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Abstract

Stathmin is a prognostic marker in many cancers, including endometrial cancer. Preclinical studies, predominantly in breast
cancer, have suggested that stathmin may additionally be a predictive marker for response to paclitaxel. We first evaluated
the response to paclitaxel in endometrial cancer cell lines before and after stathmin knock-down. Subsequently we
investigated the clinical response to paclitaxel containing chemotherapy in metastatic endometrial cancer in relation to
stathmin protein level in tumors. Stathmin level was also determined in metastatic lesions, analyzing changes in biomarker
status on disease progression. Knock-down of stathmin improved sensitivity to paclitaxel in endometrial carcinoma cell lines
with both naturally higher and lower sensitivity to paclitaxel. In clinical samples, high stathmin level was demonstrated to
be associated with poor response to paclitaxel containing chemotherapy and to reduced disease specific survival only in
patients treated with such combination. Stathmin level increased significantly from primary to metastatic lesions. This study
suggests, supported by both preclinical and clinical data, that stathmin could be a predictive biomarker for response to
paclitaxel treatment in endometrial cancer. Re-assessment of stathmin level in metastatic lesions prior to treatment start
may be relevant. Also, validation in a randomized clinical trial will be important.
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Introduction

Stathmin1 (STMN1 hereafter indicated as ‘stathmin’) is an

18 kD cytosolic phosphoprotein, known to play an important role

in the cell cycle. Stathmin is expressed in all tissues. It is a critical

regulator of microtubule dynamics through its microtubule

destabilizing properties, including both prevention of polymeriza-

tion and active promotion of microtubule depolymerization [1–4].

Phosphorylation of stathmin on four serine residues in the

beginning of the mitotic phase attenuates its destabilizing activities,

allowing cells to form a mitotic spindle; dephosphorylation then

takes place prior to exit of mitosis [1,4]. Stathmin is also involved

in intracellular transport, cell motility, polarity, maintenance of

cell shape and regulation of apoptosis [1].

A biomarker is defined as a ’characteristic that is objectively

measured and evaluated as an indicator of normal biologic

processes, pathogenic processes or pharmacologic responses to a

specified therapeutic intervention [5]. Biomarkers can be divided

in various types, such as prognostic; linked to the prognosis of a

patient independent of treatment, and predictive biomarkers; that

identify patient subpopulations most likely to (not) respond to a

treatment [5]. Thus, reliable predictive biomarkers are of

paramount importance for improved and individualized treat-

ment.

Stathmin is upregulated in many solid cancers, including

endometrial cancer [1,6–14], and its upregulation has been

associated with clinicopathological variables of aggressive disease

such as increased risk of lymph node metastasis [9,15] and poor

survival [6,9,10,12,13,16], confirming stathmins role as a prog-

nostic biomarker.

Presently, few predictive markers are known in human cancers

and even less are clinically applied. In endometrial cancer no

clinically validated predictive markers are yet available [17]. Both

targeted therapies and conventional chemotherapeutic agents are

effective only in a subset of patients [18,19], there is therefore an

urgent need to identify clinically useful predictive markers.

Examples incorporated in the clinic include KRAS mutational

status indicating response to cetuximab and panitumumab in

colorectal cancer [18,20,21], ALK re-arrangement in non-small

cell lung cancer predicting response to crizotinib [18,20,22] and

HER2/Neu amplification or overexpression in breast cancer for

eligibility for trastuzumab treatment [18,20,23].

Taxanes are a group of chemotherapeutic agents frequently

used in the treatment of endometrial carcinoma. Preclinical studies

in breast and prostate cancer and retinoblastoma [24–28] give

preclinical indications that stathmin may be a predictive marker

for response to taxanes in these cancer types. High levels of

stathmin decreased the sensitivity of breast cancer cell lines to
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paclitaxel and vincristine [24] and knock-down of stathmin by

siRNA increased the sensitivity to paclitaxel in both breast [25]

and prostate cells [27]. This impact of stathmin protein level on

treatment response was limited to anti-microtubule agents.

Unfortunately, none of these studies have taken this knowledge

to a next level, integrating the results with clinical data. In

endometrial cancer to our knowledge no studies, preclinical nor

clinical, have explored an association between stathmin level and

response to paclitaxel containing chemotherapy. In this report, we

demonstrate in endometrial carcinoma cell lines, that reduction of

stathmin levels by stathmin knock-down results in improved

response to paclitaxel. We also show for the first time to the best of

our knowledge, that stathmin protein level is associated with

response to paclitaxel containing therapy in clinical samples from

patients with metastatic endometrial carcinoma.

Materials and Methods

Cell lines
Two endometrial cancer cell lines were selected due to the

difference in their sensitivity profile to paclitaxel; Ishikawa (Sigma,

sensitive) and Hec1B (American Type Culture Collection, reduced

sensitive). The Cancer Cell Line Encyclopedia (CCLE) data

confirms the difference in sensitivity [29]. The lines were obtained

in 2009 and authenticity verification by short tandem repeat

(STR) profiling was performed in 2012 [30,31]. The cell lines were

maintained under the conditions recommended by the suppliers.

Cell transfection
Cells were cultured to 50–70% confluence prior to transfection

by lentiviral transduction (Open biosystems, GIPZ lentiviral

shRNAmir). A GIPZ lentiviral shRNA target gene set of 3

(V3LHS_411977; V2LHS_62940; V3LHS_383505) at MOI 2.5

was used. A non-silencing GIPZ lentiviral shRNAmir control

(BV17110_2.80610 8) was used as control. Cells were selected

with puromycin (1 mg/ml) after transfection.

Drugs
Paclitaxel and carboplatin were purchased from Sigma.

Cell line experiments
The cell lines were treated with paclitaxel in increasing

concentrations (range 1–500 nM) for 24 h. As clinically taxanes

are often combined with platinum derivates in endometrial cancer,

we also treated cells with a combination of paclitaxel (in increasing

concentrations (range 1–500 nM) and carboplatin (fixed concen-

tration, 200 mM) for 24 h to observe any synergistic treatment

effects. Cells were subsequently either fixed in 2% formaldehyde

for microscopic evaluation of apoptosis; used in a proliferation

assay (MTS) or processed for immunoblotting. Experiments were

at least performed in triplicate.

For assessment of apoptosis, at least 150 cells were counted in

three different areas in 96-well plates. For proliferation assays,

experiments were performed in triplicates in 96-well plates. Assays

were performed with CellTiter 96H AQueous One Solution Cell

Proliferation Assay (Promega) following instructions from the

manufacturer. The absorbance was recorded at 490 nm using an

ELISA plate reader (TECAN Magellan Sunrise).

Immunoblots were performed according to a standard protocol.

In short, cells were grown and treated in 6-well plates and

harvested in lysisbuffer after 24 h paclitaxel treatment. Proteins

(25 ug) were separated by SDS/PAGE and transferred to a

nitrocellulose membrane (Biorad, Norway). Stathmin and/or

(cleaved) PARP were detected using cleaved PARP (Asp214)

(D64E10) (#5625Cell Signaling), diluted 1:1000 and stathmin

(#3352, Cell Signaling), diluted 1:1000; b-actin served as a

loading control (anti b-actin antibody (AC-15) (ab6276) AbCam),

diluted 1:10000. Alkaline phosphatase conjugated secondary

antibodies were used (Anti-rabbit IgG (Sigma Aldrich A3687):

Anti-mouse IgG (Sigma Aldrich A3562)) and chemoluminiscence

substrate (lumiphos 34150 WB, Thermo scientific) for detection.

Patient series
Patients diagnosed with and treated for endometrial cancer at

Haukeland University Hospital, Bergen, Norway, are after signing

informed consent, prospectively and consecutively included in a

database (population based setting) from 2001 onwards, prevent-

ing selection bias and ensuring optimal data collection for all

patients, as previously reported [14]. Patients have however been

treated following routine guidelines and the clinical samples

Figure 1. Sensitivity of wild-type cell lines to paclitaxel
treatment. A: Microscopic assessment of apoptosis in Ishikawa and
Hec1B wild-type cells after treatment with paclitaxel in the following
dosages: 0 nM, 5 nM, 10 nM, 50 nM, 100 nM, 250 nM and 500 nM.
Results are representative of 5 independent experiments. Standard
errors of the mean are indicated. B: Cell metabolic activity assessed with
a proliferation assay (MTS, Promega) in Ishikawa and Hec1B wild-type
cells after treatment with paclitaxel in the following dosages: 0 nM,
1 nM, 10 nM, 50 nM, 100 nM, 250 nM and 500 nM. Results are
representative of 3 (Ishikawa) and 2 (Hec1B) independent experiments.
doi:10.1371/journal.pone.0090141.g001
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investigated therefore consist of prospectively collected archival

tissue. Clinicopathological data collected include amongst others

FIGO 2009 stage, histological subtype, grade, primary and

adjuvant treatment, and follow up including treatment for

metastatic disease. For the purpose of this study, patients who

received paclitaxel containing chemotherapy (as a routine in our

hospital a combination of paclitaxel and carboplatin) after surgical

treatment for either residual disease or metastasis before April

2011, were studied for treatment response according to RECIST

criteria [32], with last follow-up entry July 2013. Of in total 607

patients in the database, of which 121 had systemic i.e. recurrent

or residual disease, 57 had response data according to RECIST

criteria available; 33 of which were treated with paclitaxel

containing chemotherapy. We defined good response as complete

or partial response (RECIST criteria), and poor response as static

disease or disease progression (RECIST criteria). In addition we

looked at disease specific survival in relation to stathmin level for

all patients with endometrial cancer and specifically for patients

treated for metastatic disease. The mean follow-up in our cohort

was 34 months (range 0–105 months).

Tissue microarray (TMA) construction
TMA’s were generated as previously described and validated in

several studies [33]. The area of highest tumor aggressiveness was

identified on all hematoxylin/eosin slides to ensure tumor

representativity and three (primary tumor) or one (metastasis)

tissue cylinders (0.6 mm diameter each) were mounted in a

recipient block using a custom made precision instrument (Beecher

instruments, silver spring, MD, USA). Formalin fixed paraffin

embedded (FFPE) primary tumor tissue was available in TMAs

from 603 patients for evaluation of stathmin level. From 77

patients with metastases, additional metastatic tissue was available

in TMAs for investigation of stathmin level compared to the

corresponding primary tumor. Too few cases had additional

Figure 2. Ishikawa cell line experiments after stathmin knock-down. A: Immunoblot after transfecting cells with a stathmin lentiviral
shRNAmir (‘stmn kd’) or a non-silencing control (‘non sil’) as well as the parental cell line (wild-type; ‘WT’). Blots were stained for stathmin, and b-actin
for loading control. B: Ishikawa wild-type cell line, non-silencing and stathmin knock-down after treatment with paclitaxel for 24 h in the following
dosages: 0 nM, 5 nM, 10 nM, 50 nM, 100 nM, 250 nM and 500 nM. The level of fragmentation of the cells is indicated in an insert, as a proxy of
progression in the apoptotic process. Diamonds; wild-type, triangles; non-silencing and crosses; stathmin knock-down cells. C: Immunoblot of
Ishikawa wild-type, control (non-silencing) and stathmin knock-down cell lines after treatment with paclitaxel for 24 h in the following dosages: 0 nM,
100 nM and 250 nM. The blot was stained for cleaved PARP and stathmin, with b-actin serving as loading control. D: Left: Ishikawa wild-type (‘WT’)
cell line and Right: Ishikawa stathmin knock-down (‘Stmn kd’) cell line. Microscopic images of cells after treatment for 24 h with 0 nM (top row) or
500 nM (bottom row) paclitaxel also demonstrating increased fragmentation rate for the stathmin knock-down Ishikawa cells (right lower panel)
compared to wild-type (left lower panel).
doi:10.1371/journal.pone.0090141.g002
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evaluable metastatic lesions, obtained prior to the paclitaxel

containing chemotherapy, for stathmin level evaluation, with

response data available according to the RECIST criteria and a

similar prior treatment profile (n = 3) to allow meaningful statistical

analyses of response in relation to biomarker status in metastatic

lesions.

Immunohistochemistry
5 mm thick TMA sections were dewaxed with xylene/ethanol.

Antigen retrieval was done by microwave in TRS pH6 (S1699

Dako Target Retrieval Solution) for 20 minutes. Slides were

blocked for peroxidase (Dako S2023) for 8 minutes and incubated

for 60 minutes with stathmin (Cell signaling #3352), diluted 1:50.

EnVision+ system, HRP secondary antibody (Dako K4011) was

used, followed by DAB+chromogen (DAKO K4011) as detection

system. Slides were counterstained with hematoxylin (Dako,

S2020).

Staining evaluation
Blinded for patient characteristics and outcome, slides were

scored by two authors (HMJW and JT) using standard light

microscopy as previously described [34,35]. The kappa value, as a

measure of reproducibility, was 0.73 in a separate set of 68 slides

scored individually by HMJW and JT. High protein level was

defined as the upper quartile, score 9, in line with previous

publications [15]. In case of multiple metastases with variation in

stathmin level, the lesion with highest level defined the final score

for metastatic lesions.

Statistics
Statistical analyses were performed using PASW18 Statistics

(Predictive Analysis SoftWare, SPSS inc. Chicago, USA). Cate-

gorical variables were evaluated using the Pearson x2-test or

Fisher exact where applicable. Two-sided P-values of ,0.05 were

considered significant. Univariate analyses of time from primary

treatment to death due to endometrial carcinoma (disease specific

survival) were carried out using the Kaplan-Meier method. The

Cox proportional hazards method was used for a multivariate

survival analysis (proportionality assumption checked by log minus

log plot).

Ethics statement
All patients have signed informed consent prior to inclusion in

the study. The study has been approved by the Norwegian Data

Inspectorate (961478-2), the Norwegian Social Science Data

Services (15501) and the local Institutional Review Board

(Regional Committees for Medical and Health Research Ethics;

REKIII nr 052.01).

Figure 3. Hec1B cell line experiments after stathmin knock-down. A: Immunoblot after transfecting cells with a stathmin lentiviral shRNAmir
(‘stmn kd’) or a non-silencing control (‘non sil’) as well as the parental cell line (wild-type; ‘WT’). Blots were stained for stathmin, and b-actin for
loading control. B: Hec1B wild-type cell line, non-silencing and stathmin knock-down lines, after treatment with paclitaxel for 24 h in the following
dosages: 0 nM, 5 nM, 10 nM, 50 nM, 100 nM, 250 nM and 500 nM. C: Left: Hec1B wild-type (‘WT’) cell line and Right: Hec1B stathmin knock-down
(‘Stmn kd’) cell line. Showing microscopic images of cells after treatment for 24 h with 0 nM (top row) or 500 nM (bottom row) paclitaxel
demonstrating increased cell death for the stathmin knock-down Hec1B cells (right lower panel) compared to Hec1B wild-type (left lower panel).
doi:10.1371/journal.pone.0090141.g003
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Results

Response to paclitaxel in endometrial cancer cell lines
Response to paclitaxel varies between endometrial cancer cell

lines [29,36,37]. We show Ishikawa cells are sensitive to paclitaxel

treatment with a high percentage of apoptotic cells after 24 h

treatment (microscopic counting and proliferation assay) as

opposed to Hec1B cells (Fig. 1a and 1b). Combination treatment

of carboplatin and paclitaxel did not result in synergistic treatment

effect (not shown).

Stathmin knock-down by viral transfection
Fluorescence microscopy showed a transfection rate of 70–80%

at the start of experiments, with markedly reduced stathmin levels

in the stathmin knock-down cell lines compared to the control

knock-down and wild-type cell lines (Fig. 2a and 3a).

In both stathmin knock-down cell lines (Ishikawa and Hec1B),

improved response to paclitaxel treatment was observed (Fig. 2b

and 3b). Hec1B cells show a statistically significant increased

apoptotic rate after stathmin knock-down. Possibly due to the

intrinsic higher sensitivity to paclitaxel in Ishikawa cells, knock-

down did not result in a similar large increase in cell death.

However, we noted a clearly increased fragmentation rate in the

treated stathmin knock-down Ishikawa cells opposed to the control

cells, which may be regarded as a sign of further activation of the

apoptotic pathway (insert Fig. 2b). Using immunoblot, we tried to

further validate this enhanced apoptotic pathway activation

demonstrating PARP cleavage at a lower paclitaxel concentration

for Ishikawa after stathmin knock-down compared to controls

(Fig. 2c). Microscopic pictures of Ishikawa and Hec1B wild-type

and stathmin knock-down cells after 24 h paclitaxel treatment with

0 nM (control) and 500 nM are shown in Figures 2d and 3c. We

tested the effect of stathmin knock-down on the sensitivity to

carboplatin monotherapy and paclitaxel-carboplatin combination-

al treatment without observing increased sensitivity or synergistic

effects (not shown).

High stathmin level predicts poor response to paclitaxel
in clinical samples
We then investigated patient tumor samples to see if a similar

association between stathmin level and treatment response could

be observed. Stathmin staining was predominantly cytoplasmic, as

reported in literature [15,38]. Representative pictures from

immunohistochemistry with weak (normal) and strong (high)

stathmin staining are shown in Figure 4a. Excluding metastatic

patients receiving anti-hormonal treatment only, patients with

metastatic disease receiving paclitaxel containing chemotherapy

had similar clinicopathological characteristics as patients treated

differently. Including the patients treated with anti-hormonal

drugs only, predominantly frail elderly patients, clinicopatholog-

Figure 4. Stathmin protein expression in relation to clinical parameters. A: Pictures representative of weak immunohistochemical stathmin
staining (top) and strong (high or pathologic) stathmin staining (bottom) in endometrial carcinoma. Bars (right lower corner) measure 40 mm. B:
Clinical response to paclitaxel for all endometrial carcinoma patients with evaluable disease according to RECIST criteria and separated for normal
versus high stathmin level. Poor response (RECIST: static disease or disease progression) indicated in blue, good response (RECIST: complete or partial
response) indicated in red. C: Comparison of high (pathologic) stathmin protein level in primary and metastatic lesions.
doi:10.1371/journal.pone.0090141.g004
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ical characteristics still remained similar, except that this subgroup

was significantly older (Table 1). Patients with normal stathmin

level clearly responded much better (RECIST criteria) to

treatment than patients with high stathmin level (Fig. 4b).

Stathmin level did not predict response to other chemotherapy

regimens or treatment modalities.

Approaching from a different angle, in general, patients with

high stathmin level showed a reduced disease specific survival, in

line with stathmins role as a prognostic biomarker (Fig. 5a).

However, within the subgroup of patients with metastatic disease

treated with paclitaxel containing chemotherapy, disease specific

survival was significantly poorer in those patients with high

compared to normal stathmin (p = 0.03, Fig. 5b). In patients who

received other treatments for metastatic disease, prognosis was

unrelated to stathmin level (p = 0.76, Fig. 5c. To rule out

confounding by known important clinicopathological prognostic

variables, we performed a multivariate survival analysis for both

subgroups to look into the effect of stathmin level on survival after

treatment for metastatic disease, corrected for FIGO stage and

histological subtype. Stathmin protein level remained an indepen-

dent predictor of disease specific survival in the subgroup of

patients that received paclitaxel containing chemotherapy (n= 38,

HR 2.3, CI 1.1–5.2), adjusted for FIGO stage and histological

subtype, but not in the subgroup receiving other therapies (n = 43,

HR 1.1, CI 0.4–2.7).

Discordant biomarker status in primary and metastatic
lesions
The percentage of patients with high stathmin level was

significantly higher in metastases compared to primary lesions

with pathologic (high) levels noted in 18% of the latter (n = 84 of

477 primary lesions with stathmin staining available) compared to

37% in metastatic samples (n = 29 of 79) (Fig. 4c).

In the paired primary-metastasis samples, 35% of metastatic

lesions showed high stathmin level. A discordance of 26% between

metastatic lesions and their primaries was observed. In 16% there

was a change to high level in metastases and in 10% to normal

level.

Discussion

Stathmin protein level has been shown to be a prognostic

marker of aggressive disease in many cancers, including endome-

trial cancer, where high stathmin level in primary tumor identifies

patients at high risk for recurrent disease and lymph node

metastases [6,9,10,12,13,15,16]. The identification and develop-

ment of predictive biomarkers are of paramount importance to

increase treatment efficacy and reduce unnecessary side effects,

not only in targeted therapies but also in chemotherapeutic

regimes, as for both counts that only a subpopulation will respond

well, especially in the metastatic setting, but with currently very

limited tools available to predict these patients [39,40]. None of

the important clinicopathological factors, such as FIGO stage or

histological subtype, are currently known to help distinguish

potential responders from non-responders to paclitaxel containing

chemotherapy in the metastatic setting. Studying large population

based series with high-quality clinical annotation such as our

series, combined with preclinical experiments are a useful and

time-efficient tool to explore potential predictive biomarkers,

which can subsequently be tested in clinical trials.

In line with previous in vitro results in breast cancer, we show in

endometrial cancer cell lines that, independent of the original

stathmin level, sensitivity to paclitaxel increased and thereby

apoptosis expedited after successful stathmin knock-down. This

was shown by direct microscopic counting and in Ishikawa cells

also substantiated by immunoblotting focusing on PARP cleavage.

PARP cleavage is an established indicator of apoptosis, distin-

Table 1. Characteristics of patients receiving paclitaxel or other treatment for metastatic endometrial cancer (n = 78).

Variable Paclitaxel n (%) Other treatment n (%) P-value

FIGO 0.712

I/II 5 (22.7) 15 (26.8)

III/IV 17 (72.3) 41 (73.2)

Histology 0.765

Endometrioid 13 (59.1) 31 (55.4)

Non-endometrioid 9 (40.9) 25 (44.6)

Histological differentiation1 0.365

I/II 6 (27.3) 21 (38.2)

III 16 (72.7) 34 (61.8)

Age (median 66) 0.031

Below/equal to 15 (68.2) 23 (41.1)

Above 7 (31.8) 33 (58.9)

Menopausal status 0.255

Pre/perimenopausal 3 (13.6) 3 (5.4)

Postmenopausal 19 (86.4) 53 (94.6)

Stathmin expression2 0.891

Normal 15 (71.4) 37 (69.8)

High expression (9) 6 (28.6) 16 (30.2)

1 information missing for 1 patient.
2 information missing for 4 patients.
doi:10.1371/journal.pone.0090141.t001
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guishing it from other mechanisms of cell death, such as necrosis.

The increased apoptotic body formation noted by microscopy in

the stathmin knock-down cell lines fits with increased apoptosis

[41,42].

In our prospectively collected, retrospectively analyzed patient

series, we also demonstrated a striking difference in response to

paclitaxel containing chemotherapy comparing patients with

normal to those with high stathmin level, also when correcting

for the most important clinicopathological prognostic variables.

Even when exploring such a large clinical series with endometrial

cancer patients as ours, collected over more than 10 years, with

adequate follow-up and RECIST [32] compliant documentation

of response, ultimately only a smaller number of patients had been

treated with the treatment of interest, underlining the difficulty of

collecting series with adequate patient numbers for specific marker

studies; but at the same time the importance to exploit these large

prospectively collected population based series for predictive

biomarkers suggested in preclinical studies, and explore potential

clinical validity prior to clinical trial stage. The statistically

significant correlation between high stathmin level and poor

paclitaxel response according to RECIST criteria in clinical

samples and the fact that stathmin level has an independent

prognostic value in patients receiving paclitaxel for metastatic

disease, not present in patients who do not, in survival analyses,

supports the likelihood that the level of stathmin level may act not

only as a prognostic marker but also as a predictive marker for

response to paclitaxel treatment in endometrial carcinomas.

Unlike previous studies looking at stathmin as a potential

predictive marker, predominantly in in vitro breast cancer studies,

in this study we were able to test and confirm the association in

clinical samples from patients treated with the drug of interest;

using data from a well-annotated prospectively collected patient

series. Both the preclinical and clinical testing support that

stathmin level influences sensitivity to paclitaxel. We have

explored and excluded that this effect can be generalized to other

chemotherapeutic agents such as carboplatin, also frequently used

in endometrial cancer.

Reporting recommendations for tumor marker prognostic

studies (REMARK) guidelines have been developed with the

aim to improve the methodological quality and reporting

transparency in such studies [43]. The current study has been

performed in accordance to these guidelines to improve the quality

and general validity of its results.

Taxanes, originally isolated from the bark of the yew tree,

belong to the family of anti-microtubule chemotherapeutic agents,

with paclitaxel as their prototype. Simply put, taxanes bind to b -

tubulin, causing microtubules to resist depolymerization, inhibiting

cell cycle progression and promoting mitotic arrest and cell death

[44]. Carboplatin, in contrast, is one of the platinum based agents,

interacting with DNA and interfering with DNA repair. As

stathmin is a critical regulator of microtubule dynamics, taken into

consideration the mode of action of the drugs, the positive effect of

stathmin knock-down on paclitaxel response and the absence of it

to carboplatin sensitivity, is also biologically plausible.

We show a higher proportion of high stathmin level in

metastatic (37%) compared with primary lesions (18%). Discrep-

ancy in stathmin status was noted in a quarter of paired samples,

paralleling findings in e.g. breast cancer where discrepancies

between primary and metastatic lesions are shown in 14–55% and

0–40% for hormone receptors and HER2 respectively [45–47]. In

endometrial cancer, few studies discuss differences in marker status

between primary and metastatic lesions [38,48,49]. Intratumoral

heterogeneity is well described in cancer and a potential

confounding factor in many studies, irrespective of using full-

tissue slides or TMA. Inter-observer variation is unlikely to be the

sole explanation for these described differences. Also, a recent

study assessing mutation status, a method considered less

subjective than immunohistochemical scoring, in multiple meta-

static lesions from one patient with renal cell carcinoma, support

that detected biomarker changes from primary to metastatic

lesions are real and may be related to and relevant for tumor

progression [39]. The changes in biomarker status from primary to

metastatic lesions support the need for repeated biopsies in

metastatic lesions, to better relate therapy response to potential

predictive biomarkers but also to only offer therapies with likely

positive effect when predictive biomarkers are available

[47,50,51]. For breast cancer, The American society of clinical

oncology (ASCO) advised in 2007 already that for hormone

receptor status, testing should be considered to be repeated in

Figure 5. Disease specific survival after primary treatment for
endometrial carcinoma patients (Kaplan-Meier curves) related
to stathmin protein expression by IHC in primary tumor. A: All
patients with complete data (n = 476). Number of disease specific
events between brackets. B: All patients with metastatic disease who
received paclitaxel treatment (n = 38). Number of disease specific events
between brackets. C: All patients with metastatic disease who received
different treatments (n = 43). Number of disease specific events
between brackets.
doi:10.1371/journal.pone.0090141.g005
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metastatic disease if the results were to influence patient

management [52].

Conclusion

These results, including preclinical data and for the first time

data from clinical samples, support that stathmin may be a

predictive biomarker for the response to paclitaxel treatment in

endometrial cancer. However, confirmatory studies, ideally from

randomized clinical trials are needed. The biomarker discordance

on tumor progression is in line with other studies on tumor

biomarker heterogeneity and supports the need for repeated

biopsy in metastatic disease.
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