors. As the time steps are different for

the 4 solutions, their phase also get slightly different. The jumps on the plot coincide with

the inflection points for the velocity in Figure 3.8. That is, where the increase or decrease of

the velocity is largest. The difference between the velocities is large at these points, and so

the phase errors also get most apparent at these points.

The order of convergence was found by comparing the errors for the different Courant-numbers

with each other. The theory for the order of convergence is the same as for the linear case,

that is, the order of convergence P has been found by taking P = log2
E0
E1

. In the quadratic
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case, E0 is the error between the numerical solution for C=0.05 and C=0.1 and E1 is the error

between the numerical solution for C=0.1 and C=0.2. The errors were found in a different

way than for the linear case. Instead of comparing the amplitudes of the errors, the errors

from each time step were compared to find a P-value for each time step. Then the average

was calculated to find the P-value for the method. Since the error is calculated based on two

numerical solutions and not compared with an analytical solution, the order of convergence

only gives an indication of how accurate the method is in the quadratic case. The following

table shows the order of convergence for the solution for the velocity. It is expected that the

solution for η2 will give results of the same magnitude.

P

Error between C=0.4 and C=0.2
0.8630

Error between C=0.2 and C=0.1
0.9568

Error between C=0.1 and C=0.05

Table 3.4: The order of convergence for the quadratic case

The order of convergence is close to one which is what we expected.

3.3 Seiches

A seiche is a standing wave that can be formed by the superposition of two waves with

the same wavelength which propagate in opposite directions. This can occur in a basin like

Skjerstadfjorden. If the frequency of this wave is the same as the frequency of the incoming

Kelvin wave, the two waves can get into resonance. This scenario will be discussed here. An

appropriate sketch of the problem is illustrated in Figure 3.10.
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η3 η2

UC

WC

LC

η1

UM

X

Y

Figure 3.10: Example of a Box model situation with seiches

UM is the velocity of the current in the fjord and η3 is the surface elevation innermost in

the fjord. When describing this problem, we need two more equations. The friction drag will

be neglected. This gives the following set:

dη2

dt
= −ACUC

A2
+

AFUM

A2
,

dUC

dt
= g

η2 − η1

LC
,

dUM

dt
= g

η3 − η2

LF
,

dη3

dt
= −AFUM

A2
.

(3.12)

AF is the cross-sectional area of the fjord while LF is the length of the fjord. The initial

conditions are the same as before, that is, UC, UM, η2 and η3 are zero when t=0. By solving

for η2, we get the following differential equation

η
′′′′
2 + Kη

′′
2 + Eη2 = Q sin(ωM2 t)

where the constants K,E and Q are given in Table 3.5. We see that when this equation is

solved we get four imaginary roots where two and two are complex conjugate of each other.
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The solution is

η2 = C1 cos(r1t) + C2 sin(r1t) + C3 cos(r2t) + C4 sin(r2t) +
Q sin(ωM2 t)

−Kω2
M2

+ E +ω4
M2

. (3.13)

where r1 and r2 are the roots of the characteristic polynomial of the differential equation.

The particular solution is carried out by the use of www.wolframalpha.com. From η2, the

solutions for η3, UC and UM can be found by using the relations

UC =
g

LC
[
C1

r1
sin(r1t)− C2

r1
cos(r1t) +

C3

r2
sin(r2t)− C4

r2
cos(r2t)

− Q
ωM2

cos(ωM2 t)
−Kω2

M2
+ E +ω4

M2

+
ηM2

ωM2

cos(ωM2 t)] ,

UM =
A2

AF

dη2

dt
+

AC

AF
UC ,

η3 =
LF

g
dUM

dt
+ η2 .

The constants used for this problem are given in Table 3.5.

LF =
√

A2

AF = 400LF

K = AC + 2BD

E = BDAC

Q = BDACηM2 − ACηM2ω
2
M2

A = AC
A2

B = AF
A2

C = g
LC

D = g
LF

C1 = 0

C3 = C1

C4 =

r2
1C

ωM2

1
−Kω2

M2
+E+ω4

M2

−
r2
1ηM2
ωM2

−
Qω2

M2
−Kω2

M2
+E+ω4

M2

r2−
r2
1

r2

C2 = 1
r1

(
−Qω2

M2
−Kω2

M2
+E+ω4

M2

− r2C4)

Table 3.5: Constants used for the problem with seiches

The two constants LF and AF are the two new constants that have to be given a value. LF

was set by assuming that Skjerstadfjorden was quadratic while AF was set by assuming that

the depth in Skjerstadfjorden was about 400 meters deep. The constants C1, C2, C3, and C4
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are found from the initial conditions. The solutions for the 4 variables were plotted over 10

tidal cycles.

Figure 3.11: Surface elevation η2 plotted over 10 tidal cycles

The roots of η2 are r1 ≈ 6, 03 ∗ 10−3s−1, r2 ≈ 1, 84 ∗ 10−4s−1 and ωM2 ≈ 1, 4 ∗ 10−4s−1.

The roots r1 and r2 are naturally occurring frequencies of the system. They can for instance

occur due to local seiches in the fjord. We see that r2 and ωM2 are the two “low” frequencies

while r1 is the “high” frequency. We also notice that the amplitudes corresponding to the

sine-terms with the r2 and ωM2 modes are much larger than the amplitude corresponding to

the sine-term with the r1 mode. For the first two periods, it seems to be a large difference

on the surface elevation, while for the third and fourth period the difference is much smaller.

This behavior continues as the time goes. The explanation for this behavior is due to the

“low” frequencies. The two frequencies can either cause positive or negative interference.

When they give the same sign on the sine-terms we have positive interference. This will give

large surface elevations of η2. However, when the sine-terms have opposite signs we have

negative interference and the surface elevation will be smaller. For the negative interference,

the behavior of the r1-mode will be more apparent. This creates the small oscillations that

looks like noise in Figure 3.11. Compared to the previous solutions with linear and quadratic

drag, the amplitude of η2 has increased. When neglecting the drag, more modes than only
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the M2-mode are affecting the solution. When the frequencies corresponding to these modes

give positive interference with the M2-mode, the amplitudes increase. This effect will also be

shown on the next plot:

Figure 3.12: Velocity UC plotted over 10 tidal cycles

The velocity is very large at its maximum. The explanation follows again from the “low

frequencies”. Theoretically, in an undamped system, full resonance, that is if the frequencies

were equal, would allow unlimited adding of energy to the system. Therefore, if two of the

modes had become equal the velocity would go to infinity.

The solutions for η2 and η3 are expected to be very similar because they both describe

how the current propagates in the fjord. The difference between the surface elevations is

given in the next plot:
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Figure 3.13: The difference between η2 and η3 over 40 hours

The plot is only taken for the first 40 hours to show the behavior we want to describe. As

expected, the difference between the two waves is very small. The oscillations on the plot are

due to the high frequent r1-mode in the solution. This will be explained after the next plot.

The velocity in the fjord UM is depending on the height difference between η2 and η3. We

therefore also expect this velocity to be small. The solution is given in Figure 3.14:
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Figure 3.14: Velocity UM plotted over 10 tidal cycles

The velocity in the fjord is very low. We also notice that the oscillations of the solution

is clearly appearing. In the fjord, the amplitude corresponding to the r1-mode with high

frequency is of the same magnitude as the two other modes. This mode does therefore have

much more impact on the solution in this case. Since this mode has much shorter period than

the other modes, the oscillations on Figure 3.14 are created.

By tuning the constants used for the problem, resonance can be achieved between the ωM2-

mode and the r2-mode. By tuning the value of WC, the width of the channel to 192 m, the

system was manipulated to get r2 = 1.401· 10−4 s−1 ≈ ωM2 . This is equivalent to resonance

between those two modes. The result gave the following plot for UC.
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Figure 3.15: Velocity UC plotted over 10 tidal cycles with resonance

The velocity tends to increase towards infinity as time goes. This scenario is of course

impossible in real life. In real life the friction drag would be included and as we have seen

earlier the driving modes would only be the M2-mode since the local modes r1 and r2 would

die out due to the friction.
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Chapter 4

The modified Bergen Ocean

Model(BOM)

For the rest of this thesis, we will consider a modified version of the Bergen Ocean Model(BOM),

see Berntsen [4], to investigate the inlets in the area around Bodø and Lofoten. This will be

applied to find the kinetic and potential energy fluxes in the Lofoten area. Potential and

kinetic energy through transects will be considered. The distribution of kinetic and potential

energy flux over the total area will also be discussed. At last the energy dissipation due to

bottom friction and viscosity will be considered. In the next chapter, the tide in Saltstraumen

will be discussed with the results from Chapter 3 kept in mind.

4.1 The model and its boundary conditions

The model is a two-dimensional depth integrated version of the BOM that solves the shallow

water equations on transport form. This means that the equations for the x- and y-directions

are also integrated in the z-direction and solved for the transports
∫ h

0 udz and
∫ h

0 vdz instead

of [u, v]. We already know from Chapter 2 that u and v are independent of z so the integrals

become uh and vh respectively. On transport form, the equations developed in Chapter 2

take the form
∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 , (4.1)

∂(uh)

∂t
+ UH· ∇(uh)− f vh = −gh

∂η

∂x
+

∂

∂x
(AM2D

∂(uh)

∂x
) +

∂

∂y
(AM2D

∂(uh)

∂y
) , (4.2)

∂(vh)

∂t
+ UH· ∇(vh) + f uh = −gh

∂η

∂y
+

∂

∂x
(AM2D

∂(vh)

∂x
) +

∂

∂y
(AM2D

∂(vh)

∂y
) . (4.3)



The model and its boundary conditions

The equations are still mathematical equivalent to the equations developed in Chapter 2.

Some new terms have been introduced:

Fx =
∂

∂x
(AM2D

∂(uh)

∂x
) +

∂

∂y
(AM2D

∂(uh)

∂y
) (4.4)

and

Fy =
∂

∂x
(AM2D

∂(vh)

∂x
) +

∂

∂y
(AM2D

∂(vh)

∂y
) . (4.5)

These terms are the viscosity terms. When modeling a problem like this, much of the energy

dissipation occurs by motion at subgrid scales. In [6] it is stated that to count for energy losses

from both the Reynolds stress and the motion at subgrid scales, a much larger viscosity called

the eddy viscosity is introduced. The horizontal viscosities cover a much larger distance of

unresolved motion than the vertical viscosities and the vertical viscosity is therefore neglected.

AM2D is referred to as the two-dimensional eddy viscosity. This viscosity can either be set as

a constant or it can be expressed according to Smagorinsky, see [19]:

AM2D = CM∆x∆y
1
2

[(
∂u
∂x

)2

+
1
2

(
∂v
∂x

+
∂u
∂y

)2

+

(
∂v
∂y

)2
] 1

2

, (4.6)

where CM is the Smagorinsky constant and ∆x and ∆y are grid spaces.

The model applies a two-dimensional grid with 1800 grid points in the x-direction and 1300

grid points in the y-direction. The grids are evenly spaced with dx=dy=250 m. The domi-

nating mode for the system is the M2-mode. The remaining tidal modes are neglected. The

Coriolis parameter f is set to be f = 1.3 ∗ 10−4 s−1. The model uses different subroutines to

solve the linear terms and the nonlinear terms separately. To solve the linear terms of the

equations, a predictor-corrector method is applied for the time steps. In the first time step,

the forward Euler is used as a predictor and in the later time steps the leapfrog scheme is used

as a predictor. The trapezoidal method is used as a corrector for all time steps. The non-

linear terms have been computed with a total variation diminishing(TVD) scheme to avoid

overshoot and undershoot. Overshoot and undershoot are uncontrolled growth of the solution

that causes instability. Suppose we have a solution q that propagates over time. As suggested

in Barthel [3], the total variation of a scheme is a measure of the amount of oscillations in

the field q.

TV(qn) =
J

∑
j=2
|qn

j − qn
j−1| .

If TV(qn+1) ≤ TV(qn) we have a TVD scheme. Suppose there is a shock in the solution q.

The schemes handle this shock differently when trying to approximate the solution. This can

then cause an overshoot for some schemes. Therefore flux limiters φ(θ) are introduced where
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θ is a so-called smoothness indicator to smooth the shock. To make sure the method is TVD,

the model applies the superbee flux limiter, see Barthel [3] and Sweby [20],

φ(θ) = max[0, min(1, 2θ), min(2,θ)].

It uses the largest possible steepening, without getting overshoot or undershoot, to repre-

sent the shock. The nonlinear terms in Equation (4.2) and Equation (4.3) are

UH· ∇(uh) = u
∂(uh)

∂x
+ v

∂(uh)

∂y

and

UH· ∇(vh) = u
∂(vh)

∂x
+ v

∂(vh)

∂y
.

The model expresses these terms on conservative form.

∂(uuh)

∂x
+

∂(uvh)

∂y

and
∂(uvh)

∂x
+

∂(vvh)

∂y
.

Generally for a 3-dimensional flow we have by the product rule

∂(uuh)

∂x
+

∂(uvh)

∂y
+

∂(uwh)

∂z

= u
∂(uh)

∂x
+ v

∂(uh)

∂y
+ w

∂(uh)

∂z
+ (uh)∇·U .

(4.7)

From Chapter 2 we have that ∇·U = 0 which gives that the equality holds in a 3-dimensional

flow. We also have that the horizontal velocity field is z-independent. By assuming that

the term uh ∂w
∂z , which occurs from the term ∂(uwh)

∂z , is small the equality also holds for a

2-dimensional flow. This gives that the two expressions for the nonlinear terms are math-

ematical equivalent. By having the equations on this form makes the model more robust.

When having the equations on this form they have been solved by the upwind scheme and

the Lax-Wendroff scheme in space before the solution is propagated over time with the TVD-

scheme. The upwind scheme is first order accurate and the Lax-Wendroff scheme is second

order accurate. However, the upwind scheme is monotonic. A monotonic scheme is a scheme

where the maximum values and the minimum values do not change throughout an iteration.

It follows that the upwind scheme has no problems with overshoot and undershoot. The Lax-

Wendroff scheme do have problems with this. Therefore the TVD-scheme uses flux limiters

that decide the weights(which scheme that should be used the most) of the two numerical

schemes. The Lax-Wendroff scheme is best when the solution is smooth, but when there
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are shocks in the solution, the upwind scheme is weighted more to avoid the overshoot and

undershoot.

A staggered grid has been used to do the calculations in the spatial steps for both the linear

and the nonlinear terms, that is the values of u, v and η are placed in different spots of the

grid. This means, solving for instance for η, the values of u and v need to be interpolated to

the η-value and vice versa when we are solving for u and v. This model uses the Arakawa

C-grid for this interpolation, see [4, 6].

η(I, J)u(I, J) u(I + 1, J)

v(I, J)

v(I, J + 1)

Y

X

Figure 4.1: The location of the variables in the staggered grid

The variables h and AM2D are defined in η-points. The C-grid is very beneficial when

dealing with flows. Since the velocities u and v are placed at the end of the cells we know

that the flux that goes out of one cell is the same as the flux that comes into the next cell.

4.1.1 Boundary conditions

In Chapter 2 we stated the condition for the vertical velocity w to be zero at the bottom

because of the impermeability. However, for the model there need to be stated some boundary

conditions for the horizontal velocities at the bottom as well. At the bottom there will be

a stress that affects the flow. In [6] and [4] it is suggested that the bottom stress τb can be
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written as

τb = ρ0CD|Ub|Ub , (4.8)

where Ub is the horizontal velocity at the bottom and CD is the drag coefficient. The drag

coefficient is set to be CD = 0.0025.

For the numerical model, the calculations are quite straightforward as long as they are not

on the boundary. However, on the open boundary, that is, in the open ocean there need to

be stated some conditions. In Martinsen et al. [17] and Ali et al. [2], it is suggested that in

the flow relaxation zones, that is in the boundary zone, the surface elevation can be updated

at each time step according to

Φ = (1−α)Φint +αΦext , (4.9)

where Φint contains the unrelaxed values calculated by the model, while Φext is the specified

external value. The value of α is 1 at the open boundary and changes smoothly towards 0 at

the inner end of the boundary zone. This method is called the flow relaxation scheme(FRS).

The boundary zone is set to be 40 grid cells thick in the model. This means that at the inner

end of cell 40 from the boundary, α is equal to zero and the calculations do only depend on

the model.

4.2 The Lofoten area

The area being modeled reaches from just south of Bodø to just north of Lofoten. Bottom

topography data from the Norwegian Hydrographic Service were used to generate the bottom

matrix of the area. This matrix was loaded to matlab. First, the land was masked out by

saying that everywhere the depth was larger than zero, the depth was set to 1. Everywhere

on land, “depth” was set to -1. Then the contour function in matlab was used to plot the

zero-contour of the bottom matrix. This gave the land boundary. Later, the contour-routine

was used to plot contours at certain depths. The result is given in the following plot:
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Figure 4.2: Contour-plot of the bottom matrix

The fjord on the inside of the Lofoten islands is called Vestfjorden. This is referred to

repeatedly during the thesis. The colorbar on the right side of the plot shows how the color

of the contours changes with depth in meters, that is, a dark red contour is plotted where the

depth is about 2000 m. The figure shows that the continental shelf outside Lofoten is very

steep. The numbers on the figure represent stations where measurements of the amplitude

(that has been decomposed down to the M2 frequency by Fourier transformation) of the

surface elevation have been done. These elevations are also given in Moe et al [18]. The depth

is also given. These data and the names of the stations corresponding to the numbers are

given in the next table:
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Number Place M2-amplitude[m] Depth[m]

1 Bodø 0.869 42.2

2 Narvik 0.993 32.59

3 Bogen 0.943 57.7

4 Lødingen 0.933 47.78

5 Kabelv̊ag 0.926 31.0

6 Stamsund 0.887 27.1

7 Ballstad 0.847 53.5

8 Sortland 0.663 34.4

9 Risøyhamn 0.677 32.26

10 Andenes 0.648 184.7

11 Skrolsvik 0.685 190.9

12 Harstad 0.693 44.72

13 Evenskjær 0.740 73.0

14 Røkenes 0.699 131.0

15 Røst 0.775 116.4

16 Tangstad 0.623 121

17 Helnessund 0.901 61

18 Inndyr 0.859 230.9

19 Skutvik 0.987 122.6

20 Stokmarknes 0.658 143

Table 4.1: List over M2-amplitude and depth for the stations

The model was run several times, with the M2-mode as the driving force, changing pa-

rameters until the amplitudes coincided with the measured amplitudes in Table 4.1. With

these amplitudes, the model was run for 5 different values of AM2D:100,10,1,0.1,0.01 m2s−1

to investigate how the amplitudes changed at places 1-20 in Figure 4.2. The result is given

in the following table:
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Amplitudes[m]

Observed Model

AM2D 0.01m2s−1 0.1m2s−1 1m2s−1 10m2s−1 100m2s−1

Bodø 0.869 0.885 0.867 0.877 0.877 0.878 0.878 0.881

Narvik 0.993 1.024 0.955 1.007 1.009 1.008 1.007 1.010

Bogen 0.943 1.017 0.950 1.002 1.004 1.003 1.003 1.006

Lødingen 0.933 0.988 0.916 0.974 0.975 0.974 0.974 0.979

Kabelv̊ag 0.926 0.942 0.902 0.928 0.929 0.929 0.930 0.933

Stamsund 0.887 0.925 0.887 0.908 0.908 0.909 0.910 0.914

Ballstad 0.847 0.914 0.882 0.900 0.901 0.901 0.902 0.906

Sortland 0.663 0.659 0.649 0.650 0.651 0.650 0.647 0.656

Risøyhamn 0.677 0.644 0.653 0.640 0.641 0.640 0.639 0.640

Andenes 0.648 0.619 0.627 0.620 0.620 0.620 0.620 0.622

Skrolsvik 0.685 0.642 0.671 0.643 0.643 0.643 0.643 0.644

Harstad 0.693 0.652 0.691 0.652 0.652 0.652 0.652 0.653

Evenskjær 0.740 0.664 0.750 0.701 0.701 0.700 0.702 0.723

Røkenes 0.699 0.664 0.720 0.667 0.667 0.667 0.663 0.666

Røst 0.775 0.747 0.740 0.747 0.744 0.744 0.747 0.757

Tangstad 0.623 0.638 0.643 0.642 0.642 0.642 0.641 0.641

Helnessund 0.901 0.915 0.892 0.907 0.907 0.907 0.907 0.909

Inndyr 0.859 0.875 0.858 0.866 0.866 0.867 0.867 0.871

Skutvik 0.987 0.955 0.917 0.944 0.945 0.945 0.945 0.949

Stokmarknes 0.658 0.647 0.644 0.645 0.645 0.644 0.643 0.646

Table 4.2: Amplitudes in meters

The table shows that the amplitudes are almost not affected by the different choices of

AM2D. For such a small eddy viscosity as AM2D = 0.01m2s−1, the solution is stable. This

is because of the bottom friction and the fact that the upwind scheme gives the model a

numerical viscosity that damps the solution. The changes of amplitude are more apparent for

the three first columns. These are all results from the calculations with AM2D = 0.01 m2s−1.

They are ordered in the following way:

� Column 1 represents the solution when channels 2-6 in Table 4.4 are closed.

� Column 2 represents the solution when channel 2-Tjeldsundet has been made larger.

� Column 3 represents the usual solution with AM2D = 0.01 m2s−1.
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For the first two points, the bottom matrix has been manipulated. First by claiming that

the channels 2-6 have zero depth and second by saying that Tjeldsundet is a straight channel

with depth of 200 meters and width of 2750 meters. One would probably expect that the

first scenario would increase the amplitudes of the tide in Vestfjorden when the water is not

allowed to go through the channels. Table 4.2 however, shows that the amplitudes are almost

not affected by this. For instance in Narvik, which is in the inner end of Vestfjorden, the

amplitude has only increased by approximately 1 cm compared to the other results from the

model. For the second scenario, the amplitudes on the places located in Vestfjorden seem to

decrease by 3-5 cm while the other amplitudes do not change significantly. The distribution

of the mean surface elevation for the Lofoten area is given in the next figure.

Figure 4.3: The distribution of mean surface elevations for the Lofoten area in meters

The figure shows that the mean surface elevations inside Vestfjorden generally are larger

than on the outside of Lofoten. The difference can change from 10 cm some places to almost

30 cm some other places. The surface elevation gradients will force water through the channels

and make strong currents there. However, these channels are not large enough to equalize

the pressure difference on the outside and the inside of Lofoten. The Lofoten islands appear

to make a blocking effect. The volume fluxes through 10 transects in the Lofoten area will be

given in Table 4.3 to illustrate this blocking effect. For the explanation of the transects, see
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the beginning of the next section about the energy fluxes and the energy losses. The volume

fluxes have been computed according to Equation (2.13).

AM2D = 0.01m2s−1 AM2D = 0.1m2s−1 AM2D = 1m2s−1 AM2D = 10m2s−1 AM2D = 100m2s−1

VF VF VF VF VF VF VF

Channel 1 ∗ 105 m3s−1

Saltstraumen 0.0546 0.0534 0.0540 0.0542 0.0549 0.0589 0.0595

Tjeldsundet 0 0.8036 0.0829 0.0830 0.0828 0.0817 0.0575

Raftsundet 0 0.0424 0.0452 0.0452 0.0451 0.0440 0.0278

Gimsøystraumen 0 0.1193 0.1265 0.1265 0.1262 0.1251 0.0991

Grundstadveien 0 0.0409 0.0431 0.0431 0.0429 0.0405 0.0275

Nappstraumen 0 0.1399 0.1476 0.1477 0.1475 0.1467 0.1195

Moskstraumen 2.4798 2.3128 2.4815 2.5050 2.5414 2.4289 2.3444

Værøy-Røst 3.8834 3.4751 3.7357 3.7298 3.7144 3.7384 3.7412

Røst sør 5.2030 4.7247 5.0255 5.0201 5.0109 5.0544 5.1300

Røst vest 2.1716 1.8686 2.0739 2.0722 2.0637 2.0655 2.0719

Table 4.3: Volume fluxes through the transects

The order of the columns are the same as in Table 4.2. The table shows that the volume

fluxes are almost not affected and seem to be robust to changes in AM2D. The blocking effect

is clearly appearing as the table shows that the volume fluxes almost remain the same inde-

pendent of channels 2-6 are open or closed. This also explains why the closing of channels 2-6

did not have much effect on the amplitudes in Table 4.2.

When the difference of the surface elevations cannot be equalized by the channels, it must be

equalized by something else. The difference of the mean surface elevations can be explained

if we understand how the tide behaves. When the tide is propagating towards Lofoten, there

will be created a Kelvin wave that propagates along the norwegian coast. When the wave

meets the Lofoten islands, it will start to propagate to the inside of the islands into Vestfjor-

den. This increases the surface elevation towards Narvik which lies innermost in the fjord,

see Figure 4.4. The figure shows the behavior of the tide and how the surface elevations are

distributed during one tidal cycle. There are 8 plots that are taken from 8 different times

within a tidal cycle with equal time between each plot.

42



The Lofoten area

Figure 4.4: The behaviour of the tide during one tidal cycle
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The velocity of the currents in the channels will start to increase as Vestfjorden is filled

up, but as already mentioned they will not be able to equalize the increasing pressure differ-

ence between the inside and outside of the Lofoten islands. The blocking effect creates phase

differences between the tide on the outside and the inside and this will force the Kelvin wave

to propagate on the outside of Lofoten. After a while the surface elevation between the inside

and outside will be more equalized. When the Kelvin wave has passed the Lofoten islands,

the water in Vestfjorden will start to flow away and there will again be created pressure dif-

ferences the opposite way. This will create currents the other way in the channels.

Since some of the water has to move on the outside of Lofoten, one could ask how the

situation would be like if all the water was allowed to go through the channels as currents.

The following plot shows how the surface elevation is distributed when Tjeldsundet has been

made larger as discussed previously.

Figure 4.5: The distribution of mean surface elevations when Tjeldsundet is made larger

The figure shows that the red area with the largest mean surface elevations is smaller than

in Figure 4.3. The surface elevations are more equalized, which means that much more of the

water is allowed to go through Tjeldsundet when the Kelvin wave enters Lofoten. This verifies

the results from Table 4.2 which shows that the amplitudes in Vestfjorden have decreased.

The volume fluxes in Table 4.3 also verify this result. The table shows that the volume flux
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through Tjeldsundet is about 10 times larger than for the other scenarios. This will have an

effect on the energy flux which will be discussed in the next section.

4.3 Energy fluxes and energy losses

4.3.1 Energy fluxes

To calculate the energy fluxes, the formulas

EK =
∫ 1

2
ρH|UH|3dr (4.10)

and

EP =
∫
ρgH|η||UH|dr , (4.11)

as also stated in Chapter 2 have been used. The kinetic energy flux is denoted by EK while

the potential energy flux is denoted by EP. In the equations, UH =
√

u2 + v2, H is the depth

which is given by the bottom matrix and dr is a small length element across the channel.

The other symbols are as described previously. The formulas have units [kgm2s−3=W]. In

the channels, the velocity will increase which leads to an increase in both the kinetic and

potential energy flux. The depth H in Equations (4.10) and (4.11) will decrease in the chan-

nels, but the velocity increases more which gives an increase in total for both the kinetic and

potential energy flux. The kinetic energy flux gives how much energy that theoretically can

be utilized in the channels, so in some sense this is the quantity of most interest. However,

the potential energy flux quantity tells us how much energy that is theoretically available

due to differences in the surface elevation for the Lofoten area. As already mentioned, the

Kelvin wave was forced on the outside of Lofoten because of the blocking effect. The question

that arises is if the topography of the channels could be modified in a more beneficial way

to optimize the transfer of potential energy to kinetic energy. That could be to make the

channels larger or deeper to equalize the surface elevations between the outside and the inside

of Lofoten completely during a tidal cycle. Then the Kelvin wave would not be forced on the

outside of the islands. By changing the topography of the channels, more potential energy

could be converted to kinetic energy in the channels and more could be utilized.

We notice that the kinetic and potential energy flux in Equation (4.10) and Equation (4.11)

always will be positive. This ensures that the flux is positive independent of the direction of

the flow. For the discrete case the formulas become

EK = ∑
1
2
ρH|UH|3∆x (4.12)
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and

EP = ∑ρgH|UH||η|∆x . (4.13)

The variable ∆x is a small length element along a transect which is made across some channel.

Time series for the channels have been plotted. An average from the values of each time step

in the last tidal cycle has been computed according to

EK =
1

TM2

Tend∫
Tend−TM2

EKdt ,

EP =
1

TM2

Tend∫
Tend−TM2

EPdt

(4.14)

to give the average energy fluxes in the channels. In Equation (4.12) and (4.13) it is assumed

that the flow will be perpendicular to the channel. This is due to the fact that if a mill was

placed in the channel, it would make an angle such that the flow would be perpendicular to

the mill. Therefore, the formulas are appropriate for calculating energy fluxes.

The velocity field computed from the model was applied to calculate energy fluxes through

10 transects given in Figure 4.6:
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Figure 4.6: The location of the transects

The numbers correspond to the transects. The names and coordinates of the transects in

Figure 4.6 are given in the following table:

Number Place Coordinates

1 Saltstraumen (151.25,41.25)-(152.25,41.25)

2 Tjeldsundet (304.75,94.5)-(304.75,96.25)

3 Raftsundet (253.75,119.75)-(253.75,120.5)

4 Gimsøystraumen (219,131.5)-(219,133.25)

5 Grundstadveien (215,135)-(215.75,135)

6 Nappstraumen (183.75,141.25)-(181.75,143.25)

7 Moskstraumen (145,139.75)-(127.5,131.25)

8 Værøy-Røst (127.5,131.25)-(99.75,136.75)

9 Røst sør (99.75,136.75)-(49.75,136.75)

10 Røst vest (99.75,136.75)-(99.75,186.75)

Table 4.4: Name of the transects

The time series for the kinetic and potential energy flux will be shown for Moskstraumen.

47



Energy fluxes and energy losses

The corresponding solutions for the other transects have the same behavior and will not be

shown.

Figure 4.7: Kinetic energy flux in Moskstraumen

The solution is stable and reaches steady state after approximately two tidal periods.

When the steady state is reached, the amplitudes for one period are not equal. These changes

are due to the direction of the current in the channel. The difference in amplitudes is caused

by the topography around and in the inlets. How much of a wave that propagates on the

inside or outside depends on the topography and will change depending on the direction for

the current. The changes in topography on the east and west side of Moskstraumen give the

changes in amplitudes in Figure 4.7.

The potential energy is plotted in Figure 4.8:
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Figure 4.8: Potential energy flux in Moskstraumen

The plot shows that as the potential energy flux increases, small jumps that decreases

the flux occurs. As the current flows through the channel, the velocity increases. However,

at some point a critical velocity UCrit is reached and due to the topography of the channel,

horizontal eddies will be created. This creates separation of water in the channel and some

of the energy of the flow will be dissipated. This gives the small jumps in Figure 4.8. The

Reynolds number gives an indication of when eddies are created. The Reynolds number is

given by UL
AM2D

where U and L represent a velocity scale and a length scale respectively. The

Reynolds number is dimensionless. Chapter 9 in Kundu see [16] discusses for which values

of the Reynolds number, transitions to turbulence are generated. As the velocity scale U

increases in our case, the Reynolds number reaches a critical level and the eddies and separa-

tions are generated.

The calculation of the energy fluxes through the channels has as mentioned been split into

the kinetic and potential energy flux. As shown in Figure 4.7 and Figure 4.8 a transient term

affected the solution, but afterwards the solution reached steady state. Therefore the averages

of the energy fluxes given in Equation 4.14 were calculated. The results are given in Table

4.5:
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AM2D = 0.01m2s−1 AM2D = 0.1m2s−1 AM2D = 1m2s−1 AM2D = 10m2s−1 AM2D = 100m2s−1

EK EP EK EP EK EP EK EP EK EP EK EP EK EP

Channel 1 ∗ 109 1 ∗ 109 W 1 ∗ 109 W 1 ∗ 109 W 1 ∗ 109 W 1 ∗ 109 W 1 ∗ 109 W

Saltstraumen 0.0006 0.0294 0.0005 0.0282 0.0006 0.0289 0.0006 0.0289 0.0006 0.0288 0.0006 0.0275 0.0005 0.0274

Tjeldsundet 0 0 0.0017 0.4440 0.0030 0.0511 0.0030 0.0512 0.0030 0.0510 0.0026 0.0500 0.0011 0.0371

Raftsundet 0 0 0.0013 0.0263 0.0016 0.0288 0.0016 0.0288 0.0016 0.0287 0.0014 0.0279 0.0003 0.0178

Gimsøystraumen 0 0 0.0051 0.0678 0.0061 0.0738 0.0061 0.0739 0.0061 0.0737 0.0058 0.0733 0.0028 0.0629

Grundstadveien 0 0 0.0005 0.0242 0.0006 0.0259 0.0006 0.0259 0.0006 0.0256 0.0004 0.0235 0.0002 0.0159

Nappstraumen 0 0 0.0021 0.0939 0.0025 0.1014 0.0025 0.1014 0.0024 0.1002 0.0020 0.0966 0.0009 0.0775

Moskstraumen 0.1794 1.4192 0.1391 1.2539 0.1770 1.3943 0.1770 1.4156 0.1790 1.3765 0.1589 1.3443 0.1304 1.2234

Værøy-Røst 0.0755 1.9636 0.0547 1.7224 0.0674 1.8688 0.0673 1.8681 0.0660 1.8568 0.0636 1.8509 0.0529 1.7872

Røst sør 0.0180 2.4355 0.0138 2.1649 0.0163 2.3293 0.0163 2.3266 0.0160 2.3098 0.0157 2.3046 0.0140 2.2801

Røst vest 0.0046 2.5028 0.0036 2.2467 0.0042 2.4149 0.0042 2.4149 0.0042 2.4055 0.0039 2.3955 0.0033 2.3756

Table 4.5: Energy fluxes through the channels

The order of the columns are the same as in Table 4.2 and Table 4.3. For the computations

of each value of AM2D, both the kinetic and potential energy fluxes are given. As the eddy

viscosity AM2D is increased, Table 4.5 shows that the kinetic and potential energy flux are

slightly decreased in the channels, but still the fluxes are quite robust to the changes of AM2D.

The results for AM2D = 0.01 m2s−1 show that when channels 2-6 are closed, the kinetic

energy flux is slightly increased in the other channels. However, the difference is not large

because of the blocking effect. For the other case, when Tjeldsundet has been made larger, the

kinetic energy flux decreases in all the other channels. Surprisingly, the kinetic energy flux in

Tjeldsundet also decreases. However, we notice that the potential energy flux in Tjeldsundet

has become about 10 times larger than for the usual case. When the size of Tjeldsundet is

too large, the kinetic energy flux decreases. However, the depth has increased so the speed

of the wave c =
√

gH has increased and therefore the potential energy flux increases. To be

able to utilize the energy, we are interested in the kinetic energy flux. However, the ability

to convert the potential energy flux over to kinetic energy flux is also very important. The

way Tjeldsundet was modified was not optimal for this situation. The question that arises is

therefore what width and depth that should be applied to optimize the kinetic energy flux in

the channels.

By summing up the energy flux in all the channels for AM2D = 0.01m2s−1, we get a

total kinetic energy flux of EKTOT = 2.79 ∗ 108 W and a total potential energy flux at
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EPTOT = 8.32 ∗ 109 W. For one year this gives EKTOT ∗ 8760h = 2.45 ∗ 1012Wh = 2.45

TWh and EPTOT ∗ 8760h = 7.29 ∗ 1013Wh = 72.9TWh. Grabbe et al. [13] suggests that the

kinetic energy flux that theoretically can be utilized in Norway is about 17 TWh per year.

The article however, does not include the potential energy flux in the calculations. This thesis

shows that the potential energy can give contribution to utilize more than 17 TWh only for

the Lofoten area if we were able to convert the potential energy flux to kinetic energy flux. In

the report about the potential of ocean energy from ENOVA SF, see [9], it is stated a totally

potential of about 1 TWh per year. For this estimate, all the tidal components discussed in

Chapter 1 are considered. This is in opposition to our results that only are based on the M2-

component. The estimate is taken from 24 currents where 5 of the currents are the same as

also have been calculated in this thesis. These are Saltstraumen, Raftsundet, Moskstraumen,

Nappstraumen and Gimsøystraumen. The following table compares the kinetic energy fluxes

estimated from our model with the estimates from the ENOVA report.

Kinetic energy[TWh]

Estimate from the model[TWh] Estimate from the ENOVA report[TWh]

Saltstraumen 0.0053 0.030

Raftsundet 0.014 0.006

Gimsøystraumen 0.053 0.015

Nappstraumen 0.022 0.018

Moskstraumen 1.551 0.758

Table 4.6: Kinetic energy fluxes from this thesis compared with the kinetic energy fluxes from

the ENOVA report

Generally, our model estimates larger values for the kinetic energy fluxes than the esti-

mates from the ENOVA report. The ENOVA report has also not included the effect from the

potential energy flux. The results from our model show that the magnitude of the potential

energy flux makes it very interesting to take this quantity into consideration.

Another interesting investigation was to calculate the energy flux for the whole area on Fig-

ure 4.2. This was done by making vertical cross sections for each fortieth grid point in the

x-direction. Then the kinetic energy flux and potential energy flux that crossed each cross

section were calculated according to Equation (4.12) and Equation (4.13). The situation is

depicted in Figure 4.9:

51



Energy fluxes and energy losses

Figure 4.9: Transects for calculating energy fluxes

The fluxes for the last M2-period were used to calculate an average energy flux for each

cross section according to Equation (4.14). The result for how the kinetic energy flux was

distributed is given in the following plot:

Figure 4.10: Kinetic energy flux for the Lofoten area
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The peak occurs in the area around Moskstraumen. The velocity increases in the shallow

areas and from Equation (4.12) the kinetic energy flux increases. There is a large shallow area

called Røstbanken that affects the flow here. This is in opposition to the other channels where

the shallow areas are much smaller and the flow is not significantly affected. The channels

can create strong currents, but since these are small they do not affect the kinetic energy flux

across an entire cross section.

The potential energy fluxes through the cross sections in Figure 4.9 are given in the following

plot:

Figure 4.11: Potential energy flux for the Lofoten area

As mentioned earlier in this chapter, the Kelvin wave is forced to propagate on the outside

of the Lofoten islands as well as through the channels. When the Kelvin wave propagates

around Lofoten, the friction from land causes a decline of the the wave speed. Then there

will be a decline in wave speed on both the inside and the outside. This gives a decline in the

potential energy flux which is shown in Figure 4.11. When the wave has passed the Lofoten

islands, the friction is smaller because there is less land to slow down the wave. The wave

is not longer slowed down as before. Then the wave speed increases which again leads to an

increase of potential energy. An important fact is that the amount of land is different for the
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various cross sections. Therefore the fluxes for the cross sections placed over the Lofoten area

will be smaller because there is no flux on land. This is also the reason for the decline of

potential energy flux in Figure 4.11.

To estimate the distribution of both kinetic and potential energy for the whole area, the

energy fluxes per cross section normal to the flow have been computed in each grid cell. The

formulas are the same as in Equation (4.12) and Equation (4.13), except that the flux has

not been integrated along a transect.

EK =
1
2
ρH|UH|3 and

EP = gρH|UH||η| .
(4.15)

The units are [Wm−1]. It is expected that the values for the kinetic and potential energy are

large in the channels. The following plot illustrates the distribution of the kinetic energy flux

for the Lofoten area.

Figure 4.12: Kinetic energy flux for the Lofoten area

The colorbar shows that the dark red area in Moskstraumen has a kinetic energy flux of

order 103 Wm−1. The figure verifies what also was shown in Figure 4.10. When the current

has to move through Moskstraumen, the speed of the current has to increase because of all

54



Energy fluxes and energy losses

the water on the outside that makes a pressure towards the channel. The topography of

Moskstraumen allows the current to go straight through it. This is in opposition to many of

the other currents in Lofoten where the channels are bent. This gives a loss of the velocity of

the current and the kinetic energy flux decreases.

Even though many of the channels in Lofoten can be utilized to exploit energy, Moskstraumen

appears to be the area of most interest. The size and location of the channel makes it very

beneficial. Among the channels, Moskstraumen is the one that is most suitable for convert-

ing the potential energy to kinetic energy. If the other channels were constructed in a more

optimal way, an increase of the kinetic energy flux could also be achieved there. Figure 4.11

shows that the potential energy flux is of the order 20 GW which is much more than for the

kinetic energy flux which is of order 0.1GW. If we were able to utilize the potential energy,

that is converting the potential energy flux to kinetic energy flux, the tidal resource in the

Lofoten area could be about 200 times larger. The following plot illustrates an interesting

fact:

Figure 4.13: Distribution of the potential energy flux

The red area in the deep ocean outside Lofoten shows that there is a large potential energy

reservoir that can be utilized. As shown in Figure 4.2 the continental shelf outside Lofoten
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is very steep. This causes a separation of two Kelvin waves going in the same direction but

with different speed. One that propagates out in the deep ocean and one that propagates

along the land boundary (the picture is actually not that idealized. The two fronts of the

waves will cause barotropic instabilities but on the large scale we can think that the two

waves are separated). The phase speed of a wave is known as c =
√

gH where g is the gravity

acceleration and H is the depth. This shows that when the depth is large, the phase speed

gets large. This means that the wave propagating out in the deep ocean has much higher

speed than the wave propagating along the land boundary. The formula for the potential

energy flux in Equation (4.15) can be written as EP = gρH|UH||η| = c2ρ|UH||η|. In the

deep ocean, the velocity of the current UH is smaller than by the land boundary. However

the phase speed is squared so this term is dominating the size of the flux. Therefore there is

a large potential energy flux out in the deep ocean.

4.3.2 Energy losses

As mentioned in the introduction chapter in this thesis, some of the energy of the wave will

dissipate in both shallow and deep ocean because of the bottom friction and the viscosity. The

energy losses per area due to viscosity and bottom friction have therefore been calculated.

From Equation (4.8) it follows that the energy loss due to bottom friction can be calculated

according to

Ebloss = −1
2

CDρ|UH|3 , (4.16)

with unit [Wm−2]. The energy loss due to viscosity was calculated based on Equation (4.4)-

(4.5) to get

Eνloss = −
√

F2
x + F2

y
1
2
ρ|UH| , (4.17)

also with unit [Wm−2]. The expressions for Fx and Fy are given in Equation (4.4)-(4.5).

When dealing with these terms numerically, the derivative inside the parentheses has first

been solved by finite differences to center it in the spatial grid. Then the constant AM2D

has been interpolated to the same point as the derivative according to the Arakawa C-grid.

At the end, a finite difference scheme has been used to find the x-derivative and y-derivative

respectively for the term inside the parentheses. The results have been used to make con-

tour plots over the distribution of the energy loss for the Lofoten area. It is expected that

the areas in and around the channels will give the largest energy loss since these are shal-

low areas. Then the bottom friction and viscosity will affect the flow more than out on the

deep ocean. Therefore the plots that follow are zoomed in to only contain the Lofoten islands.

The magnitude of how much energy that dissipates will be presented next. The solution
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for the bottom friction follows in the next plot. The solution is zoomed to the area around

Moskstraumen.

Figure 4.14: Energy loss due to bottom friction

The figure verifies that the main losses occur in the channels. The energy loss in Moskstrau-

men appears to be of largest magnitude. The magnitude in Moskstraumen is about 0.1 Wm−2.

The energy loss due to viscosity is given next:
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Figure 4.15: Energy loss due to viscosity

The hot spots for energy loss due to viscosity are, as also showed in the figure, located in

the channels. This plot is taken from AM2D = 0.01 m2s−1. The other plots for the different

values of AM2D will give the same behavior, but the magnitudes will increase with almost the

same factor as the eddy viscosity.

The total energy loss per square area has been calculated by summing up all the values

from the grid cells that were placed in the ocean. The sum for the energy loss due to bottom

friction was calculated to be Ebloss = 2.992 ∗ 103 Wm−2 and the same loss due to viscosity

was calculated to be Eνloss = 4.639 Wm−2. Multiplying the sums over the area gives the

energy loss in W. The area used is the size of the grid cells, that is 250 ∗ 250m2. This gave

a value of Eblossarea = 1.87 ∗ 108 W for our area. The value for the viscosity was computed

to be Eνlossarea = 2.90 ∗ 105 W. This number is very small compared to the number for the

bottom friction. We notice that this number would be much different if another value for the

constant AM2D was used. What value of AM2D that is the most correct one is a very difficult

question. Because of the uncertainties in this quantity, the bottom friction will be the only

quantity discussed further.

It is interesting to see how much of the energy dissipation due to bottom friction that occurs
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in the channels compared to the open ocean. A rough estimate of this will be given here.

The 8 first channels in Table 4.4 are considered. The last two are not taken into account

since they strictly spoken do not represent channels. The area of the channels are roughly

estimated by investigating the bottom matrix. The following table shows the x and y grids

used for calculating the area of the channels. The last column contains the values for the

kinetic energy flux for AM2D = 0.01 m2s−1 as also given in Table 4.5. This is to compare the

magnitudes of the energy dissipation to the kinetic energy flux.

x-coordinates y-coordinates Energy dissipation[W] Kinetic energy flux[W]

Saltstraumen 605-609 163-168 2.03 ∗ 105 0.0006 ∗ 109

Tjeldsundet 1212-1220 378-385 1.18 ∗ 106 0.0030 ∗ 109

Raftsundet 1012-1017 479-482 5.47 ∗ 105 0.0016 ∗ 109

Gimsøystraumen 871-876 526-533 1.33 ∗ 106 0.0061 ∗ 109

Grundstadveien 860-863 536-546 8.46 ∗ 105 0.0006 ∗ 109

Nappstraumen 727-735 562-572 8.48 ∗ 105 0.0025 ∗ 109

Moskstraumen 510-580 525-559 6.43 ∗ 107 0.1770 ∗ 109

Værøy-Røst 399-510 525-547 1.80 ∗ 107 0.0674 ∗ 109

Total 8.73 ∗ 107 2.59 ∗ 108

Table 4.7: Energy dissipation due to bottom friction

The coordinates in the table represent grid cells. They are not given in kilometers as

previously. The table shows that the kinetic energy flux is larger than the energy loss due

to bottom friction. By optimizing the topography in the channels, the energy loss could

be reduced and the kinetic energy flux could therefore be further increased by a significant

amount. The losses from each grid point in the channels were summed to find the total energy

loss in the channel. This was multiplied with the area of a grid cell. The table shows that

about half of the energy dissipation due to bottom friction occurs in the channels for the

Lofoten area. We therefore have an energy dissipation on the open ocean to be 1.87 ∗ 108W-

8.73 ∗ 107W=9.97 ∗ 107W. Suppose this is the average loss on the open ocean. According to

Wikipedia, the area of ocean on earth is about 361 ∗ 106 km2. By saying that the Lofoten

area is 450 ∗ 325km2 we get a rough estimate of the total energy dissipation due to bottom

friction for the open ocean on the earth to be 2.46 ∗ 1011W. From Egbert and Ray [7], we saw

that the energy dissipation in the open ocean was estimated to be about 1 TW. Our rough

estimate is about 4 times smaller than this but as mentioned our estimate does not include

the viscosity or the fact that some areas are shallow and some are deep.
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Chapter 5

Results for Saltstraumen

What follows in this chapter are the results for the time series in Saltstraumen. With the

results from Chapter 3 kept in mind, the results will be discussed further here. The results

are given with AM2D = 0.01 m2s−1 unless anything else is specified.

Figure 4.2 has been zoomed to the area around Saltstraumen. Time series from the model are

taken at 9 stations located in the area around Saltstraumen and are also given in the figure.

The result was the following:



CHAPTER 5. RESULTS FOR SALTSTRAUMEN

Figure 5.1: The stations where the time series are computed

The numbers 1-9 on the figure are stations where the model has been run. The names

and depth of the stations are given in Table 5.1:

Number Place Depth[m]

1 The outside 139.1

2 In the current 55.94

3 Inside 1 of the shallow throughflow 1 71.99

4 Inside 2 of the shallow throughflow 2 165.6

5 Sundshavn 5.9

6 Inside Godøystraumen 133.0

7 Skjerstadfjorden 1 431.0

8 Skjerstadfjorden 2 438.8

9 Rognan 57.8

Table 5.1: List over the depth for the stations

As mentioned in Chapter 3 there is a possibility that there can be created seiches in a

fjord like Skjerstadfjorden. Therefore the results from Rognan which is the innermost in the
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fjord, will be very interesting. The time series will perhaps show small oscillations that can

be created due to the local oscillations in Skjerstadfjorden.

When plotting the time series from the model at the stations located in Figure 5.1 and

comparing with the solution on the form ηM2 sin(ωM2t), a phase delay occurs, see Figure 5.2.

Figure 5.2: Timeseries from the model compared with a sine wave with period T=12.42h

The plots are ordered such that the plots on the first row represent the the solutions of

stations 1, 2 and 3. This is in agreement of what was shown in Chapter 3. A simple calculation

of the time delays for each station in Figure 5.1 was done in matlab. The procedure for the

calculation was the same as briefly described under the section for the quadratic case in

Chapter 3 and is given in Table 5.2:

station 1 2 3 4 5 6 7 8 9

time delay[h] 2.15 2.31 2.31 2.28 2.28 2.33 2.29 2.29 2.29

Table 5.2: Time delays for the stations in Figure 5.1 in hours

The time delays reach from 129-140 minutes which are less than what were found in the
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calculations for the quadratic drag in Chapter 3.

The phase delays were taken into account, that is, the solutions were modified such that

the phase of the solution from the model was the same as the solution from the sine wave.

The errors between the solutions from the model and the solution from the sine wave were

plotted for stations 7-9 and are given in Figure 5.3.

(a) Station 7 (b) Station 8

(c) Station 9

Figure 5.3: The error between the sine wave and the solutions from the model

The figures show peaks that occur periodically with a certain time between each peak.

The figures suggest that there are some peaks that seem to belong to each other and that the

peaks represent different oscillations. Some of these oscillations can be due to higher harmonic

modes. The higher harmonic modes occur typically in shallow channels with strong currents

and depends much of the topography of the channel. Saltstraumen can be such a place. The

higher harmonic modes causes higher harmonic oscillations which have different periods than
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the M2-mode. They are usually referred to as the M3, M4, M6 and M8-modes which have pe-

riods of 2
3 , 1

2 , 1
3 and 1

4 of the M2-period respectively. The best way to investigate which modes

that are characteristic for our time series would be to do a FFT(Fast Fourier transformation)

to map the time domain over to the frequency domain. However, the time series are too short

so this will not be done here. We therefore base our discussion on the plots given in Figure 5.3.

The time series in Figure 5.3 generally behave in the same way and they show that there

are some large negative peaks that occur with a period of about 12 hours which is almost

the same as the M2-period. Then there are some positive peaks that seem to occur with a

period of about three hours. These peaks can be caused by the higher harmonic modes and

this would be an example of the M8-mode. The plots also show that there are some apparent

noise. However, by studying the plots closer these peaks also are periodically oscillations with

a period of about 0.5 hours. These peaks also seem to be more visible on the last plot which

is the time series for station 9, Rognan. The reason for the peaks is probably the higher har-

monic oscillations, but it can also be because of seiches in the fjord as discussed in Chapter

3. This could occur innermost in the fjord by Rognan. From Table 5.1 it is shown that the

depth at Rognan is H= 57.8 meters. Using this as the depth and calculating how far the

wave will travel during T= 0.5 hours we get
√

gH ∗ T = 42.9 km. By investigating Figure

5.1 it seems reasonable to suggest that the Kelvin wave travels about 40 km on its way from

Saltstraumen into Rognan. Thus the two lengths are quite similar which could mean that the

small oscillations on the plots represent one of the allowable wavelengths that can occur for

a standing wave in Skjerstadfjorden.
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Chapter 6

Discussion

During this thesis we have investigated how a box model can be applied to compute the be-

havior of a tidal flow when a wave comes into a channel that ends up in a bigger basin. The

results from this approach were also verified by another numerical model. The computations

from the numerical model have shown how the tide behaves around the Lofoten area and

a calculation of available kinetic and potential energy fluxes for the Lofoten area has been

computed. Energy losses due to bottom friction and viscosity have also been investigated.

6.1 Major results

For the study of available tidal energy in the Lofoten area, the most important results shown

in this thesis are:

� The large reservoir of potential energy compared to kinetic energy in both shallow and

deep areas

� There is a substantial conversion from potential energy to kinetic energy as the tide

enters the channels

� The blocking effect of the Lofoten islands forces the Kelvin wave outside the islands

� The throughflows may be optimized with respect to total energy production

To extend the work from Grabbe et al. [13] and the ENOVA report [9], we investigated

the potential energy in the Lofoten area as well as the kinetic energy. We showed that the

magnitude of potential energy flux was about 200 times larger than the magnitude of the

kinetic energy flux and that this quantity is very important to take into consideration when
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we are talking about tidal energy in the Lofoten area. We stated that due to the steep con-

tinental shelf, there are two separated Kelvin waves propagating with different wave speeds.

The Kelvin wave in the deep ocean traveled faster than the one close to land, representing a

large potential energy reservoir in the deep ocean.

As waves with wavelengths of a large scale in the ocean is forced through inlets where waves

with wavelengths of a much smaller scale can occur, we saw that this gave a large conversion

of the potential energy in the ocean to kinetic energy in the channels. In the channels the

velocity of the current increases which leads to an increase of kinetic energy flux. Because the

channels are shallow, the wave speed decreases which leads to a decrease of potential energy

flux.

We stated that the Lofoten islands made a blocking effect and forced the Kelvin wave to

propagate on the outside of the islands. The results showed that Vestfjorden was filled up

due to the blocking effect. The islands therefore created large phase differences of the tide

on the inside and the outside. The experiment by closing some of the channels showed that

the volume fluxes and the amplitudes did almost not change. This also verified the blocking

effect. The results also showed that the energy fluxes in the channels were almost not affected

by this experiment.

The results when Tjeldsundet was made larger showed that the volume fluxes increased in

this channel. We also verified that the phase differences between the inside and the outside of

the islands were smaller for this scenario. Furthermore, the potential energy flux increased,

but the kinetic energy flux decreased for this scenario. We stated that Tjeldsundet was not

optimally modified to achieve maximum conversion of potential energy to kinetic energy.

An important result regarding Saltstraumen was the occurence of the high frequent oscil-

lations in Rognan. The oscillations could represent local seiches that slightly reinforced the

amplitude of the tide. In Chapter 3 we showed that oscillations due to seiches can affect the

tide when drag is neglected. However, the results in Chapter 5 showed that these oscillations

can also occur when the bottom friction is included, but after some time these oscillations

will die out.
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6.2 Remarks about the model

The dissipation of energy according to bottom friction and viscosity was computed and gave

an indication of the energy loss in the earth moon system that was compared to the result

given in Egbert and Ray [7]. However, dissipation due to eddies was not taken into account in

these calculations. From Figure 4.8, we noticed the small jumps in the solution that occurred

due to horizontal eddies created in the channel because of the topography. These eddies were

of such a length scale that they were represented by the model. The resolution of the grid

applied in the model had as stated a length ∆x = ∆y = 250 m between each grid point.

Thus, an eddy should have longer length scales than 2 ∗ 250 = 500 meters to be represented

by the model, see Haidvogel and Beckmann [14].

If stratification is taken into account the flow can be interpreted as a flow consisting of several

layers with different densities. This creates the occurrence of internal waves. Internal waves

are small waves created between the layers with different density. By including stratification,

pressure gradients will force water to flow in the vertical direction. If a water parcel with high

density was placed in a fluid with low density, the water parcel would seek equilibrium and

sink towards the fluid with heavier density. In [6] it is described how the water parcels behave

when they are placed in a fluid layer with different density. As the water parcel has sunk to

the density of equilibrium, the velocity of the parcel is not zero. This means the water parcel

will continue to sink to the fluid with higher density than itself. This will make the water

parcel to go upwards again. When seeking equilibrium, the water parcel oscillates in the fluid

like a wave. These waves are referred to as internal waves and the oscillation just mentioned

is referred to as the stratification frequency, also called the Brunt-Vaisala frequency. The vis-

cosity in the internal waves makes energy to dissipate as water parcels with different densities

are mixed together. The internal waves can have length scales both long enough but also too

short to be resolved by our model.

For even shorter length scales instabilities can still occur. In the channels, the velocity of

the current will be smaller in the layers close to the bottom because of the friction. As the

topography in the channels changes, there can be created instabilities in the form of eddies on

the interface between the layers that drains kinetic energy from the flow. These instabilities

are often referred to as Kelvin-Helmholtz instabilities, see Kundu [16]. The eddies created

can be of such a small length scale that the model does not resolve them. The kinetic energy

loss associated to these instabilities is therefore not considered. However, as discussed earlier

in Chapter 4 the choice of AM2D is often chosen to take care of this, but to quantify the loss
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is very difficult which means that the choice of AM2D is an uncertain choice.

6.3 Further work

In order to extend the results from this thesis, the following scenarios should be investigated:

� The model should include the tidal components S2, N2 and K1.

� The grid resolution could be improved

� Stratification should be taken into account.

� An estimate of the optimal size of the channels to achieve the optimal transfer of po-

tential energy to kinetic energy should be computed.

� An estimate of the phase delay and the actual energy fluxes as water mills are placed

in the channels.

To estimate the results including the other tidal components would be the main research to

get a realistic study as possible.

We mentioned in the previous section that energy losses at small scales were not resolved

by our model. By refining the grid resolution, these losses would be included. However, sup-

pose ∆x = ∆y = 1 meter. The large conversion of potential energy on the large scale to kinetic

energy on the small scale would be represented even better with this grid resolution. With

this resolution the model will estimate larger kinetic energy fluxes in the channels. The inclu-

sion of stratification showed that energy losses due to internal waves and Kelvin-Helmholtz

instabilities occur. This will give a smaller estimate for the kinetic energy fluxes. We end up

with two arguments that contradict each other. In order to investigate if this will lead to a

total increase in kinetic energy flux, focused studies for each throughflow should be computed.

The experiment when Tjeldsundet was made larger should be extended to find the optimal

transfer of potential energy to kinetic energy in the channels. To make a channel narrower

would increase the energy flux, but at some point the friction in the channel would dominate

such that the energy flux would start to decrease. Identification of the optimal size should

therefore be an interesting task for the further work.
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Appendix A: Symbols

A.1 Symbols used in the modified version of BOM

UH = [u, v] Horizontal velocity field [ms−1]

U = [u, v, w] Velocity field [ms−1]

Ū Mean velocity field [ms−1]

Uf Velocity fluctuation [ms−1]

ρ Density[kgm−3]

ρ0 Reference density[kgm−3]

ρ′ Density perturbation[kgm−3]

η(x, y, t) Surface elevation [m]

h(x, y, t) Dynamic depth [m]

H(x, y) Static depth [m]

∇ = ∂

∂x i + ∂

∂y j + ∂

∂z k Differential operator

p pressure [Pa=kgm−1s−2]

Ω Earth rotation [rads−1]

g gravity acceleration[ms−2]

F = [Fx, Fy] External forces [ms−2]

φ Latitude[rad]

f Coriolis parameter [s−1]

f∗ Reciprocal Coriolis parameter[s−1]
D
Dt () = ∂

∂t () + U· ∇() Total derivative

[i, j, k] Unit vectors in x,y and z-direction

c =
√

gH Phase speed[ms−1]

AM2D Eddy viscosity[m2s−1]

CM Smagorinsky constant[1]

τb = [τbx, τby] Bottom stress[Pa=kgm−1s−2]

Φint Unrelaxed value from model

Φext Specified external value in boundary zone

EP Potential energy flux[W=kgm2s−3]

EK Kinetic energy flux[W=kgm2s−3]
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CD Drag coefficient[1]

Ebloss Energy loss due to bottom friction[Wm−2=kgs−3]

Eνloss Energy loss due to viscosity[Wm−2=kgs−3]

ηM2 Semi-diurnal tidal amplitude [m]

TM2 Main semi-diurnal period [s]

ωM2 = 2π
TM2

Semi-diurnal tidal frequency [rads−1]

t Time[s]

A.2 Symbols used in Chapter 3

η1 Surface elevation in the ocean[m]

η2 Surface elevation in the fjord[m]

η3 Surface elevation in the fjord[m]

UC Velocity in the channel[ms−1]

UM Velocity in the fjord[ms−1]

WC Width of channel [m]

HC Depth of channel [m]

LC Length of channel [m]

LF Length of the fjord [m]

AC Cross sectional area of channel [m2]

AF Cross sectional area of the fjord[m2]

A2 Surface area of fjord[m2]

R Friction coefficient [s−1] or [m−1]
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Appendix B: Stability of the

trapezoidal method

To investigate the stability of a difference scheme, the von-Neumann analysis is often applied.

During this thesis the trapezoidal rule has been applied on a system of equations that typically

look like:

d
dt

[
η2

UC

]
=

[
0 −K

C 0

] [
η2

UC

]
(1)

This problem can be rewritten by vector notation to get:

d
dt
η = iωη = 0 .

Here ω denotes a matrix with the eigenvalues of the matrix in (1) on the diagonal and

η denotes a vector. This problem is the typical test problem and stability is discussed in

Haidvogel and Beckmann, see [14]. The discretization gives

ηn+1 − ηn = iω∆t
1
2

(ηn + ηn+1)

which gives

ηn+1 =

(
1 + i 1

2ω∆t
1− i 1

2ω∆t

)
ηn.

The amplification factor, that is, the absolute value of what is inside the parentheses is 1.

This gives us that the trapezoidal method is a stable and neutral method, that is no growth

and no damping, the method is constant with the properties of the underlying problem.
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