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SUMMARY 

The Kapp Ekholm sedimentary sections is a key location for our present understanding 

of the two last glacial cycles on western Svalbard. Its long sedimentary history (MIS 6 

to present) and its position almost at the center of the Spitsbergen island distinguishes 

the site from other localities on Svalbard. At least four regional glacial advances are 

recorded in the sections and are separated by marine intervals deposited during 

relatively high sea level. The marine intervals show a regressive trend shallowing up-

section. This stratigraphical trend is in places interrupted by deposits from slope-

processes and fluvial-influence. 

 

The foraminiferal stratigraphy of the sublittoral intervals of Formation B (Eemian 

interglacial), Formation F (Kapp Ekholm interstadial) and Formation H (Holocene 

interglacial) is described and interpreted from Section II. The fauna generally shows a 

moderate to distal glacial influence as indicated by high ratios and frequencies of C. 

reniforme and E. excavatum. There no consistent up-section trend for any of the 

formations in terms of glacial influence. 

 

The fauna from the lower half of Formation B is interpreted to indicate inflow of Atlantic 

Water. The main indication of Atlantic Water masses are high frequencies of N. 

auricula and N. labradorica that suggest a seasonal inflow. It is suggested that this 

period is associated with increased Atlantic Meridional Overturning Circulation (AMOC) 

at the transition between MIS 6/5e or at the beginning of MIS 5e. In the upper half, the 

inflow is shut down, and I. norcrossi replaces both N. labradorica and I. norcrossi. This 

suggests a stratified hydrological environment where cold and saline water dominate 

like today.  

 

The foraminiferal fauna of Formation F (MIS 5a/b) and Formation H (c. 10-8 cal ka BP) 

shows no indiciation of warm-water inflow and local water masses probably dominated. 

Formations F and H differ from Formation B by having more species that are generally 

associated with fluvial influenced environments including A. gallowayi, E. subarcticum, 

H. orbiculare and. This may suggest a depositional environment closer to the coast 

than what is the case for Formation B. 
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PREFACE 

This thesis is the end product after two and a half year of work on my Master in Physical 

Geography. Most of the fieldwork was conducted already by the end of July 2012, 

during two beautiful Svalbard-weeks. A full year was then spent on taking courses both 

at the University of Bergen (UiB) and the University Centre on Svalbard (UNIS).  

 

A second round of fieldwork was conducted in July 2013 with strong winds, sleet, and 

rain, but was a beautiful week nonetheless. Lab-work started at UNIS in the fall 2013, 

but was interrupted by an accident involving a Shiba Inu, about 12 Alaskan huskies 

and my hand. The rest of the fall was spent travelling between Longyearbyen and 

Tromsø resulting in a delay of the thesis-work. Lab work was finalized in May 2014 and 

writing in September. 

 

The thesis starts with an introduction that outlines the project, the study site and the 

methods. Introduciton is followed by the results. This chapter is divided into a part on 

sedimentary stratigraphy and another part on the foraminiferal stratigraphy. The results 

chapter focuses on presenting the data and the environmental constraints. The 

discussion parts focuses on putting these environmental constraints into a larger 

framework before conclusions are drawn. References and Appendix follow at the end. 
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1. INTRODUCTION 

A series of glaciations characterize the Quaternary geological period (2.588 Ma to 

present). On the Arctic archipelago Svalbard (74°-81° N, 10°-35° E) there is evidence 

of several regional sized ice-sheets forming over Spitsbergen and extending to its 

western shelf during the Middle- to Late Pleistocene (Landvik et al., 1992; Mangerud 

et al., 1998; Svendsen et al., 2004; Ottesen et al., 2008; Ingolfsson and Landvik, 2013). 

In-between have been periods of considerable warming. So far our insight into climatic 

change on Svalbard is focused mostly on variability within the Holocene-interglacial 

(e.g. Svendsen and Mangerud, 1997; Ślubowska et al., 2005; Hald et al., 2007; Baeten 

et al., 2010; Rasmussen et al., 2012) and to some degree interstadials within the last 

glaciation (e.g. Landvik et al., 1992; Lycke et al., 1992; Kubischta et al., 2010). Much 

more limited is our knowledge of environmental conditions that existed during the last 

interglacial (MiS 5e - Eemian) as very few natural archives have been preserved. 

Sediments from the western coast of Svalbard, correlated to the Eemian-interglacial, 

is so far only known from Poolepynten (Bergstrøm et al., 2001; Alexanderson et al., 

2013), Leinstranda (Alexanderson et al., 2010) and from Kapp Ekholm (Mangerud et 

al., 1998). Kapp Ekholm is considered a major key-site in  understanding the last glacial 

cycle on Svalbard. It is located at the center of Spitsbergen and was until recently the 

only site that recorded both the last and penultimate interglacial, as well as marine 

sediments from two interstadial periods during the last glacial period. 

  

Contemporary northwestern Europe and the Northern Atlantic have a climate that is 5-

10 °C warmer than the zonal mean (Hald et al., 2007). This pattern corresponds with 

areas influenced by the North Atlantic Current and Spitsbergen Current where the flow 

of warm water from the Gulf of Mexico represents an important source of heat (Figure 

1). These currents are major components of the Atlantic Meridional Overturning 

Circulation (AMOC), a system which has a profound effect on the earth’s climatic 

system. According to Risebrobakken et al. (2006) changes in the intensity and the 

extent of AMOC may be important casual factors for explaining climatic changes 

observed in Arctic. On Svalbard, it has been shown that periods of glacial retreat during 
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the Eemian- and Holocene interglacials corresponds with periods of increased AMOC 

(Risebrobakken et al., 2006; Hald et al., 2007; Rasmussen et al., 2012; Chauhan et 

al., 2014). 

 

At present, there is a general consensus by the Intergovenmental Panel on Climate 

Change (IPCC) that the world today is undergoing anthropogenically driven climate 

change (Masson-Delmotte et al., 2013). One of the major uncertainties highlighted by 

the IPCC is the future behavior of AMOC. Svalbard is already experiencing an 

increased warming of the fjords during summer (Berge et al., 2005; Nilsen et al., 2008; 

Pavlov et al., 2013). This has allowed for the introduction of non-native warm-water 

species into the fjord ecosystems along the western coast. In order to better 

understand and predict future behavior of AMOC and climate change, it is important to 

understand antecedent environmental and climatic change. Assessment of past 

environmental conditions beyond the instrumental record can only be estimated using 

proxies. One key proxy for palaeoenvironmental reconstructions in the Arctic is benthic 

foraminifera (Murray, 2006a). These microorganisms may provide us with information 

Figure 1: Main ocean currents around Svalbard. The northward flow of Atlantic Water represents an
important agent in this system and is an important source of heat transport to Svalbard. (NPI, 2014) 

Subsurface currents 

Atlantic waters 
Arctic waters 
Coastal waters 

Polar front 
West Spitsbergen current 

Murmansk current 
Norwegian current 
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on the regarding the hydrological conditions that existed during their lifetime – in 

particular, the composition of their host water mass. Foraminifera are common 

organisms in marine,  brackish and even in some fresh-water environments. The 

evolutionary history of the Foraminifera extends back to the Cambrian and they are 

widely used as biomarkers, dating, correlation of sediments and for 

palaeoenvironmental interpretation. On Svalbard they have been used in studies of 

recent environments (Hald and Korsun, 1997; Pogodina, 2005; Zajączkowski et al., 

2010), Holocene environments, (Ślubowska et al., 2005; Rasmussen et al., 2012) 

Pleistocene xenvironments, (Feyling-Hanssen, 1955, 1965; Feyling-Hanssen and 

Ulleberg, 1984; Lycke et al., 1992; Bergsten et al., 1998) and pre Quaternary 

environments (Edwards et al., 1979; Løfaldli and Nagy, 1980; Nagy et al., 2009; Nagy 

et al., 2010; Reolid et al., 2010; Reolid et al., 2012)  

 

Marine sediments deposited during periods of higher relative sea level are today 

preserved on land at several locations on Svalbard. Through description, dating, 

interpretation and correlation of these sites, Mangerud et al. (1998) sconstructed a 

temporal framework as well as a record of large-scale climatic fluctuations on Svalbard. 

The most reason revision to this is presented in (Figure 2). One of the most important 

key sites is the Kapp Ekholm sections in Billefjorden in Central Spitsbergen (Figure 3). 

Repeating sequences of basal till, overlain by regressive marine sediments, indicate 

at least four large glacial advances within Billefjorden since the onset of the Saalian 

(MiS 6). Several authors have worked with dating and inter-site correlation of these 

Figure 2: Our current understanding of Late
Quaternary glaciations on Svalbard as
presented by  Ingolfsson and Landvik (2013)
based on initial work by Mangerud et al.
(1998) 
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sediments (Feyling-Hanssen, 1955; Mangerud and Salvigsen, 1984; Mangerud and 

Svendsen, 1992; Mangerud et al., 1998; Forman, 1999; Linge et al., 2008; Eccleshall, 

2013). However, so far the only paleo-environmental description from the site has been 

a simplified description and interpsretation of mollusk-taxa presented in Mangerud and 

Svendsen (1992). Most notable has been the finding of shells belonging to the boreal 

taxa Mytilus edulis that has been interpreted to indicate inflow of warm Atlantic-Water 

to Billefjorden. This would suggest conditions very different from today where Atlantic 

water is more or less absent from the fjord system. 

 

1.1. Research aims 

The main objective of this thesis is to contribute to our understanding of the climatic 

history on Svalbard throughout the Late Quaternary. Fjords represent an important link 

between the marine- and terrestrial environment and is a crucial component in 

Figure 3: Maps of Svalbard and Billefjorden. A) Location of Billefjorden within the Svalbard
archipelago (Bjørnøya is not on map); B) Topographical map over Billefjorden; C) English
translations of some relevant topographical nouns. (Maps made with data from Norwegian Polar 
Institute, 2013) 

N 

Norwegian  English  Example 

Bre  Glacier  Nordenskiöldbreen 

Bukt  Bay  Adolfbukta 

Dal  Valley  Mathiesondalen 

Odde  Headland  Phantomodden 

Vik  Inlet  Phantomvika 

Pynt  Point  Rudemosepynten 

Øy  Island  Gåsøyane 

A) B)

C)
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understanding both local and regional climate change. Billefjorden is in this regard of 

particular interest because of its position at the center of Spitsbergen.  

1. What is the Late Quaternary palaeoenvironmental history of Billefjorden as recorded 

by sedimentary deposits and foraminiferal assemblages at Kapp Ekholm? 

2. Is  there  foraminiferal  evidence  for  past  inflow  of  Atlantic Water  to  Billefjorden 

during marine intervals at Kapp Ekholm? 

These questions will be answered using a combination of sedimentary observation and 

an analysis of the foraminiferal fauna from marine formations B, F and H (sensu 

Mangerud and Svendsen (1992). 
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2. STUDY AREA 

The study site consists primarily of the Kapp Ekholm sections (Figure 4 and Figure 5) 

exposed as beach cliffs (between 33X E34380 and N8721460 - E33430 and 

N8718790) between the Kapp Ekholm delta and Phantomodden headland aslong the 

western coast of Billefjorden.  

 

Figure 5: Photo from Section II and Section III: (Left) Top surface of sections; (Right) Section II and III 
seen from the front with a view of alluvial fans in the background. 

N 

I 

II 
III 

IV 

V 

VI 

1000 m 

500 m 

Figure 4: Aerial photo of the area surrounding the Kapp Ekholm sections.  (Aerial photo from Norsk
Polarinstitutt) 
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Billefjorden is a 32 km long, north trending (c. 27° N) tributary to Isfjorden (Figure 3) 

which is the largest fjord-system within the Svalbard archipelago.  It is up to 8 km wide 

in the outermost part, whereas the inner part of the fjord splits into the two bays 

Petuniabukta and Adolfbukta. At present, the only glacier to reach the fjord is  

Nordenskiöldbreen which forms an ice-cliff front in Adolfsbukta. The glacier is presently 

retreating however and during the summer 2014 its front was observed almost entirely 

on land.  

 

The catchment area of the fjord covers a total area of 907 km2 following the highest 

mountain crests, or the ice-divide as in the case of Nordenskiöldbreen (Baeten et al., 

2010). Most of the valleys surrounding the fjord are presently characterised by 

paraglacial river-landscapes originating from glaciers further up-valley. Glacial 

coverage of this area is 43.8 per cent, somewhat less than the overall coverage of 

Svalbard (60 per cent).  

 

2.1. Geology 

In terms of structural geology the fjord follows the south to north trending Billefjorden 

Fault Zone (BFZ) which has been active with various intensity since the Precambrian 

(Braathen et al., 2011). The fjord has been interpreted as a rift basin in the shape of a 

half-graben structure, with its footwall paralleling the western coast of Billefjorden. 

Precambrian rocks (Figure 6) includes various types of intrusive rocks such as gabbro 

and lamprophyres, and metamorphic rocks (e.g. gneisses quartzites, amphibolites, 

schists and marbles). These are mostly located towards the northwest part of the fjord, 

but also crop out at the front of Nordenskiöldbreen. Devonian strata are mostly 

exposed in the western part of the Billefjorden area and consists of siliciclastic post-

orogenic molasse. These strata are sometimes referred to as “Old Red” owing to the 

strikingly red color of its sandstones. Dominating most of the Billefjorden area however 

is Carboniferous, to Permian sedimentary rocks that ranges from siliciclastic, coal 

bearing strata, to various carbonate lithologies. Gypsum-anhydrite conversions, as well 

as an overall high porosity, provides favourable conditions for the occurrence of karst. 

This is a characteristical morphological feature of the bedrock at Fortet, as well as 

within Mathiesondalen (Mangerud and Svendsen, 1992). Mesozoic schizts, siltstones 
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and sandstones form the youngest bedrock found only in the southernmost part of the 

Billefjorden. Rocks of Holocene age are also found within Mathiesondalen, where 

glaciofluvial material is consolidated into conglomerates by carbonate cementation 

(Lauritzen and Salvigsen, 1983). 

 

Unconsolidated marine sediments of Quaternary age makes up a large part of the 

eastern coastline as a continuous cover with varying thickness (Figure 7). The 

sedimentary sections are located in the steep coastal cliffs (up to 30 m in height)and 

are continuously modified by coastal erosion and various slope processes. The cliffs 

are intersected by ravines and gullies where rivers and creeks drain melt-water from 

the hinterland. Marine terraces dominate the surface morphology with distinct paleo-

shore platforms at several levels that give a step-wise appearance of the coastline 

towards the mountainside. The isostatic rebound following the last glaciation 

(Weichselian) is  known to have been substantial (Forman et al., 2004). Raised marine 

terraces indicates a relative sea-level rise in Billefjorden of up to 90 m (Figure 8) and 

of this, the eustatic sea level during the early Holocene may have accounted for about 

40 m.  

Figure 6: Chronostratigraphical 
bedrock map over the Billefjorden 
area. (Made with data from 
Norwegian Polar Institute, 2013) 
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Figure 7: Quaternary map for Kapp Ekholm – Phantomvika. The surface is dominated by marine 
sedimentation overayling older glacial deposits. Fluvial- and coastal erosion are important processes 
today in modifying the morpohology. 

Based on map-data from Norwegian Polar Institute 
Datum: WGS 1984  Projection: UTM ZONE 33N 
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The paleo-shore platforms associated with these terraces show a distinct tilt up-fjord, 

with a weaker dip axis towards the center of the fjord. On top of the terraces, especially 

in areas unaffected by solifluction and fluvial-action, are preserved beach ridges with 

fragments of shells and occasionally whalebones. The marine terraces are probably 

superimposed onto an older moraine system as it is underlain by diamict containing 

frequently striated clasts resting directly on top of the striated bedrock. Several circle 

shaped lakes are also present in the area and associated with karst-processes 

(Lauritzen and Salvigsen, 1983). 

 

The main basin of the fjord is located in the inner and central parts of the fjord, just 

west of Kapp Ekholm (Figure 9). The fjord basin have maximum measured depth of 

211 m, whereas in Petuniabukta, Adolfbukta and Mimerbukta the water depth is 

Figure 8: Post-glacial emergence curves for Svalbard. The most relevant curve for Billefjorden (nr. 23) 
is marked with a red rectangle. Figure is modified from Ingólfsson and Landvik (2013). 
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generally less than 100 m. Basal till and glacial landforms (lineations, moraines and 

ice-berg scourmarks) dominate the seafloor and is ascribed to the Weichselian 

glaciation (Baeten et al., 2010). Marine sediments on top indicate the glacier retreated 

from the central- to the inner parts around 11.2 + 0.13 cal ka BP (Hormes et al., 2013) 

 

The fjord show a restricted bathemetry in the outer part between Isfjorden and the main 

Basin. H a two-sill morphological system with a minimum depth of between 30 to 50 

m. The sills are separated by a small basin just east of Skansebukta with a maximum 

Figure 9: Bathymetric map of Billefjorden. According to Baaeten et al. (2010) the threshold in the outer
part corresponds to an area of more erosion resistant Late Paleozoic bedrock (Figure from Baaeten et 
al. 2010). 
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depth of up to 226m. The sill-area is investigated in detail by Baeten et al. (2010) who 

concluded that the morphology reflect bedrock structures of the Billefjorden Fault Zone, 

rather than sedimentary deposition. It is therefore more precise to refer to these 

structures as shoals and not sills. 

 

2.2. Climate 

The regional climate of Spitsbergen is strongly influenced by the West Spitsbergen 

Current, a northern branch of the Norwegian Atlantic Current that brings huge volumes 

of  warm Atlantic Water to the archipelago. As a consequence the climate is mild 

considering the latitude with an a Mean Annual Air Temperature (MAAT) of c. -6 °C for 

the time-interval 1961-1990 (Winther et al., 1998) at Longyearbyen Airport.  This is 

warm, when compared to measuring stations at similar latitudes (70° -80° N) which will 

usually fall in between -9 to -15 °C (Eckerstorfer and Christiansen, 2011). The warmest 

months are usually July and August in which the mean temperature is + 5 °C The 

annual mean precipitation is 200 mm and Spitsbergen may be described as having a 

polar desert climate. There is no permanent metrological station in Billefjorden. 

Temperatures measured at the head of Billefjorden suggest however that there may 

be a higher seasonal contrast when compared to Longyearbyen Airport, with 

temperatures c. 3.3 °C lower in winter, and 1.3 °C higher in summer (Rachlewicz, 

2009). 

 

The summer lasts from the end of June to September where temperatures are typically 

above 0°C with continuous daylight. In the autumn, temperatures will fall below 

freezing and most rivers will dry out or be completely frozen.  

 

Winter which lasts from December to March is characterized by the lowest 

temperatures, polar night and with sea-ice developing in most of the fjords by the 

beginning of January. The sea-ice will last through spring despite daylight gradually 

returning with increasing temperatures and enhanced melting. Maximum melting rates 

is achieved in late spring (May). 
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2.3. Hydrography 

Both the local- and regional climate, as well as the marine hydrology on Svalbard is 

strongly influenced by the West Spitsbergen Current (Skogseth et al., 2005). This 

current transports warm Atlantic Water (AW; T <3°C ; S >34.9 psu) from the Norwegian 

Atlantic (Figure 1). At the shelf it converges and mix with colder and less saline Arctic 

Water (ArW; T >0°C; S 34.3 – 34.8 psu) as well as surface-melt water (SW; T > 1°C;) 

producing Transformed Atlantic Water (TAW; <1 °C; S <34.7 psu). In the following the 

acronym AtW (T <1 °C; <34.7 psu) is used as a collectively term to describe both 

untransformed Atlantic Water (AT) and Transformed Atlantic Water (TAW). 

 

Isfjorden is a broad and open fjord and is directly linked to the shelf-slope with no 

distinct shallow-water threshold at the mouth (Nilsen et al., 2008). ArW is openly 

exchanged between Isfjorden and the shelf, following in along the southern coast and 

eventually exiting out in the northern part of Isfjorden. AW is normally present on the 

shelf all year, but do not penetrate into Isfjorden before summer with water-volumes 

showing an inter-annual variability. Nilsen et al. (2008) argues that brine rejection and 

consequently the formation of dense winter-cooled water (WCW; T < 0 °C; S > 35 psu) 

represent an important hydraulic mechanism for AW-inflow during the following 

summer. Isfjorden can be regarded as a polynya in years where conditions are 

favorable for sea ice-growth. The continuous production of sea-ice throughout the 

winter causes large volumes of dense WCW to form. This increases the hydraulic 

gradient between Isfjorden and causes WCW to flow out on the shelf, allowing AW to 

enter Isfjorden. 

 

Billefjorden, as opposed to Isfjorden, have a much more restricted hydrological 

exchange. The water exchange is greatly influenced by the shallow-water sill in the 

outermost part of the fjord that retain the seasonally produced WCW (Figure 10). Only 

locally produced water types are present, even in years where AW dominate in 

Isfjorden. This inhibited outflow weakens the hydraulic gradient between Billefjorden 

and Isfjorden preventing the subsequent inflow of AW. In the summer and spring the 

uppermost part of the water column is usually dominated by SW (>1 °C) formed by 

glacial melt and river runoff, and gradually thins as a wedge towards the mouth of the 
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fjord. Close to a glacier front, the salinity rapidly decreases and there SW can be 

regarded as brackish-water. SW also has a wide positive temperature range because 

of the high particulate content that promotes warming by insolation. In the summer 

2014 surface water temperatures of 9 °C was measured in Billefjorden (Eirik, 2014). 

During the autumn and winter SW will cool, producing either LW (<1°C) and/or WCW 

which in the following year will be flowing below the SW-layer. 

 

Year 1999 
Year 2000 

Year 2002 Year 2003 

Year 2004 Year 2005 

Figure 10: CTD-sections from Isfjorden-Billefjorden showing different modes of Atlantic Water (AW and
TAW) influx to Isfjorden. Note how the changing presence of warm water masses in Isfjorden have little
influence on ater masses in Billefjorden. (Modified from Nilsen et al. (2008)) 
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2.4. Foraminiferal fauna  

The contempoary foraminiferal fauna of Isfjorden and Billefjorden (Figure 11) have 

been described by Hald and Korsun (1997). In general, the fjord has a fauna 

assemblage that is characteristic of glacially influenced fjords dominated by cold water 

with somewhat reduced salinity. The two Arctic species Cassidulina reniforme 

(Nørvang) (27.2 – 32.7 %) and Elphidium excavatum (Terquem) (7.8 – 26.8 %) 

dominate throughout, but the latter show a clear increase towards the tidewater front 

of Nordenskiöldbreen. Both are typical for glaciomarine environments, but E. 

excavatum usually replaces C. reniforme as the most dominant taxa in front of glaciers. 

The fauna is almost exclusively calcareous, with exception of an increased occurrence 

Figure 11: Map and table shows the results of Hald and Korsun (1997). Note the difference in modern
fauna between Isfjorden (influenced by Atlantic Water) and Billefjorden (With only local water masses). 
The Kapp Ekholm sections are situated between  #80 and #79 (Modified from Hald and Korsun (1997))
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of the agglutinated species L. crassimargo which occurs in higher frequencies in front 

of the glacier in Adolfsbukta.  

 

The fauna in Isfjorden, just outside the mouth of Billefjorden, is dominated by the 

species Alveolophragmium crassimargo (Norman) (31.8 %) and Nonionellina 

labradorica (Dawson) (23.8 %)(Hald and Korsun, 1997). C. reniforme and E. 

excavatum only show up in very low frequencies (c. 2-2.5 %). According to Hald and 

Korsun (1997) the change in fauna is explained geographically by the presence versus 

absence of Atlantic Water. 

 

2.5. Previous relevant studies 

Several authors have described and discussed the sedimentary stratigraphy of the 

Kapp Ekholm sections (Feyling-Hanssen, 1955; Lavrushin, 1967, 1969; Boulton and 

Rhodes, 1974; Boulton, 1979; Troitsky et al., 1979; Mangerud and Salvigsen, 1984; 

Mangerud and Svendsen, 1992; Mangerud et al., 1998; Forman, 1999; Linge et al., 

2008; Ingólfsson and Landvik, 2013; Eccleshall et al., in prep.).  

 

The most detailed and supported description of the sections so far, is found in 

Mangerud and Svendsen (1992). The site is here divided into six sections (I-VI) and 

by correlating units laterally, they describe and interpret four different till-beds, 

separated by marine sediments (Formations A – H; see Figure 12 and Figure 13). The  

Figure 12: Division of sections (I-VI) and formations. Focus here is on sections II and III (Mangerud et 
al. (1998) modified from Mangerud and Svendsen (1992)) 
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Figure 13: Summary of previous dating at Kapp Ekholm from (Eccleshall, 2013) modified 
from (Mangerud et al., 1998) 

1 Mangerud and Svendsen (1992) 

2 Mangerud et al. (1998) 

3 Forman (1999) 

PM-IRSL = Polymineral IRSL measurement; Q = Quarts; F = feldspar; SARA = Single
aliquot, regenerative and addeed dose method; RSL = Red-stimulation luminescense; FK 
= Potassium feldspar 
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marine intervals are described as coarsening upward sequences of shallow-marine to 

littoral units, caused by glacio-isostatic rebound. 

 

Formation A is interpreted as a grey colored glacial till (Lavrushin, 1969; Boulton, 1979; 

Mangerud and Svendsen, 1992; Mangerud et al., 1998). The first marine interval is  

  

Formation B. Mangerud and Svendsen (1992) describes the lower boundary as sharp, 

followed by a thin unit of red-brown diamicton that subsequently grades into silt. The 

authors state that the genesis of the red-brown diamicton is diffuse, but primarily 

marine, on the premise of shells and shell fragments. Boulton (1979) previously  

 

interpreted the same diamicton as a basal till, but do not describe any marine fauna 

from the unit. On top follows a marine diamicton, that grades into a marine silt. In 

Section II, Mangerud and Svendsen (1992) and Lavrushin (1969) also describe a 

laterally limited, sandy channel-fill is described and interpreted as gravity-flow-

depositions. On top of this channel is a gravel-rich zone that contain dominantly 

fragments, but also intact shells of the warm-water indicator Mytiluls edulis (Linnaeus). 

This is the only species recorded from Formation B that at the time was not occurring 

on Svalbard (Mangerud et al., 1998). In 2004 however, it was re-discovered at the 

mouth of Isfjorden after being absent for almost 1000 years (Berge et al., 2005). Its re-

occurrence has been explained by an increasing inflow of Atlantic Water to the fjords 

on Svalbard. On top follows a marine diamicton. According to Mangerud and Svendsen 

(1992) quiet water conditions must have prevailed to explain the high content of mud 

in the unit, with depths of at least 15 to 20m. Outsized gravel- and pebble sized clasts 

are of local lithologies and is explained either as rolling down from the shore, 

transported by sea-ice or kelp. 

 

In Section II, the upper half of Formation B is described as gravelly fjord-dipping strata. 

Boulton (1979) interprets these deposits as proglacial outwash, relating it directly to 

the superimposed glacial till (Formation C or E). This is dismissed by Mangerud and 
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Svendsen (1992) who describes both shell-fragments and seaweed from the same 

deposits. These foresets, they argue, also appear to interfinger with the marine 

diamicton below. Following this, the authors argue that these deposits represent 

shoreface deposits that are more proximal to the coastline than the marine diamicton 

below. 

 

The subsequent marine sequences are all divided by grey, compact diamictons which 

are interpreted as glacial tills. Sedimentologically, Formation F, D and H are described 

as overall very similar to that of Formation B, except that sandy units replaces its  

marine diamicton. In addition, Formation F has sedimentary structures that indicate 

post-depositional deformation.  

 

According to Mangerud et al. (1998) the mollusk fauna from both Formation B and F is 

overall rich in species and they argue that this suggest open communication of Atlantic 

Water between Billefjorden and Isfjorden. Formation D however, has very few species, 

indicating a more restricted circulation, although the sediment exposure of this unit is 

thin, compared to that of formations B and F. Formation H contains a rich mollusk-

fauna. Species such as M. edulis and Zirphea crispate indicates inflow of warm water 

and that the hydrological environment was much warmer than that of today. 

 

Boulton (1979) used Amino-Acid D/L-ratios to estimate that shells incorporated into the 

lowermost till (Formation A) belonged to the Eemian-interglacial. Consequently 

Formation B would represent an interstadial within the Weichselian glaciation. This was 

later disputed by Mangerud and Svendsen (1992) who argued that the discovery of M. 

edulis would indicate that Formation B is of Eemian age. This was later supported by 

luminescene-ages (Thermoluminescene (TL) and single aliquot, regeneration and 

added dose (SARA)) from Mangerud et al. (1998). Consequently Formation A is of 

Saalian age, or older. Discussion was sparked however, when Forman (1999) using 

Infrared Stimulated Luminescence (IRSL), concluded that Formation B had an age 

closer towards 195+13 ka (MiS 7) implicating an even older age for Formation A. This 

was later not supported however by Eccleshall (2013) and (Eccleshall et al., in prep.) 
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who obtained an average age of 122.46 ka for Formation B using IRSL and Optically 

stimulated luminescence (OSL). 

 

The next ice-free period is represented by Formation D (Phantomodden interstadial). 

Mangerud and Svendsen (1992), and later Mangerud et al. (1998), argue that these 

sediments were deposited at an interstadial during marine isotope stage 5 and 

concluded with an age around c. 100 ka using OSL, TL and SARA.  

 

Sediments belonging to Formation F (Kapp Ekholm interstadial) was originally 

interpreted by Boulton (1979) as being of Holocene age.  Mangerud and Svendsen 

(1992) however, describes a new regression cycle occurring on top of formation F, 

thus these sediments had to be older and were ascribed to another interstadial within 

the Weichselian glaciation. TL-ages supported this interpretation with 30 and 50 ka. 

Somewhat older ages were reported by Mangerud et al. (1998) (40-60 ka) using TL, 

OSL and SARA. With the further development of luminescence dating techniques 

increasingly older ages were assigned by Forman (1999), Eccleshall (2013) and 

Eccleshall et al. (in prep.) who later concluded with ages of between 60 to 80 ka. 

 

The final deglaciation (Holocene) is represented by Formation H. Radiocarbon ages 

suggest that Kapp Ekholm was de-glaciated at, or shortly before, 11 ka BP (Mangerud 

and Svendsen, 1992; Mangerud et al., 1998; Baeten et al., 2010). Glacio-isostatic 

rebound during the Holocene probably occurred faster in the outer part of the fjord, 

compared to that of the fjord head and is used as an explanation for the increasing 

thickness of Holocene sediments up the fjord.  

3. MATERIAL AND METHODS 

3.1. Quaternary mapping  

The area between the Mathiesondalen river and Phantomodden headland was 

mapped using aerial photos, topographical maps and in-field survey. A handheld GPS 

(GARMIN C60CSX; WGS84) was used in this work to mark points of interest. The aim 

was to identify the areal extension of landforms and gain an understanding of potential 
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processes that could influence the sedimentary stratigraphy and environmental history 

of the site. The map was produced using ESRI ArcGIS 10.1. with a modified 

nomenclature for Quaternary mapping from Norges Geologiske Undersøkelser 

(Bergstrøm et al., 2001). 

 

3.2. Sedimentology 

This project has focused on the two beach-cliff sections described by Mangerud and 

Svendsen (1992) as Section II and Section III. Section I was surveyed but not 

described in detail due to a thick cover of scree. Sections III-V were part of another 

investigation by (Håkansson et al., In prep.). 

 

The cliffs were investigated and described in terms of sub-sections. Where needed, 

the subsections were correlated laterally in a staircase-like pattern. Sedimentation was 

assumed to having occurred horizontally when not guided by other sediment 

structures. This can be problematic however when sediment-layers are steeply inclined 

(Figure 14) 

  

The sediments were described in field using conventional sedimentological techniques 

such as colour, grain size, sorting, structures, lithologies and so on. Grain size was 

Figure 14: Relationship between sub-sections and dip of bedding 
A significant difference in time-coverage occurs when bedding is 
horizontal, compared to when it I dipping. 
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described using the Wentworth-scale. Units are named following the nomenclature of 

Mangerud and Svendsen (1992), but are further subdivided into members (E.g. “B-3” 

refers to “Formation B, unit 3”) and beds (E.g. B-3a). Symbols are modified from 

Alexanderson et al. (2013) and Benn and Evans (2010) 

 

3.3. Numerical chronology 

11 samples were collected for Luminescence-dating as a part of the project. 

Procedures and techniques related to this are described and discussed by Eccleshall 

(2013) as a part of her Master of Science and later submitted as Eccleshall et al. (in 

prep.). Because of statistical uncertainties related to the numerical ages and 

sedimentation rate changes it was advised not to produce an age-depth model. 

 

3.4. Collection and identification of foraminifera 

Foraminifera (plural of foraminifer) is an order (Foraminiferida) within the phylum 

Protista and can a specimen is defined as a “Cycloplasmic body enclosed in a test or 

shell of one or more inter-connected chambers” (Murray, 2006a p. 1). Further they are 

divided into genera and most commonly into species. The taxonomy of foraminifera is 

based on the morphology of their tests and they are in the strict sense morphospecies 

rather than biological species.  

 

The foraminifera discussed in this thesis are all identified from the remains of past living 

specimens. These are referred to as fossils (or fossil assemblages) throughout, but 

are technically considered fossils due to the lack of lithification. Although this has little 

relevance for the results here, it do carry significance in terms of using these remains 

for radiocarbon dating osr amino acid racemization. 
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Sediment samples were collected using a spatula and transferred into a plastic zip-

bag. Each sample was about 10 cm3 and later subsampled to fill a plastic beaker. The 

sample was than dried at a low temperature (50 oC) for 48 hours to avoid thermal 

cracking of the tests. Each sample was than weighted using a digital scientific scale 

and subtracting the weight of the beaker to get the total weight of the dry sample. Each 

sample was then sieved to subtract the 125 µm fraction. This fraction was choosen to 

facilitate correlation with other studies from Svalbard that use primarily 125 µm. Density 

separation (Figure 15 was used to separate the foraminiferal tests from the 

minerogenic material samples following the procedures described in Feyling-Hanssen 

(1980); Knudsen (1998) as well as through correspondence with Karen Luise Knudsen 

(Personal communication, August 2013). Each sample was carefully mixed with 

carbon tetrachloroethylene (C2CL4), a heavy liquid with a relative density of 1.62 g/cm3, 

separating the heavier sediments from the lighter foraminiferal tests. The entire 

process is conducted under a fume cupboard, as the chemical is considered highly 

toxic. The liquid was decanted onto a filter (No. 413) with particle retention of 5-13 µm 

and thereafter allowed to dry out for a minimum of 2 hours. Tests of benthic 

foraminifera were than picked directly from the filter until a minimum of 300 specimens 

was achieved or, the sample depleted. Planktonic foraminifera were counted 

separately as a ratio x to the counted number of benthic.  

 

Figure 15: Procedure for seperating tests of 
foraminifera from sediments in a sample using the 
heavy liquid seperation method. 
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A binocular light microscope (Leica MZ95 8x-77x) was used when identifying and 

sorting individual foraminifera onto slides. A Leica MC170HD camera, attached onto a 

Leica M20C microscope was used to take pictures of the most important species.  

Individuals were identified to the rank of species whenever possible, or denoted as 

“.spp” when identified to the rank of genus only. Foraminifera are reported as 

frequencies (n/total) which evaluates the ratio of species and relative abundance.and 

per 100g.  

 

3.5. Diversity indices 

In biology the term diversity refers to the number and/or the variety of species found 

within a specified unit. This unit can be a geographical area, within an assemblage, an 

ecosystem or even within a temporal unit. There is not a set standard for which diversity 

measures should be applied in a study, this rather varies with the purpose as well as 

the data of the study. In this project species richness and fisher’s α are used to quantify 

the diversity. 

 

Species richness (SR.) is simply the total number of different taxa at a specific 

taxonomic rank within a given sample. To simplify and reduce the amount of noise (e.g. 

re-destributed specimens) then only species occurring in frequencies of at least 2 % 

within at least one sample is used in the analysis and subsequent discussion. 

 

Fisher’s alpha is a diversity index and is one of several methods that relates the 

number of species to the number of individuals (Murray, 2006b). It assumes that the 

abundance of species follow a log series distribution. This is based on an observation 

that in most communities, only a few species tend to be abundant, whereas the rest 

occurs only in small numbers (Fisher et al., 1943). A higher alpha value indicate a 

higher number of abundant species whereas a lower number indicate a higher number 

of species in low frequencies. The diversity option in the statistical software Primer 

(V6.1.16) from Primer-E is used to calculate the Fisher’s Alpha Diversity. Statistically 

fisher’s alpha is defined implicitly by the following expression:  



   

25 
 

ln	 1  

Where S is the number of taxa, n is the number of individuals and a is the fisher’s 

alpha. 

 

Abundance is expressed as the number of specimens per 100 gram of sediment. It is 

calculated by dividing the number of specimens with the total size of the sample 

multiplied by 100. This may give an indication on the abundance of foraminifera at a 

given time, however, because there is no temporal scale, this may also reflect changes 

in sedimentation rate. A lowering of the sedimentation rate will increase burial time and 

also increase the number of tests at a given horizon. 

 

3.6. Biofacies 

Paleoecology is the study of past environments using data from fossils and subfossils. 

A key concept in paleoecology is that species and groups of species are related to 

different environmental conditions. These may be divided into biostratigraphic units 

that according to Murphy and Salvador (1999) are bodies of strata defined or 

characterized on the basis of their contained fossils (sensu lato). A Biofacies (also 

plural) is a type of biostratigraphic unit where the fauna (or flora) differs significantly 

from that found elsewhere in the same unit. It is instrumental in the sense that it is 

diagnostic for a type of environment or some environmental condition. An important 

difference between a biofacies and other types of stratigraphical units (e.g. 

Zones/Assemblages) is that a biofacies is temporally diachronous. This means that the 

same facies may re-occur multiple times throughout time. 

 

The data was analyzed statistically for clustering of samples (Q-mode analysis) and 

quantifying the between-group relationships in terms of their similarity and significance 

(Sen Gupta, 2002a). Common for the statistical approaches to clustering is the 

assumption that natural distinct groupings (clusters) exist and that these groupings 

naturally relate to specific environmental conditions.   
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The first step was to construct an index that indicate the relationship between all the 

samples. A Bray-Curtis similarity index (also known as Czekanowski similarity 

(Somerfield, 2008)) was constructed using the statistical software package Primer 6 

(V. 6.1.16) & Permanova+ (V. 1.0.6) from PRIMER-E (Figure 16). It does so, using the 

following expression: 

100
∑ 2min	 ,

∑ 	 ,
 

 

Where Yij represents the entry in the i-th row and j-th column of the matrix for the i-th 

species in the j-th sample. Yik is the count for the i-th species in the k-th sample. The 

min(.,.) term is the minimum of the 2 counts. The seperate sums in the numerator and 

denominator are both over all rows (species in the matrix). Bray-Curtis similarity is used 

here because it is an index that operate with frequencies as opposed to Euclidian 

distance, which is influenced by the numerical size of its entities (the numerical count 

of each taxa). 

 

Only species that had at least 2 %, in at least one sample were used. Many authors 

transform their data (e.g. by applying a square root to each variable) to enhance or 

Figure 16: Screenshot from Primer-E. Statistical operations are here performed by selected the data in
the index to the left and choosing the statistic from the menu. 
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downplay certain aspects of their data. By using untransformed data the results are 

more strongly shaped by the dominant taxa (Kindt and Coe, 2005; Włodarska-

Kowalczuk et al., 2013). This is preferable for environments characterized mainly by a 

few taxa, and where taxa that are more abundant are also assumed to have a more 

valid representation (e.g. not re-distributed) within the sample. Sen Gupta (2002c) 

recommend trying out different methods and compare the results and rule out or at 

least distrust results that are fundamentally different. Following this, untransformed, 

square-root-transformed and fourth-root-transformed data is used and compared in 

order to view the data from different perspectives. 

 

Most statistical approaches for clustering foraminifera into biostratigraphic units 

(Facies/Assemblages/Zones) arse based on constructing hierarchical agglomerates 

(Sen Gupta, 2002c). In Primer-E a similarity-dendrogram can be produced using a 

similarity-index (constructed previously). All entities (stratigraphic samples) are initially 

constructed as individual clusters. Entitites are than grouped iteratively on the next 

step of similarity/distance, creating a hierarchy of samples, until all entities are merged 

into a single entity at a resulting similarity-level. The results are presented as a 

dendrogram which show at which similarity level samples cluster and then draped over 

a Multidimensional Scaling (MDS) plot to assess the similarity between clusters. 

 

The different biofacies are interpreted using modern day analogues and previously 

published results that document the modern environmental preferences of 

foraminifera. From Svalbard, the most comprehensive study so is that conducted by 

Hald and Korsun (1997) who documents both the fauna and environmental conditions 

in several of the fjords around Svalbard. 

 

A SIMPROF-analysis is applied from within Primer-E to test for any evidence (at a 1 % 

significance level) of structure between sample-clusters. It does so by constructing and 

running a null-hypothesis model multiple times before comparing results with the 

original similarity profile. 
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4. RESULTS 

4.1. Sedimentary stratigraphy 

Sedimentary descriptions are divided into formations following the nomenclature 

introduced by Mangerud and Svendsen (1992). Formations are further divided into 

members. Interpretation of units follows for each formation. An overview of the sections 

and the composite log are shown in Figure 17 and in Figure 18. 

 

4.1.1. Bedrock (0) 

Laterally continuous bedrock exposures are present at the base of Sections II and III. 

A combination of limestone and dolomite characterize all visible bedrock. The upper 

bedrock boundary is characterized by a sharp transition to the non-lithified sediments. 

This transition dips 1.8° up-fjord, towards the north-northeast (c. 25°). The bedrock 

exposure is heavily cracked and shattered, especially in its vertical exposure towards 

the beach. The rockhead is smoothly polished with crosscutting striae (oriented 

between 223° and 243°) roughly parallel to the fjord-axis (Figure 18). 

 

Interpretation 

These bedrock exposures are part of the  Late Carboniferous Minkinfjellet Formation 

(Dallmann et al., 2004). Characteristics of the rockhead indicates glacial erosional from 

a glacier moving parallel to the long axis of the fjord. Today the rockhead is protected 

from weathering by superimposed sediments. However, vertical bedrock exposures 

are being continuously undercut by waves and disintegrated by various weathering 

processes (e.g. frost-shattering and salt-precipitate). The upfjord dip probably reflect 

the uneven glacio-isostatic rebound caused both by differences in past glacial 

thickness, and differences in the age of deglaciation (Forman et al., 2004). 

 

4.1.2. Formation A  

Formation A is the lowermost unit of non-lithified sediments in both Sections II and III. 

It is described primarily from Section II.C and is overall characterized as a clast-

supported diamicton sequence (Figure 19). The formation varies between 2 m and 5 

m. It dips down towards the north however and disappear below present sea level  
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Figure 18: Composite sedimentary log 
showing units from Section II and Section 
III. Note that Formation D occurs in Section 
III only. 
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between Section IV and III. On the basis of changes in clast content this formation has 

been subdivided into three members (A1 – A3) which are described below.  

 
Member A-1 (Dmm) 

Massive, matrix-supported diamicton. The matrix consists of sandy mud with angular, 

medium- to coarse-grained gravel. Clasts appear mostly of the same limestone 

lithology as the underlying bedrock  and frequently show striations.  

 

Figure 20: Fault planes indicating sub-glacial shear from Section II D-E at around 280 m) 

Figure 19: Details from Formation A: A) Polished and striated limestone-clast retrieved from the bedrock 
below; B) Close-up photo of Member A-2 where Striated rounded to subrounded clasts dominate. 

A) B) 
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The member occurs only discontinuously at the base of formation A with a thickness 

not greater than 15 cm. It follows a sharp and regular boundary to the underlying 

bedrock. 

 

Member A-2  (Dcm) 

Massive, clast supported diamicton with a silty-sand matrix.The color of the matrix is 

grey-brown as opposed to the more yellow-brown colored matrix of the underlying 

member (A-1). Clasts range from sub-angular- to sub-rounded- gravels, pebbles and 

occasionally boulders. Striae is common. Clasts include siliciclastic- (mudstones, 

sandstones), carbonate- (limestone and/or dolomite) and intrusive lithologies (granite). 

Small shell fragments also occur, but appears very rare. In section II.D-E (Figure 17) 

It is observed with a thickness of up to 130 cm. The lower boundary is diffuse where it 

overlay Member A-1, but sharp where it follows directly on top of the bedrock. It 

appears laterally continuous throughout section II, but it is unclear whether it also 

occurs in Section III. 

 

Member A-3 (Dcm) 

White-grey, clast-supported diamicton without any form of stratification. The matrix 

consists mostly of silty-sand, although the sand fraction appears more prominent than 

for the member below (A-2). Clasts are gravel to pebble sized and mostly sub-rounded. 

Thickness varies laterally, from 60 to 95cm where measured (Section II.A, see Figure 

17). The lower boundary is diffuse, although in places defined by an irregular oxidation 

horizon towards Member A-2. This member is described from Section II.C, but a similar 

division is seen in Section II.A. It was not practically possible however, to follow the 

unit continuously between the subsections.  

 

Several lenses occur within Formation A in section II. A contorted series of openwork 

gravel beds occur in Member A-3 between 275 and 250 m (Figure 20). They consists 

of rounded coarse gravels and small pebbles with a sandy, partially openwork matrix. 

A few shell fragments and sea-weed-remains are observed within the matrix. Overall, 

the color of the clasts is yellow-white, contrasting the surrounding grey-brown 

diamicton with a sharp, but irregular boundary. The lowermost bed consists of a 

horizontal wedge with a width of 4 meters and a maximum thickness of 30cm. Towards 

the south, are multiple upward arching extensions of this bed with a length of up to 3 
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meter. These extensions show a decreasing angle (30-20°) from left to right, cross 

cutting the superimposed diamicton-member with sharp boundaries.  

 

Interpretation 

The three members (A1-A3) that details this formation are all interpreted as glacial tills. 

This is based on their large lateral extent, high degree of compaction, the unsorted 

material and high content of striated clats. An indication of subglacial movement is also 

the striated and polished surface of the rockhead below.  

 

The angular and seemingly autochthonous clasts of the lowermost member (A-1) is 

explained by glacial abrasion and quarrying of the underlying bedrock. This member is 

interpreted as a lodgement till where deposition occurred when friction between the 

bedrock and the sub-glacial material exceeded the drag of the ice. The member on top 

(A-2) also show subglacial characteristics such as compaction and a high ratio of 

striated clasts. The clast material indicates a longer transportation however, including 

the degree of clast-rounding, and the mix of both local and regional lithologies. Most 

are found within Billefjorden, but the closest source of granite is the Chydeniusbreen 

Granitoid Suite at Newtontoppen (<50km, NE) (Dallmann et al., 2004).  Member A-3 

show similar characteristcs. An interesting feature of this unit is the various inclusions 

that occur. Kelp and shell fragments suggests a marine origin, possible a coarse-

grained beach. Similar inclusions are mentioned by Mangerud and Svendsen (1992), 

but not discussed further. The upthrusted appearance of these units suggest 

deformation as a dominant mechanism for their host-member (A-3) which is therefore 

interpreted as a deformation till. This implies that Formation A represent at least two 

glacial events and that these advances are separated by a marine interval of unknown 

duration. 

 

4.1.3. Formation B 

The lower part consists primarily of sandy members, whereas the upper part is 

dominated by gravelly sequences. This coarsening upward sequence is divided into 

seven members based on pronounced changes in grain size. The formation is laterally 

continuous across Section II and Section III, although the upper gravelly part appear 

to be mostly missing in Section III. The formation is described primarily from Section 

II.C. 
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Member B-1 (Fm) 

The lowermost member is a massive, red-brown-colored, clayey-silt (Member B-1). 

Angular to sub-rounded gravel-sized clasts occur throughout. Pebbles and small 

boulders occur, but are not common.The member follows conformably on top of the 

underlying diamicton (Formation A) with a mostly uniform thickness (c. 30 cm). The 

lower boundary varies between gradual and sharp. In places, this member forms 

troughs, cut into the underlying diamict (Figure 21). These troughs are characterized a 

clast-rich fill and a more irregular lower boundary characterized by deformed lenses of 

grey and red-colored mud. In Section II Member A-1 is overlain (Figure 22) by either a 

grey sand body (Member B-2), or a brown clayey sand (Member B-4). 

 

Member B-2 (Sm) 

This unit consists of white-grey, well sorted, fine grained sand. Granules and gravels 

are widely scattered throughout, ranging from rounded to angular. Pebbles are 

observed, but less common. Bivalve shells appear frequently many of them paired.The 

member is laterally finite between c. 268 – 280m. It has a plano-convex shape and 

appear as a lense within Member B-3. It varies thickness, but was measured with a 

height of up to 210 cm. A similar sand body was observed between 308 and 315 m in 

section II, but appears much smaller. 

 

Member B-3 (Gf) 

This sandy gravel unit shows a fining upward trend from clast supported in the lower 

part to matrix supported in the upper part. Rounded gravel sized clasts dominate in a 

Figure 21) Scour structures from Member B-1 with clast rich infill
(inset image). 

Scour structure 
Member 
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yellow-brown, medium to coarse-grained matrix. Shells occur, many of them 

fragmented, although some are also better preserved. It is up to 30 cm thick, although 

in the upper part the boundary appears irregular and diffuse with a gradual reduction 

of clasts up-section. The member is laterally finite and follows conformably on top of 

member B-2 in the southern part of Section II. 

 

Member B-4 (Sm) 

A yellow-brown, silty sand with a weak, but steeply fjord-dipping bedding (<20-30°). 

The matrix consists of silty, medium-grained sand, coarsening somewhat up-section. 

Coarser, but more sorted sand lenses are sometimes observed. Clasts are scattered 

throughout and range from gravel to larger pebbles that vary from sub-angular to 

rounded. Clasts are occasionally covered by remains of calcareous marine moss 

animals (Bryozoa) and/or seaweed. Bivalved shells are also frequent, many of which 

are paired. The unit is latereally continuous and observed both in Section II and in 

Section III. 

 

Figure 23: A gravel rich horizon 
(Member B-3) follows at the 
boundary between Member B-2 
an d Member B-3 

Member B-2 

Member B-3 

Member B-4 

Figure 22: Formation B seen in
southern part of Section II.
Note the bar shape of Member
B-2. Laterally, the lower
boundary of this member and
Member B-4 are assumed to
be time-synchronous. 

Member B-2 

Member B-4 

Member B-6 
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Member B-5 (Gfo) 

This member is grey-yellow, stratified gravel member. It is coarsening upward from 

mainly coarse-grained sand, into a medium-to coarse grained clast supported gravel 

in the upper part. Many of the clasts also appear disc-shaped and imbricated. It is up 

to 40 cm thick with a sharp and planar lower boundary. The unit is observed only in 

Section II, and is laterally finite between 285 m and 265 m. 

.  

Member B-6 (Sm) 

Medium- to coarse grained sand appearing with a yellow-brown color. Subangular to 

subrounded gravels appear throughout as do paired bivalve shells. It is up to 60 cm 

thick and follows only on top of the gravelly member B-5 with a sharp, planar boundary. 

 

Member B-6 (Gfo-Gs) 

Alternating layers of gravelly sand and clast supported gravel that dips towards 

northwest. The member overall appear moderately, to well sorted. In the lower part the 

stratification is alternating, whereas in the upper part it appears more cross-cutting. 

Shell fragments occur, but are rare and small. The member is measured up to 180 cm 

and is laterally continuous in Section II. In Section III it is only sporadically observed. 

 

Interpretation 

Marine remains appear common to most of the units in Formation B suggesting the 

formation was deposited in a marine setting. The high mud content of the lowermost 

member (B-1) indicates a low energy environment. This imply that sea level was 

relatively high and that there were some distance to the shore. At present, muddy 

sediments dominate in the middle parts of Billefjorden and have been shown to 

originate from glacial melt-water (Szczuciński and Zajączkowski, 2012). A 

glaciomarine origin is supported by the red-brown color of the mud, which is likely to 

be linked to the erosion of red siliciclastic strata which are found only on the western 

side of the fjord. Troughs within the lower boundary probably relate to large icebergs 

scouring the seabed with subsequent melt out of coarse grained material in the mud. 

 

The glacial influence diminishes up section.  The shape of Member B-2 suggests this 

to be a local process. Together with the sorted sand, it probably represent a distal 
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fluviomarine facies. The gravelly member on top (B-3) was probably a gravity flow 

spreading out over the fan. The lower boundary of B-2 is assumed to be laterally time-

synchronous with the lower boundary of B-4 which is interpreted as a sub-littoral 

deposit based on its grain size. Sporadic sand lenses probably indicate temporal 

increases in discharge from a nearby river-system. Some of the outsized clasts were 

probably kelp-rafted, but other transport mechanisms such as IRD cannot be ruled out. 

A sub-littoral setting is also given for member B-6 occuring on top of the gravelly 

member B-5 interpreted. The latter is here interpreted as a littoral deposit, possible 

from spit development, based on its finite lateral occurrence and position between two 

sub-littoral units. Spits represent a coastal landform also observed on Kapp Ekholm 

today. The alternating beds of sand and gravel towards the top of Formation B 

indicates an increase in energy from below and is interpreted as a littoral, probably 

intertidal deposition. 

 

4.1.4. Formation C 

This formation is recognized from Section III only. Based on a marked change in sorting 

and mud content it is divided into two members. 

 

Member C-1 (Gs) 

Scour 

structure 

Formation B 

 

Formation C 

Formation E 

Formation F 

Figure 24: Southern exposure of Section III. The diamictons described as Formation C and Formation 
E merges   leaving out Formation D which is only exposed towards the north. 
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A Stratified gravel within a grey and compact sandy-mud-matrix. Clasts are dominantly 

rounded gravels. It appears poorly to moderately sorted with a weak fjord-dipping 

stratification of the clasts. Shell fragments occur, but are rare and poorly preserved. 

The member appear as sporadic pockets no more than 30 cm thick. It follows a sharp 

and erosive boundary that form an angular unconformity to the dipping, gravelly beds 

below (B-6). 

 

Member C-2  (Dcm) 

This member is a compact, grey-colored and dominantly clast-supported silty 

diamicton. Clasts range in size from gravel to boulders that are dominantly sub-

rounded. Striations are common, but only local lithologies were observed (mudstone, 

sandstone and limestone). Maximum thickness was measured to 80 cm, but it merges 

with Formation E in the southern part of Section III.  

 

Interpretation 

The high mud content of both units composing this formation is characteristic for glacial 

environments. The stratified appearance of the lowermost member suggest an 

environment with changing energy. The high degree of rounding is not consistent with 

distant glacial transport, but rather re-deposition of fluvial- or beach material. This may 

suggest that the deposit occurred close to the glacier front pushing up the the gravelly 

sediments at the top of Formation B. The diamict on top is interpreted as glacial till and 

indicates glacial overriding of the site. Members C-1 and C-2 is interpreted as part of 

the same glacial advance and thus implies that it occurred during high relative sea 

level. 

 

4.1.5. Formation D 

Sediments associated with Formation D are only found in northern part of Section III. 

The formation is divided into 4 members based on characteristic changes in grain size. 

 

Member D-1 (Fm) 

The member is a massive and brown silt unit. Gravel sized clasts are frequent 

throughout with a dominance of rounded to sub-rounded clasts. Paired bivalve shells 
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occurs infrequently throughout. The member has a sharp and planar lower boundary 

and show a thickness of up to 30 cm. A lag of pebbles and boulders also occur as a 

discontinuous horizon at the base of the member. 

 

Member D-2 (Sm) 

Fining upward sequence from mostly fine, to medium-grained sand. It is massive and 

show a yellow-brown color. Gravel sized clasts are common, but less frequent than 

below. Only local lithologies are observed and clasts are rounded to subangular in 

shape. Paired bivalve shells are common, but not abundant. The lower boundary is 

gradual towards Member D-1 and the member has a measured thickness of 53 cm. 

 

Member D-3 (Fm) 

Rounded gravels dominate and the member appears well sorted. It is clast supported 

and partially openwork, although some sand is also seen within the matrix. The lower 

boundary is sharp and regular. The member overall is very discontinuous and too thin 

to determine any structure. At its thickest it is about 9 cm but varies greatly,  

 

 

Figure 25: Photos from Formation C. A) red-brown silt
(Member D-1) following  on top of Formation D. Note the
pebbles at the boundary; B) Stratified gravel coarsening
upward and sharply cut by Formation E (diamict). 

A) B) 
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Member D-4 (Gs) 

Stratified sandy gravel. The member is coarsening upward from dominantly fine to 

medium grained gravel with pebbles on top. A sandy, partially openwork matrix 

characterizes the member with little to no compaction. It follows on top of a sharp, but 

irregular boundary and is measured with a thickness of up to 187 cm.  

 

Interpretation 

The lowermost red-brown member (D-1) is interpreted as a glaciomarine mud (Similar 

to Member B-1). The clast-lag at the lower boundary is most likely the result of 

winnowing and indicates an erosional phase prior to deposition of Member-D1. 

Member D-2 show less glacial influence, although the environment remains marine. 

Based on this it is interpreted as a sub-littoral deposition. The rounded gravels of 

Member D-3 may the remains of littoral sediments that have been eroded. The 

stratified appearance of the gravel described as Member D-4 is consistent with that of 

coarse-grained mass-movement deposits (Blikra and Nemec, 1998). The angularity of 

the material in the upper part suggest little reworking of the material. There is no 

evidence to pinpoint this sequence to a marine setting, rather it appear more as a 

terrestrial process due to its openwork structure. If so, it could be argued that this 

member should be separated into a new formation. Because this member is not 

described in much detail, it seems redundant to  

 

4.1.6. Formation E 

Member E-1 (Dcm) 

This formation consists of a compact silty-clay diamicton with no visible structure. It 

contains frequent striated clasts that vary in size from gravels to boulders. In addition 

to local lithologies are also regional lithologies including schist and granite. In section 

II it is measured with up to 90 cm of thickness. It occurs continuously in both Section II 

and in Section III.  
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Interpretation 

The formation have characteristics similar to that of Formation A and is accordingly 

interpreted as a glacial till. Towards the south depositions was very thin and/or eroded 

subsequently to deposition. This formation is here referred to as Formation E following 

the nomenclature for Section II by Mangerud and Svendsen (1992) defined from 

Section IV where Formations A-H are all represented in superimposition. 

Stratigraphically this implies that a significant hiatus exists at the lower boundary of 

Formation E. Formation E could however, also be C, in which a hiatus should exist at 

the lower boundary of Formation F. 

 

4.1.7. Formation F 

This formation is observed continuously throughout both Section II and Section III. It is 

overall a coarsening upward sequence of fines to stratified gravel. It is at its thickest in 

Section II (c. 4-5m) and thins towards Section III (c. 3 m). It is divided into 7 members 

reflecting mostly sharp changes in grain size. 

 

Formation B 

Formation F 

Formation E 

Formation H 

Diamict lense 
(Member F-5) 

Figure 26: Diamict lense in Formation F. Photo s taken 
from the upper part of Section II at c. 325 m. This lense
is surrounded by a red-brown silt. This silt continuous 
to ther northern end of Section II and is shown in Figure 
27. 

Formation B 

Formation F 

Formation E 

Member 

F-3/F5

Figure 27:Slumping-contact 
between Formation E and F. 
Arrow marks the lateral 
continiouation of the red-brown 
silt which surrounds the diamict 
lense towards the south. 
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Member F-1 (Fm) 

The lowermost member of Formation F is a reddish-brown clayey-silt. There is no 

visible structure and characterized as massive. Sub-angular gravel sized are frequent, 

although pebbles are also observed in the lower part. Paired bivalve shells occurs but 

are not abundant. It follows a sharp, regular boundary and is mostly uniform in 

thickness (c. 20 cm). It is observed at Formation F in both Section II and III. 

 

Member F-2 (Sm) 

This sequence is an upward coarsening sequence of silty sand. It is dominantly 

massive, although a weak, subhorizontal bedding occasionally occurs. Gravel sized 

clasts are scattered throughout. Many of the clasts have seaweed or remains of moss 

animals (Bryoza) attached to the surface. Bivalve shells, many of them paired are 

common throughout, but not abundant. It is up to 90 cm thick and follows on top of a 

gradual boundary to the underlying Member F-1. The member is laterally continuous 

and found on top of the previous member (F-1) in both Section II and in Section III. In 

Section II it is about 90 cm thick. In Section III (Figure 17) it appears as the uppermost 

unit of Formation F and is up to 180 cm thick. 

 

Member F-3 (Fm) 

This red-brown clayey silt is very similar to Member F-1.The silt contains sub-angular 

to sub-rounded granule to gravel sized casts. This unit is traced laterally between 290 

m and 340 m in Section II (See Figure 24 and Figure 27). At 340 m it shows a landward 

contact to the lower diamicton (Formation E) and its superimposed red-brown clayey-

silt (F-1). The contact between these units are irregular and turbulent with deformed 

lense-like structures. There is a marked decrease in clasts seaward from this contact 

with no clasts appearing in the outermost part. Here the lower boundary is planar and 

sharp. 

 

Member F-4 (Dcm) 

This member is a grey and massive silty diamict. It is mostly clast supported with sub-

angular gravels being most common. Striae on the surface of the clasts is also 

frequent. The lower boundary is sharp and the member has a thickness up to 30 cm. 
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The unit is laterally finite occurring as a 210 wide lense between Member F-3 and F-5 

in Section II.C (Figure 17).  

 

Member F-5 (Fm) 

Red-brown silt member that is massive with infrequent gravel sized clasts that are 

mostly sub-angular. A few shells and shell fragments are observed. The member is up 

to 15 cm thick with a sharp regular boundary. The unit is laterally finite, observed only 

on top of the wedge described previously (Member F-4). It is very similar to Member 

F-3 and it also merges with this unit on the sides with no discernable boundary in-

between. 

 

Member F-6 (Sm) 

On top follows a brown-colored, sandy sequence (Member F-6). The sand is fine- to 

medium grained. A weak, horizontal bedding is observed at irregularly spaced 

intervals, but with no marked grange in lithology. Towards the top the number of clasts 

increase, mostly gravel sized. Many of them are covered by remains of moss animals 

(bryoza) and/or seaweed. The lower boundary is planar and sharp where seen. 

 

Member F-7 (Sl) 

Inversely graded, planarly laminated, well-sorted, medium-grained sand unit (Figure 

28). The laminae is made from light and dark colored bands, but with no detectable  

change in grain size. The member has been eroded subsequently to deposition as the 

horizontal lamina is cut by subsequent channel incision. Moving from the coast, 

towards the fjord, the laminae becomes increasingly deformed over the 3 meter wide 

exposure. Primary structure are more or less completely lost in the outermost part. The 

lower boundary is planar and sharp and the unit is up to 33 cm thick. This unit is only 

seen in Section II.C 

Member F-7 (Gs) 

The uppermost member of Formation F is a stratified gravelly sand which has been 

strongly deformed. The gravel is mostly fine to medium-grained, although larger 

gravels and sometimes pebbles occur. Most of the clasts appear to be subrounded, 
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although sub-angular and angular clasts also occurs. Unpaired shells are seen, but not 

frequent and fragments dominate. The member is up to 65 cm thick. The lower 

boundary is sharp and erosive forming channel incisions into the underlying laminated 

sand (member F-6). 

 

Interpretation 

The high frequency of shells and other marine remains suggest the formation as a 

whole was deposited in a marine setting. The red-brown silt unit (Member F-1) is 

interpreted as a marine unit dominated by glaciomarine mud deposition, similar to 

Member B-1 and D-1. As the glacial influence weakens, the environment becomes 

dominated by more sandy, sub-littoral deposition. Outsized clasts may be explained 

by several forms of transport, but at least some of the clasts were kelp-rafted. Others 

may have rolled down the slope as originally suggested by Mangerud and Svendsen 

(1992). 

 

Member F-7 

Formation H 

Member F-6 

Figure 28: Uppermost part of Formation F in section II. Line marks boundary between 
Member F5 and Member F6. Note the disformed appearance of Member F7. Formation
H follows on top with sporadic diamict lenses. 



   

45 
 

A similar origin is suggested for the red-brown units that occur in Section II (F-3 and F-

5). The geoemetry, including the “turbulent” contact between F-3 and F-1 in the 

northern part of Section II suggests that these units represents a re-deposition 

(slumping) of unit F-1 and Formation E. Horizontal fining seaward may be explained 

by an increasing ratio of suspended material being deposited.  

 

Sandy, planar-lamination may occur under fast and shallow unidirectional water flows 

where there is high transport of bed load and suspended material (John, 2003). 

Deposition on upper-stage plane beds can here give rise to a planar lamination. A 

unidirectional flow would implicate a fluvial origin for these sediments. This is 

contradicted by the high content of foraminifera found in this unit (see also chapter on 

foraminifera). Upper-stage plane sand beds may also develop in sandy beaches under 

high velocity water currents that reverse in direction. The swash and backwash 

associated with wave breaking may sometimes gives rise to planar laminae with 

characteristic concentrations of minerals. Because of differences in mineral density, 

this may result in light and dark colored laminae and make it appear more sorted. The 

deformed character of the unit on top makes it hard to interpret. Its channel geometry 

indicates a fluvial genesis. Marine remains (molluscs and foraminifera) suggest a 

relation to the marine environment however, and it may be part of a fluvial system 

entering the marine environment (i.e. a type of estuary).  The units appear to be 

deformed by pressure from the front of the sections and may have been caused by the 

subsequent glacial advance. 

 

4.1.8. Formation G 

Member G-1 (Dcm) 

This formation (G) occurs only as a thin (<9 cm) discontinuous layer of clast supported 

diamicton. The lower boundary is sharp and erosive. Clasts are gravel sized, angular 

to sub-rounded, commonly with striae, in a clayey silt matrix.  

 

Interpretation 

The material associated with Formation G is of glacial origin. The thin, discontinuous 

appearance in Section II and Section III makes it difficult to rule out that these 
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sediments may have been re-deposited. Formation G, is known however, to be much 

thicker and better exposed in Section V and VI (Mangerud and Svendsen, 1992). 

 

4.1.9. Formation H 

Formation H is relatively thin in Section II, increasing in thickness towards Section III. 

It represents a coarsening upward sequence with silt and sand in the lower part, and 

sandy gravel in the uppermost part. 

 

Member H-1 (Fm) 

A brown silt forms the base of Formation H. Sub-angular gravel to pebble sized clasts 

occurs with a few clasts showing striae on the surface (Figure 29). Striations was 

observed on a few clasts, but is not common for the unit. The lower boundary is planar 

and sharp, and it dips gently towards the fjord. The member is up to 13 cm thick in 

Section II.D. Bivalve shells, some of which are paired occurs throughout, but are not 

frequent.  

Formation H 

Formation F 

Figure 29:Formation H seen in the southern part of section II. Here it is 
mostly very thin and in many places eroded during postglacial uplift.  
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Member H-2 (Sm) 

This member is a massive, yellow-white sand sequence. The sand is moderately 

sorted with gravels, mostly rounded, occurring throughout. Shells are abundant, 

including the easily recognizable Hiatella arctica (Linnaeus), which occurs in living 

position. It follows on top of a planar but gradual boundary and the unit is up to 40 cm 

thick in the southern part of Section II. 

 

Member H-3 (Gs) 

A sandy gravel occurs in the uppermost part of Formation H. The gravel is rounded 

and the member appears as clast supported with a medium-grained sand matrix. Shell 

fragments and unpaired shells occurs frequently. The unit is up to a meter thick in 

Section II.D, but is clearly much thicker towards the north and in the range of meters. 

The lower boundary is irreguler and appear to interfinger with the sand in member H-

2. On top, the gravel appear to be eroded by a relict channel incision into the surface. 

 

Interpretation 

Although thinner, this formation represent the same sequence of events as previous 

deglaciation-cycles. A glaciomarine depositional environment follows the glacial retreat 

with sporadic deposition of IRD from the calving glacier front. The glacial influence 

eventually diminishes with sub-littoral conditions prevailing. Deposition eventually 

shifts into the intertidal zone with deposition of more coarse-grained material as the 

coast shifts seaward. As sea-level drops, the coast also shifts from net deposition to 

the present regime with overall erosion. 
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4.2. FORAMINIFERAL STRATIGRAPHY 

4.2.1. Summary sample statistics 

In total 21 482 specimens of foraminifera was counted and identifed from 55 samples 

giving an average of 391 specimens per sample(. None of the samples was barren, 

although a single sample (# F2) did not meet the minimum 300. Most of the tests were 

in good condition or with minor defects. The quality was a little lower in Formation F, 

especially in the upper part, but in total was still a negligible component of the total.  

 

Many of the foraminifera in the lower part of 

Formation B, as well as in the middle part of 

Formation F were black or brass-coloured (Figure 

30). These were mostly concentrated in the heavy 

residue. Further up-section these specimens 

disappeared and were at best sporadic. In 

addition, abnormal forms of recognizable taxa 

were also sometimes encountered, including 

morphologic distortions such as cysts, twisted 

coiling and aberrant chamber shapes. No 

systematic increase or above naturally occurring 

population-values occurred however (2 %; Yanko 

et al., 1998).  

 

98 different taxa were identified with only one species identified as planktonic. 19 taxa 

was identified only to the level of genus (1.6 %), excluding 0.5% which was not 

identified further than to the rank of phylum (foraminiferida). 34 taxa meet a value 

minimum of 2 % occurring in at least one sample (Table 2). Of these 9 taxa were 

Elphidiums including Elphidium albiumbilicatum (Weiss), Elphidium bartletti 

(Cushman), E. excavatum, Elphidium hallandense (Brotzen), Elphidium incertum 

(Williamson), Elphidium magellicum (Fichtel & Moll), Elphidium selseyense (Heron-

Allen & Earland) and Elphidium subarcticum (Cushman). 

 

Figure 30: (A-D) Brass-coloured 
specimens. Note the blue shine on B; (E) 
Partially brass-coloured specimen; (F) 
Normal white-coloured specimen. 
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Only 8 specimens were identified as planktonic foraminifera (Only Neogloboquadrina 

pachyderma), the remainder being benthic species.  

 

Table 1 lists the most important species identified together with their minimum, 

maximum and average values. These were selected based on having a distinct and 

continuous presence throughout. Out of these, Cassidulina reniforme and Elphidium 

excavatum are the most common species for the fauna overall. Especially in Formation 

F and H these two species usually accounts for more than half of the fauna. In the 

lower half of Formation B these two are usually followed by Nonionella auricula, 

whereas in the upper half Islandiella norcrossi appear to replace this species. 

Haynesina orbiculare (Brady) is a species that is uncommon throughout, except in the 

uppermost part of Formation F where it appears in high frequencies. 

 

Species Average Minimum Maximumm 

Astrononion gallowayi 0,04 0,00 0,11 

Buccella frigida 0,05 0,00 0,19 

Cassidulina reniforme 0,34 0,09 0,72 

Cibicides lobatulus 0,02 0,00 0,13 

Elphidium excavatum 0,15 0,02 0,46 

Elphidium subarcticum 0,02 0,00 0,11 

Haynesina orbiculare 0,03 0,00 0,27 

Islandiella norcrossi 0,08 0,00 0,35 

Nonionella auricula 0,06 0,00 0,34 

Nonionellina labradorica 0,02 0,00 0,13 

Quinqueloculina stalkeri 0,07 0,00 0,55 

 
 

Table 1: Statistical overview of the most frequently (%) occurring 
species throughout. 
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Genus species (Authority)  Reference 

Anomalina globulosa (Chapman and Parr)  Feyling‐Hanssen et al. (1971 p. 258; Plate 9, fig. 1‐3) 

Astrononion gallowayi (Loeblich and Tappan) Scott and Schafer. (2001a p. 135; Plate 1, fig 10a‐b) 

Buccella frigida (Cushman)  Feyling‐Hanssen et al. (1971 p. 253; Plate 8, fig. 253) 

Cassidulina reniforme (Nørvang)  Narayan et al. (2005 p. 25; Plate 3, fig. 2‐3); (Rodrigues et al., 
1980 p. 58; Plate 2, fig. 2,4,6; Plate 3, fig. 3,6,9,11,12; Plate 
5, fig. 10‐12) 

Cibicides lobatulus(Walker and Jakob)   Feyling‐Hanssen et al. (1971 p. 260; Plate 9, fig. 9‐14) 

Eggerella scabra (Williamson)  Feyling‐Hanssen et al. (1971p. 192; Plate 1, fig. 13) 

Elphidium albiumbilicatum (Weiss)  Feyling‐Hanssen et al. (1971 p. 268; Plate 10, fig. 15‐19) 

Elphidium bartletti (Cushman)  Feyling‐Hanssen et al. (1971 p. 271; Plate 11, fig. 6‐9; Plate 
20, fig 1‐4) 

Elphidium excavatum (Terquem)  Feyling‐Hanssen (1972); Wilkinson (1979) 

Elphidium hallandense (Brotzen)  Riverios and Patterson (2008p. 34; Fig. 15.3a‐c) 

Elphidium incertum (Williamson)  Feyling‐Hanssen (1972 p. 277; Plate 12, fig. 11‐12; Plate 21, 
fig. 8‐9) 

Elphidium lidoensis (Cushman)  Feyling‐Hanssen  (1972  p.  344;  Plate  6,  fig.  1‐7); 
(Alexanderson et al., 2013) 

Elphidium macellum (Fichtel and Moll)  Feyling‐Hanssen (1972 p. 278; Plate 22, fig. 1‐4) 

Elphidium  selseyensis  (Heron‐Allen  and 
Earland) 

Feyling‐Hanssen (1972p. 341; Plate 4, fig 1‐7; Plate 5, fig. 1‐
7) 

Elphidium spp. (de Montfort)  Loeblich and Tappan (1988 p. 674; Plate 786, fig. 6‐9; Plate 
787, fig. 1‐7) 

Elphidium subarcticum (Cushman)  Feyling‐Hanssen et al. (1971 p. 280; Plate 13, fig. 3‐7; Plate 
22, fig. 9) 

Elphidium subclavatum (Nørvang)  Wilkinson (1979 p. 637; Plate 1, fig. 3; Plate 2, fig. 7) 

Guttulina spp. (d’Orbigny)  Loeblich and Tappan (1988 p. 419; Plate 458, fig. 1‐7) 

Haynesina orbiculare (Brady)  Scott  and  Schafer.  (2001ap.  139;  Plate  11,  fig.  10a‐b); 
Protoelphidium orbiculare ‐  Feyling‐Hanssen et al. (1971 p. 
289; Plate 14, fig. 8‐11) 

Islandiella islandica (Nørvang)  Rodrigues et al. (1980 p. 49; Plate 1, fig. 2,4,6; Plate 3,  fig. 
2,5,8) 

Islandiella norcrossi (Cushman)  Rodrigues et al. (1980 p. 49; Plate 4, fig. 1,4,7,10; Plate 6, fig. 
8,9) 

Melonis barleeanus (Williamson)  Murray (2003 p. 24; Figure 8.11‐8.14) 

Nonion umbilicatulum (Walker & Jacob)  Feyling‐Hanssen et al. (1971 p. 263; Plate 10, fig. 3‐4) 

Nonionella  auricula  (Heron‐Allen  and 
Earland) 

Feyling‐Hanssen et al. (1971 p. 265; Plate 10, fig. 7‐9) 

Nonionella labradorica (Dawson)  Scott and Schafer. (2001ap. 140; Plate 11, fig. 17a‐b); Nonion 
labradoricum ‐ Feyling‐Hanssen et al. (1971 p. 262; Plate 10, 
fig. 1‐2) 

Protoelphidium anglicum (Murray)  Feyling‐Hanssen et al. (1971 p. 286; Plate 14, fig. 2‐5) 

Protoelphidium nivuem (Lafrenz)  Feyling‐Hanssen et al. (1971 p. 286; Plate 14, fig. 6‐7) 

Quinqueloculina agglutinata (Cushman)  Feyling‐Hanssen et al. (1971 p. 193; Plate 1, fig. 15) 

Quinqueloculina arctica (Cushman)  Lukina (2001Fig. 61); (Scott and Schafer., 2001a) 

Quinqueloculina seminulum (Linné)  Feyling‐Hanssen et al. (1971 p. 193; Plate 1, fig. 18‐20) 

Quinqueloculina  stalkeri  (Loeblich  and 
Tappan) 

Feyling‐Hanssen et al. (1971 p. 194; Plate 2, fig. 1‐3) 

Triloculina trigonula (Lamarck)  Feyling‐Hanssen et al. (1971 p. 196; Plate 2, fig. 4‐6) 

Triloculina trihedra (Loeblich and Tappan)  Feyling‐Hanssen et al. (1971 p. 196; Plate 2, fig.7) 

Table 1: List of taxa occurring 
with more than 2 percent in at 

Reference 

Table 2: List of taxa occurring with more than 2 percent in at least one 
sample, with the main reference for identification 
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4.2.2. Key species 

Astrononion galloway 

This infaunal calcareous species is planispirally coiled, involute and compressed with 

a lobulated periphery (Figure 31). It has a chracteristic star-shaped umbilical area 

where supplementary wedge shaped chambers surround the umbilicus (Scott and 

Schafer., 2001b). 

It often occurs in small frequencies, but is a common accessory species of faunas on 

Svalbard and generally on inner shelf- and outer estuary environments in the Arctic 

(Hald and Korsun, 1997). Polyak et al. (2002) classifies A. gallowayi as a river distal 

taxon associated with elevated current activity and coarser sediments in the shallow 

parts of the Barents Sea. As pointed out by Hald and Korsun (1997) its association 

with coarser sediments may be the result of winnowing. Steinsund et al. (1994)  found 

this species in environments with water temperatures below 1°C and with salinities of 

mostly 33 psu, but no higher. It generally follows the distributions of L. lobatulus, but 

requires a higher, and more steady supply of nutrients (Rasmussen et al., 2012). 

 River distal 

 High food availability 

 Elevated current activity 

 

Buccella frigida 

The test of B. frigida (Figure 32) is calcareous and trochospirally coiled (Scott and 

Schafer., 2001b). B. frigida is the most common of the Buccella species within the  

200

Figure 31: C. Side view (10.3x) of A. gallowayi (Both 
pictures). It is easily recognizable by its star shaped 
umbilical area which has also given its name (Greek: Astro 
= Star). 
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Arctic, but due to taxonomic difficulties, it may also incorporate other species belonging 

to the Buccella genus (e.g. B. tenerrima). 

 

According to Polyak et al. (2002) B. frigida prefers river influenced environments. 

Several authors consider it as an indicator of high seasonal productivity and also 

suggest a relation to seasonal sea-ice edge-production (Ślubowska et al., 2005). 

Steinsund (1994) argues that B. frigida prefer water temperatures between 0 °C and 1 

°C with salinities around 33-34 ‰ 

 Sea‐ice indicator 

 River‐influenced areas 

 

  

200 

Figure 32: (To the left) Dorsal view (9.37x) of B. frigida; (To the right) Ventral view 
(9.37x)of same specimen 

500 µm 

Figure 33: (Left) Dorsal view (4.68x) of C. lobatulus); (Middle) Ventral view (4.68x) of the 
same specimen; (right) Side-view (4.68x) showing the planoconvex shape of the test 
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Cibicides lobatula 

Calcareous species with a characteristic plano-convex test (Figure 33)(Scott and 

Schafer., 2001a). Its spiral side is coarsely perforate and flat to irregular. The aperture 

extends from its convex side along the suture of the first few chambers.  

 

It is a passive epifaunal suspension feeder that lives on elevated microhabitats, 

including rocks, pebbles, algae and the hard parts of macrobenthos such as corals, 

and seaweed (Linke and Lutze, 1993; Steinsund et al., 1994; Polyak et al., 2002). It is 

further associated with elevated current activity and shallow waters (Wollenburg and 

Mackensen, 1998). It prefers water salinities >32‰ (Steinsund et al., 1994)  

 High Salinity 

 Current‐indicator 

 Shallow water 

 

Cassidulina reniforme 

This species has a calcareous, hyaline and lightly perforated test with a circular, 

biconvex shape (Figure 35). It has a characteristic aperture described as a narrow, 

arched, elongate slit, parallel to periphery, at base of final chamber, nearly closed by 

a broad apertural flap (Nørvang, 1958). Its aperture separates Cassidulina from 

species of Islandiella that in some cases show a high resemblance. 

 

.It is often abundant in fjords influenced by cold (<2 °C) saline Water (> 30psu) (Polyak 

et al., 2002; Rasmussen et al., 2012). C. reniforme is frequent in many modern 

glacimarine environments. On Svalbard it is commonly found together with E. 

Figure 34: Generalized distribution of modern foraminifera on Novaya Zemlya and Svalbard in relation 
to glacial fronts.(Guilbault et al., 2003) 
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excavatum in low diversity assemblages close to glacier fronts (Figure 34) (Korsun et 

al., 1995; Hald and Korsun, 1997; Korsun and Hald, 1998; Polyak et al., 2002; Hald et 

al., 2004).  

 Glaciomarine 

 Stress‐tolerant 

 Avoids low salinities 

 

Elphidium excavatum 

This Elphidium species has a calcareous lenticular, planispirally enrolled test (Figure 

35) that is involute or partially evolute. It may have an umbilical plug on each side. 

Deeply incised sutures form interlobular spaces that communicate with umbilical spiral 

canals leading from the spiral canal to the surface of umbilical plug with retral 

processes (backward extensions from the chamber lumen along the sutures). The 

exact geographical distribution, as well as its environmental preferences, is somewhat 

obscured however because of taxonomic difficulties in distinguishing between its many 

subspecies/morphotypes and also from other species of Elphidium (Feyling-Hanssen, 

1972; Wilkinson, 1979). Adding to this is differences in the taxonomic rank of the same 

taxon that range from morphotype or subspecies to the rank of species. Many authors 

200 µm 

Figure 35: C. reniforme. (Left) Dorsal view (14.3x) with aperture 
barely visible as a lip on the left side. (Right) Ventral view (11.2x) 
of the same species, but different specimen. 
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prefer to group subspecies together under E. 

excavatum or just as Elphidium spp. to avoid 

taxonomic challenges.  

 

The E. excavatum is a widespread species in the 

Arctic. It often dominate in areas with strongly 

fluctuating conditions such as close to the termini 

of tidewater glaciers. It is an opportunistic species 

with high nutritional- and habitat versatility. Linke 

and Lutze (1993) found that the E. excavatum can 

be found in elevated microhabitats, on the 

sediment surface or within the uppermost 

sediment layer depending on food availability 

and/or changing environmental conditions.  

 

E. excavatum is sometimes also reported in hifh frequencies from the southern Barents 

Sea. Sejrup et al. (2004) however explains this as the result of E. excavatum f. 

selseyensis and excavatum f. clavata being grouped together. The latter has a 

southern distribution in the Barents sea limited by water temperatures above c. 4 °C 

and/or by the the winter sea-ice boundary (Polyak et al., 2002) and more commonly 

found in Arctic water-masses and common to modern fjords on Svalbard (Feyling-

Hanssen, 1972; Wilkinson, 1979; Hald and Korsun, 1997).  

 Glaciomarine 

 Dominant in glacioproximal environments 

 Stress tolerant 

 

Elphidium subarcticum 

The calcareous test is planispiral and involute (Scott and Schafer., 2001b). Chambers 

moderately inflated and sutures slightly depressed. It has a row of sutural pores and a 

wide opaque band (Figure 37). Aperture is a row of pores at the base of apertural face 

of the last chamber.  

 

500 µm 

Figure 36: Side view (6.75x) of tree 
specimens of E. excavatum  



   

59 
 

Often found in areas with coarse sediments, attached to immobile benthic organisms 

(Steinsund et al., 1994; Polyak et al., 2002). It seems to prefer low temperatures 

(<1°C), lowered salinities (33-34‰) and is sometimes associated to sea-ice cover. 

Polyak et al. (2002) found it to dominate in river-distal environments. Epifaunal taxa 

generally avoid river-proximal environments which has a faster burial rate, a higher 

redox boundary and relatively low-quality organic matter when compared to organic 

matter of marine origin (Mojtahid et al., 2010) 

 

Taxonomical uncertainty and/or errors in identifying the E. subarcticum to some degree 

challenges our knowledge of this taxon as noted by (Polyak et al., 2002). Throughout 

its life-cycle it may resemble other Elphidiids such as E. albiumbilicatum, E. incertum, 

E. frigidum, E. halladense, and Cribroelphidium magellanicum.  

Haynesina orbiculare 

Test is planispirally coiled bilaterally symmetrical and involute (Figure 38: H. orbiculare 

(Left) Side view; (Right) Apertural view.). Wall is calcareous and usually transparent 

with fine perforation (Michelsen, 1967). Margin is rounded, smooth to slightly lobulate. 

The last whorl has 6-8 not inflated chambers, increasing only slowly in size. Sutures 

slightly depressed, backward-curved. Umbilicus not depressed, usually covered by a 

granular secondary coating.  

 

200 µm 

Figure 37: E. subarcticum. (Left) Side view (9.34x); (Right) Apertural 
view (8.8x) of same specimen. 
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This species may live both infaunal or epifaunal (Polyak et al., 2003). According to 

Polyak et al. (2002) the H. orbiculare is an important indicator of river-proximal 

environments showing a clear decreasing trend in frequency towards the river-distal 

areas.H. orbiculare normally do not occur in the vicinity of melting glaciers (Hald and 

Korsun, 1997; Anjar et al., 2012), but is considered an important species in river 

proximal enviornments  (Polyak et al., 2002).  It proliferate in brackish water (Salinity 

of 22-26 psu) with low temperatures (-1 to +1 °C), although it has been shown to adapt 

to temperatures as high as 20 °C (Steinsund et al., 1994; Anjar et al., 2012).  

 

 Brackwater‐indicator 

 River‐proximal 

 

Islandiella norcrossi 

This species has a calcareous, hyaline test that is biconvex and lenticular. It appears 

strongly compressed with its periphery slightly keeled and evolute. Its umbilical region 

is transparent with previous whorls visible inside. Chambers consists of four to five 

pairs and are planispirally enrolled. Sutures are distinct and slightly curved. 

 

200 µm 

Figure 38: H. orbiculare (Left) Side view; (Right) Apertural view. 
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I. norcrossi is a common Arctic taxon that also occur on Svalbard today (Hald and 

Korsun, 1997). It thrives in environments characterized by high and stable bottom 

salinities and is considered a distal glacimarine taxon (Korsun and Hald, 1998) and/or 

distal to river-dominated environments (Polyak et al., 2002). This may be explained by 

its low tolerance to high sedimentation rates (Zajaczkowski et al., 2010). In the Barents 

Sea, populations of I. norcrossi show their maxima in areas with seasonal sea-ice and 

high organic nutrient content possible linked to summer sea-ice edge-productivity 

(Hald and Steinsund, 1996; Korsun and Hald, 1998; Saher et al., 2012). 

 Glacially dital 

 Sea ice‐indicator 

 Seasonal food productivity 

 High and stable salinity 

Nonionella auricula 

Test ovate in outline (Figure 40), coiled and slightly trochoid (Loeblich and Tappan, 

1955). Periphery rounded with chambers slightly inflated and increasing rapidly in size 

as added. 5 or 6 of the previous whorl is visible dorsally where the test is partially 

evolute, only the 9 to 10 chambers of the final whorl visible ventrally. Final chamber is 

somewhat inflated and comparatively higher than the preceding chambers, extending 

farther over the ventral side when seen in edge view. Sutures are distinct and gently 

cursved. Walls are calcareous, thin, hyaline, finely perforate and smooth; aperture at 

Figure 39: (Left) Dorsal view of I. norcrossi ; (Right) Side-view showing 
aperture of I. norcrossi 

200 µm 
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the base of the apertural face extending from the periphery a short distance on the 

ventral side 

 

The N. auricula is a species not commonly occuring on Svalbard today. Living 

specimens of N. auricula from Svalbard is reported only in low concentrations (<3 %) 

from Bellsund by Lycke et al. (1992). In addition Feyling-Hanssen (1965) reports a 

small occurrence (<1 %) of N. auricula from Barentsøya in sediments of uncertain, but 

probably Holocene age. Another pre-recent occurrence <3 % is described by Lycke et 

al. (1992) from the Linnéelva-sections in sediments correlated to the Kapp Ekholm 

interstadial (Mangerud et al., 1998).  

 

On Greenland the N. auricula is found in several units correlated to the Eemian 

interglacial (Feyling-Hanssen and Funder, 1990; Bennike et al., 1994; Kelly et al., 

1999). In higher frequencies, it is almost exclusively found in faunas of high diversity 

and is interpreted as an indiator of warm-water influx and overall ameliorated 

conditions (Gudina and Evzerov, 1981). Hald and Steinsund (1996) states that many 

authors have previously mistaken this species for N. labradorica and advised combing 

the two for their foraminiferal-database for the Barents- and Kara seas. Saher et al. 

(2012) warns against this, stating that these two taxa seem to have profoundly different 

environmental preferences. This is also supported by Karen Luise Knudsen who points 

out that N. labradorica and N. auricula do not seem to proliferate together (Personal 

communication, 5th of June, 2014). The N. auricula might prefer warm water, or is just 

better adapted to warmer water, than the N. labradorica (Margot Heelen Saher, 

Figure 40: N. auricula. The N. auricula has an assymetric
arrangement of the chamber as opposed to N. labradorica 

500 µm 
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personal communication, 4th of June, 2014). N. auricula is reported with high living 

frequencies (0-17 %) from the Central – Southern Barents Sea (Saher et al., 2012 with 

additional unpublished data). In this limited sample-set (n. 29) N. auricula shows its 

highest abundances of 20-35 % where temperatures range between 5-8 °C. According 

to Sejrup et al. (2004) the maximum abundance of N. labradorica in the Barents sea, 

is found where bottom waters are colder than 2°C. 

 

In terms of interpretation N. auricula is believed to show the same preferences as N. 

labradorica in terms of food availability, but may indicate overall warmer bottom water 

conditions (See also N. labradorica) 

 Non‐native to Svalbard 

 Food indicator 

 Warm water indicator 

 Glacially distal 

 

Nonionellina labradorica 

This calcareous species has a planispiral test (Figure 41)that is ovate to auriculate in 

outline (Loeblich and Tappan, 1955). It is involute and bilaterally symmetrical, biconvex 

and biumbiliate. Its most characteristic feature is its chambers that increase in size, 

whereas the final chamber is almost twice the size of the preceding chamber. 

 

500 µm 

Figure 41: N. labradorica. A species that generally is easy to identify 
on the basis of its final chamber and symmetric apperaence.  
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The N. labradorica is common in areas of high productivity with a preference for fresh 

phytodetritus and often co-occur with I. norcrossi and Buccella Spp. in the Barents Sea 

(Stein, 1996; Polyak et al., 2002). According to Steinsund et al. (1994) its maximum 

concentrations are found on the slopes or banks in areas with high organic production, 

along the oceanic polar front or at the mouth of glaciated fjords as shown by Hald and 

Korsun (1997). According to Sejrup et al. (2004) the maximum abundance of N. 

labradorica in the Barents Sea, is found where bottom waters are colder than 2°C. 

 Food indicator 

 Warm‐water indicator 

 Glacially distal 

 

Quinqueloculina stalkeri 

This Milliodae has a test that is small and ovate in outline (Nørvang, 1957). Chambers 

are quinqueloculine in plan with distinct sutures. It is calcareous, but has very finely 

grained agglutinated surface. Aperture is ovate to rounded, somewhat elevated, on a 

short neck and surrounded by a distinct lip. 

 

Q. stalkeri (Figure 42)is described as an Arctic, opertunistic species, occupying mostly 

shallow waters and being extremely rare in the open Barents- and Kara seas (Feyling-

Hanssen, 1964; Feyling-Hanssen et al., 1971; Barmawidjaja et al., 1995; Korsun et al., 

Figure 42: The Q. stalkeri is recognized form other milioids by its “stalky” aperture. Although sediment
grains are usually attached to the outer part of its wall, it is not considered an agglutinated species. 

1000 µm 200 µm 
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1995). Korsun and Hald (1998) found that the presence of Q. stalkeri in the Kara Sea 

was limited to areas with glaciomarine-clay occurring as an accessory species in 

samples with high frequencies of C. reniforme and E. excavatum. A similar pattern is 

also seen in the Vendsyssel sections in Denmark (Feyling-Hanssen et al., 1971); 

Korsun and Hald (1998), referring to  data from Feyling-Hanssen (1964),states that the 

Q. stalkeri is mostly found in water depths of less than 50m. However in the data from 

Hald and Korsun (1997) it shows up in higher frequencies in much deeper water (80-

192m). 

 

 Glaciomarine, intermediate 

 Stress tolerant 
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4.2.3. Cluster analysis  

The foraminiferal data was treated statistically by constructing a Bray-Curtis similiarity 

index using untransformed, square-root transformed and fourth-root transformed data. 

Each incremental step of transformation also resulted in increasing similiarity   

 

Samples overall show a high degree of similiarity and increases with the strength of 

the transformation function (Untransformed < Square root < Fourth root). This is an 

indication that the type of taxa occuring within the samples are the same. Dissimilarity 

between samples are to a large degree explained by different frequencies of the same 

taxa. 

 

Figure 43, Figure 44 and Figure 45 shows the result of the clustering analyses and 

how results vary by using different transformation functions. The untransformed data 

results in 19 significant clusters (Sig. 0.01) where 8 clusters consist of only a single 

sample only. A square root transformation reduces the number of clusters to 10 where 

4 clusters consist of a single sample only. A fourth root transformation reduces the 

number of clusters to 8 with only 2 samples consisting of a single sample.  

 

Samples from Formation B show a significant dissimiliarity with samples from 

Formation F and H at a similarity score of 65 (Using square-root transformed data). 

Two principal clusters are formed which overall divide the lower from the upper half of 

Formation B. Formation F is also divided into two clusters at a similarity score of 65, 

altough most samples fall into a larger cluster mixed with samples from Formation H. 

 

Biofacies were constructed from these clusters using primarily the results of the 

square-root transformed. Deviations from this are noted in the description of the 

individual facies and is done when a single species apper to occur in abnormally high 

frequencies. 
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Figure 43: (Upper) A similarity dendrogram based on hierarchical agglomeration of clusters using square
root transformed data. Stipled lines mark clusters that show no significant difference. (Lower) MDS-plot 
visualizing the same similarity index, but without hierarchical agglomeration. 
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Figure 44:(Upper) A similarity dendrogram based on hierarchical agglomeration of clusters using fourth-
root transformed data Stipled lines mark clusters that show no significant difference. (Lower) MDS-plot 
visualizing the same similarity index, but without hierarchical agglomeration. 
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Figure 45: (Upper) A similiarty dendrogram based on hierarchical agglomeration of clusters using
untransformed data. Stipled lines mark clusters that show no significant difference. (Lower) MDS-plot 
visualizing the same similarity index, but without hierarchical agglomeration. 
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4.2.4. Biofacies 

Facies A 

Three samples from the lowermost part of Formation B are included in this facies (B68-

B64). SIMPROF-results show no significant difference between samples B68 and B66. 

Sample B64 shows a lower degree of similarity, but is still included under this facies 

as dissimilarity appears primarily to be the result of abnormally high frequencies of Q. 

stalkeri (see also interpretation).  

 

C. reniforme (avg. 24 %) and E. excavatum (avg. 18 %) occurs in near-equal 

frequencies and accounts for about half of the sampled population. In high frequencies 

are also the species N. labradorica (avg 12 %), Q. stalkeri (avg. 11 %) and I. norcrossi 

(10 %). N. auricula is present, but considered a minor species 

 

On average each sample has a raw species richness of 27, but contains only 6 species 

that occur with frequencies above 2 %. Faunal diversity, as indicated by fisher’s alpha, 

is low (avg 2.42) with abundances averaging at 4212 specimens per 100 gram. 

 

Interpretation 

All species occurring in high frequencies are common on Svalbard today (Hald and 

Korsun, 1997). Both C. reniforme and E. excavatum are stress-tolerant species that 

usually dominate in glaciomarine environments. According to Korsun et al. (1995) 

these two taxa will occur in near-equal frequencies where glacial impact is moderate 

and/or the distance to glacier fronts is intermediate. Similar frequencies and ratios of 

these two species is today found just south of Rudmosepynten (Figure 3 and Figure 

11). This suggest glacial impact was higher than today. Another indication of glacial 

influence is the species Q. stalkeri. High frequencies of this species is associated with 

proximal glacial environments where algae-production is inhibited by glacial melt-

water. N. labradorica and I. norcrossi are both considered indicators of at least 

seasonally high algae-productivity. N. labradorica usually proliferate in areas 

characterized by upwelling of relatively warm and nutrient-rich water. I. norcrossi on 
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the other hand profits from algae-productivity at the sea-ice edge and proliferate in late 

spring.  

 

Facies B 

Figure 46: Foraminiferal stratigraphy showing distribution of key species  
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Ten samples (B62-B58 and B46-B34), all from the lower half of Formation B, detail this 

facies. None of the samples shows any significant variability following the results of the 

SIMPROF-analysis. 

 

C. reniforme dominates the fauna (avg. 29 %) and generally occurs in much higher 

frequencies than E. excavatum (avg. 8 %). The two species N. auricula (avg. 16 %) 

and Q. stalkeri (avg. 13 %) also occurs in high frequencies. Minor species with low 

frequencies are B. frigida, I. norcrossi, C. lobatulus, N. labradorica, E. subarcticum, A. 

gallowayi, E. albiumbilicatum and E. halladense. 

 

This facies has an average species richness of 23 with 9 species having a frequency 

above 2 %. Fisher’s alpha indicate a faunal diversity of 3.6. Each sample has about 

2663 specimens per 100 gram. 

 

Interpretation 

The dominance of C. reniforme suggest more stable hydrological conditions then what 

is the case for E. excavatum dominated faunas. The high frequency of C. reniforme to 

E. excavatum suggest a distal glacial influence, perhaps similar to that of today (Hald 

and Korsun, 1997). Sediment-laden melt-water still appear to have been present in 

area however as indicated by high frequencies of Q. stalkeri.  

 

The most peculiar species for this facies is N. auricula which do not occur on Svalbard 

today. It is interpreted as an indicator for ameliorated conditions and may reflect a 

seasonal inflow of warm water masses and subsequently increased overall 

productivity. 

. 

Facies C 

This facies is described from five samples in the lower half of Formation B (B56-B48), 

as well as a single sample from the upper half (B8). One sample (B48) show significant 
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variability following results of the SIMPROF-test. The main difference appear to be a 

higher, but not dominant frequency of A. gallowayi and slightly lower frequencies of B. 

frigida than the average. 

 

E. excavatum (Avg. 34 %) dominates. In high frequencies is also N. auricula (avg. 18 

%) and C. reniforme (Avg. 13 %). Other frequent taxa are B. frigida (7 %), I. norcrossi 

(avg. 6 %), N. labradorica (avg. 5 %) and Q. stalkeri (avg. 4 %). E. selseyense is 

recoreded as a minor species. 

 

On average each sample contain 24 species, in which 8 species occur with frequencies 

above 2 %. Faunal diversity as indicated by Fisher’s alpha is 3.3 and there is 943 

speciems recorded per 100 gram. 

 

Interpretation 

Dominance of E. excavatum is characteristic for glacial-proximal environments with 

highly variable hydrological conditions (e.g. salinity, sedimentation). C. reniforme is 

also frequent in glacimarine environments, but require more stable conditions 

(especially salinity) than E. excavatum. The higher ratio of E. excavatum may indicate 

a more proximal glacial influence than for example today (Hald and Korsun, 1997). 

This is also supported by high frequencies of Q. stalkeri, a species associated with 

glacial proximity and sediment laden-meltwater. On the other hand are the species B. 

frigida, I. norcrossi, N. auricula and N. labradorica that are all typical of environments 

distally influenced by glaciers. N. labradorica and N. auricula are both associated with 

warm-water-inflow, whereas I. norcrossi and B. frigida are related to seasonal sea-ice 

edge productivity.  

 

Facies D 

This cluster consists of 14 samples (B32 – B10 and B6 – B4) from the middle- to upper 

half of Formation B. All samples detailing this facies sshow non-significant variance 
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according to results of the SIMPROF-test. Overall, this facies show a higher degree of 

similiarty to samples from Formation F and H, than with samples from Formation B. 

 

C. reniforme (avg. 30 %) is followed by high frequencies of I. norcrossi (avg. 19 %). 

Frequent are the species Q. stalkeri (avg. 13 %), E. excavatum (avg. 11 %) and B. 

frigida (avg. 6 %) with A. gallowayi, E. subarcticum, H. orbiculare and N. auricula as 

minor species. 

 

20 species on average occurs in each sample where nine species occurs in 

frequencies above 2 %. Faunal diversity has a fisher’s alpha of 3.6. On average each 

sample contains 2532 specimens per 100 gram. 

  

Interpretation 

All species occurring in prominent frequencies are also commonly occurring species 

on Svalbard today (Hald and Korsun, 1997). C. reniforme, E. excavatum and Q. stalkeri 

are all considered species typical for glaciomarine environments. The dominance of C. 

reniforme over E. excavatum indicates a more distal glacial influence, perhaps more 

similar to today. Both species are stress tolerant, but high frequencies of C. reniforme 

usually require more stable hydrological conditions than those found in front of a glacier 

where sediment flux and melt-water often show high variability. Q. stalkeri on the other 

hand is considered more proximal than C. reniforme. High frequencies of this species 

is associated with sediment-laden meltwater plumes that inhibit algae productivity.   

 

Glacial distal species are I. norcrossi and B. frigida. These are considered seasonal 

food indicators and are often associated with increased algae-productivity at the sea-

ice edge. Overall, the fauna appears glaciomarine, but with a distal to intermediate 

influence. There’s no indication of warm water inflow, rather, the water masses were 

probably stratified like today with a dominance of local water masses. 
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Facies E 

Fourteen samples form this facies (B2; F34-F30; F26; F22-F6; H2) which describe 

large parts of Formation F, in addition to a single sample from Formation B and one 

sampe from Formation H. Results of the SIMPROF-test using square-root transformed 

data indicate only non-significant variability within the clusters. 

 

Dominating the fauna is C. reniforme (avg. 42 %), followed by E. excavatum (avg. 15). 

The species A. gallowayi (avg. 7 %), B. frigida (avg 6 %), I. norcrossi (avg. 6 %) and 

H. orbiculare (avg. 5 %) are also frequent. Minor species include L. lobatulus and E. 

subarcticum. 

 

On average, each sample contains 23 species where 9 occurs in frequencies above 2 

%. Faunal diversity has a fisher’s alpha score of 3,8 with 4998 species per 100 gram. 

 

Interpretation 

All of the prominent species are commonly occurring on Svalbard today. The high ratio 

of C. reniforme to E. excavatum suggest a distal glacial influence, somewhat similar to 

today. B. frigida and I. norcrossi are both food indicators associated with seasonal sea-

ice edge productivity. A. gallowayi and H. orbiculare is associated with river-influenced 

environments with low sedimentation-rates due to their epifaunal mode of life. Overall 

the fauna appear similar to what could occur around Kapp Ekholm today with some 

distance to the glacier front(s). In addition, this facies appear more influenced by fluvial 

outflow than some other facies. 

 

Facies F 

Samples belonging to formations B (B0), F (F34, F28 and F24) Formation H (H4) 

constitute this facies. Only non-significant variability is indicated by the results of the 

SIMPROF-test. This cluster, together with Facies E detail most of Formation F and 

Formation H and show significantly less similarity with samples from Formation B. 
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C. reniforme (avg. 62 %) accounts for more than half of the fauna. E. excavatum (avg. 

11 %) is usually second in frequency, but considerably less common. In lower 

frequencies are A. gallowayi (avg. 4 %), B. frigida (avg. 4 %) and I. norcrossi (avg 4 

%), Minor species include E. albiumbilicatum, and L. lobatulus. 

 

The facies have a species richness of 23 with 9 species on average having a frequency 

above 2 %. Faunal diversity scores 3,8 with average abundance of 3922 specimens 

per 100 gram. 

 

Interpretation 

A distal glacial influence is suggested by the dominance of C. reniforme and the high 

ratio of this species over E. excavatum. The high dominance of C. reniforme suggest 

that cold and relatively saline water dominate. A. gallowayi, B. frigida and I. norcrossi 

are all species related to seasonally high nutrient availability where the latter two are 

usually associated with sea-ice growth and decay. Again, this fauna could occur 

around Kapp Ekholm today. Compared to the fauna described for facies E, this facies 

seem to show less fluvial influence and with higher salinity, allowing C. reniforme to 

replace H. orbiculare. 

 

Facies G 

Two units from the uppermost part of Formation F (F2 and F4) detail this facies. 

Variability between these two sample is non-significant following results of the 

SIMPROF test. This cluster have the highest dissimiliarity to other clusters branching 

at a similiarity level of < 55. 

 

The most frequent species in this fauna is H orbiculare (Avg. 26 %). Frequencies of C. 

reniforme (avg. 18 ) is slightly higher than frequencies of E. excavatum (avg. 13 %). L. 
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lobatulus (avg. 6 %) E. halladense (avg. 4 %) also occur frequently, but not in high 

numbers. B. frigida is considered a minor species. 

 

The facies on average has 19 species out of which 6 occur in frequencies above 2 %. 

Fisher’s alpha is 5,58 and the average number of foraminifera is 8656 specimens per 

100 gram. 

 

Interpretation 

H. orbiculare is a species that thrive in river-influenced areas with brackish water and 

tends to avoid glacially influenced areas. This may explain the relatively low 

frequencies of C. reniforme and E. excavatum although their presence still suggest a 

glacial influence. The near equal ratios between these two may indicate an 

intermediate glacial influence. The presence of C. reniforme and absence of I. 

norcrossi may be explained by reduced salinity as indicated by H. orbiculare. 

Supporting a river-influenced marine environment is also the species L. lobatulus and 

E. halladense. Both are associated with strong currents. Together with H. orbiculare 

these species are all considered epifaunal species suggesting a low sedimentation-

rate. Overall, this facies differ from other facies by having a marked fluvial influence. It 

is interesting to note that the fisher’s alpha is relatively high for this fauna when 

compared to that of other facies. While this may suggest ameliorated conditions, there 

is no indication of warm-water inflow. 

 

Facies H 

This facies is described from a single sample only (H6) occurring at the top of 

Formation H. Overall, it shows a higher similarity to cold-water facies (Facies E and F) 

than those associated with warm-water inflow (Facies A, B an  d C). 

 

C. reniforme (avg. 37 %) and E. excavatum (avg. 40 %). E. subarcticum (avg. 7 %), E. 

albiumbilicatum (avg. 4 %), N. labradorica (avg. 3 %) are also frequent, but not in large 

numbers. 
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There are 23 species out of which 5 occurs in frequencies above 2 %. Faunal diversity 

scores 3,3  on fisher’s alpha. The sample has 1869 specimens per 100 gram. 

 

Interpretation 

The near-equal ratio of C. reniforme and E. excavatum suggest a moderate glacial 

influence. Both species are stress tolerant and their combined dominance is indicative 

of relatively cold, but saline water. Frequent E. subarcticum may be an indication of 

seasonal sea ice cover and/or river-influenced areas, but its environment preferences 

appear somewhat diffuse.. This environment appear similar to today, but with less 

stable and lower bottom water salinity as indicated by an absence of I. norcrossi. In 

addition, E. albiumbilicatum and N. labradorica are both species associated with warm 

water inflow which may suggest that at least some circulation occurs between the 

Isfjorden system and Billefjorden. 

 

5. DISCUSSION 

5.1. Sedimentary stratigraphy 

The sedimentary stratigraphy as described from Section II and Section III is overall in 

agreement with the stratigraphy presented by Mangerud and Svendsen (1992). In 

Section III all formations (A-H) occur in a stacked order, although Formation G was 

only sporadically observed.  

 

In Section II it is still argued that formations C and D are missing or were never 

deposited. A new glacial diamicton (Member F-4) was described from Section II, but is 

interpreted as a re-deposition of either Formation C or Formation E. The same diamict 

is described and interpreted by Eccleshall (2013). In this thesis, the sequence of 

glaciomarine clay and glacial diamicton is interpreted as an ice-rafted deposit. It is now 

clear however, that these units are much wider in extent and that there is a contact 

between these units and similar units below. This interpretation is further supported by 
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a similar foraminiferal fauna occurring below (Member F-2) and on top (Member F-6) 

of this sequence.  

5.2. Absence of agglutinated forms 

Agglutinated foraminiferal forms are almost completely absent in the fossil 

assemblages described. Hald and Korsun (1997) however, found several forms in 

Billefjorden with relatively high frequencies including: 

 

 Reophax spp. (6.1–8.7 %) 

 Alveolophragmium crassimargo (4–16.6 %) 

 Recurvoides turbinatus (6–9.7 %) 

 Portatrochammina bipolaris (0.3‐ 1.6 %) 

 Adercotryma glomerata (0.9–1.1 %) 

 

Wollenburg and Kuhnt (2000) argue that the number of agglutinated forms in a fossil-

assemblage are likely to be underestimated in fossil assemblages. This is because 

they readily disintegrate post-mortem. The heavy liquid separation method which is 

applied here, is known for favoring the selection of intact, multi-chambered forms 

(Austin and Cage, 2010), while other forms, including agglutinated tests will usually 

sink into the “heavier fraction”. Neither of these explanations can readily be dismissed. 

On the other hand, some studies of living foraminifera show that agglutinated forms 

are strongly reduced or even absent in some environments. In both Adventfjorden and 

in Hornsund it has been found that the number of agglutinated forms are reduced or 

absent in areas with high water turbidity (Majewski and Zajaczkowski, 2007; 

Zajaczkowski et al., 2010). This may partially explain the results seen here, however, 

it seem unlikely that this is the case throughout.  

 

5.3. Pyritization of foraminiferal tests 

A striking number of the foraminiferal tests from the lower part of Formation B was 

black, or brass colored indicating that they are in-filled with pyrite. According to Sen 

Gupta (2002b) the environmental significance of pyritization is not fully understood, 

although it is clearly related to redox conditions and concentration of H2S. Pyrite 
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precipitation is most commonly confined to deep-water environments, euxinic shallow-

water environments however, may also lead to formation of pyrite (Larsen and 

Chilingar, 1979). The same process is not observed in Formation F, nor in Formation 

H. This may indicate some difference in redox conditions of the different formations 

although it remain unclear what exactly causes this.  

 

The gradual reduction of this phenomena up-section may be related to a gradual 

reduction of these conditions. More problematic however, is the aspect that it could 

indicate re-deposition of older foraminiferal tests. Re-deposition of older foraminiferal 

tests in coastal environments is not uncommon. As noted earlier however, most of the 

tests were of high quality which may also be used as an argument of the contrary. 

 

5.4. Indications of Atlantic Water Masses 

Inflow of Atlantic Water Masses into Arctic fjords is usually associated with increased 

productivity, higher biodiversity and immigration of extralimital species (Hald and 

Korsun, 1997). The most consistent indicator of warm water-inflow to Billefjorden is the 

high and consistent presence of N. auricula in the lower half of Formation B. Although 

little appear to be known about its environmental preference, it is a species associated 

with warm water inflow and high productivity environments. N. labradorica, which is 

very similar in appearance, is also associated with Atlantic-Water influenced 

environments, but has been shown to prefer colder water than N. auricula (Saher et 

al., 2012).  

 

Despite the strong occurrence of these two indicator species, there is little else to 

support any prominent warm water inflow. Facies (A-C) associated with these species 

do not show any characteristic increase in faunal diversity and/or species richness. A 

similar remark is also given about the mollusk fauna from Formation B by Mangerud 

et al. (1998, p.20): 

“even though Mytilus edulis indicates that sea surface 

temperatures were warmer than at present, it is so far the only 

'extralimital' species recorded from the Eemian beds”. 
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This may be an indication that some environmental stressor is still present, inhibiting 

immigration of other warm-water taxa. It is known from Svalbard fjords today, that 

inflow of Atlantic Water in many fjords is seasonal. The proliferation of N. labradorica 

has been shown to coincide with summer inflow of warm water masses(Haakon et al., 

2002; Jernas, 2012). Just as important however, has been its ability to tolerate and 

survive unfavorable conditions during winter. A similar ability is also seen in M. eduis 

which is known for being able to also tolerate and survive periods of low temperature 

(Williams, 1970).  

 

NAW is found along the western shelf of Spitsbergen today, but is normally restricted 

by hydrological barriers, in its inflow to the Isfjorden-system as discussed by Nilsen et 

al. (2008). Occasionally NAW manages to penetrate into Isfjorden and may even 

dominate the water column, except in Billefjorden, where hydrological communication 

is still physically restricted by its shallow-water-threshold. Following this, the mere 

presence of NAW in Isfjorden may not be enough to explain an inflow of such water 

masses to Billefjorden. Higher relative sea level may have had an important influence 

by diminishing the relative effect of the Billefjorden shoal on the water column. Another 

important, but unknown factor, is to which extent the Billefjorden bathymetry has been 

modified during the latest glaciation. There is clear evidence that Billefjorden during 

the LGM was filled by a large warm-based glacier that advanced beyond Gåsøyane 

and probably merged with a larger glacier system draining out Isfjorden (Baeten et al., 

2010): 

 

5.5. Chronological environmental history 

5.5.1. Formation A - Glacial overriding 

The first preserved Quaternary event in the Kapp Ekholm Sections is a glacier 

overriding the bedrock. The distance to both the present, and Little Ice Age position of 

Nordenskiöldbreen is about 20 km (Rachlewicz et al., 2007). It is therefore postulated 

that any glacier advancing beyond the Kapp Ekholm sections must represent a 

significant glacial advance compared to today. 
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The erosive lower boundary of Formation A implicates warm based ice. The bedrock 

is overlain by two glacial tills that in places are separated by glacially deformed marine 

shoreface material. This may be an indication that Formation A represents two glacial 

advances, and not just one, as proposed previously (Mangerud and Svendsen, 1992; 

Mangerud et al., 1998). On the other hand, while these advances may be separated 

by a longer duration of time, it is also possible that they represents smaller fluctuations 

within the same glacial period. 

  

The maximum age of Formation A is not confidently constrained. The only attempt so 

far, has been through the use of Amino-Acid-dating and suggests that deposition of 

the glacial tills occured shortly before deposition of Formation B (Mangerud et al., 

1998). It follows parsimoniously however that Formation A is associated with the 

Saalian-glaciation if the sediments following directly on top represent interglacial 

sediments of Eemian age (MIS 5e). This is also the conclusion of Mangerud and 

Svendsen (1992),Mangerud et al. (1998) and Eccleshall (2013). In a review paper by  

Svendsen et al. (2004) it is argued that a huge ice-sheet complex formed over Northern 

Eurasia (Svalbard included) during the Late Saalian (160-130 ka). Also Boulton (1979) 

concludes that the lowermost formation is a glacial diamict, but argue that shells 

incorporated into the tills are of Eemian-age on the basis of Amino-Acid-racemization. 

Amino Acid dating was a popular method in the 70 and 80s (before the advance of 

Luminescense dating), but is today generally recognized as being notoriously 

unreliable when it comes to numerical dating (Miller et al., 2013). Especially in the 

Arctic, the rate of racemization is variable and may cease almost completely in very 

low temperatures. This was also pointed out by Mangerud and Svendsen (1992) and 

Mangerud et al. (1998). Forman (1999) who also dated the sections argued that 

Formation B was much older, concluding on an age of 185+13 ka. This necessitates 

that Formation A is older (E.g. MIS 8). While it is beyond the scope of this project to 

discuss technicalities of dating methods, it should be noted that the uncertainty-range 

of Steve Forman’s paper is wide and do not exclude an Eemian age beyond the 

uncertainty expressed by the author. 
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5.5.2. Formation B – High relative sea level, seasonal inflow of Atlantic Water 

The lowermost unit (Member B-1) in Formation B is interpreted as a glaciomarine 

deposit. This is in agreement with Mangerud and Svendsen (1992) who interpret the 

same unit as marine. Boulton (1979), who do not describe any observations of marine 

remains, inferred this unit to be a second glacial diamicton occurring on top of 

Formation A. This interpretation is confidently rejected based on the relatively high and 

well-preserved foraminiferal content and mollusks of this unit. 

 

There is no indication of a terrestrial phase, or hiatus, between Formation A and B. 

Deglaciation is therefore assumed to having occurred during high relative sea level. 

The Saalian ice-sheet over Northern Europe was probably far bigger and more long-

lasting than during the Late Glacial Maximum (Svendsen et al., 2004; Colleoni et al., 

2011). Following this, the glacial isoatic depression from the Saalian Ice-sheet must 

have been immense and possible of greater amplitude than that of the LGM. 

 

Iceberg-scours at the base of Formation B suggest that at least one glacier had a 

marine front within the fjord during deposition of the lowermost unit. The red coloring 

of the sediments is associated to erosion of red-colored Devonian, or Early 

Carboniferous strata. Post-depositional oxidation could also lead to a red-brown 

discoloring, but this seems unlikely. Today, the sediment-plume associated with 

drainage in Petuniabukta show a distinct red-stained coloring of the water-surface, 

whereas meltwater in front of the Nordenskiöld glacier have a yellow-brown coloring 

(Szczuciński and Zajączkowski, 2012). Following this, it is reasonable to conclude that 

sedimentation was influenced more by sediment discharge from Petuniabukta and/or 

western coast of Billefjorden. At present the melt-water plume in Petuniabukta do not 

extend more than a few hundred meters. This is because of the shallow tidal flat that 

enhances water-mixing and consequently flocculation close to the coast. In front of the 

Nordenskiöld glacier, the melt-water plume may extend several kilometers away from 

the glacier front before mixing and subsequently settling. According to Szczuciński and 

Zajączkowski (2012) this represent the present dominate mode of deposition in the 

middle- parts of Billefjorden, with sedimentation rates decreasing significantly with 

distance to the glacier and the coast. The abrupt change (also repeated in Formation 
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D, F and H) may indicate that glaciers on the eastern side of Billefjorden retreated 

more quickly on land than on the western side of the fjord. 

 

The grain size is overall coarsening upward in Formation B. This trend is consistent 

with observation from the most recent deglaciation. Maximum relative sea level is 

attained shortly after deglaciation and then gradually falls due to post-glacial isotactic 

rebound (Forman, 1999). Local progradation may in some cases interrupt this trend, 

which is the case for unit B-2, interpreted as a distal fluvio-marine facies building out 

from the side of the fjord. Laterally however, there is a direct succession between the 

glaciomarine (Member B-1) and marine (Member B-4) environment. Maximum 

regression is recorded and preserved by littoral-, to supralittoral sediments on top. 

 

The foraminiferal fauna in formation B largely consists of species common in fjords 

around Svalbard today (Hald and Korsun, 1997). C. reniforme together with E. 

excavatum indicates a glacially influenced fjord. The ratio between these two have 

been is as an indicator of glacial influence (E.g. sedimentation, salinity and 

temperature) and suggest a moderate to more proximal influence. More important 

however is the relatively high and consistent frequency of N. auricula (Facies B and C) 

and N. labradorica (Facies A) in the lower half of Formation B. N. auricula do not occur 

on Svalbard today. Together with N. labradorica it is interpreted to indicate inflow of 

Atlantic Water as they require relatively warm and nutrient-rich water masses to 

proliferate.  

 

In the upper half of Formation B, N. labradorica and N. auricula both disappear and 

indicate that NAW inflow from Isfjorden was terminated. Facies D is associated with 

environment conditions very similar to today where the inhibited circulation causes the 

ocean water to stratify and provide favorable conditions for seasonal sea-ice growth 

as indicated by I. norcrossi. 

  

Previously published marine evidence shows that deglaciation of the Saalian Ice-sheet 

(also known as Termination II) occurred in a stepwise manner, following periods of 
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enhanced Atlantic meridional overturning circulation (AMOC) (Risebrobakken et al., 

2006; Chauhan et al., 2014). These periods were followed by melt-water events linked 

to enhanced melting of the ice-sheet, with subsequent weakening of AMOC. 

Risebrobakken et al. (2006) shows evidence for a persistent increased influence of 

Atlantic Water masses along the eastern Nordic Seas towards the north, at 135-34 ka 

and at 130.5 to 126 ka, just above the MIS 6/5e boundary. (Hald and Korsun, 1997; 

Nilsen et al., 2008). It is assumed that similar bathymetrical conditions existed during 

deposition of Formation B and during subsequent marine-intervals. However, as 

shown by Baeten et al. (2010), there is bathymetrical evidence of warm and erosive 

glacier-movement during LGM that may have altered the fjord-profile.  

 

5.5.3. Formation C – Glacial overriding 

A glacier overrides Kapp Ekholm. The age of the formation is bracketed by the age of 

the subjacent Formation B, and the overlying age for Formation D which points at an 

early stadial within the Weichselian glaciation. As for any glacier reacing the Kapp 

Ekholm site it indicates a significant regional advance. 

 

5.5.4. Formation D – High relative sea level, local water masses like today 

Lithologically Formation D is similar to Formation B. It is interpreted as a regressional 

trend where the environmental change from glaciomarine, to sub-littoral and littoral 

deposition is documented. High relatively sea level is again interpreted as the result of 

glacio-isostatic depression. The most noticeable change between Formation D and 

Formation B is that the units are thinner, and overall the sand is coarser. It is possible 

that Formation D represents a more coast-proximal deposition than Formation B and/or 

that deposition occurred during shorter time-intervals than for the latter. The more 

sandy lithology of Formation D also provides an argument that Formation D is not just 

a glaciotectonically upthrusted floe of Formation B as discussed by Mangerud and 

Svendsen (1992).  

  

Formation D has been dated using OSL, TL and SARA from Section VI suggesting an 

average inferred age of c. 100 ka (Mangerud et al., 1998). Forman (1999) also 
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attempted to date the formation using IRSL and RSL, but failed to render statistically 

reliable estimates. He pointed out that either the sediments were close to saturation of 

the luminescense signal, in which case they would be older than c. 150 ka, or contained 

a large amount of inherited luminescene. Eccleshall (2013) also report ages for 

Formation D, but appear to have confused the nomenclature, as her samples were 

taken from Formation F in Section II (Mangerud and Svendsen, 1992). 

 

The foraminiferal fauna was not identified for Formation D. According to (Mangerud et 

al., 1998) the diversity of mollusk-taxa is low indicating restricted circulation within the 

fjord which is similar to the situation today. 

 

5.5.5. Formation E – glacial overriding 

Glaciers again advances through Billefjorden and overrides Kapp Ekholm. In Section 

III the two diamicts from Formation E and C merge. The geometry of the units is here 

consistent with the notion that Formation D in section II is replaced by a hiatus at the 

lower boundary of Formation E.  

 

Again, the age of the formation is bracketed only by the maximum age of the subjacent 

formation, and the minimum age of the superimposed formation indicating a stadial 

within the Weichselian. 

 

5.5.6. Formation F – High relative sea level, local water masses 

The third regression cycle was termed the Kapp Ekholm interstadial by Mangerud and 

Svendsen (1992). . Formation F is thicker in total however than Formation D and 

possibly reflect a longer depositional time-window. The lowermost unit of Formation F 

is interpreted to reflect dominantly a glaciomarine deposition under similar conditions 

as for Formation B and D. The regressional trend is in section II interrupted by a slump 

event causing a local re-deposition of Formation E and Member F-1. This interpretation 

is also supported by the foraminiferal fauna that is largely similar both on top and 

beneath (Facies E and Facies F describing most of the sub-littoral sequence of 

Formation F). The slump is also bracketed by luminescence ages produced by 
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{Eccleshall, in prep. #572@@author-year} which indicates only short time interval 

occurring in-between (See also the composite log, Figure 18) 

 

The foraminiferal fauna of Formation F reflects overall a glacially influenced fjord like 

today with seasonally ice-free conditions. The water column appears stratified with cold 

and saline water at the bottom. There is no indication of warm water being present in 

the fjord and water-exchange between Isfjorden and Billefjorden was most likely 

restricted. This is in contrast to Mangerud et al. (1998) who concluded that the mollusk 

fauna in Fomration F indicates a more open circulation with Isfjorden. Variations in 

fauna up-section appear to reflect dominantly change in fluvial influence (e.g. 

frequencies of species such as H. orbiculare, A. gallowayi and E. subarcticum).   

 

The age and subsequently the correlation of Formation F to the marine isotope record 

is disputed. Mangerud and Svendsen (1992) argued for an age of between 40 to 50 ka 

using radiocarbon-dating and luminescence-dating-methods. Some additional 

samples were obtained using luminescence by Mangerud et al. (1998) who argued for 

a somewhat higher age-interval of 40 and 60 ka. Ages of between 60-80 ka have later 

been concluded by Forman (1999), Eccleshall (2013) and Eccleshall et al. (in prep.). 

 

5.5.7. Formation G – glacial overriding 

The uppermost glacial till in the sediment-sections is only sporadically preserved along 

the sections. While occurring only sporadically here, it is known to occur as much 

thicker diamicton in section further north (Mangerud and Svendsen, 1992). Its age is 

bracketed by the minimum and maximum ages of the marine sediments on top and 

below. Overall it is associated with the period around the Late Glacial Maximum where 

the Barents-Sea ice-sheet is believed to have extended all the way to the western shelf 

of Spitsbergen (Ingolfsson and Landvik, 2013). 
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5.5.8. Formation H – high relative sea level, local water masses 

The last regression-sequence is very thin in Section II compared to exposures further 

north. Again it progresses from a glacimarine environment, to sublittoral and finally 

littoral sedimentation. 

 

Formation H has been dated using both radiocarbon and luminescense-dating-

methods. A minimum age for the ultimate deglaciation is provided by radiocarbon ages, 

suggesting it occurred somewhere shortly before 11.2 cal ka BP (Mangerud and 

Svendsen, 1992; Mangerud et al., 1998).  

 

The foraminiferal fauna from the sample investigated in Formation H indicates a 

hydrological environment very similar to today with distal to intermediate glacial 

influence. The low diversity fauna and the near absence of warm-water indicator 

species (except very low frequencies of N. labradorica) suggest that there was no 

inflow of NAW to Billefjorden and/or that circulation with Isfjorden was limited. 

According to Mangerud and Svendsen (1992) the mollusk-fauna in Formation H is 

more diverse and several warm-water mollusk-taxa (i.e. Arctica islandica and M. 

edulis, Zirphea crispata). This is not consistent with the interpretation of the 

foraminiferal fauna as indicating a relatively cold environment. One possible 

explanation is that Formation H in section II represents only a short period at the onset 

of the Holocene. It is apparent that the sub-littoral sediments in Formation H are not 

younger than c. 7-8000 years from the radiocarbon ages (Mangerud and Svendsen, 

1992) in addition to the elevation of the sediments compared to the Holocene sea level 

curve (Forman et al., 2004) The onset of the Holocene Climatic Optimum is on 

Svalbard delimited between 8-5000 years (Hjort et al., 1995). It might be that in Section 

II this warmer period is not preserved, as opposed to in the much thicker sediment 

sections IV and V upfjord. 

 

5.6. Correlation to other key sites 

Miller et al. (1989) have described the foraminiferal fauna for the Leinstranda/Site 15 

sections on Western Spitsbergen. His foraminiferal Zone F15 V may be correlated on 
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the basis of numerical-dating to Formation B assuming an Eemian age (Alexanderson 

et al., 2010; Ingólfsson and Landvik, 2013). Compared to the other foraminiferal zones 

this fauna is described as having a high diversity of species, with several unique boreal 

taxa. Miller argued that this reflected a period of more vigorous NAW-influx than at 

present. In addition, the author also concludes that NAW was present at deglaciation, 

something also observed in Formation B. Increased influx of NAW was also concluded 

by Bergsten et al. (1998) for the lower part of unit A at Poolepynten on Prins Karls 

Forland. This unit was later subdivided into A1 and A2, in which A2 was correlated  to 

the Eemian-interglacial (Alexanderson et al., 2013). It wa Es also noted that the 

fauna during the early Holocene and also from recent samples was less meliorate than 

the Eemian-fauna. 

 

Foraminifera Zone F15 II and I at Leinstranda have been correlated to Formation F by 

Mangerud et al. (1998) and Ingólfsson and Landvik (2013). According to Miller et al. 

(1989) the foraminiferal fauna show some influence of NAW, but is overall similar to 

today. A similar conclusion was also made by Lycke et al. (1992) who failed to find any 

evidence for marked increase in NAW-influx during Weichselian interstadials at the 

Linnéelva sections. 

 

6. SUMMARY AND CONCLUSION 

The sedimentary stratigraphy from section II and III of the Kapp Ekholm have been re-

investigated. In summary four diamicton sequences (Formation A, C, E and F) have 

been identified and suggest periods where glaciers were significantly larger than today. 

These advances are associated with a pre-Eemian advance (most likely Saalian) and 

three stadial-advances during the last glacial period (Weichselian). The latest glacial 

advance is associated with the LGM advance although in section II and Section III it is 

only represented by a thin, discontinuous diamicton. 

 

Glacial periods are followed by periods of high relative sea level and marine 

sedimentation above present sea level. The marine sequences are overall regressive 

explained by falling sea-level and/or coastal progradation.  The regressive pattern of 
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the stratigraphy is in places interrupted by local slope-processes (including gravity 

flows and slumping) and also fluvial-progradation and spit-development. These are 

also contemporary processes that can be observed in the area today. Overall the 

sedimentary investigations confirm the original descriptions and interpretations by 

Mangerud and Svendsen (1992) of four preserved glacial-deglaciation cycles. The 

most conspicuous finding was a new clast-rich diamicton in Section II within sediments 

described as Formation F. The sediments, which is most likely glacial in origin, could 

provide a candidate for the “missing” glacial-deglacial cycle in section II. However, 

sedimentary observations suggest that this is a re-deposition of the glacial diamicton 

occurring below. This is supported by the foraminiferal fauna that do not change 

significantly in addition to age constrains leaving little room for another stadial advance 

in-between. 

 

The foraminiferal fauna from Formation B, Formation F and Formation H have been 

described and interpreted. Most of the species identified also occur in Billefjorden 

today and the fauna is generally of low diversity with 2 or 3 species dominating. This 

is consistent with a fjord that is overall dominated by cold, and often sediment-laden, 

glacial melt-water. An inhibited exchange of water-masses with Isfjorden results in a 

restricted circulation within the fjord and the hydrology is characterized by stratified 

water masses. 

 

The most notable exception to this is the lower half of Formation B which have high 

and consistent frequencies of the warm-water indicators N. auricula and N. labradorica. 

Their environmental preferences suggest that there was a significant exchange of 

Atlantic Water masses to Billefjorden. This inflow however, is not associated with any 

notable increase in diversity or other warm-water species and may suggest that inflow 

was seasonal. N. auricula and N. labradorica more or less disappear in the upper half 

of Formation B and is replaced by high frequencies of I. norcrossi. This species also 

occur in Billefjorden today and is associated with high and stable bottom-water salinity 

and is an indication that warm-water exchange between Isfjorden and Billefjorden has 

shut down. Also in Formation F and in Formation H there is no indication of increased 

Atlantic-Water exchange throughout.It is suggested here that Formation B, based on 
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changes in the foraminiferal fauna, may be correlated to the early Eemian transission. 

A period characterized by increased flow of warm water to the arctic regions due to 

enhanced AMOC. 

 

The Kapp Ekholm sections remain an important brick in the puzzle to resolve forcing 

factors on the disintegration of marine based ice sheets. The presence of NAW in the 

innermost fjord of Billefjorden was demonstrated with an integrated study of sediment 

and foraminifera environmental change during the deglaciation of the penultimate 

glaciation in the very early stage of the Eemian interglacial. 
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7. APPENDIX 

The following files are available on a compact disc (CD) attached to the paper version 

of this thesis. It contains the following files: 

1. Raw_count.xls 

Raw specimen count of foraminifera for each sample 

2. Species_list.xls 

List of genus and species of foraminifera identified 

3. Similarity_index_untrans.xls 

Bray-curtis similarity index for untransformed data 

4. Similarity_index_2root.xls  

Bray-curtis similarity index for square-root transformed data 

5. Similarity_index_4root.xls 

Bray-curtis similarity index for fourth-root transformed data  
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