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Segmentation-Driven Image Registration-
Application to 4D DCE-MRI Recordings

of the Moving Kidneys
Erlend Hodneland, Erik A. Hanson, Arvid Lundervold, Jan Modersitzki,

Eli Eikefjord, and Antonella Z. Munthe-Kaas

Abstract— Dynamic contrast enhanced magnetic resonance
imaging (DCE-MRI) of the kidneys requires proper motion cor-
rection and segmentation to enable an estimation of glomerular
filtration rate through pharmacokinetic modeling. Traditionally,
co-registration, segmentation, and pharmacokinetic modeling
have been applied sequentially as separate processing steps.
In this paper, a combined 4D model for simultaneous reg-
istration and segmentation of the whole kidney is presented.
To demonstrate the model in numerical experiments, we used
normalized gradients as data term in the registration and a
Mahalanobis distance from the time courses of the segmented
regions to a training set for supervised segmentation. By applying
this framework to an input consisting of 4D image time series,
we conduct simultaneous motion correction and two-region
segmentation into kidney and background. The potential of the
new approach is demonstrated on real DCE-MRI data from
ten healthy volunteers.

Index Terms— Image registration, image segmentation, active
contours, DCE-MRI, Mahalanobis distance, GFR.

I. INTRODUCTION

THE Glomerular Filtration Rate (GFR) is an important
parameter in the assessment of kidney dysfunction and

disease [53]. It is a measure of the volume of filtered fluid per
unit time from the blood pool in the glomerular capillaries to
the tubular space in Bowman’s capsule. A schematic overview
of a kidney is depicted in Fig. 1, showing cortex, medulla and
the pelvis. Low values of GFR are associated with kidney
dysfunction and renal disease. Serum creatinine is the most
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Fig. 1. The human kidney with anatomical compartments cortex, medulla and
pelvis. The filtration takes place in the cortical and juxta-medullary nephrons
of the kidney, regions for which voxel-wise GFR can be estimated. Left panel:
Coronal section and time frame from a DCE-MRI examination showing the
wash-in of contrast agent into the cortical region. Right panel: Anatomical
sketch of the kidney showing the different renal compartments as well as the
renal artery inlet (red), the renal vein outlet (blue), and the urinary outlet
(ureter). Courtesy to Silje Søviknes.

commonly used measure for GFR. Other and more accurate fil-
tration markers are Iohexol (serum clearance) and Inulin (uri-
nary clearance) for the total kidney GFR estimation. However,
none of these approaches permit voxel-wise assessment within
the kidney, or a differentiation of function (split-function)
between left and right kidney. On the other hand, MR renog-
raphy, based on intravenous injection of a contrast agent
and dynamic scanning over time using a fast T1-weighted
pulse sequence, offers the possibility to obtain voxel-wise
measurements of kidney function. In this respect, dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) is
an in vivo imaging method for measurement of physiological
parameters like perfusion, transfer rates, permeability-surface
products, and capillary leakage in normal and abnormal tissue
in a wide range of organs and disease processes. However, the
DCE-MRI approach for measurements of local or total renal
GFR is not yet available in clinical routine, due to lack of
accuracy and reproducibility [31]. This is probably attributable
to noise and MR artifacts in the acquisitions, organ motion,
inaccurate segmentation of the kidney compartments, inaccu-
racy in the mapping of signal into Gadolinium concentrations,
and shortcoming and instability of the applied pharmacokinetic

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see creativecommons.org/licenses/by/3.0/



HODNELAND et al.: SEGMENTATION-DRIVEN IMAGE REGISTRATION 2393

compartment models. Hence, the reliability and reproducibility
of the obtained GFR values can become unacceptably low if
the recorded data are not properly processed. Despite these
obstacles and challenges, DCE-MRI has a great potential to
become an important tool in the diagnosis, therapy planning,
and follow-up of patients with renal artery stenosis, renal
parenchymal disease, polycystic kidney disease, and kidney
graft rejection [53].

In an ideal setting, voxel-based GFR measurements from
DCE-MRI acquisitions would enable a tissue and site specific
analysis of kidney function. In practice, however, voxel-
based measurements are corrupted by lack of reliability in
at least three major processing steps: (i) registration (motion
correction of organ motion), (ii) segmentation (identification of
tissue compartments), and (iii) the establishment of a pharma-
cokinetic model. As a first step towards an integrated model,
we here attack the first two processing steps simultaneously,
registration and segmentation.

1) Registration: Proper registration is a critical step in the
processing chain, as uncorrected voxel displacements will
corrupt the voxel time courses. The motion artefacts are caused
by respiratory motion, intestinal peristalsis, cardiac pulsations,
or patient movement during data collection [32], [48]. In this
way, GFR estimates can become strongly biased or even inval-
idated [55]. To perform motion correction, affine registration
has been used by several authors [2], [9]. Affine registration
can also be used as an initialization step to a supplementary
deformable registration. Clearly, due to respiration there is a
significant local affine motion component directed along the
head-to-feat axis, as modelled in [40] and also observed in
our experiments (cf. Section IV-E.3). Still, there is also a
deformable motion component due to the elastic properties of
the kidney, deforming along with local geometric restrictions
in the proximate surroundings.

The model presented in this work is rather general and the
choice of data terms is basically open and not a topic for
discussion here. Still, an optimal data term is necessary in
order to obtain the best possible registration. In the literature,
deformable image registration of DCE-MRI time series for
estimation of GFR has mainly been accomplished using (nor-
malized) mutual information (N)MI [48], [52], [56], which
is regarded as a method-of-choice in multi modal registra-
tion [28], [49]. Normalized mutual information or mutual
information has also been applied in several recent method-
ological papers for co-registration of DCE-MRI time series
[27], [37], [48], although an optimal method has not yet
been settled [45]. Normally, the images contain durable edge
information between various tissue types, and also within the
kidney after the arrival of contrast agent. This phenomenon
favours the use of a gradient dependent cost functional for
registration. In recent work [14], [24] it was shown that
normalized gradient fields (NGF) was a viable alternative to
MI for the registration of DCE-MRI images. In this work, we
therefore incorporate a version of NGF [21], [35] as data term
for the registration task.

2) Segmentation: The task of segmenting the kidney in
DCE-MRI recordings has taken several approaches [57].
Manual delineation performed by an expert is potentially accu-

rate, but also highly subjective and time consuming in contrast
to automated methods [41]. Automated segmentation methods
employing k-means clustering [56] and k-nearest neighbor
classification [25] have been proposed. For these methods the
signal intensities in time are used as a high-dimensional feature
vector in each voxel. The advantage of these approaches is that
the classification of a tissue voxel is based on the actual tissue
response to the bolus wash-in and wash-out. Alternatively,
active contours [1] and related methods employing region and
boundary properties in combination with shape constraints [3]
have been used. In this work, we apply the temporal tissue
response and minimal boundary length as shape information
for the segmentation.

3) Compartment Modeling: Renal filtration, mainly taking
place in the renal cortex, can be estimated using compart-
ment models within a defined segmentation of the kidney
[4], [45], [46]. The compartment time series are then fed
into the chosen pharmacokinetic model, producing voxel-
wise parameters that best match the data. Compartment-
wise parameters can be obtained summing up the voxel-wise
contributions over the whole compartment. A valid estima-
tion of GFR thus depends on a successful registration and
segmentation, which are the critical steps in the processing
chain.

4) Combined Registation and Segmentation: A significant
portion of the disagreements between DCE-MRI estimated
and iohexol-estimated GFR can originate from at least three
of the above mentioned processing steps that are executed
separately [31]: registration, segmentation, and compartment
modeling. Errors occurring in one step are propagated to
the next, not being adjusted or compensated for since the
steps are essentially uncoupled. This is the major motiva-
tion for our proposed method, a combined registration and
segmentation where the segmentation has a feedback term
in the registration, thus assisting towards a more consistent
alignment of time points. Several works in other reseach
areas report that a combined segmentation and registration
improves the overall performance compared to a sequential
processing [15], [17], [51].

Yezzi et al. [51] introduced the idea of coupling the registra-
tion and segmentation in a framework of active contours. Seg-
mentations of the input and target image combined with a joint
affine registration were used to improve both the registration
and segmentation accuracy of 2D images. Their method was
not suited to incorporate non-affine deformations in the regis-
tration part due to the linearity. In numerous publications [15],
[17], [20], [36], [42], an inital segmentation is assumed, and
this prior information is used to guide a combined registration
and segmentation of either the input or the reference image,
depending on the application. Thereby, the input and reference
images are matched along the curve enclosing the segmented
region and the rest of the image is deformed according
to the regularization of the deformation field. In some of
these publications an additional image similarity measure was
applied, usually the sum-of-squared differences (SSD) [15],
[42]. A combined segmentation/registration expressed in a seg-
mentation framework is particularly advantageous in the pres-
ence of an atlas ground truth. Iterative, sequential approaches
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were also used in [43] and [54] for a serial registration and
segmentation.

In our proposed model for registration/segmentation, we
explore the idea from Yezzi et al. [51] and suggest to exe-
cute the registration jointly with the segmentation, and not
iteratively or sequentially as in [43] and [54]. We define the
optimization problem directly within a common variational
framework, solving for both the registration and segmentation
simultaneously, and coupling the registration/segmentation via
the segmentation term. Thus, the registration becomes directly
segmentation-driven within the cost functional, favoring a dis-
placement field consistent with an improved spatio-temporal
separation of various tissue or compartments. Hence, we
assume that the temporal signal response is similar within
the same tissue or compartment type, or pathophysiological
condition. Unlike the approach in [51] we also include a
classical image registration data term in order to incorpo-
rate image information away from the segmentation bound-
aries. As a major difference to the methods depending on
a prior segmentation, we use a time-normalized, continuous
Mahalanobis distance to a training set.

To the best of our knowledge, our described application
is novel and represents a new approach to quantitative MRI
renography. We claim to represent the first work exploring
the Mahalanobis distance and a training set for a 4D joint
registration and segmentation, in particular for artifact and
noise loaded DCE-MRI images. Thus, this work represents
a major step towards an integrated model with combined
registration, segmentation and compartment modeling, and
can further be extended towards model-driven deformable
registration in DCE-MRI processing [2], [9], [22].

In the following, we first describe our combined model
for registration and segmentation. Then, we show experimen-
tal results from ten different kidney DCE-MRI time series
recorded in healthy volunteers, and finally, we discuss the
proposed method and future perspectives.

II. METHODS

A. Mathematical Framework and Problem Formulation

The DCE-MRI times series are 4D data sets mapping from
time and space into positive and real intensity scalar values
f : R3×R→ R. Denote the the whole time series as the input
image f (x, t) for Lagrangian coordinates x . The reference
image fr can be any selected 3D image in the discrete time
series, fr (x) = f (x, tr ), tr ∈ Td , where Td = {t1, t2, . . . , tn}
is the set of discrete time points for image acquisition, Td ⊂
T, T = {t ∈ R : t1 ≤ t ≤ tn}. A single selected time frame
after bolus arrivel was chosen as the reference image.

For deformable registration, the aim is to find a voxelwise
deformation field u : R

3 × R → R
3 such that the time

series is optimally aligned for all voxels along all time points.
The registration of DCE-MRI times series is a 4D (space
and time) registration problem with respect to data, but a
3D optimization problem. The reason for this discrepancy is
the assumption that the data are sampled on discrete time
points, hence there should be no transport of information along
the time axis. All motion artifacts are therefore assumed to

Fig. 2. Schematically visualized segmented regions �1 and �2 representing
background and kidney, respectively. Manually given 2D training set regions
M1 and M2 are also indicated, which are used to create a training set of
typical time courses for each partition �i , guiding the segmentation towards
the desired solution. Each training set region Mi must be placed well inside
the expected �i with a minimum distance to the region boundary of umax
such that umax = max∂ Mi |u|. After segmentation we observe that Mi ⊂ �i ,
although this is not mathematically guaranteed.

be spatial. Following the approach of [35], the registration
of frame f (x, t) to the reference can be phrased as an
optimization problem. The overall goal is to find a minimizer u
of a cost functional J where

J (u) =
∫

T

∫
�

D( f (x + u, t), fr (x))+ R(u)dxdt (1)

and where D is the data term and R is the regularization [34].
The data term attempts to align the input image with the
target image by maximizing a similarity measure between
those, for instance mutual information, normalized gradients,
cross correlation or least squares [34]. Registration is an ill-
posed problem and the regularization terms are required to
ensure a sufficiently smooth deformation field by penalizing
spatially large and strongly varying deformations [18]. The
minimization of (1) produces as output a deformation field
maximizing the similarity measure of choice.

The overall aim of the analysis is to compute GFR values
within the kidney, and a segmentation of the kidney is there-
fore useful to have. In this respect, we add a minimization
term for a two-region segmentation, with the potential to dis-
tinguish kidney from non-kidney tissue using temporal image
information as features. A spatial map d(x, Mi ) is defined,
reflecting the deviation between the time series f (x, t) and the
time series within a training set region Mi , i = 1, 2. A voxel x
will be assigned to region �i such that the cost d(x, Mi ) will
be the smallest, i.e. i = argmin j (d(x, M j )) for j = 1, 2. An
example of sets Mi associated with the partitioning �1 and �2
is displayed in Fig. 2. For such segmentation task we consider
a two-region Potts model [39] for segmentation of the image
domain �,

min
�1,�2

S(�1,�2),

S(�1,�2) =
∫

�1

d(x, M1)
2dx +

∫
�2

d(x, M2)
2dx + α|�|

such that �1 ∪�2 = �, �1 ∩�2 = ∅ (2)

The length of the common boundary of �1 and �2 is
denoted |�| = |∂�1 ∩ ∂�2|. Due to the boundary term, this
model favours segmentation with ‘tight’ boundaries and little
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oscillations [39]. The weight of the constraint is controlled
by the parameter α ≥ 0. A higher value of α will reduce
the curve length |�| and create a smoother boundary between
�1 and �2. The construction of (2) ensures no vacuum or
overlap between the segmented regions.

We now combine equations (1) and (2) into a single cost
functional for minimization, J (u) + S(�1,�2). In order to
obtain a segmentation driven registration we also make the
replacement

d(x, Mi )→ d(x + u, Mi ), (3)

thus coupling the registration with the segmentation via the
deformation field u. A special property of this model is that
the registration will be driven not only by the data and regu-
larization term as in (1), but also from the segmentation, thus
favouring displacements maximizing the similarity between
time curves within the same segment. This is justified since
functionally related biological tissue is likely to exhibit similar
intensity profiles.

B. The Unconstrained Problem

The unconstrained optimization problem is achieved by
using a level set method for the segmentation and by intro-
ducing binary indicator functions for the user-defined segmen-
tation regions. Let φ : R

3 → R be a level set function,
as in the Chan-Vese method [10]. The segments, which are
separated by �, are represented by a zero-thresholding of φ,
�1 = {x : φ(x) > 0}, �2 = {x : φ(x) < 0}. Thus, there
is no overlap between the regions, and every x ∈ � belongs
to a segment �i , i = 1, 2 or to their common boundary, as
required. An unconstrained formulation of the segmentation
energy in (2) in combination with the coupling term in (3)
can be expressed as

S(u, φ) =
∫

�
H (φ)d(x + u, M1)

2

+ (1− H (φ))d(x + u, M2)
2dx + α|�| (4)

where H (φ) is the Heaviside function. The constraints of no
vacuum and no overlap between the regions are now implicitly
entangled into the integral.

A minimization of (4) with respect to u and φ attempts
to minimize d(x + u, Mi )

2 within each segment by two
means. First, by dislocating �, and second, by moving the grid
in u. The latter effect is the segmentation-driven registration.
However, it has potentially undesired effects by seeking a
maximum likelihood between the training set and the voxel
time course at every voxel. This will favour voxels that are
highly similar to the training set, and the deformation field will
try to expand these regions at the expense of voxels with less
similarity. Fairly large deformations far from �, in particular
volume changes, can thereby occur. A segmentation-driven
deformation at a great distance from � will not affect the seg-
ment association of a voxel, and is therefore undesirable. Our
aim with the segmentation-driven registration is to have the
largest effects locally around �, in order to better distinguish
between kidney and non-kidney tissue. Therefore, to promote
deformations around �, in other words where φ is close to

zero, we divide by |φ| in (4). To ensure numerical stability
we approximate |φ| ≈ √

φ2 + ε2, and a new version of (4)
becomes

S(u, φ) =
∫

�

H (φ)√
φ2 + ε2

d(x + u, M1)
2

+ (1− H (φ))√
φ2 + ε2

d(x + u, M2)
2dx + α|�| (5)

for a small ε > 0.

C. Boundary Regularization

In line with the literature [47], we consider a regularization
on φ by the means of a minimization of the total variation
|∇φ| of the level set function. We reformulate the boundary
regularization as

|�| =
∫

�

√
|∇φ|2 + ε2dx . (6)

The parameter ε is set globally as small as possible to preserve
accuracy, and as large as necessary to ensure numerical
stability. In our experiments we used the same value of ε
in (5) and (6). The gradient has been embedded into a convex
function to ensure stability for a sufficiently large ε and to
avoid a singular gradient in the Euler equation for |∇φ| = 0.
Minimizing the total variation

√|∇φ|2 + ε2 results in mean
curvature motion by minimizing the curve length of the level
set function.

D. Data and Regularization Terms

The choice of data term D(u) in the cost functional (1)
is not trivial. In literature, several data terms have been
applied for registration of DCE-MRI time series. Mutual
information (MI), or its normalized version (NMI), is the
most frequently used data term [27], [37], [48], [52], [56],
but also cross correlation [16], [30] and gradient depending
cost functionals [38] have been applied. Mutual information
is highly nonlinear and also computationally demanding. The
wash-in and wash-out is a challenging phenomenon for mutual
information where a range of intensities in the input image
must match a much smaller intensity range in the target
image, thus blurring the joint histogram. The DCE-MRI time
series exhibit strong edges upon wash-in and wash-out of
bolus, thus registration is intrinsically multi modal within the
kidney and mono modal outside. This suggests the use of
normalized gradients proposed by Haber and Modersitzki [21]:
The cost functional is minimized when the gradients are
aligned or co-aligned and is essentially intensity independent.
Mathematically, the normalized gradients are defined as

∇̃ f = ∇ f√||∇ f ||2 + η2
. (7)

The edge parameter η should be tuned in the range of gradients
of major image features. The cost functional D for NGF reads

D(u) =
∫

T

∫
�

1− (∇̃ f (x + u, t) · ∇̃ fr )
2dxdt . (8)
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For the regularization term we choose the linear, elastic
regularizer [34]

R(u) = μ

4

3∑
i, j

(
∂u j

∂xi
+ ∂ui

∂x j

)2

+ λ

2
(∇ · u)2 (9)

with the Lamé constants λ,μ. This choice of R(u) results
upon differentiation in the Navier-Lamé equations of elasticity.
Thus, the registration process can be regarded as a deforming,
compressible continuum.

E. Distance Metric for Segmentation

The distance metric d(x, Mi ) represents the similarity of
time series between a voxel x and the time series defined by a
training set Mi . An intuitive choice of the cost d(x, Mi ) used
in the segmentation is the squared Euclidean distance in the
space spanned by the sampled time points,

d E (x, Mi )
2 =

∫
T
( f (x, t)− μ(t;Mi ))

2dt, i = 1, 2, (10)

where the average within training set i is given by μ : R→ R

μ(t;Mi ) = 1

|Mi |
∫

Mi

f (y, t)dy. (11)

The Euclidean distance is isotropic. Therefore, when a seg-
ment consists of a large number of different tissue types with
highly varying intensity profiles, we expect the feature space
to have a highly anisotropic structure, and thus the Euclidean
distance in not well suited.

In order to deal with this problem one can use the more
general Mahalanobis distance [29]. This distance is normally
stated in a discrete framework measuring the distance between
a vector and a matrix representing a n-dimensional (training)
set of data A = [a j,k]m×n with average vector μ̃ = [μ̃k]n×1

μ̃k := 1

N

N∑
j=1

a j,k .

for N voxels in the training mask. For A, the rows are the
voxels in the training set, and the columns represent the
various time points. The Mahalanobis distance between an
arbitrary m-dimensional vector x̃ and the set A is defined as

d̃ M (z̃, A)2 = (z̃ − μ̃)T 
̃−1(z̃ − μ̃) (12)

where 
̃ is the covariance matrix of A, with each element
containing the covariance between column i and j in A.

̃ is therefore symmetric and positive semi-definite. The
role of 
̃ is to transform the difference between the feature
vector z̃ and μ̃ to an ellipsoid with principal axes along
the eigenvectors of 
̃. Using this transformation, any feature
vector z̃ on the ellipsoid has the same distance from the set A,
although the Euclidean distance can vary significantly. Note
that if 
̃ is the identity, the Mahalanobis distance reduces
to the normalized Euclidean distance, while, for 
̃ not the
identity, the Mahalanobis distance measure will better reflect
the distribution, orientation and variance of the underlying
data. When the difference between two feature points is small,
the covariance matrix becomes singular and the existence

of the inverse is therefore not guaranteed. In this case, the
Moore-Penrose pseudoinverse 
̃−1 → 
̃+, computed by the
singular value decomposition of 
̃, is applied instead [19].

The 2D training masks Mi , i = 1, 2 in the DCE-MRI data
are initialized by the user prior to numerical optimization.
These domains are drawn manually in 2D (as a 3D delineation
would be a lot more labor intensive) on the reference image fr .
Notably, Mi do not require accurate initiations, but each
domain must reflect the amount of various main tissue types
that should end up in the corresponding segment after numer-
ical optimization. Define r(x, t;Mi ) := f (x, t) − μ(t;Mi ).
In a continuous framework the normalized and squared
Mahalanobis distance d M (x;Mi )

2 from the time curves of x
to the time curves in a training data set defined within Mi can
be reformulated as

d M (x;Mi )
2

= 1

|T |2
∫

T

∫
T

r(x, t;Mi )

+(t, τ ;Mi )r(x, τ ;Mi )dτdt (13)

where the covariance function 
 : R2 → R


(t, τ ;Mi ) = 1

|Mi |
∫

Mi

r(x, t;Mi )r(x, τ ;Mi )dx, i = 1, 2

has a pseudoinverse 
+ [7]. The discretized version of the
pseudoinverse 
+ is the Moore-Penrose pseudoinverse. The
normalization constant |T |2 is added to ensure global and
consistent parameter settings of β across time series of various
extent in time. As an approximation, 
(t, τ ;Mi ) and μ(t, Mi )
are not functions of u, since the covariance is assumed to
remain almost constant during iterations (cf. Appendix B-C).
Combining the registration functional in (1) with the segmenta-
tion functional in (4) and by letting d(x;Mi )

2 ← d M (x;Mi )
2

results in the final normalized Mahalanobis distance driven
registration model

J RegSeg

=
∫

T

∫
�

D(u)+R(u)dxdtβ
∫

�

H (φ)√
φ2+ε2

d(x + u, M1)
2

+ (1−H (φ))√
φ2+ε2

d(x + u, M2)
2dx + α

∫
�

√
|∇φ|2+ε2dx .

(14)

where β is a user-defined weight for the segmentation term.
The derivation of the Euler-Lagrange equations for (14) is
shown in Appendix A.

III. NUMERICAL IMPLEMENTATION

Numerical issues are not a major focus of this work,
and a specific choice of implementation model was applied
to demonstrate the usefulness of the model. The domain
was discretized as xi, j,k = (ihx , jhy, khz) for all i =
{1, . . . , nx }, j = {1, . . . , ny}, k = {1, . . . , nz} where
nx , ny, nz are the number of voxels in the three main coor-
dinate directions. The spatial derivative of a function f
was approximated either by central (Dc), forward (D+) or
backward (D−) differences. The Euler-Lagrange equations to
solve are given by (24). Note that b(u, φ) is not depending
on u and φ through a differential operator, and is therefore
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applied on the right hand side. Upon discretization, the first
three elements of (24) are linear in ui, j,k and can be solved
by a linear system. However, for easy implementation of
Neumann boundary conditions ∂ui/∂xi = 0, fixed point
iterations (nonlinear Jacobi) were used instead. Each of the
discretized components in u were isolated on the left hand side
and updated by fixed point iterations in a multigrid framework
using FAS (Full Approximation Scheme) [8].

The functional derivative with respect to φ can be found
as the fourth component of (24) [5], and was solved using an
explicit scheme. Introducing an artificial time τ , solving the
fourth component of the stationary equation in (24) for φ is
equivalent to solving the time-dependent PDE

∂φ

∂τ
= −α∇ ·

(
∇φ√|∇φ| + ε2

)
+ b4 (15)

to steady state. A discretization leads to the explicit scheme

φk+1 = φk −
τ

[
α

(
Dx−

(
Dx+φn+1

i, j,k

an
i, j,k

)

+Dy
−

(
Dy
+φn+1

i, j,k

an
i, j,k

)
+ Dz−

(
Dz+φn+1

i, j,k

an
i, j,k

))
− b(4)

i, j,k

]

when defining an
i, j,k :=

√
|Dx

c φn
i, j,k |2 + ε2. For each fixed

point iteration on u, this was solved to steady state using

τ = 10−4. Thus, this becomes a procedure for numerical
splitting, sequentially solving for u and φ within each fixed
point iteration.

IV. EXPERIMENTAL RESULTS

A. Imaging Data

The DCE-MRI recordings were acquired in collaboration
with radiologists and MR physicists at the Department of
Radiology, Haukeland University Hospital, Bergen. For testing
and evaluation of our combined registration and segmen-
tation model, we used ten DCE-MRI datasets acquired on
a 1.5 Tesla MR-scanner (Avanto, Siemens). A breath-hold
T1-weighted 3D single gradient recall echo (GRE) FLASH3D
pulse sequence was used to obtain signal-intensity time curves
after administration of a small dose (2 ml) of a Gadolinium-
based contrast agent intravenously. For GFR calculations one
has to estimate the Gadolinium concentrations [Gd]. They are
nonlinearly related to the observed signal intensities, but can
be estimated by voxelwise measurements of the pre-contrast
relaxation rate R1, since the relation between R1 and [Gd]
is linear for low [Gd]. The acquisition parameters for all
examinations were TR/TE/FA = 2.41ms/0.87ms/12◦, matrix
size = 256 × 256, FOV = 425mm, voxelsize = 1.66 ×
1.66 × 3mm3, and number of time points = 55. Dotarem was
used as a contrast agent. The participants were healthy, adult
volunteers who had given their written consent. In order to
have a gold standard for comparison of GFR we also measured
the blood clearance of Iohexol for all subjects [6]. The Iohexol
measurements were performed several days apart from the
MRI measurements due to practical arrangements.

B. Preprocessing of the Images

An affine registration using FSL’s MCFLIRT [44] was
performed prior to elastic registration in order to account for a
majority of motion artifacts from strong breathing. In order to
keep the inflow artefacts to a minimum, the arterial input func-
tion (AIF) was manually selected as a distally placed 2D ROI.
The mask for the AIF and the training masks for segmentation
were drawn in 2D using FSL’s FSLVIEW [44]. The same
AIF was applied for both left and right kidney within a subject.
The manually drawn training masks M1 and M2 were created
within a few seconds for both kidney and background.

C. Settings

We used the following global parameter settings for all
subjects: μ = 1, λ = 5 (Lamé constants in the Navier-Lamé
operator), η = 0.03 (edge term in normalized gradients),
α = 1 (boundary regularization) and β = 10 (the segmentation
weight). Various settings of β = {1, 5, 10, 20} were explored
(not reported for β = 1, 5, 20) and β = 10 had the overall
best performance among those settings. The Lamé constants
were approximated for soft tissue and bone [50]. The number
of multilevels in the multigrid was three with a scaling factor
of 1/2 between each level.

D. Evaluation

The experimental part was executed using five different
experimental setups:

(a) Unprocessed images.
(b) Affine registration using FSL’s MCFLIRT.
(c) An initial registration (β = 0) with NGF as cost func-

tional followed by a plain segmentation (β = 10) dis-
carding D(u), R(u). This setup represents a traditional,
sequential approach for analyzing DCE-MRI images, here
referred to as the Sequential model.

(d) Our suggested model with combined registration and
segmentation, using β = 10 and NGF as cost function
in D(u). This approach is referred to as RegSeg.

(e) Only the segmentation functional and the linear elasticity
terms, thus excluding D(u) in (14). By this approach
we want to demonstrate that the squared Mahalanobis
distance in (13) has the potential to act as an independent
cost function for co-registration of time series. This setup
is referred to as Seg, since the only driving force on
the deformation field u originates from the segmentation
functional.

We use several measures for evaluation of the pro-
posed method: (i) A visual quality check of the segmented
tissue. (ii) Kidney volumes for (c), (d) and (e) related
to manual segmentation. (iii) Smoothness of time curves.
(iv) Sum-of-squared differences (SSD) of a compartment
model to the signal intensity curves within the kidney. The
latter two criteria have been used in several related publi-
cations for evaluation of co-registration of DCE-MRI image
time series, and they are in this respect considered as a gold
standard for peformance evaluation [2], [22], [30], [33], [48].
The temporal smoothness (iii) as an evaluation criteria is based
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Fig. 3. (Color online) Presentation of images of subjects four, five and six. Left to right: Time instance at pre-, and max-enhancing phase, manually delineated
training masks for kidney (background training masks were painted in a lower section), and the overlay of the obtained whole kidney segmentation with
the reference image (red, closed curve) using the Sequential and RegSeg model, respectively. Top to bottom: Subjects 1 − 3. Both the Sequential model
and RegSeg capture the kidney volume, as seen by the red curves in the last two columns. An accurate, manual delineation in 3D is time consuming and
demanding with respect to human resources, and is preferably avoided in a clinical perspective. Therefore, the manual initialization is restricted to 2D whereas
the final segmentation generates a full 3D volume.

on the assumption that a poor registration is associated with
oscillatory time curves. The temporal smoothness of the time
curves, here denoted s, was computed by

s = 1

|�||T |
∫

T

∫
�

∣∣∣∣∂ f (x + u, t)

∂ t

∣∣∣∣ dtdx . (16)

For evaluation in (iv) we implemented the two-compartment
model in [4] and [46]. Among the five obtained compartment
model parameters described in Sourbron et. al [46], we here
only report the MR-GFR value (referred to as FT in [46]). This
is because GFR is the only parameter that can be properly val-
idated, as it can be compared with the Iohexol measurements.
In the compartment modeling we utilize estimated Gadolinium
concentrations based on signal intensity maps of various flip
angles for estimation of R1 relaxation rates [12], [45]. The
processing time for registration was approximately three hours
for a full 4D data set for the Sequential model, and around
four hours for RegSeg and Seg.

In order to evaluate the goodnesss of the automatic segmen-
tation we conducted a full kidney segmentation (ii) of both
kidneys in all subjects by manual expert delineation (E.E.).
The overlap between the manual segmentation and the auto-
mated segmentations was measured as described in [23]. For
this approach the goodness of segmentation p for a manually

segmented ROI Rm and an automatically segmented ROI Ra is
expressed as

p = Rm ∩ Ra

Rm ∪ Ra
. (17)

For a perfect overlap, p = 1 and for no overlap p = 0.

E. Results

1) The RegSeg Model Provides a 3D Segmentation of the
Kidney: The input data for various enhancement regions,
the corresponding manual training masks and the segmen-
tations for the Sequential and RegSeg model are visualized
in Fig. 3 for three subjects. The segmented kidneys using
the Sequential model and RegSeg are outlined by the red,
closed curves shown in the second last and last column of
Fig. 3, respectively. The combined RegSeg model is able to
effectuate a smooth and regularized 3D kidney segmentation
for all subjects based on the 2D training masks. A section-
wise representation of the 3D segmentation of one data set is
shown in Fig. 4 for the proposed RegSeg method. Although the
training masks are constructed in 2D the final segmentation is
well transferred to 3D. The cost function of RegSeg decreased
exponentially with iterations.
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Fig. 4. A 2D planewise visualization of a 3D kidney segmentation of subject one, visualized for every second plane from plane 7 to 26. Upper row:
Unprocessed data. Lower row: The 3D segmentation (white) as well as the 2D training masks for kidney and background (gray). The coarse 2D initialization
transfers well into a full 3D segmentation.

TABLE I

SEGMENTATION EVALUATION OF THE AUTOMATIC SEGMENTATION

VERSUS MANUAL SEGMENTATION. THE SEGMENTATION QUALITY OF

THE SEQUENTIAL MODEL, REGSEG, AND SEG IS HERE MEASURED BY

p IN (17). THE INTERSECTION OF THE MANUAL AND AUTOMATED

SEGMENTATION COVERED BETWEEN 71.9% AND 73.4% OF THE

UNION OF AUTOMATED AND MANUAL SEGMENTATION. THE

SEQUENTIAL MODEL HAD A SLIGHLTY HIGHER SUCCESS

RATE THAN REGSEG AND SEG, BUT THIS DIFFERENCE

WAS NOT STATISTICALLY SIGNIFICANT

2) The Segmentation Quality of the Sequential Model and
RegSeg Is Similar: The whole kidney volumes of the left
and right kidney were computed using the Sequential model,
RegSeg, Seg, and manual segmentation, and we obtained
average volumes of (mean± SE) 163.7±7.2ml,156.9±7.8ml,
156.8±7.8ml and 193.3±8.4ml, respectively. According to the
segmentation evaluation term in (17), the segmentation quality
of the Sequential model and RegSeg was statistically equal,
as reported in Table I (paired t-test, p = 0.095).

3) RegSeg Has the Highest Deformation Field: RegSeg
has a statistically significantly higher average displacement
field (paired t-test, p < 10−3). The average displacement
fields were 1.971mm, 0.701mm, 0.733mm, and 0.164mm for
affine registration, the Sequential model, RegSeg and Seg,
respectively.

4) RegSeg Has Smoother Time Curves in All Subjects:
The average, temporal variation s of the time curves was

TABLE II

AVERAGE TEMPORAL VARIATION s APPLYING (16). REGSEG HAS A

STATISTICALLY SIGNIFICANT LOWER TEMPORAL VARIATION COMPARED

TO THE SEQUENTIAL MODEL. THIS RESULT IS A STRONG INDICATION

OF IMPROVED REGISTRATION ACCURACY OF REGSEG COMPARED

TO THE SEQUENTIAL MODEL. NOTE THAT THE MINIMUM

TEMPORAL VARIATION IN DCE-MRI WILL NEVER

GET CLOSE TO ZERO DUE TO THE USAGE OF A

CONTRAST AGENT AND THE PRESENCE

OF MR ARTEFACTS AND NOISE

estimated by (16) for unprocessed and affine registered data,
the Sequential model, RegSeg, and for Seg. There was a
statistically significant reduction of temporal variation from
the Sequential model to RegSeg, as reported in Table II
(paired t-test, p < 10−5). The discrepancy of time curves
between various registration methods is apparent also visually
(c.f. Fig. 5).

5) The Compartment Model in RegSeg Has a Better Fit to
the Underlying Data: The sum-of-squared differences (SSD)
between the observed time curves and the compartment model
within each segmented kidney is reported in Table III, showing
that RegSeg has on average the lowest SSD, followed by the
Sequential model, Seg, affine registration, and unprocessed
data in increasing order. The difference between the Sequential
model and RegSeg was statistically significant (paired t-test,
p < 10−4).

6) RegSeg Has a Better Estimation of GFR as Measured by
Iohexol Clearance: RegSeg has a smaller MR-GFR deviation
to the Iohexol measurements than any of the other methods,
as reported int Table IV, although this deviation was not
statistical significant (paired t-test, p = 0.36).
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Fig. 5. Average Gadolinium (mmol/L) time curve within left and right kidney
for unprocessed data, affine registration, the Sequential model, RegSeg, and
Seg in the breath-hold sequence of subject five. Clearly, the curve evolution
is depending on the type of registration. The localization and amplitude of the
discrepancy are not fixed between subjects and vary significantly (not shown).
Sampled time points (o) are linearly interpolated for visualization purposes.

TABLE III

AVERAGE SUM-OF-SQUARED (SSD) DIFFERENCES BETWEEN THE

COMPARTMENT MODEL IN [46] AND THE OBSERVED DATA FOR

LEFT AND RIGHT KIDNEY. THE DEVIATION BETWEEN THE

MODEL AND THE DATA IS ON AVERAGE THE LOWEST FOR

REGSEG. SIGNAL INTENSITY VALUES ARE IN [GD]

V. DISCUSSION

A novel method for segmentation-driven registration of
4D DCE-MRI acquisitions has been introduced in this work.
Our method differs from previous work mainly by coupling
4D registration and segmentation into a variational frame-
work, rather than applying sequential iterations of registration
and segmentation until convergence. The method does not
require an accurate initialization of the segmentation. Instead,
a coarse training set is used, from which the Mahalanobis

TABLE IV

ESTIMATED GFR (ml/min) FOR THE SUBJECTS INCLUDED IN THE STUDY.

THE OBTAINED MR-GFR VALUES WERE COMPARED TO IOHEXOL-GFR,

USED AS A GOLD STANDARD. THE AVERAGE, ABSOLUTE DEVIATION

TO IOHEXOL-GFR IS REPORTED IN THE LOWER ROW, SHOWING

THAT REGSEG HAS THE SMALLEST AVERAGE DEVIATION,

ALTHOUGH THIS WAS NOT STATISTICALLY SIGNIFICANT

distance to the training masks is computed to guide the actual
segmentation problem. Unlike earlier attempts on combined
registration/segmentation, our model contains a classical
image registration data term and will therefore be driven by
spatial information both at the boundaries of the segmented
objects, as well as in the rest of the image. The performance of
the method has been explored on ten DCE-MRI datasets using
the proposed RegSeg model implying 4D registration and
3D segmentation. For all datasets the segmentation of the
kidneys performed well visually (cf. Figs. 3–4).

We observed a small, but significant increase of the dis-
placement field between RegSeg and the Sequential model.
We assume that this increase is due to complementary, time-
course related information contained in the segmentation term,
which is not fully detected by the edge-sensitive normalized
gradient fields. Moreover, Seg had by far the lowest deforma-
tion field. This is due to lack of a traditional data term, but can
also be accounted for by the lack of a target image. The image
time series are therefore free to align at the overall minimum
deformation field.

The average segmentation quality was between
71.9–73.4% for the Sequential model, RegSeg and Seg
in the comparison to manual segmentation (cf. Table I). This
is a high success rate in light of the results from repeated
renal segmentation reported in Giovanni Di Leo et al. [26],
where it was demonstrated an intraobserver reproducibility
at 95% and interobserver variability of 87–88% between
manual observers. For most of our subjects, RegSeg resulted
in slightly lower kidney volume. The reason for this reduction
is unclear, but it can originate from a stronger regularization
effect compared to the Sequential model. On the other hand,
statistically there was no difference between the Sequential
model and RegSeg in terms of segmentation accuracy.
A larger sample is needed in order to make firm conclusions
about possible effects of RegSeg on kidney segmentation,
and based on the current data we can not claim that RegSeg
provided an improved segmentation. However, there exist
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numerous highly specialized methods for two- or multi-region
segmentation, which could most likely provide an improved
segmentation of the kidney compared to our approach.
Therefore, we claim that the RegSeg approach is basically
optimized to improve the registration time-courses and not
targeted on the task of optimized segmentation. A separate and
highly accurate segmentation procedure based on specialized
algorithms for kidney segmentation could be applied after the
completion of RegSeg.

We also observed smoother time curves for RegSeg
(cf. Table II), and the average deviation between a com-
partment model and the measured data was the smallest for
RegSeg (cf. Table III). These two observations indicate that
RegSeg has better performance than the Sequential model by
feeding dynamic time-coarse information into the registration
machinery and thereby creating smoother time curves.

For the MR-GFR measurements we obtained the smallest
deviance to Iohexol using RegSeg, where the average deviance
was in the order of 20%. These results are fairly good
in light of results from repeated investigations of Iohexol-
measured GFR in subjects with normal renal function, where
the total variation was shown to be around 11% [13]. Most
of this variation is probably due to biological variation, e.g.
due to sampling at different time points. Thus, a significant
portion of our observed deviance between Iohexol-GFR and
MR-GFR can be accounted for by an actual change in renal
filtration. Another significant source of deviation in the GFR
measurements is probably inflow artifacts of the AIF [45],
reflecting image acquisition quality and thus is unrelated to
the segmentation/registration problem.

Traditionally, the registration of DCE-MRI time series is
separated from anatomical image segmentation. Some studies,
however, have reported a registration procedure that incorpo-
rates a temporal smoothness constraint on the obtained time
curves. This has been accomplished in terms of a least squares
fitting of the recorded time courses to a parameterized solution
of a pharmacokinetic multi-compartment model [2], [9], [22].
Our model is related to those studies by introducing another
data term into the registration, sensitive to temporal dynamics.
However, instead of using a criterion of small deviation
between data and model, our registration is driven by the cri-
terion of consistent segmentation according to a segmentation
model. In the context of the ill-posed registration problem, the
use of such penalizing term can guide the registration process
towards an admissible displacement field that is anatomically
plausible. We claim that this process is driven by anatomical
features and physiological properties since voxels of similar
tissue have the highest temporal similarity in response to the
contrast agent. This assumption is reasonable since similar
tissue also has similar function, physiological role, anatomical
structure and metabolism, which can be the reason for the
observed improvements in RegSeg compared to the Sequential
model.

An interesting feature about our RegSeg model is the
possibility to integrate a model-driven registration algorithm
within the renal compartments [2], [9], [22]. By such construct,
a comprehensive and deformable ’RegSegFilt’ model could be
obtained, where the registration, segmentation and pharma-

cokinetic compartment model for the glomerular filtration is
imbedded into one optimization algorithm. Such approach will
likely be less prone to errors due to internal feedback control
mechanisms between the various components of the algo-
rithm, compared to the sequential registration-segmentation-
pharmacokinetics steps that are normally conducted.

VI. CONCLUSION

We have presented a novel method for combined registration
and segmentation, applicable to 4D DCE-MRI acquisitions
of the moving human kidney. The segmentation term affects
the registration by enforcing time course similarity of voxels
inside and outside the kidney. Using time series data from
ten different DCE-MRI examinations we have demonstrated
plausible and promising results, in particular related to the
smoothness of the voxel time courses and small deviance to
Iohexol-measured GFR. We conclude that our segmentation-
driven registration approach has a great potential for further
development into a full-blown pharmacokinetic GFR model-
driven segmentation of the kidneys.

APPENDIX A

THE EULER-LAGRANGE EQUATIONS

Define the cost functional

J (u, φ) =
∫

�
d(x + u, M1)

2dx, (18)

consisting of the first segmentation term in (14), and where
we have omitted the Heaviside depending factor which is
constant in u, and can therefore be added after differentiation.
According to (13), the time-normalized Mahalanobis distance
to training set one reads

d(x;M1)
2 = 1

T 2

∫
T

∫
T

r1(x, t)S−1(t, τ )r1(x, τ )dτdt (19)

for r1(x, t) := r(x, t;M1) = f (x, t) − μ(t;M1) and
S−1

1 (t, τ ) := S−1(t, τ ;M1). For brevity, denote X = x + u.
In the following, we assume that μ(t;Mi ) and S−1(t, τ ;Mi )
have no variation with u, which is an approximation
(c.f. Appendices B and C). The first variation of (18) with
respect to u = u(x, t) becomes

δ J = 1

T 2

∫
�

∫
T

∫
T

(
r1(X, τ )S−1

1 (t, τ )∇ f (X, t) · δu(x, t)

+ r1(X, t)S−1
1 (t, τ )∇ f (X, τ ) · δu(x, τ )

)
dτdtdx

= 1

T 2

∫
T

∫
�

( ∫
T

r1(X, τ )S−1
1 ∇ f (X, t)dτ

)
· δu(x, t)dxdt

+ 1

T 2

∫
T

∫
�

(∫
T

r1(X, t)S−1
1 ∇ f (X, τ )dt

)
·δu(x, τ )dxdτ

=
∫

T

∫
�

h(x + u, t;M1) · δu(x, t)dxdt (20)

given

h(x+u, t;M1) = 2

T 2

∫
T

r1(x+u, τ )S−1
1 (t, τ )∇ f (x+u, t)dτ

and where we have used the symmetry property S−1(t, τ ) =
S−1(τ, t). The fundamental theorem of calculus of variations
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results in the Euler-Lagrange equations of (18) from arbitrary
variation of δu(x, t) over � and T as

h(x + u, t;M1) = 0. (21)

A corresponding expression can be found for the sec-
ond segmentation term related to d(x, M2)

2, thus providing
h(x + u, t;M2) = 0. Recall D as the data term in (1) for
registration such that δD/δu becomes its functional derivative.
The functional derivative of (14) with respect to u then
becomes

bu(x + u, t, φ) := δD

δu
+ β

(
H (φ)√
φ2 + ε2

h1(x + u, t)

+ (1− H (φ))√
φ2 + ε2

h2(x + u, t)

)

(22)

for the three components of u and when not considering the
regularization term R(u) in (14). The derivative of (14) with
respect to φ becomes

bφ(x + u, t, φ)

:= β

(φ2+ε2)3/2

(
(δ(φ)(φ2+ε2)−φH (φ))d1(x + u)2

− (δ(φ)(φ2+ε2)+φ(1−H (φ)))d2(x+u)2
)

(23)

when omitting |∇φ|. In (23), we have used the relation
δ(φ) = H ′(φ). The first variation of |∇φ| is the mean
curvature and can be found in [11]. The functional derivative
of the regularization terms with respect to u becomes the
Navier-Lamé operator [34], thus ending up with the following
Euler-Lagrange equations to solve,⎡

⎣μ
u + (λ+ μ)∇(∇ · u)

α∇ ·
(

∇φ√
|∇φ|2+ε2

)
⎤
⎦ =

[
bu(x + u, t, φ)
bφ(x + u, t, φ)

]
. (24)

From top to bottom, the operators on the left hand side of the
equation are the Navier-Lamé operator and the mean curvature,
respectively.

APPENDIX B

FIRST VARIATION OF μ(t, u;Mi )

Assume that μ is a function of u. Then

μ(u, t;Mi ) := 1

|Mi |
∫

Mi

f (y + u(y, t), t)dy (25)

where y is a spatial integration variable within the training
mask Mi . The first variation of μ with respect to u becomes

δμ(u, t;Mi ) = 1

|Mi |
∫

Mi

∇ f (y + u(y, t), t) · δu(y, t)dy (26)

which would be added to the ∇ f (X, ·) terms in the first
equality sign of (20) if μ depends on u. For the next
we make the following assumptions: (i) The image f is
approximately homogeneously distributed in a neighbour-
hood umax around the boundary of the training mask ∂Mi ,

where umax = max∂Mi |u| is the maximum deformation field
on ∂Mi . (ii) The training mask Mi is entirely within �,
Mi ⊂ �. (iii) Image values f are finite. Equation (26) can
be thought of as the directional derivative ∂ f/∂l, where l is
a unit length along the direction of δu. Any change of (26)
due to variations in u would mainly be caused by deformations
across ∂Mi . Therefore, due to assumptions (i)–(iii), the integral
(26) will be close zero. Assumption (ii) is needed in order to
avoid out of range values of f close to the image boundaries.
These could, if they for instance were set to zero, represent a
systematic change of f on ∂Mi . Hence, δμ can be considered
constant in u and the first variation of ri can be approximated
as δr(x, t;Mi ) = ∇ f · δu, which is used in Appendix A.

APPENDIX C

FIRST VARIATION OF 
−1

Now, we consider the discretized covariance matrix 
̃,
originating from the covariance between the columns of the
training data matrix F associated with �i . Taking the differ-
ential of 
̃−1
̃ = I provides the differential formula for the
inverse

δ(
̃−1) = −
̃−1δ
̃
̃−1, i = 1, 2. (27)

If δ
̃→ 0 then δ
̃−1 → 0 assuming the elements of 
̃−1 are
finite, which is true for non-constant data in time. From this
observation we only need to investigate the behavior of δ
̃.
With N as the number of rows (corresponding to the number
of voxels in Mi ) in the training set matrix F , the covariance
matrix 
̃ can be expressed as a matrix product


̃ = 1

N − 1
FT F, (28)

where each column of a training data matrix F contains spatial
image data from a selected time point within the training
mask defined by Mi , and where the columns of F have zero
mean after subtraction of the column mean. Subtraction of the
column mean μ̃ j from column j of F for j = 1, . . . , tn prior
to differentiation is justified since the continuous counterpart
of μ̃ was in the previous section shown to be essentially
independent of u and can therefore be considered a constant
for subtraction. The differential of 
̃ becomes

δ
̃ = 1

N − 1
δ(FT F) = 1

N − 1

(
(δFT )F + FT (δF)

)
. (29)

Denote the training set data

F =

⎡
⎢⎢⎢⎣

f̃1,1 f̃1,2 . . .

f̃2,1 f̃2,2 . . .

f̃3,1 f̃3,2 . . .
...

. . .

⎤
⎥⎥⎥⎦ (30)

where f̃k,l indicates discretized values of f for voxel k and
time l after subtracting the column mean. The first variation
δFT in (29) becomes a matrix of dot products

δFT =
⎡
⎢⎣
∇ f̃1,1 · δũ1,1 ∇ f̃2,1 · δũ2,1 ∇ f̃3,1 · δũ3,1 . . .

∇ f̃1,2 · δũ1,2 ∇ f̃2,2 · δũ2,2 ∇ f̃3,2 · δũ3,2 . . .
...

. . .

⎤
⎥⎦ . (31)
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where ũk,l is the discretised deformation field vector for
voxel k and time point l. When multiplying with F we
get a new matrix where each element becomes a sum∑n

k=1 f̃k, j∇ f̃k,i · δũk,i . The second additive term in (29) will
be equal due to symmetry. This sum can in a continuous setting
be phrased as∫

Mi

( f∇ f · δu(y, t))dy = 1

2

∫
Mi

(∇( f 2) · δu(y, t))dy,

which means that f 2 needs to be approximately
constant on the boundaries of Mi , following from
assumptions (i)–(iii) and the discussion in the previous
section. For practical registration tasks, we always scale the
image f between zero and one, so the difference between
homogeneous distribution of f versus f 2 is small. Hence,

̃−1 can be considered independent of u in the calculation of
the first variation without substantial loss of accuracy.
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