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Abstract

Non-destructive stress measurements of structures are increasingly valued by

the industry. Ultrasonic methods have the advantage that acoustic waves

propagate with ease through materials, making it possible to probe the

interior of structures.

Classic elastic models predict constant longitudinal and shear sound veloc-

ities in a material. However, by including higher order elastic moduli, the

acoustoelastic theory indicate that the sound velocities are affected by the

current stress state of the material. Experiments on steel plates have con-

firmed the dependency of speed of sound with stress in the material. This

presents a potential method to estimate pipeline wall stress using ultrasound.

Pipeline wall thickness can be measured using resonant ultrasonic signals.

The resonant frequencies are linked to the wall thickness via the sound

velocity. Thus, equivalently the sound velocities can be estimated when the

wall thickness is known.

This study has investigated the possibilty of detecting changes in material

properties at very high stress in steel utilising an existing acoustic non-

destructive testing (NDT) technique called Acoustic Resonance Technology

(ART). ART is an ultrasonic technique based on transient acoustic reflec-

tions in layer and plates. The technique utilises mainly a pulse-echo method

of normally incident longitudinal acoustic signal (pressure waves), record-

ing the longitudinal resonant frequencies across the thickness of a layer.

However, it can also be set up to record shear resonant frequencies across

the layer thickness by utilising the effect of mode conversion of a slightly

off-normal incident pressure wave.

Laboratory experiments utilising ART have been used to measure the change

in both longitudinal and shear sound velocities across rectangular steel test



specimens subjected to uniaxial tensional loads. In addtion the acoustoelas-

tic theory have been implemented and used to simulate the change in sound

velocities for some steel types reported in the literature for comparison of

experimental results and theory. The theoretical investigation and experi-

mental measurements on steel bars performed in this work have shown that

the ART methodology is capable of detecting very small changes, in the

order of 0.1%, of the sound velocities for test specimens subjected to high

levels of stress. In addition, by comparing longitudinal and shear resonance

frequencies, ART is capable of measuring an effect of both longitudinal and

shear sound velocity changes independent of the thickness of the specimen.

This might be highly valuable for potential in-line inspections along several

km of pipelines where the wall thickness may vary on a scale approximately

two orders of magnitude larger than the measured variation in stress induced

sound velocity change.



Folk koma no etter, at Skrotten liksovel maa faa sin Tame (Øvelse) som

Tanken sin. Dette By- og Bokliv, som paa mange Maater gjere folk kloke,

bryte tidt Helsa ned, og gjere Kroppen veik og Tanken turr. Og derfor er

det so klokt gjort, at By- og Bokfolk taka til at tenkje paa Landsens

Arbeid og gamle Leikar.

Aa. O. Vinje: Skiløyping (i Dølen, 1868)

English translation by the author:

It finally dawned on people, that the Body as much needed its exercise as

the Mind. This City- and Book-life, which in many ways make the people

wise, oft break their Health down, and make the Body weak and the Mind

dry. And thus it is so wise, for City- and Book-people to revive the Rural

Work and old Play.
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ẍ Acceleration vector
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1

Introduction

1.1 Background / Motivation

As the industry strives to reduce maintenance and repair costs, non-destructive testing

(NDT) of structures becomes increasingly valued both in production control and as a

means to measure the utilisation and condition of key infrastructure. There are sev-

eral NDT techniques which measure the stress level of a structure [1] - [3]. Techniques

using optical measurements, magnetic measurements, x-ray diffraction, or the deeper

penetrating (<50 mm) neutron diffraction are all limited to measuring surface or near

surface stress or strains. However, for structural integrity the stress/strain state in the

interior of the medium is important. Acoustic waves propagate with ease through ma-

terials and provide thus a means to probe the interior of structures. An extensive and

general account on ultrasonic testing can be found in [4] and [5].

Acoustic Resonance Technology (ART) is an inspection method to measure the wall

thickness of steel pipelines that has been developed by Det Norske Veritas (DNV)

and is currently further developed and commercialised by Halfwave AS [6]. The ART

method is mainly used to inspect long pipelines where the inspection tool (also called

a Pipeline Inspection Gauge (PIG)) moves through the pipeline from start to finish

propelled by the pressure difference. Along the way the tool propagates acoustic signals

radially towards the pipeline wall with approximately normal incidence every 2-3 mm

in the axial direction. ART is capable of measuring the wall thickness of pipelines

transporting both liquids as well as gaseous content. The tool has 192 transducers

distributed circumferentially around the inspection tool to be able to cover the entire

1



1. INTRODUCTION

circumference of the pipeline. The result of such an inspection is an enormous amount

of data that can be used to make a detailed map of the wall thickness along the entire

length of the pipeline. This can be used to assess if pipelines carrying water, oil, or

gas have corroded during operation, and if there are critical areas where the pipeline

under operational or accidental pressures can be exposed to loads close to the structural

capacity of the steel. The ART method has been explained in more detail in Secs. 2.6

and 3.5.

The ART tool is qualified for several areas of use, such as wall thickness measure-

ments of water, oil, and gas pipelines, and also characterisation of internal materials

in the pipeline [7][8][9]. The technology is based on analysis of acoustic half-wave res-

onance spectra that are directly related to the geometric (i.e. thickness) and material

properties of solid state materials like steel (but not limited to such).

The spectrum is created by transmitting a broad-band acoustic signal into the ma-

terial that is excited into half-wave resonances, which leaks from the structure towards

the receiving transducer[10][11]. The latter converts the signal into an electrical time

series that is subject to a frequency spectrum analysis, from which the resonance peaks

are identified. Knowing the sound velocity in the structure enables the extraction of

the thickness of the structure.

Changes in material properties will to some extent change the acoustic properties

of the material, and accordingly it might be possible to use ART to detect effects of

these changes in the material. It is conceived that the sensitivity to changes in material

properties is dependent on the type and amount of material change, and the transducer

measurement system.

Where the currently available methods to investigate the stress/strain state of a

medium with acoustic waves depend on the careful placement and alignment of one

or more acoustic transducers on the surface of the medium, the potential for a non-

contact measurement technique would be beneficial for the industry. This work has

thus investigated the possibility of utilising the ART method to detect material changes

due to high strains in steel materials. This is an important issue for the industry. For

example it may enable pipeline operators to quantify the utilisation of the pipeline’s

strength capacity. Identifying areas where the utilisation is high might give sufficiently

early warning to avoid sudden structural failures.

2



1.2 Objective

1.2 Objective

The overall objective of this work has been to investigate the possibilities for using

a non-contact acoustic measurement system (like ART) to detect changes in material

properties at very high elastic stress in steel pipelines.

The proposed approach is to study how the cross-thickness resonance frequencies of

both longitudinal and shear waves across a steel plate (simplified substitue for a pipe

section) change under the influence of very high static stresses induced in the plate /

pipe section, and relate this to changes in the compressional sound wave velocity, cl,

and/or the shear sound wave velocity, cs, and material properties of the elastic steel

material.

The main question to be investigated in this work is whether measured and signifi-

cant changes in cl and/or cs can be a reliable indicator of changes in material properties.

1.3 Scope of work

As stated above, the objective of this work is to investigate the possibility to relate a

change in the elastic material properties of steel, due to an induced finite stress state, to

a corresponding measured change in sound velocity, and if it is possible to measure this

change using the ART methodology. There are two sources of nonlinearity that need to

be taken into account when investigating the relation between sound velocity and stress

state. The kinematic, or convective, term is independent of the material properties and

is related to the nonlinearity of the propagating wave (e.g. effect of a finite amplitude

wave) [12, ch. 9.1]. In this work small amplitude stress waves have been used, and it

has thus been assumed that they behave linearly to the order of approximation needed.

Thus the kinematic non-linearity can be disregarded. The other nonlinearity is related

to the inherent physical nonlinearity of the solid. This effect is characterised by the

constitutive behavior of the solid, and is called the acoustoelastic effect [12, ch. 9.1].

This effect has been assumed to contribute to the relation between the measured sound

velocity and the applied stress state investigated in this work.

This study have thus been divided into two main aspects. The first aspect is how

small amplitude acoustic stress waves propagate in a body subjected to a finite pre-

stress, i.e. the non-linearity caused by the acoustoelastic effect. The second aspect is

how resonant acoustic frequencies can be excited and extracted from layers and plates.
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1. INTRODUCTION

The latter is the basis for the ART methodology already used in NDT / inspection of

the thickness of steel pipelines. The theory behind the ART method is well known, and

relevant literature is introduced in the literature section below (Sec. 1.4) and discussed

in Sec. 2.6.

According to classic theory of continuum mechanics a three-dimensional body can

sustain both longitudinal and shear waves through its bulk. For elastic isotropic ma-

terials these sound velocities are constant for a given material and are related to the

second-order elastic moduli of the material as described in [13] (more on this in the

literature review in Sec. 1.4). The fore mentioned assumption of a constant sound ve-

locity in a material body is currently utilised by the ART methodology (chosen acoustic

NDT equipment in this work) to estimate the wall-thickness of steel pipelines.

The acoustoelastic effect suggest that higher order effects of the constitutive relation

introduce variation in the sound velocities as a function of the strain/stress state of the

material body. This effect was already theoretically established in 1925 by Brillouin

[14], and have later been confirmed and ellaborated on by several authors including

Murnaghan (1937) [15], Hughes and Kelly (1953) [16], Truesdell (1961) [17], Toupin

and Bernstein (1961) [18], and Thurston and Brugger (1964) [19]. Since the effect of

the stress state on the sound velocities was first investigated there have been some

controversy as to whether the developed theory is correct or not, and different alter-

natives have been proposed (see e.g. [20] and [21]). However, this work has based its

investigation on the contemporary accepted theory of incremental elasticity, also known

as the small-on-large theory. The relevant literature used is briefly introduced in the

next section and consists mainly of the works of Ogden [22] [23], Norris [12] [24], and

Abiza et al. [25]. It is the more detailed non-linear expansion of the constitutive rela-

tion for elastic materials compared to the linear elastic theory already used that may

enable ART to assess the stress level of steel pipelines. In addition, the results from

this investigation may also contribute to assess the accuracy of current wall-thickness

measurements performed by ART.

In addition to the elastic behaviour, knowledge of the failure modes of materials and

structures have led to many structures being allowed to plastically deform within some

limitations. As the material starts to plastically deform, it is altered on a molecular

scale as grain boundaries and dislocations move in response to the applied load, and
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the elastic description is no longer valid [26]. This will affect the acoustic properties of

the material, and the effect has been called the acoustoplastic effect [27][28].

To be able to consider the acoustoplastic effect, rigorous and exstensive experimental

work is needed to establish the plastic properties of any given material. Based on the

objective of this study the plastic behaviour and its effect on the acoustic propagation

has not been considered in itself. However, the test specimens have been plastically

deformed followed by elastic loading and unloading sequences to be able to investigate

the elastic behaviour and its influence on the longitudinal and shear sound velocities

(denoted cl and cs respectively) after the test specimens have been subjected to plastic

deformation.

The scope of this work has been limited to investigating whether the acoustic re-

sponse in a set of tensioned test specimens has a signifiant dependency on the induced

stress/strain state, as well as if it is coherent across the number of tests. It has been

decided to investigate this by establishing a tension experiment subjecting a set of close

to identical steel test specimens to a pre-defined load history, while measuring the acous-

tic resonance frequency across the thickness of the specimens. To be able to compare

the measurment results with theory it has been decided to numerically implement the

acoustoelastic theory and simulate the change in sound velocities induced by the applied

load history for several steel types previously investigated in the literature.

The relevant literature mainly referred to in this study is introduced in Sec. 1.4

below.

1.4 Literature review

This work has had an experimental focus where the objective has been, as described in

Secs. 1.2 and 1.3, to investigate the possibility of estimating the level of stress in a steel

sample by investigating how such a stress affects the acoustic sound velocities which

can be measured by existing acoustic NDT equipment. This section review the current

theoretical knowledge of the relations between longitudinal and shear sound velocities

and the stress state of an isotropic hyperelastic solid (e.g. steel or aluminium). Then it

continues to investigate the experimental work and studies that have been performed in
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this field, and which can contribute to the success of the current objective (see Sec. 1.2).

The classic linear behaviour of elastic materials can be found in any text book on

continuum mechanics, e.g. [13] or [29] and can be used to establish solutions for the

wave equations as done in for example [30]. According to the linear theory of elasticity,

the sound velocity for acoustic stress waves in elastic isotropic materials (like steel) is

a second order effect of the constitutive relation between the stress state of, and the

strain field in, the material body (see Sec. 2.2.2 for details). A three-dimensional body

can sustain both longitudinal and shear waves through its bulk. They are, according

to linear elastic and isotropic theory, given through any set of two second-order elastic

moduli, and are constant for the given material [13]. Classical continuum mechanics

and the linear approximation to the elastic wave theory have been regarded as well-

established and easily accessible theories and have not been included in this literature

review beyond what has been mentioned above.

As early as 1925 Brillouin investigated the effect of a hydrostatic pressure [14] (or

more correctly the hystrostatic stress [29, ch. 5.7]) on wave propagation in an elastic

medium. He found that the propagation velocity of acoustic waves was dependent on the

hydrostatic stress [14], which Tang in his 1967 paper [21] rewrote in a form equivalent

to

ρc2l = λ+ 2µ− p, ρc2s = µ− p, (1.1)

where λ and µ are the Lamé elastic parameters, ρ is the density, and p is a hydrostatic

pressure. However, one consequence of this is that sound waves would stop to propagate

at sufficiently large pressures (i.e. c = 0). This lead to controversy around his theory,

and many tried to extend the linear theory of elasticity to a general case for finite strains.

Murnaghan presented in 1937 [15] such a theory of finite deformation in elastic isotropic

solids where the third-order elastic constants l, m, and n were introduced as a second

order expansion of the stress-strain relation (based on the principle of conservation of

strain energy), in addition to the second-order elastic moduli λ and µ. The second-

order elastic moduli describe what can be regarded as a first-order approximation to

the elastic theory, while including the three third-order moduli describes a second-

order approximation. Birch applied Murnaghan’s theory in his 1938 paper [20] to show

that this theory gave stress-strain relations on the same form as the classical theory

with elastic parameters depending upon the pressure. He continued to show that the
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theory agreed well with experimental results for sodium and cesium giving a single-

constant formula relating the change in elastic coefficients (and thus also the sound

velocity) and the applied pressure. He thus argued that the observed change in sound

velocity as a function of an applied pressure was due to a pressure dependency on the

elastic constants rather than a difference in the equation of small perturbation motion

compared to the equation of motion in the classical elasticity theory as suggested by

Brillouin [14]. Biot suggested another theory in his 1940 paper [31] in which he also

argued that the the influence of pressure only appears in the elastic coefficients of the

material. However, as pointed out by Tang in his 1967 paper [21] the approaches of

Birch [20] and Biot [31] can not reproduce the results of Brillouin [14]. Tang showed that

the paradoxial result suggested by Brillouin [14] was due to the incorrect assumption

that the elastic parameters are not functions of pressure. He argued thus that both the

elastic parameters of the material, as well as the equation of a perturbuation motion are

influenced by the initial stress state, which can be obtained from Murnaghan’s theory

[15] of finite deformation.

In 1953 Huges and Kelly [16] used the theories of Brillouin [14] and Murnaghan [15]

together with measurements of the longitudinal and shear sound velocities under both

hydrostatic and simple compression (homogeneous deformations) to estimate numerical

values for the three third-order elastic constants l, m, and n for three different isotropic

and elastic materials. They also showed that for small deviations about a hydrostatic

pressure an isotropic solid would still act as an isotropic solid where the second-order

elastic moduli (e.g. λ and µ) have changed linearly with the applied stress. Huges and

Kelly showed that this change in second order moduli could be expressed by the third

order elastic moduli l, m, and n.

This has later been regarded as the first confirmation of the acoustoelastic theory.

(Note that the term “second-order elastic deformation” used in [16] uses what in this

work has been refered to as the “third-order elastic constants”. This is due to the fact,

as will be further explained in Sec. 2.1.3, that when expanding the constitutive relation

between stress and strain there are no first-order elastic constants, which leads to the

second-order elastic constants describing the first-order approximation of the stress-

strain relation etc.) Bergman and Shahbender also measured the sound velocity of

longitudinal and shear sound velocities across a column of aluminium transverse to an

applied uniaxial compression [32]. The column was subjected to loads beyond the elastic
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yield point and all the way until it buckled. The results have been well documented, and

the autor refered to the earlier work by e.g. Hughes and Kelly [16] and indicated that the

effect was either due to change in density or change in relevant elastic constants. The

findings in [32] show in particular that the longitudinal sound velocity (cl), the shear

velocities (cs) with particle motion polarised parallel and/or perpendicular to the load

have different developments as function of the applied stresses. This is also the earliest

instance investigating the acoustoplastic effect identified (A review of the literature on

the acoustoplastic effect will be presented later in this section).

Early work considered only isotropic hyperelastic materials. In 1961 Toupin and

Bernstein presented an extension of Hughes and Kelly’s method to determine the third-

order elastic constants for istoropic homogeneously deformed materials to materials with

arbitrary symmetry [18]. Toupin and Bernstein derived the general equations for small

displacements superimposed on a finite deformation of a perfectly elastic material anew,

including restrictions on the strain energy function to allow for arbitrary symmetry

and compatability with classical elastic theory. Considering isotropic materials they

deduced a set of third-order elastic constants which satisfied the invariance of the strain

energy function for the orthogonal group of transformations of the natural coordinates.

These third-order elastic constants were denoted ν1, ν2, and ν3 and corresponds to the

constants l, m, and n presented by Murnaghan in [15]. The different sets of third-order

elastic constants are equivalent, but are based on different selection of invariants of the

second order tensors used in the strain energy function (see e.g. [29, ch. 3.8]). In

1961 Truesdell wrote a paper [17] expanding and clarifying the expressions derived in

the work of Toupin and Bernstein, which was a good summary of contemporary wave

theory in finitely deformed elastic materials.

Thurston and Brugger derived in their 1964 paper [19] expressions for what they

called the natural sound velocity (i.e. a sound velocities calculated based on the initial

Lagrangian, or natural, state of the material) and their stress derivatives. The advantage

of such a natural velocity is that it is more easily obtained from experiments than actual

velocities which must be corrected for change in path length due to the applied stress.

At this time most sound velocity measurements where done by measuring time-of-flight,

or its inverse, the repetition frequency, of a round trip between opposing faces of the test

specimens. In 1965 Thurston expanded the theory and introduced the term effective

elastic coefficient [33]. These effective elastic coefficients where defined in such a way
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that the formulas for wave propagation would not change under hydrostatic pressure

when expressed in terms of them. He also introduced wave-propagation coefficients

which were more convenient when discussing wave propagation. An important note is

that for all other stress states than a hydrostatic pressure the full symmetry commonly

expected of elastic coefficients is lost, even for isotropic materials which essentially

experience an anisotropic stress.

At this stage the theory of acoustoelasticity has been developed to a level which

describes the effect of stress on the acoustic velocities sufficiently for the purpose of the

current proposed work. A good review can be found in the paper by Pao and Gamer

from 1985 [34]. Without going into the work of all the different authors who have

specialised in different aspects and applications of the acoustoelastic effect in detail,

the works which this study have been directly based on have been presented in the

following.

Although there are several equivalent theories on the acoustoelastic effect, they dif-

fer mainly by the selection of invariants of the strain energy density function, and thus

resulting in different constants describing the elastic properties of a material (i.e. from

the constitutive relation between stress and strain). The theoretical background used

to predict and compare the measurements of this study is mainly based on the thorough

account of the theory of finite elasticity presented by Ogden in 1997 [22], supplemented

by the works of Norris in 1998 [12, ch. 9], and by Ogden and Norris in 2007 [23], [24] re-

spectively, and with the relevant special case applicable for the experimental setup used

here outlined by Abiza et al. in 2012 [25]. Norris notes that there are many notations

used for the third-order elastic moduli to describe an isotropic hyperelastic material.

In addition to the two sets derived by Murnaghan [15], and Toupin and Bernstein [18]

mentioned above, Norris notes three other sets. One derived by Bland in 1969 [35], one

by Eringen and Suhubi in 1975 [36], and finally the set derived by Landau and Lifshitz

in 1959 [37] (this work refers to the 3rd edition published in 1986). All of these sets of

three third-order elastic coefficients are spescial cases for a hyperelastic isotropic mate-

rial. The general third-order elastic coefficients can of course also be expressed by the

standard tensor notation Cijklmn [22], or using Voigt’s notation CIJK [12]. The Landau

and Lifshitz coefficients [37] are denoted A, B, and C, and are the set used throughout

this work and the main works refered to ([12],[22],[23], [24], [25]). These works will be
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discussed further when presenting the relevant theory for this work in Ch. 2.

Having presented the main literature leading up to the acoustoelastic theory ap-

plied in this work, the next part will look into the history of experimental work done to

corroborate the theory. As already mentioned Hughes and Kelly confirmed the acous-

toelastic theory experimentally by determining the third-order elastic moduli of three

different elastic materials by measuring sound velocities in the material under hydro-

static and simple compression already in 1953 [16], while Bergman and Shahbender

measured acoustic velocity in an aluminium bar under uniaxial compression well out-

side the elastic limit in 1958 [32]. Many authors have since investigated the effect of

stress on the acoustoelastic velocities in different types of materials. Since this work in-

vestigates the applicability of a non-fixed-contact acoustic measurement technique (like

ART) on highly stressed steel, not all historic acoustoelastic measurement techniques

or results have been deemed appropriate to be included here.

In 1962 Crecraft reported measured variation of both longitudinal and shear sound

velocities induced by stress for waves with frequencies in the MHz region in stressed

nickel steel [38]. In his 1967 paper [39] he also compares acoustoelasticity (or sono-

elasticity as he termed it) to the theory of photoelasticity based on the similar be-

haviour of the polarised shear waves in a stressed solid to that of polarised light in

a transparent and stressed solid. He also gives a reasonable account of the different

contemporary measurement methods for determining the sound velocity available. A

pulse-echo technique, as applied by Hughes and Kelly [16], lacks precision. A refine-

ment was introduced by Bergman and Shahbender [32] comparing the pulse-echo going

through the specimen with a simultaneously transmitted pulse going through a delay

line matching the unstressed delay time of the specimen. This increased the resolution of

the relative velocity change measured in a 4 inches thick aluminium specimen to 0.01 %.

Espoinola and Waterman presented in 1958 [40] an ultrasonic interferometer to measure

temperature induced sound velocity change with a resolution of 5·10−5 in fused silica

and alkali halide crystals. A technique described by Cedrone and Curran [41] called the

“sing-around” method used a recieving transducer to retrigger the transmitter, and thus

creating a pulse “singing-around” the system at some pulse repetition frequency (p.r.f.).

In this method the period of the signal is adjusted to match an integer multiple of

the transit time, and thus making it possible to apply different interference schemes to
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estimate the sound velocity. Crecraft [39] [42] used this sing-around method to measure

the sound velocity change of both longitudinal and shear waves with polarised particle

motion across the center of bars that were uniaxially stressed. He investigated three

different materials, nickle-steel, copper, and aluminium, and estimated the third-order

elastic constants based on the sound velocity measurements. The measured relative

change in sound velocities of waves propagating perpendicular to the applied uniaxial

compressive stress for the nickle-steel reported by Crecraft was −8.7 · 10−5 per MPa

for the longitudinal wave, −2.9 · 10−5 per MPa for the shear wave with particle mo-

tion perpendicular to the applied stress, and −8.2 · 10−4 per MPa for the shear wave

with particle motion in parallel to the applied stress (converted from the original units

in [39] by the author of this work). The nickle-steel is sufficiently simlar to the steel

used in this work, and has thus been included in the simulations described in Ch. 4

of this work. Crecraft also noted that for longitudinal waves (and for the individual

shear waves) measurements of the path length to within 0.01 % would be needed to

detect even large stresses, and would not give any information on the principal stress

directions [39]. On the other hand, for the birefringence effect of the shear waves with

particle motion polarised perpendicular to and in parallel with the applied stress, the

difference in the two principal shear wave velocities would indicate the magnitude of

the stress while their particle motion polarisation would indicate the principal stress

axis. Thus it would be imperative to measure these principal shear waves [39]. How-

ever, Crecraft also identified practical problems in relation to exciting and alignment

the particle polarisation direction of the shear waves with the principal stress directions

and at the same time ensuring the shear waves seeing the same path length to remove

the need of accurate measurements of this [39]. The ideas presented by Crecraft in [39]

have been important for the selection of relevant measurement quantities in this work

as described in Sec. 2.7 and Sec. 3.5. Crecraft [39] also discussed his results in light of

a preferred orientation (elastic anisotropy) and further increase of this effect by plastic

deformation. He refers to [43] and notes that

(. . . ) strain in the order of 50 % is necessary to cause appreciable change in

preferred orientation (. . . )

Since the maximum strain applied in this work is in the order of 4.5 % « 50 % that

any measured relative change in sound velocities as a function of plastic strain is most
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likely due to dislocation movement alone (as suggested by Crecraft [39]). It is noted

with this in mind that the objective of this work relates to measurements in the elastic

region, but that the test specimens have been deformed plastically to investigate the

elastic behaviour after such plastic deformation.

Smith et al. have in their 1966 paper [44] measured stress induced sound velocity

change for polycrystalline materials. [44] described an acoustic measurement method

applying interference of shorter pulses passing through the test specimen with a longer

carrying pulse that do not propagate through the specimen (both with a frequency of 5

MHz). The inerference between the two signals can be used to measure changes in sound

velocity with a resolution of approximately 2·10−6. They have measured the change in

sound velocity for waves propagating perpendicular to the applied compressive uniaxial

load, both for longitudinal waves and shear waves polarised parallel and perpendicular

to the applied load. Based on these measurements they then estimated the third-order

moduli using the theory of Thurston and Brugger [19]. 5 of the 15 investigated materials

were steels. All these 5 steel types have been included in the simulations performed in

this work to be able to compare the behaviour of the currently used steel to that of

other similar steels reported in the literature (see Ch. 4). Note that the setup used for

the measurements in [44] consists of identical quartz transducers acting as transmitters

and receivers bonded directly to the test specimens (X-cut quartz were used to excite

longitudinal waves, while oriented Y-cut quartz where used to excite the respective

polarised shear waves). It is also worth noting that Smith in 1963 [45] looked at other

authors’ measurements and their reported behaviour of the acoustoelastic effect together

with own measurements on nickle-steel. Here he shows that the birefringence of the two

shear waves with particle motion polarised parallel and perpendicular to the applied

tension behaved linearly and identically in the elastic regions both before and after

appreciable plastic deformation. The birefringence of the shear waves was measured to

be in the order of 0.1 % relative to the unstressed shear sound velocity for the entire

elastic region of the tested nickle-steel [45]. He also showed that the plastic strain and

dislocations had negligible effect in polycrystalline materials (like aluminium and steel)

[45].

In 1976 Egle and Bray [46] presented experimental results of the stress-induced

changes in acoustic wave velocity in steels typically used in railroad rails. They mea-

sured the five unique wave velocities that according to Hughes and Kelly [16] can be
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determined for a state of uniaxial stress. These five wave velocities are of two waves

propagating in the direction parallel to the applied stress (one longitudinal and one

shear wave), and three waves propagating perpendicular to the applied stress (óne lon-

gitudinal, and two shear waves polarised in parallel and perpendicular to the applied

stress). Egle and Bray [46] conclude that their measurements agree with the second-

order theory of Hughes and Kelly [16] within the limits of the measurement accuracy.

Based on the five velocity measurements done on two samples of the rail steel, the

Murnaghan constants [15] where estimated. The applied uniaxial tension was varied

between compressive and tensional loads deforming the specimens elastically between

-0.09 % and 0.09 % strain. This resulted in the relative change in sound velocities of

waves propagated perpendicular to the applied stress for one of the test specimens of

approximately 0.03 % per 1 % strain for the longitudinal wave, -0.15 % per 1 % strain

for the shear wave with particle motion in parallel with the applied stress, and 0.006

% per 1 % strain for the shear wave with particle motion perpendicular to the applied

stress [46]. The estimated third order elastic constants from this work have also been

included in the simulations described in Ch. 4.

These three works ([39],[44],[46]) give a reasonable spread in third order elastic con-

stants for various steels to be able to compare the measurements of change in sound

velocities performed in this work with the theoretically predicted behaviour of other

steel types investigated in the literature. Thus, even though there may be relevant

measurement data found in the literature of other authors, this work has limited its

scope to the above mentioned relevant steel types.

Guz et al. started in the early 1970s to investigate both theoretically and experimen-

tally the possibility of determining bi-axial stress states by measuring the propagation

velocity of shear waves polarised in the direction of the two principal stresses, given

the third-order elastic constants [47], [48]. Based on this work Gushcha and Makhort

showed a good correspondence between acoustic measurements and theoretical equa-

tions of residual stresses produced by spot welding at the center of an aluminium alloy

sample in their paper from 1976 [49]. Bach and Askegaard discussed in 1979 [50] a

method to investigate the difference in residual principal stresses of a bi-axial stress

field based on the difference in relative velocity change of the polaraised shear waves

using a 45◦ transducer method and the theory of Hughes and Kelly [16]. This method
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is also reffered to as acoustoelastic birefringence, and simplifies the acoustoelastic the-

ory by introducing the proportionality factor between the above mentioned difference

in relative shear sound velocities and between the biaxial stresses. This proportion-

ality factor has been called the stress-acoustic constant, and can be expressed by the

second and third-order elastic constants as done by Bach and Askegaard [50]. Using

this simplified version of the acoustoelastic effect (or similar variations with different

proportionality factors utilising changes in either the shear wave velocities or longitudi-

nal wave velocities), several authors have estimated the residual stress state of different

material samples (see e.g. [51], [52], [53], [54], [55]). More recent work based on the

work of Guz et al. can be found in Nikitina’s 2006, 2007 and 2010 papers [56], [57], [58].

In 1981 Johnson presented a generalised acoustoelastic theory which included the

effect of plastic deformation [59] based on his work [60] that the assumption of a constant

sound velocity during plastic deformation might not be applicable for all materials. His

approach was to include arbitrary functions of the plastic strain and work-hardening

parameter in the strain-energy formulation. In the 1987 paper of Daami et al. [61]

they investigated the effect of plastic deformation on several materials. They concluded

that in order to estimate stress levels in plastically deformed material it is necessary to

survey the relevant material to determine the acoustic response caused by the plastic

deformation, and that the un-modified acoustoelastic method would only give a good

measure of the stresses in the materials in which the acoustic response is unaffected by

plastic strain (much in line with the work of Johnson [59]).

Kobayashi has also studied the effect of plastic deformation on the propagation ve-

locity of acoustic waves both theoretically and experimentally in e.g. [27] and [62], and

more recently in [63]. This extension of the acoustoelastic theory has also been termed

acoustoplasticity. For the acoustoplastic theory it is common that the parameters de-

scribing the plastic behaviour need to be, in most cases, experimentally determined,

and may be quite diverse for materials with similar elastic behaviour. The objective of

this work focus on the elastic behaviour which should be sufficient for many industrial

applications where the material is not intended to deform plastically. This work has

thus deemed it to be too cumbersome to include this effect in a study of a suitable NDT

application for industry steel types which might have similar elastic behaviour, but very

different plastic behaviour. The test specimens used in this work have however been
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subjected to plastic deformation to investigate the elastic behaviour after such plastic

deformation as mentioned earlier. This has been discussed in more detail in Secs. 2.5

and 2.5.2.

It is deemed unecessary to go into historical detail on all the different methods

and materials investigated in the literature as many of these have established that it

is possible to measure a linear acoustoelastic effect when a test specimen has been

subjected to an applied stress state, some works are worth noting. In a recent method

applied by Gachi et al. in 2009 [64], they performed a simple uniaxial test to calibrate

the acoustoelastic effect for the current test specimen material. Then they estimated the

residual stress across the heat-affected zone of two aluminium sheets joined by friction

stir welding (FSW). The residual stress was also estimated by X-ray diffraction, and the

comparison showed good correlation of the results from the two different methods. This

is an approach that seems promising also for the non-contact measurement technology

ART used in this work (i.e. by establishing the relation of the acoustoelastic effect for

a relevant steel type by a uniaxial tension and then using this relation when performing

the actual acoustic measurements).

As presented in this literature review the theoretical basis for stress estimates based

on measurment of acoustic velocities are sufficiently mature, which is also reflected by

many successful experimental measurements of various stress states utilising the acous-

toelastic effect. It is however recognised that plastic deformations may render the acous-

toelastic theory insufficient for the purpose of estimating stress states. acoustoplastic

theory needs specific experimentally determined properties for each relevant material,

and has thus been regarded as too specialised for the purpose of the current investiga-

tion. However, the acoustoelastic theory may possibly yield good estimates of the stress

level with the group of materials where the relevant level of plastic deformation does

not affect the acoustic response to applied stresses. Therefore the current work has also

investigated the acoustic response to plastic deformation for the currently used steel.

The currently used measurement technology utilise transient acoustic scattering

from layers and plates which has been described in the papers by Maze et al. in 1985 and

1986 [65], [10], and by Guyott and Cawley in 1988 [11], and will be further discussed in

Sec. 2.6.1. The actual measurement system (ART) is detailed in the patents [7] and [8].

In addition, the ART method utilize common digital signal processing theory to extract
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the excited resonance frequencies. This theory can be found in any signal processing

text book, for example [66] by Smith.

Looking at the experimental setups described in the literature to measure the sound

velocity across a stressed test specimen most utilise transducer setups that comprise one

or more transducers bonded directly to the test specimen (see e.g. Daami et al. 1987

[61] and Sato et al. 1993 [67] using opposing transducers on either side of the specimen,

or Gachi et al. 2009 [64] using a setup of one transceiver and two receivers on the same

side of the specimen). This is related to the fact that fluids do not carry shear waves

[13], and thus to be able to measure changes in shear wave velocities it has historically

been convenient to use transducers exciting shear waves bonded directly to the test

specimen. The work of Scott et al. [52] mentioned above apply longitudinal waves

propagating through water, and base their results on the measurement of longitudinal

waves only. However, as shown by Kim and Hong in their 2009 paper [68] it is possible

to measure change in sound velocities both for longitudinal and shear waves through

mode conversion / refraction (see [69, ch. 9]). Kim and Hong used in [68] a pulse-echo

method of longitudinal waves that impigning on a bounded test specimen at an oblique

angle to excite both longitudinal and shear waves in the test specimen. They also

showed that they could measure a relative change in the ratio of two mode-converted

waves (one based on the time-of-flight of only longitudinal waves and one based on the

time-of-flight of both longitudinal and shear waves) of approximately 2 · 10−6 per MPa.

The currently selected measurement method consist of a broad band pulse-echo

transducer with a frequency dependent beam angle. The target will thus be excited by

longitudinal waves with a distribution of incident angles around the normal, and thus

exciting both longitudinal and shear waves in the test specimen. This has been done

by e.g. Maze et al. in their 1985 paper [65] for an unloaded plate. However, the author

is not aware of any other work applying this method to measure the relative change in

sound velocity for both longitudinal and shear waves with the intent of studying the

acoustoelastic effect. One of the main benefits of being able to measure the change in

both longitudinal and shear sound velocity through a fluid coupling medium is that the

measurement equipment can easily move along or across a test specimen and measure

at several locations without the rigorous work of bonding and detaching it between

measurements. During the current work it has been shown that the ART methodology
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1.5 Outline of thesis

is capable of measuring resonance frequencies of different wave types (longitudinal and

shear), and thus indirectly the sound velocity of these waves. Another limitation of

transducer setups that depend on more than one transducer is that they are very much

dependent on knowledge of the path length of the acoustic waves which may change

significantly under high loads and stresses (see elastic deformation in e.g. [13, ch. 1.3]

and plastic deformation in e.g. [70]). For a pulse-echo setup where all the waves excite

approximately the same area of the test specimen and propagate close to perpendic-

ularly across the test specimen, different waves can be combined to remove/minimize

the thickness dependency as mentioned in [39] and shown by Kim and Hong in their

2009 paper [68] using time-of-flight measurements. The current work have also shown

how this is possible by using resonance frequencies. This method has been presented in

Secs. 2.7, and is one of the main contributions of this study.

Preliminary results from the current work have been presented at conferences as

paper [71], poster [72] and presentation [73].

1.5 Outline of thesis

This thesis has been divided into seven main chapters, and this section briefly describes

the content of each chapter.

Chapter 1 gives a short introduction to why this study was initiated, the background

for it and its objective. A proposed scope of work for this study has been presented as

well as a review of the current knowledge and application of the acoustoelastic effect

found in literature with a more specific overview of the relevant literature applied in

this study. Finally the introduction chapter gives a brief outline of the thesis.

In chapter 2, the relevant theory used in this work is presented. The theory related to

the deformation of the steel test specimen has been divided into two parts. The first part

describes the mechanics of a continuum subjected to finite strains and the constitutive

relation between strains and stresses. This can be thought of as the mathematical

description of the steel pipeline when subjected to stresses caused by for example internal

pressure, referred to as the “large” pre-stress state. The second part is related to the
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response of a pre-stressed steel subjected to an additional, but much smaller, dynamic

deformation in the form of an acoustic pressure signal. This is also known as the

acoustoelastic effect.

The theory of elastic continuum mechanics can be derived with focus on different

aspects, and as such equivalent theories can be described by different sets of parameters.

Some of the different descriptions found in the literature have briefly been mentioned

for the reader to be able to relate the results of this work in light of other well used

parameters.

The theory presented in the first sections of chapter 2 is only applicable under the

assumption of elastic deformation. Steel is a ductile material and can sustain large

plastic deformations. A discussion of plastic deformation and how elastic and plastic

contributions can be separated has been presented.

Finally the underlying theory for the ART measurement technique is presented,

followed by some suggestions on relevant measurement quantities to better be able to

extract the necessary dependency of the sound velocity on the applied stress state.

Chapter 3 describes the experimental setup and measurement methods chosen to

investigate measurements of the acoustoelastic effect by ART. It consists of four main

parts. First we have the actual steel test specimen for which we want to investigate the

acoustoelastic effect. Then we have the tension machine which subject the test speci-

men to a “large” finite strain, which puts the test specimen in a pre-stressed state. The

third component is the ART equipment which is applied to generate an acoustic signal

propagating through the test specimen in the pre-stressed state. This is the actual

measurement which reveal the acoustoelastic effect in the test specimen. In addition a

fourth element is added to be able to quantify and take into account the geometrical

change the test specimen experience during the load history.

In chapter 4, 8 different sets of second- and third-order elastic constants for common

steels reported in the literature have been presented, and the corresponding input val-

ues for numerical simulation of the acoustoelastic theory presented in Ch. 2 is collected.

Chapter 5 presents the experimentally obtained measurement results and any rel-

evant estimate of derived results in an order which corresponds to the order of the
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1.5 Outline of thesis

presented experimental setup in chapter 3. At the end the relevant results are com-

pared with the theory presented in chapter 2. The main results are presented in figures

and tabulated data inline with the text, however, supporting data is also presented in

figures and tables in appendix C and D.

The uncertainties of the obtained measurement results are then discussed and de-

scribed and tabulated in chapter 6. Each result presented in chapter 5 is treated in

the consequtive order of chapter 5. The estimation of uncertainty and the theory of

propgation of theory is based on the Guide to the expression of uncertainty in mea-

surement (GUM)[74]. Parts of this document is referenced and presented in line with

the discussion of uncertainty in the results where it first becomes relevant. Figures and

tabulated data used to document the uncertainties are presented in appendix C and D.

Finally the discussion of the results together with the conclusions of the study and

recommendations for further work are collected in chapter 7 and 8.

Detailed derivations that did not fit naturally in to the main part of the thesis have

been included in App. A. Calibration certificate for the tension machine have been

included in App. B. App. C include additional figures which supports the condensed

results presented in the main part of the thesis. A large table of initial geometrical

measurements of the test specimens is included in App. D.
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Theory

The objective of this work has been to investigate the possibility to relate a change in

the elastic material properties of steel, due to an induced finite stress state, to a corre-

sponding measured change in sound velocity. When studying waves in solids nonlinear

effects must be taken into account. Norris states in [12, ch. 9.1] that:

“Two general sources of nonlinearity can be recognised: the kinematic, or

convective, nonlinearity that is independent of the material properties, and

the inherent physical nonlinearity of the solid, as characterised by its con-

stitutive behavior.”

The current experimental setup has been divided into two separate features. The

first one is to apply a “large” uniaxial deformation to the steel test specimens which

introduce the prestress. The relation between the deformation and resulting prestress is

determined by the characteristic constitutive relation for the relevant steel and include

the inherent physical nonlinearity of the solid as described by Norris above. This effect

will be presented in detailed in this chapter. The second feature is to apply a “small”-

amplitude acoustic sinusoidal stress perturbation to the already applied prestressed

state. In this work it has been assumed that the acoustic stress perturbation can be

regarded as linear. The nonlinear effects related to the kinematics, also called the

convective effect, are thus assumed to be negligible in this work. Further reading on

the nonlinear effects related to the kinematis can be found in [12, ch. 9.1].

The prestress of the steel has been induced by fixing a rectangular test specimen in a

tension machine and deforming it through displacment- or load-controlled deformation.

A transducer has then been used to propagate a sinusodial acoustic signal through water
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2. THEORY

as coupling medium towards the center of the face of the test specimen. The propagated

signal exert a dynamic acoustic pressure field at the surface of the test specimen, which

introduces a stress perturbation propagating across the thickness of the test specimen.

This allows us to measure how fast the stress perturbation propagates through the test

specimen, and consequently estimates the average sound velocity across its thickness at

the current applied prestress. The details of the mechanical and acoustic experimental

setups are described in Secs. 3.3 and 3.5 respectively.

In accordance with these two aspects of how the sound velocity is measured and

how it relates to the applied stress state, the theoretical backround is ordered corre-

spondingly. Sec. 2.1 describes the theoretical stress state of a known finite motion (i.e.

finite stress and strain), or its specialization; a known static deformation. Then Sec.

2.2 examines the problem of a superimposed incremental motion on the known finite

motion (i.e. an infinitesimal acoustic amplitude). This is also known as the theory of

“Small-on-Large” [24]. These two sections first define the stress and strain state of a

body, the relation between applied stress and resulting strain known as an elastic con-

stitutive law. Based on this relation, the subsequent sound velocity and its dependence

on the stress/strain state of the body is derived. The terminology and nomenclature of

this work has been aligned with those used in [22], [23] and [25]. Depending on different

choices of parameters the elastic moduli of an elastic body can be presented in slightly

different forms. Sec. 2.4 summarises the some of the common alternatives found in the

literature and how they relate.

The theory presented in Secs. 2.1 and 2.2 are approximations valid for elastic de-

formations. However, when a specimen is strained so far that the elastic approximation

no longer holds and the material starts to plastically deform, an approach to account

for the plastic deformation is needed. Sec. 2.5 describes plastic deformation and how it

is included in this work.

After establishing the theory of the stress/strain state of a deformed body in Secs.

2.1 to 2.5, this chapter continues to describe the theory behind the measurement tech-

nique used to measure the sound velocity in Sec. 2.6. Finally other relevant measure-

ment quantities are described in Sec. 2.7.

It should be noted that some of the figures presented in this chapter have been made

to fit the terminology and nomenclature used, but are inspired by figures in the two

textbooks used as the main references [22, ch. 2] and [29, ch. 5,6,10], as well as the
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2.1 Large elastic deformation - prestress

article [10], while Fig. 2.10 was obtained through personal communication with other

authors [75] and [76].

2.1 Large elastic deformation - prestress

This section describes the theory of continuum mechanics needed to establish the theo-

retical stress/strain field of a deformed body, which in this case will represent the test

specimen and the prestress as it is deformed in the tension machine. It is important to

establish this basis to understand the conditions under which the superimposed acoustic

stress field propagates.

The basic physics of the infinitesimal deformation of a continuum can be found in

any continuum mechanics textbook (see for example [29]), or more specific for this work

on finite deformation in textbooks on non-linear elastic deformations [22]. This work

tries to closely follow the terminology and nomenclature used in [23] and [25] which are

based on [22].

Contact forces, body forces, or temperature changes within the body result in a

stress field which may cause a deformation. This deformation can be described by the

relative displacement of points within the body, also called a strain field. The relation

between applied stresses and induced strains are expressed by constitutive equations and

suitable relations will be presented in this section. Note that the setting is assumed to

be isothermal, and thus no thermodynamic effects have been included in this theoretical

framework [22, ch. 3].

A deformation of a continuous solid can be categorised depending on whether the

deformation process is reversible or not. If the original configuration can be recovered

by removing the stress field the deformation is elastic. On the other hand, if the orig-

inal configuration can not be recovered by removing the stress field the deformation

is plastic, or irreversible. This occurs after a material is subjected to stresses above

a certain threshold value. Above this threshold value, called yield stress, the material

undergos changes on the atomic lattice level. Slips or dislocations between neighbouring

atoms, or groups of atoms, in the atomic lattice is generally not reversible, and the final

configuration after the stress field is removed will thus be different than the original

configuration [29, ch. 10.5]. This chapter will mainly consider elastic deformations, but
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will also include some aspects of plastic deformation in Sec. 2.5.

2.1.1 Deformation and strain

The first step to gain theoretical understanding of the behaviour of any elastic material

is to establish a framework to be able to describe a material body, its behaviour as a

whole, and the behaviour of any point within its boundaries. The aim of this section is

to introduce and show the mathematical framework for a suitable measure of deforma-

tion that can be used to describe the deformation of the test specimen. Although the

following theory is applicable to an arbitrarily chosen material body, it is in this text

also related to the chosen configuration of the steel test specimens used in this work.

Thus, if not otherwise specified, the framework can be used for any arbitrarily chosen

elastic material body even though the test specimen is refered.

The test specimen can be treated as a collection of points in a connected open

subset of a three-dimensional Eucledian space, which is refered to as the configuration

of a continuous body B [22, ch. 2.1.2]. This is illustrated by the gray area denoted

B0 in Fig. 2.1 where the subscript 0 denotes the reference configuration (i.e. initial

or undeformed configuration). Although arguably a material body consists of discrete

points of atoms, continuum mechanics treats the body as a continuum of material points.

The position of a material point P within the reference configuration B0 can be given

by the position vector X relative to a fixed origin O. Note that vectors and tensors

are denoted by bold symbols throughout this text. A transformation of a body from a

reference configuration (B0 in Fig. 2.1) to another configuration Bt, where subscritp t

denotes the configuration at time t 6= 0 (i.e. current or deformed configuration), can be

decomposed into two components. The first is a rigid-body displacement which consist

of a translation and/or a rotation of the body. This rigid-body displacement does not

change the size or shape of the body [22, ch. 2.1.4]. The second component consist

of a deformation of the body. This happens when the shape and/or the size of the

body change, and occurs if there is a relative displacement between the material points

within the body [22, ch. 2.2]. After a rigid body motion and/or a deformation the new

position of the same material point is indicated by p with position vector x relative to

the same fixed origin O in the current configuration Bt.

24



2.1 Large elastic deformation - prestress

Note that the coordinate system and its origin, which the material points are ref-

erenced to, can be arbitrarily chosen. For convenience O has been selected to be the

origin and have been defined at the same point in space for all the coordinate systems

used in this thesis. The coordinate systems used are cartesian coordinates where the

same orientation with the unit base vectors x̂i, i = 1, 2, 3 as shown in Fig. 2.2 have

been used for all configurations (e.g. for B0 and Bt, or any other configuration). Note

also that the convention that a capital variable signify a Lagrangian reference frame

(i.e. with respect to the reference configuration) while a lower case variable signify a

Eulerian reference frame (i.e. with respect to the current configuration) is used through-

out this work. Thus the Lagrangian coordinates are denoted by X, while the Eulerian

coordinates are denoted by x .

The motion and deformation of the body can be represented by a mapping function

χ which takes points X in B0 to points x in Bt such that

x = χ(X, t) (2.1)

and vica verca (under the assumption that the Jacobian determinant J 6= 0, which will

be justified below)

X = χ−1(x, t) (2.2)

[22, ch. 2.1.2-3].

This mapping function represents thus the displacement field, consisting of the dis-

placement vectors u(X, t) of all the material points. Note that this is a mathematical

function describing the displacement of each material point from one configuration to

another, thus it does not consider any properties of the relevant material. The displace-

ment of a material point P can thus be defined as the point difference

u = x−X (2.3)

or equivalently

u(X, t) = χ(X, t)−X (2.4)

as shown in Fig. 2.1 [22, ch. 2.1.2-3].

Fig. 2.2 shows how two neighbouring particles P andQ in the reference configuration

move in relation to each other during deformation. This local deformation at a material

point X is described by the deformation gradient tensor defined as [77]

F = ∇Xx = ∇Xχ(X) (2.5)
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Figure 2.1: Displacement and deformation of a continuum body

where F is a second order tensor with the components Fiα = ∂xi
∂Xα

, and i, α ∈ {1, 2, 3}

signifies the cartesian coordinate directions in the deformed current (Bt) and unde-

formed reference (B0) configuration respectively. If not otherwise stated index notation

and the summation convention over repeated indices is used in this thesis (see [22, ch. 1]

for details on index notation and the summation convention). In the following the Del

operator ∇ will be replaced with the textual grad or div denoting the use as a gradient

or divergence operator respectively, and with the capitalisation of the first letter denot-

ing which configuration the operator is applied with respect to (i.e. Grad g = ∇Xg,

grad g = ∇xg, while Div g = ∇X · g, and div g = ∇x · g).

It should be noted that although the tensorA is independent of the coordinate sytem,

the matrix A can be used to describe the tensor A in a given coordinate system [29, ch.

3.7]. Since only óne coordinate system is used in this work it is thus for convenience
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2.1 Large elastic deformation - prestress

Figure 2.2: Movement of two neighbouring particles (P and Q) within a con-
tinuum body during deformation

possible to employ both matrix notation and direct tensor notation to describe tensors.

The matrix notation have been chosen over the direct tensor notation throughout this

text while component/index notation also have been used when convenient.

The Jacobian is defined as [29, ch. 7.2]

J ≡ detF =

∣∣∣∣∣∣∣
∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

∣∣∣∣∣∣∣ > 0 (2.6)

and is a local measure of change in material volume. It also is a part of the mass

conservation equation ρ0 = Jρt, or conversely J = ρ0
ρt
, where ρ is the mass density

with subscripts 0 and t denoting the reference or current configuration respectively [29,

ch. 7.2]. The additional restriction J > 0 is imposed by the physical interpretation

that J = 0 would imply either a zero density in the reference configuration or that the
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current density is infinite. This also justifies the assumption made in Eq. (2.2) that

J 6= 0 [29].

The polar decomposition theorem [22, ch. 2.2.4] states that the deformation gradient

tensor F can be decomposed into a proper orthogonal tensor and a positive definite

symmetric tensor as

F = RU = VR (2.7)

where RT = R−1 and detR = +1 is a proper orthogonal second order tensor repre-

senting a rotation, while U = UT and V = VT are positive definite symmetric second

order tensors [22, ch. 2.2.4] . The superscripts T and −1 denotes a transpose and the

inverse of the tensor. U and V are called the right and left stretch tensors respectively

[22, ch. 2.2.4] (see below for definition of stretch). The rotation and stretch tensors and

their combination to form the deformation gradient F are illustrated in Fig. 2.3 and

helps interpret the deformation gradient tensor geometrically. Here the decomposition

of the deformation gradient tensor F is illustrated by either a pure stretch by the right

stretch tensor U followed by a pure rotation (described by rotation tensor R), or the

opposite sequence of a pure rotation (R) followed by a pure stretch described by the

left stretch tensor V.

The positive definite right and left stretch tensors can be decomposed using the unit

eigenvectors u(i) and v(i) of U and V respectively together with the principal stretches

(or eigenvalues) λi > 0, i ∈ {1, 2, 3} as:

U =
3∑
i=1

λiu
(i)u(i)T , V =

3∑
i=1

λiv
(i)v(i)T (2.8)

where λi ≡ li/Li is the stretch ratio between the current length li and reference length

Li in the principal directions x̂i [23],[25]. Note that u and v are the Lagrangian (ref-

erence configuration- or body-frame) and Eulerian (current cofiguration- or lab-frame)

principal axes respectively [23].

A rotation followed by its inverse rotation leads to no change (RRT = RTR = I,

where I is the identity tensor). Together with the fact that the determinant det I = 1,

and thus det R = ±1 [29, ch. 2.1], the above restriction on the Jacobian J , and that

positive definite tensors have positive eigenvalues [29, ch. 2.5]; The Jacobian can be

expressed by [23]:

J = detF = detU = detV = λ1λ2λ3 (2.9)
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Figure 2.3: Polar decomposition of the deformation gradient tensor

For a rigid-body motion [22, ch. 2.2.6]

x = RX + c, (2.10)

where RX is a rigid-body rotation and c is a rigid-body translation, the deformation

gradient tensor is F = R through use of Eq. (2.5). The deformation gradient tensor

F is thus dependent on rigid motion through rotation but not through translation.

Although the general deformation gradient tensor F is important in the analysis of

deformation it is not a suitable measure of deformation in itself since it is dependent

on rigid motion through rotation (i.e. F may include both ridgid motion rotation R as

well as deformation (U or V) through the polar decomposition theorem in (2.7)). It is

thus convenient to use rotation-independent measures of deformation. The rotational

part of F can be exluded by multiplying it with its transpose as [22, ch. 2.1.4, 2.2.1],
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[29, ch. 6.4]

C = FTF = U2, B = FFT = V2. (2.11)

C and B is known as the right and left Cauchy-Green deformation tensors respectively.

The principal invariants of both C and B are defined by [23]

I1 = tr(C) I2 =
1

2

[
I21 − tr(C2)

]
I3 = det(C) (2.12)

where tr() is called the trace and is the sum of elements on the main diagonal (i.e.

tr(C) = Cii = C11 + C22 + C33 ). Recall also the convention used in this work to

represent tensors by their matrix in the current coordinate system yielding C2 = CikCkj

[29, ch. 3.8]. Expressed with the principal stretches λi of Eq. (2.8) they are [23]

I1 = λ21 + λ22 + λ23 I2 = λ22λ
2
3 + λ21λ

2
3 + λ21λ

2
2 I3 = λ21λ

2
2λ

2
3 (2.13)

These invariants do not change with rotation of the coordinate system, and are thus

useful when establishing constitutive relations in Sec. 2.1.3.

For a rigid-body motion the deformation gradient tensor is F = R as mentioned

above. This leads to

C(F = R) = RTR = I, (2.14)

and hence C has the constant value I throughout a rigid-body motion. Similarly B = I

for rigid-body motion as well. Since there is no material deformation for a rigid-body

motion it is thus convenient to define the Lagrangian and Eulerian finite strain tensors,

E and e respectively, such that E = e = 0 for such rigid-body motion [29, ch. 6.4]. They

will thus be a measure of the relative change between two neighbouring material points

with respect to the reference configuration1 and the current configuration2 respectively

E =
1

2
(C− I) , e =

1

2

(
I−B−1

)
, (2.15)

or in index notation using Eq. (2.3) [29, ch. 6.4]

Eαβ =
1

2

(
∂uα
∂Xβ

+
∂uβ
∂Xα

+
∂uk
∂Xα

∂uk
∂Xβ

)
, (2.16)

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− ∂uk
∂xi

∂uk
∂xj

)
. (2.17)

1E is the Lagrangian description which describe the relative change in length between neighbouring
points with respect to the reference configuration.

2e is the Eulerian description which describes the relative change in length between neighbouring
points with respect to the current configuration.
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The details of the derivation of these expressions can be found in App. A.1.

These two forms of finite deformation strain tensors are suitable measures of the

deformation independent of any rigid-body motion. Both will be further used when

establishing constitutive relations for the steel test specimen in Sec. 2.1.3 and when

deriving the stress state dependency of the sound velocities in Sec. 2.2.2 and 2.3.

The reason for the use of both the Lagrangian and Eulerian descriptions is that some

relations are more easily obtained for one than the other. This will be specified where

it is relevant.

Recall the convention applied in this work where a capital variable signify a La-

grangian reference frame (i.e. with respect to the reference configuration) while a lower

case variable signify a Eulerian reference frame (i.e. with respect to the current config-

uration).

Note also that both the Lagrangian and Eulerian finite strain tensors are functions

of the principal stretches λi defined in Eq. (2.8), which relate the current length li with

the reference length Li in the principal directions x̂i. They are thus both a measure of

what is also known as the principal engineering strains ei which can be expressed by

the principal stretches as ei = li/Li− 1 = λi− 1 (see Sec. 2.3 for definition and [78] for

a good account on engineering strains under uniaxial extension).

2.1.2 Stress

The next step is to understand the forces acting on the body under investigation (i.e.

the test specimen), and how they act on its internal parts. This section aims to in-

troduce and show the mathematical concepts describing how the applied forces act on

the body and how it introduces stress between adjecent parts of the body, as well as

presenting suitable measure quantities for this stress which will be used together with

the deformation measure presented in Sec. 2.1.1 to construct constitutive relations

describing the properties of the relevant material (in this case steel).

The configuration of a body B may be subjected to external influences which are

independent of the frame of reference, which exert forces on the body. These forces are

refered to as applied forces and consist of body forces acting on all material points (i.e.

gravity), and contact forces acting only on the surface of the body while affecting all

material points by transmission across surfaces [22, ch. 3.2]. Note that forces related
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to thermodynamic effects and other influences like electromagnetic radiation, chemical

behavior, etc. are disregarded as insignificant effects in the current application.

Stress is a measure of force f acting on a surface S between adjacent parts of the

body. The stress vector can then be expressed as t(n̂) = df/dS, where n̂ is the unit-

length direction vector normal to the surface dS [29, ch. 5] (See Fig. 2.4 for illustration).

The SI unit of the stress is [Pa = N/m2]. Different stress tensors can be defined

depending on the reference configuration, and have different applicability. The stress

tensors needed to develop the constituive relations as well as the stress dependency of

the sound velocities in Sec. 2.1.3 and 2.2.2 respectively are presented in this section.

Figure 2.4: Stress vector on an arbitrary surface between adjecent parts of a
body

The most commonly used stress tensor is the Cauchy stress tensor σ. It is defined

through the Cauchy’s stress theorem as the linear relation between the stress vector
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Figure 2.5: Cauchy stress components on the surface of an infinitesimal cube
within the body

t(n̂) and the normal unit vector n̂ of an arbitrary selected surface dS in the current

configuration. Decomposing the stress vector t(n̂) into three new stress vectors ti acting

on mutually orthogonal surface areas with unit normal vectors n̂i oriented in the x̂i-

direction of the current configuration (i = 1, 2, 3), the relation between the stress vectors

ti and the Cauchy stress tensor σ can be written on matrix form independent of n̂ as

[29, ch. 5.2-3] t1
t2
t3

 =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

x̂1

x̂2

x̂3

 (2.18)

where the components of stress are illustrated in Fig. 2.5. In index notation this

becomes

ti = σijx̂j . (2.19)
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It can be shown that the components of the finite stress vector t(n̂) can then be found

by [22, ch. 3.3], [29, ch. 5]:

t(n̂) = n̂ · σ. (2.20)

The diagonal elements of the Cauchy stress δijσij (where δij is the Kronecker delta) are

called the orthogonal normal stresses and are often denoted σx, σy, σz, where subscripts

x, y, z corresponds to the base vector directions x̂1, x̂2, x̂3. The off-diagonal elements (1−
δij)σij are called the orthogonal shear stresses and are often denoted τxy, τxz, τyz. These

stresses are relative to the chosen coordinate system. By transforming the coordinate

system and aligning it with the principal stress directions it is always possible to get

a stress tensor where the shear stresses are zero (τij = 0) and the diagonal elements

(normal stresses) equals what is known as the principal stresses.

In addition, through conservation of rotational momentum, it can be shown that

the Cauchy stress tensor is symmetric [22, ch. 3.3], [29, ch. 5.5], i.e.

σij = σji. (2.21)

As mentioned when defining the Cauchy stress tensor σ it is defined relative to an

arbitrary surface in the current configuration Bt and are thus an Eulerian description
1. The deformation gradient and the right and left Cauchy-Green deformation tensors

F,C, and B, however, describe the deformation relative to the reference configuration

B0 and combine Lagrangian and Eulerian description as shown in Sec. 2.1.1. These

type of tensors which have variables in both Lagrangian and Eulerian coordinates are

called two-point tensors [22, ch. 2.4]. Thus it is convenient to introduce the nominal

stress tensor S which relates the forces in the current configuration with surface areas

of the reference configuration2. It is expressed through [23]

S = JF−1σ, (2.22)

where F−1 is the inverse of the deformation gradient tensor defined in Eq. (2.5) and

J is as defined in Eq. (2.6). This also relates the reference and current configurations
1σ is the Eulerian description of the force acting on a surface area in the current configuration. It is

also known as the true stress tensor (see [78] for definition of true stress). Its 1D equivalent describing
the acting force over the current cross sectional area is referred to as true stress or Cauchy stress in
this work.

2S is a two-point tensor description of the current force acting on a surface area in the reference
configuration. Its 1D equivalent which describes the acting force across the reference cross section area
is referred to as engineering stress in this work [78].
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2.1 Large elastic deformation - prestress

and is thus a two-point tensor. S is in general not necessarily symmetric [23], however,

symmetry conditions will be further discussed in Sec. 2.2.2. It should also be noted for

reference that the nominal stress tensor S is the transpose of the first Piola-Kirchhoff

stress tensor defined as [22, ch. 3.4]

S = PT . (2.23)

However, this work have consistently used the nominal stress tensor S.

2.1.3 Constitutive relations

Secs. 2.1.1 and 2.1.2 have set up the mathematical framework to describe both the

finite strain and the internal stress in a body, both with respect to either of the refer-

ence and/or current configurations, B0 and Bt respectively. This is however insufficient

to describe the mechanical behaviour of a specific material. To be able to specify the

mechanical properties of any material, constitutive laws relating the stress in a body to

the strain is needed [22]. The material under investigation in this work is a common

construction steel, “Bright rectangular steel bar S235JRG2C+C” [79], which in this re-

spect will be regarded as a uniform, homogeneous, isotropic, and hyperelastic material

(Defenition of these terms are explained where they become relevant in the text). This

section will thus present the constitutive relations relevant for such a material. It is

noted that steel will start to plastically deform if it is subjected to stresses larger than

the initial yield point [29, ch. 10.5]. This will however not be a concern of this section,

but will be addressed seperately in Sec. 2.5.

An elastic material is defined as a material where the state of stress at each material

point in the current configuration is solely determined by the state of deformation of

this configuration to an arbitrary choice of reference configuration. More specific it is

independent of the rate at which the deformation occurs, and the path of deformation

joining the two configurations [22, ch. 4.1.2]. This implies that for a closed loop

deformation path the stress state returns to the initial stress state, i.e. the deformation

is reversible (see Eqs. (2.1) and (2.2)).

A material is considered uniform if all the material points of the body are mutually

isomorphic. That is, two materialpoints X and X ′ are said to be isomorphic if the

neighbourhood around each point has the same uniform density (i.e. ρ0 = ρ′0), and that
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the mechanical properties of X and X ′ are indistinguishable (i.e. that the material in

the neighbourhood of X and X ′ responds in the same way when subjected to the same

deformation gradient history F(t)). In addition, if the response of each material point of

the body is the same relative to the deformation χ, the body is said to be homogeneous

[22, ch. 4.1.3].

If there exists at least one reference configuration of a material where the mechanical

response of the material does not exhibit a preferred direction, characterising isotropy,

the material is said to be an isotropic elastic material [22, ch. 4.2.4]. The steel used in

this work is assumed to have this property in its unstressed configuration.

To arrive at a constitutive relation between stress and strain we need to establish

the mechanical energy balance-, or conservation of power-, equation. Taking the scalar

product of Cauchy’s first law of motion [22, ch. 3.3.2]

divσT + ρtb = ρẍ (2.24)

with the particle velocity ẋ, and using the symmetry of σ, can together with integration

over the current configuration Bt (i.e. Eulerian description) and use of the divergence

theorem and conservation of mass give the mechanical energy balance equation as [22,

ch. 3.5.1]∫
Bt

ρtb · ẋdv +

∫
∂Bt

t · ẋda =
∂

∂t

∫
Bt

1

2
ρtẋ · ẋdv +

∫
Bt

tr(σΣ)dv. (2.25)

In the above two equations b is the body forces acting on the volume element dv of Bt,

ẋ is the particle velocity of material points x, and t is the contact forces acting on the

surface elements da on ∂Bt, which is the surface of Bt. Σ = 1
2(Γ + ΓT ) is called the

Eulerian strain-rate tensor, and is the symmetric part of the Eulerian velocity gradient

tensor Γ = grad ẋ [22, ch. 2.3.1]. The Eulerian strain-rate tensor Σ is derived by taking

the Lagrangean time derivative (i.e. the material derivative) of the Green strain tensor

E in Eq. (2.15) as Ė = FTΣF [22, ch. 2.3.1]. Note however that it is not necessarily

expressible as either the Lagrangian or Eulerian time derivative of a strain tensor, and

is thus not a rate of strain. However, it is a measure of the rate at which line elements

of material change length - i.e. the motion of the material body is rigid only if Σ = 0

[22, ch. 2.3.1].
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2.1 Large elastic deformation - prestress

A dotted variable will in this work signify the derivative of a variable with respect

to time, i.e. ẋ = ∂/∂t(x). Partial time derivative ∂/∂t at fixed X is referred to as the

Lagrangian time derivative (also known as the material derivative), and for fixed x it is

called the Eulerian time derivative. The relation between the Lagrangian and Eulerian

time derivative can be expressed by using the chain rule and the relation in Eq. (2.1)

as
∂

∂t

∣∣∣∣
X

=
∂

∂t

∣∣∣∣
x

+ ẋ · grad. (2.26)

To make the notation more compact and to avoid confusion the Lagrangian (or material)

derivative ∂/∂t|X at fixed X will in this work be denoted by d/dt such that

d

dt
=

∂

∂t

∣∣∣∣
X

=
∂

∂t

∣∣∣∣
x

+ ẋ · grad (2.27)

if not otherwise stated.

Eq. (2.25) can also be expressed using the Lagrangian description as [22, ch. 3.5.1]∫
B0

ρ0b0 · χ̇dV +

∫
∂B0

(ST N̂) · χ̇dA =
d

dt

∫
B0

1

2
ρ0χ̇ · χ̇dV +

∫
B0

tr(SḞ )dV. (2.28)

Here b0 is the body forces acting on the volume element dV of B0, N̂ is the unit

(outward) normal vector to the area element dA of the boundary surface ∂B0 of B0,

and the short form χ̇ = ∂χ
∂t (X, t) is introduced. The left-hand sides of Eqs. (2.25) and

(2.28) represent thus the rate of change of mechnaical work of the applied forces on the

body in configuration Bt or B0 respectively. The first term on the right-hand side

∂

∂t

∫
Bt

1

2
ρtẋ · ẋdv, or

d

dt

∫
B0

1

2
ρ0χ̇ · χ̇dV (2.29)

represent the rate of change of the kinetic energy of the body where 1
2ρẋ · ẋ and 1

2ρ0χ̇ ·χ̇
are the kinetic energy densities with respect to configurations Bt or B0 respectively. The

second term ∫
Bt

tr(σΣ)dv, or

∫
B0

tr(SḞ)dV (2.30)

is the rate of work done on the body by the stresses, also known as the stress power.

From Eq. (2.30) it is clear that σ and Σ are a pair of stress and strain tensors which

can be used to describe the Eulerian stress power. Equivalently the pair S and Ḟ can

be used to describe the Lagrangian stress power.

Energy is in general not conserved during the motion of a continuum, and the

rate of stress powers of Eq. (2.30) incorporate both dissipative (i.e. energy losses)
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and conservative (i.e. stored internal energy) contributions. However, in the special

case where the material response is elastic, and where an elastic strain-energy density

function exist, mechanical energy is conserved (i.e. any dissipative processes can be

neglected) [22, ch. 3.5.1]. Assuming now that the right-hand side of Eq. (2.28) can be

expressed as the rate of change of the total mechanical energy of the body results in

the mechanical energy balance under conservation of energy as [22, ch. 4.3.1]∫
B0

ρb0 · χ̇ dV +

∫
∂B0

(
ST N̂

)
· χ̇ dA =

d

dt

∫
B0

(
1

2
ρχ̇ · χ̇+W

)
dV, (2.31)

where, as before, 1
2ρ0χ̇ · χ̇ represent the kinetic energy density, while W is the internal

energy density which under the above assumption of elastic response becomes a measure

of the stored internal elastic energy. W is better know as the strain-energy density

function, and is the terminology adopted in this work [22, ch. 4.3.1]. Note also that W

is defined per unit volume in this work [22, ch. 4.3.1].

To be able to do the transformation from the Lagrangian mechanical energy balance

in Eq. (2.28) to Eq. (2.31) expressed with the strain energy W , we need to impose the

restriction on W that [22, ch. 4.3.1]

Ẇ = tr(SḞ) (2.32)

Pairs of stress and strain tensors where the (Lagrangian or material) time derivative

of the strain tensor can be coupled to give the stress power density as in Eq. (2.32)

is said to be conjugate pairs of stress and strain tensors [22, ch. 3.5.2]. The Eulerian

strain-rate Σ can not in general be expressed as the Lagrangian time derivative over

some strain tensor, and therefor the stress and strain tensor pair σ and Σ in the stress

power term in the Eulerian mechanical energy balance (Eqs. (2.25) and (2.30)) is not

a conjugate pair such as S and Ḟ in Eq. (2.32) [22, ch. 3.5.2]. This is also the reason

why the Lagrangian form of the stress power is used to further develop the constitutive

relation between stress and strain.

A constitutive relation between the nominal stress tensor S and the deformation

gradient tensor F is assumed to be expressed by some material response function G for

an unconstrained material as [22, ch. 4.2]

S = G(F) (2.33)
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2.1 Large elastic deformation - prestress

For an unconstrained hyperelastic material (see below for definition), which we assume

can describe the behaviour of the currently used steel, certain restrictions on G can be

imposed [22, ch. 4.2-3].

Assuming that W exist and that it is a scalar function of F, Eq. (2.32) can through

Eq. (2.33) be written as [22, ch. 4.3.1]

Ẇ = tr(G(F)Ḟ) (2.34)

If a function W (F) exist such that the above relation in Eq. (2.34) holds then through

use of the chain rule

Ẇ = tr

(
∂W

∂F
(F)Ḟ

)
(2.35)

also holds. If such a strain-energy density function exist for an elastic material, this

material is called a Green-elastic or hyperelastic material [22, ch. 4.3.1]. Comparing Eqs.

(2.33) to (2.35) it is evident that for such an unconstrained material the constitutive

relation, or stress-deformation relation, is simply

S =
∂W (F)

∂F
. (2.36)

Including the condition that the elastic stored energy should be unaffected by a super-

posed rigid-body motion (as defined in Eq. (2.10)) after the deformation leads to [22,

ch. 4.3.1]

W (RF) = W (F) (2.37)

for all proper orthogonal R and arbitrary deformation gradients F. Using this in com-

bination with the polar decomposition theorem of Eq. (2.7) it is clear that W is a

function of U alone [22, ch. 4.3.1], i.e.

W (F) = W (RTF) = W (RTRU) = W (U). (2.38)

For the special case of an isotropic hyperelastic material where the material response

does not have a preferred direction the elastic stored energy is not affected by a rigid-

body motion before the deformation. Thus in the same manner as the previous relation

it is clear that W is a function of V alone as well [22, ch. 4.3.4].

W (F) = W (FRT ) = W (VRRT ) = W (V). (2.39)
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Based on these two conditions it can be shown that W is an isotropic scalar function

of U or V, and consequently a symmetric function of their eigenvalues the principal

stretches λi [22, ch. 4.3.4]

W (U) ≡W (V) = W (λ1, λ2, λ3). (2.40)

It can also be shown that the constituive relation of an unconstrained hyperelastic

material in Eq. (2.36) can be expressed in terms of the Lagrangian strain E as [22, ch.

5.1][12][24]

S =
∂W

∂F
(F) =

∂W

∂E
(E)FT . (2.41)

The detailed derivation of this relation is presented in App. A.2.

This concludes the general mathematical description of the mechanical behaviour the

current test specimen experiences as it is prestressed/deformed in the tension machine.

The next section will investigate the effect of a small elastodynamic (wave) deformation

superimposed on the established prestress of this section.

2.2 Small dynamic (acoustic) deformation

This section will investigate small dynamic (time dependent) disturbances introduced

by an acoustic signal travelling in a test specimen already subjected to an initial stress

state induced by an imposed deformation in a tension machine. First it will present the

elastodynamic, or wave, equations governing the propagation of an acoustic signal in

an elastic material. Then it will go on to investigate the combination of a prestressed

configuration with an additional acoustic signal. Finally it will use this in combination

with the constitutive relation of Eq. (2.36) presented in Sec. 2.1.3 to develop the depen-

dency of the acoustic velocities on the magnitude of the prestress, looking specifically

into the case of an applied uniaxial tension as prestress. This section is mainly aligned

with-, and based on-, the work of Ogden [22][23] and Norris [12][24].

2.2.1 Elastodynamic equations

In parallel to the elastostatic derivation above, B0 denotes a time independent reference

configuration of the body. Letting t ∈ I ⊂ R denote time, where I is an appropriate
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2.2 Small dynamic (acoustic) deformation

interval of time, the current (or deformed) configuration Bt can be parametrizied by t.

Assuming that the current configuration Bt evolves continuously with t, the collection of

configurations {Bt : t ∈ I} is the motion of the body [23]. As before a point of the body

within the reference configuration has the position vector X, while x is the position

within the current configuration. Including the time dependence of the elastodynamic

deformation the mapping function in Eq. (2.1) takes the form [23]

x = χ(X, t) for all X ∈ B0, t ∈ I (2.42)

The velocity ẋ and acceleration ẍ of a material point are defined through the La-

grangian (or material) time derivative (see Eq. (2.27)) by

ẋ ≡ χ̇ =
d

dt
χ(X, t) (2.43)

and

ẍ = χ̈ =
d2

dt2
χ(X, t) (2.44)

where a dotted variable is the notation for the partial derivative with respect to the

variable t, and X and t are the independent variables (i.e. Lagrangian description) [23].

Based on the equation of linear momentum balance [22, ch. 3.2] together with the

assumption that ρ0, b0 and ẍ are continuous, and that S is continuously differentiable;

The governing equation of motion for a continuum in terms of the nominal stress can

be expressed by the relation [22, ch. 3.3.2]

Div S + ρ0b0 = ρ0χ̈, (2.45)

also known as the Lagrangian form of the Cauchy’s first law of motion. In the current

setup the only body-force acting is that of the gravity. This force is constant throughout

the experiments, and is also insignificant compared to the applied tensional load. Thus,

disregarding the body-force term, Eq. (2.45) becomes

Div S = ρ0χ̈. (2.46)

This relation will be used further when looking at small incremental motions superim-

posed on a finite motion in the next section “Small-on-Large”.
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2.2.2 Small-on-large - The acoustoelastic effect

The acoustoelastic effect describes how the sound velocity of small amplitude waves

in elastic bodies depend on the stress state of the body in which they travel. To

investigate the theoretical explanation of this effect we need to destinguish between

three different states and their coordinates. First a material point in the reference, or

un-stressed, state/configuration B0 have the coordinate vectors X. Secondly the static

initial (deformed) stress state Bt, corresponding to the state after the tension machine

has deformed the test specimen, has the coordinate vectors x. This corresponds to

the two states discussed in Secs. 2.1.1 and 2.1.2. The third state B′ is the current

state where a materialpoint experience a small dynamic displacement in addition to the

larger static deformation of Bt (small-on-large) and has the coordinate vectors x′. Note

that these positions are all relative to the same origin and with the same orientation

of the coordinate systems. The total displacement of the material points can thus be

described by [24]

u = u(0) + u(1) = x′ −X, (2.47)

where

u(0) = x−X, u(1) = x′ − x, (2.48)

is the displacements describing the static deformation (consequently defining the static

stress and strain state according to Secs. 2.1.1 and 2.1.2), and the small-on-large addi-

tional dynamic displacement (Sec. 2.2.1) added to the static deformation, respectively.

The objective of this section is thus to derive the equation of motion for the addi-

tional disturbance u(1) in terms of the intermediate deformation u(0) assuming that the

small-on-large assumption

|u(1)| � |u(0)| (2.49)

holds.

It is noted that this latter assumption may not be valid for those parts of the load

history where the applied displacement goes to zero (see Sec. 3.3). However, in these

load states approaching zero stress it is assumed that the propagation of acoustic stress

waves can be described by ordinary linear elastic theory for unstressed materials (i.e.

the acoustic disturbance is assumed to always be linear and only non-linearity due to

the applied pre-stress has been considered here [12]). Thus, the considerations of this

section is obsolete as the applied stress is reduced towards zero. As soon as a tension is
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applied to the system it is assumed that the resulting static stress field is much larger

than the acoustically induced dynamic stress field, making the above assumption valid.

Assuming that the scalar strain energy W can be expressed as a power series in

the total strain E (i.e. both for the static pre-stress and dynamic acoustic stress), that

the elastic stored energy is unaffected by a rigid body motion, and that it both has a

minimum, and is zero at the unstressed/undeformed state, it follows that there is no

linear term in the expansion of W in powers of Eij [13, ch. 1.3]. Thus [12][24]

W =
1

2!
CijklEijEkl +

1

3!
CijklmnEijEklEmn + · · · , (2.50)

where Cijkl and Cijklmn are contant components of a fourth order and a sixth order

tensor respectively. Note that the use of greek subscripts to denote Lagrangian compo-

nents has been dropped. The symmetry of E, Eij = Eji, together with the assumption

that W is a scalar implies through Eq. (2.50) that the second order moduli Cijkl have

the following symmetry

Cijkl = Cjikl = Cijlk. (2.51)

The strain energy power expansion in Eq. (2.50) implies also that for hyperelastic

material the addition symmetry

Cijkl = Cklij (2.52)

is applicable [22, ch. 6.1.6][29, ch. 8.3]. These symmetries reduce the number of

independent components of Cijkl from 81 to 21 at most. Similarly the third order

moduli Cijklmn also have symmetries such that both Cijkl and Cijklmn can be ex-

pressed by the Voigt’s notation [12]. That is;, Cijkl = CIJ and Cijklmn = CIJK ,

where i, j, k, l,m, n ∈ {1, 2, 3} and I, J,K ∈ {1, 2, 3, 4, 5, 6}, and the relationship ij =

11, 22, 33, 23, 31, 12 ↔ I = 1, 2, 3, 4, 5, 6 [12][24]. The second order moduli Cijkl has at

most 21 independent components, while the third order moduli Cijklmn have at most

56 [12]. These reduce in the presence of material symmetri. See [80] for a thorough

account of elastic symmetries. It should be noted that this work uses the full index

notation. However, the Voigt’s notation has been used when relating other representa-

tions of elastic moduli for isotropic solids (see Table 2.1).
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Introducing the displacement gradient

Grad u = Grad x′ −Grad X = F− I, (2.53)

from Eq. (2.47), which in component form can be rearranged to

Fiα =
∂ui
∂Xα

+ δiα, (2.54)

the power expansion of Eq. (2.50) togheter with the symmetries of Eqs. (2.51) and

(2.52) enables the constitutive relation of Eq. (2.41) to be expanded as [12]

Sβq =
∂W

∂Eαβ
Fαq =

∂W

∂Eαβ

(
∂uα
∂Xq

+ δαq

)
=

(
∂uα
∂Xq

+ δαq

)[
CαβklEkl +

1

3!

(
CαβklmnEklEmn +

CijαβmnEijEmn + CijklαβEijEkl

)
+ · · ·

]
(2.55)

Using Eαβ expressed by displacement gradients as in Eq. (2.16) and the symmetries of

both Cijkl and Eij , Eq. (2.55) can be written as [12][24] (see App. A.3.3 for details)

Sji = Cijkl
∂uk
∂Xl

+
1

2
Mijklmn

∂uk
∂Xl

∂um
∂Xn

+
1

3
Mijklmnpq

∂uk
∂Xl

∂um
∂Xn

∂up
∂Xq

+ · · · (2.56)

where

Mijklmn = Cijklmn + Cijlnδkm + Cjnklδim + Cjlmnδik, (2.57)

and third- and higher order terms in ∂ui/∂Xj have been neglected [12][24]. [12][24] also

note that Mijklmn 6= Mjiklmn, and that the non-symmetry of S is thus an effect of the

second order terms in ∂ui/∂Xj .

It is also noted for later reference that for small deformations/strains where second

and higher order terms in strain measure ∂ui/∂Xj are much less than than the first

order term, and Eq. (2.56) can be linearised to

Sji ≈ Cijkl
∂uk
∂Xl

. (2.58)

This is one alternative of a Lagrangian description of the generalised Hooke’s law where

Sji, the nominal stress tensor, is a measure of stress and ∂uk/∂Xl is a measure of strain,

which are related by a linear homogeneous equation. [13, ch. 1.3].
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Using the chain rule, and changing the variable through Eqs. (2.47) and (2.48),

partial derivatives with respect to Xj can be expanded in xj as [24] (see App. A.3.2 for

details)

∂

∂Xj
=

∂

∂xj
+ u

(0)
k,j

∂

∂xk
+ · · · (2.59)

where the short form u
(0)
k,j ≡ ∂u

(0)
k /∂xj has been used [24]. Thus the divergence of

Sij (the left hand side of the Lagrangian equation of motion from Eq. (2.46)) can be

expanded using the relation in Eq. (2.56) as [24] (see App. A.3.4 for details)

∂Sji
∂Xj

≈ ∂Sji
∂xj

+ u
(0)
p,j

∂Sji
∂xp

≈ Cijkl

(
∂2uk
∂xj∂xl

+ u
(0)
q,l

∂2uk
∂xj∂xq

+ u
(0)
q,lj

∂uk
∂xq

)
+u

(0)
p,jCijkl

(
∂2uk
∂xp∂xl

+ u
(0)
q,l

∂2uk
∂xp∂xq

+ u
(0)
q,lp

∂uk
∂xq

)
+

1

2
Mijklmn

{(
∂2uk
∂xj∂xl

+ u
(0)
q,l

∂2uk
∂xj∂xq

+ u
(0)
q,lj

∂uk
∂xq

)(
um,n + u(0)r,num,r

)
+
(
uk,l + u

(0)
q,l uk,q

)( ∂2um
∂xj∂xn

+ u(0)r,n
∂2um
∂xj∂xr

+ u
(0)
r,nj

∂um
∂xr

)}
+u

(0)
p,j

1

2
Mijklmn

{
· · ·
}

+ · · · (2.60)

Assuming that the static initial deformation u(0) of configuration Bt is in equilibrium

yields from Eq. (2.46)

Div S(0) = 0, u
(0)
,tt = 0, (2.61)

where the superscript (0) denote the part of given variable related to the configuration

of static pre-stress, and correspondingly the superscript (1) will denote the part of a

variable related to the additional dynamic acoustic disturbance. Eq. (2.60) can the

be used to deduce a linear equation (disregarding higher order terms in u(0)m,n) for the

additional disturbance u(1)(x, t) based on the Lagrangian equation of motion in Eq.

(2.46) as [24] (see App. A.3 for details)

Bijkl
∂2u

(1)
k

∂xj∂xl
= ρ0

∂2u
(1)
i

∂t2
(2.62)
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where

Bijkl = Cijkl + δikCjlqru
(0)
q,r +Crjklu

(0)
i,r +Cirklu

(0)
j,r +Cijrlu

(0)
k,r +Cijkru

(0)
l,r +Cijklmnu

(0)
m,n.

(2.63)

is the effective elastic moduli, and comprise terms of order zero and one in the applied

deformation u(0)m,n. The assumption that the initial stress and strain are uniform implies

that the coefficients Bijkl are constants [24]. Eq. (2.62) is thus an equation of motion for

the additional disturbance u(1) in terms of the initial static deformation u(0) as sought

(i.e. Bijkl being a function of the initial disturbance u(0) as Bijkl(u(0))).

2.2.2.1 Plane wave

Considering a plane wave of the form [23]

u(1)(x, t) = mf (N · x− ct), (2.64)

where N is a Lagrangian unit vector in the direction of propagation (i.e. normal to

the phase front), m is a unit vector referred to as the polarisation vector (describing

the direction of particle motion), c is the phase velocity of the wave, and f is a twice

continuously differentiable function (e.g. a sinusodial function) [22, ch. 6.4]. Inserting

this plane wave into Eq. (2.62) yields

Q(N)m = ρ0c
2m (2.65)

where Q(N) is introduced as the acoustic tensor, and depends on N as [22, ch. 6.4][24]

[Q(N)]ij = BijklNjNl. (2.66)

Eq. (2.65) is called the propagation condition, and determines for a given propagation

direction N the velocity and polarisation of possible waves corresponding to plane waves.

The wave velocities can be determined by the characteristic equation [22, ch. 6.4]

det
(
Q(N)− ρ0c2I

)
= 0. (2.67)

For a hyperelastic material Q(N) is symmetric, and thus its eigenvalues are real, but

not necessarily positive. For the wave velocities c to be real, the eigenvalues ρ0c2 must

be positive. If this is the case, from Eq. (2.67) it is clear that three mutually orthogonal
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2.2 Small dynamic (acoustic) deformation

real plane waves exist for the given propagation direction N. From Eq. (2.65) and (2.66)

the characteristic wave velocities can be expressed as:

ρ0c
2 = Q(N)m ·m = BijklNjNlmimk. (2.68)

The inequality relation

BijklNjNlmimk > 0 (2.69)

is called the strong ellipticity condition for all non-zero vectors N and m [22, ch. 6.2.7].

Thus, if the strong ellipticity condition holds then ρ0c
2 > 0 for all propagation and

polarisation directions N and m. For a strongly elliptic system it is thus guaranteed

that the speeds of homogeneous plane waves are real. [22, ch. 6.2.7][22, ch. 6.4]

If the propagation direction is along one of the Eulerian principal directions (i.e.

N = u(i), where i = 1, 2, 3, the polarisation directions for an unconstrained material

satisfying Eq. (2.65) are simply u(i). The polarisation m = N corresponds to a lon-

gitudinal wave where the particle motion is parallel to the propagation direction, also

referred to as compressional wave. The two other polarisations where m ·N = 0 cor-

responds to transverse waves with the particle motion orthogonal to the propagation

direction, also refered to as shear waves. [22, ch. 6.4]

2.2.2.2 Isotropy

As this work limits the investigation to isotropic hyperelastic materials, the strain energy

expansion of Eq. (2.50) can be rewritten in terms of the invariants of the second order

tensor E. Such second order tensors have the invariants tr Ek where k ∈ {1, 2, 3} [29,
ch. 3.8]. Thus W (E) = W (trEk), k ∈ {1, 2, 3}, and Eq. (2.50) can for an isotropic

hyperelastic material be rewritten as [12]

W =
λ

2
(trE)2 + µtrE2 +

C

3
(trE)3 + B(trE)trE2 +

A

3
trE3 + · · · , (2.70)

Thus, by combining the two expressions for the strain energy function in Eqs. (2.50)

and (2.70) the second- and third order elastic moduli can be expressed by [12]

Cijkl = λδijδkl + 2µIijkl, (2.71)

Cijklmn = 2C δijδklδmn + 2B(δijIklmn + δklImnij + δmnIijkl)

+
1

2
A(δikIjlmn + δilIjkmn + δjkIilmn + δjlIikmn), (2.72)
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where Iijkl = 1
2(δikδjl + δilδjk), and where λ, µ are the second order elastic moduli (also

known as the Lamé parameters) and A,B ,C are the third order elastic moduli intro-

duced by [37] and used by [22][12] and more specific for the following section by [25].

In the following isotropy will be assumed if not otherwise stated.

Note also from Eq. (2.68) that the characteristic wave velocities c(N,m) are func-

tions of the effective elastic moduli Bijkl and the propagation and polarisation directions

N and m respectively. Recalling from Eq. (2.63) that the effective elastic moduli Bijkl
is a function of the second and third order elastic moduli (Cijkl and Cijklmn, or cor-

respondingly λ, µ,A,B, and C for an isotropic hyperelastic material) and the initial

static deformation u(0), it can be shown through Eqs. (2.8), (2.11), (2.15) and (2.16)

that Bijkl is a function of the principal stretches λ1, λ2, λ3 [22, ch. 6.4]. Thus the

characteristic sound velocities are also a function of the principal stretches. This will

be further investigated for the special case of a uniaxial initial static displacement in

Sec. 2.3 below.

2.3 Acoustoelasticity for uniaxial tension

This work has concentrated on a uni-axial tension with the propagation of sound per-

pendicular to the direction of tension. This choice has been made based on the similarity

with a pipeline inspection tool travelling along the inside of a steel pipeline probing the

wall thickness perpendicularly to the direction of the hoop stress, which is the domi-

nating and load bearing stress of a pressurised pipeline. Uniaxial tension is specifically

handled in [25], and the current work is thus based on the expressions presented therein.

A cuboidal sample of a compressible solid in an unstressed reference configuration

can be described by the Cartesian coordinates Xi ∈ [0, Li], i = 1, 2, 3, where the geom-

etry is aligned with the natural coordinate system, and Li is the length of the sides of

the cuboid (similar to the current test specimen shown in Fig. 3.1). Assume then that

the cuboid is subjected to a uniaxial tension in the x1-direction so that it deforms with

a pure homogeneous strain such that x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, which gives

the elongation

ei ≡ li/Li − 1 = λi − 1, i ∈ {1, 2, 3} (2.73)
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2.3 Acoustoelasticity for uniaxial tension

in the xi-direction. Here li signifies the deformed length of the cuboid side i in the

pre-stressed configuration, and where the ratio between the length of the sides in the

pre-stressed and reference configuration are denoted by

λi ≡ li/Li (2.74)

and called the principal stretches. Note that in this work both the terms strain and

elongation will be used. Strain will be used as the general term, while elongation denotes

the principal strains measured by strain gauges in the x1-, x2-, and x3-direction of the

uniaxial tension setup described in Sec. 3.3. This corresponds for an isotropic material

to a deformation gradient without any rotation (i.e. from Eq. (2.7) F = U = V with

R = I) which can be described by the principal stretches as eigenvalues λi ≡ li/Li as

shown in Eq. (2.8) [25], or equivalently by the elongations (Eq. (2.73)) in the three

principal directions xi.

The Jacobian in Eq. (2.9)

J = λ1λ2λ3 =
l1l2l3
L1L2L3

(2.75)

can be regarded as a measure of the volume change when the material is subjected to

elongation/compression in one or more directions. Correspondingly the relation

J

λ1
=

l2l3
L2L3

(2.76)

can be regarded as a measure of change in the cross-section area in the x2-x3-plane.

For an uniaxial tension in the x1-direction we assume that e1 = λ1 − 1 increase by

some amount. If the lateral faces are free of traction, which is ensured if Eq. (2.36) for

the pre-stressed conditions satisfy [25]

S22 = S33 =
∂W

∂λ2
=
∂W

∂λ3
= 0, (2.77)

the lateral elongations e2 = λ2 − 1 and e3 = λ3 − 1 are limited to the range e2, e3 ∈
(−1, 0]. This contraction in the x2- and x3-direction when applying a tension in the

x1-direction is also know as the Poisson-effect [13, ch. 1.3]. For isotropic materials the

lateral elongation (or rather contraction) must also be equal (i.e. e2 = e3), and the

range corresponds to the range from total lateral contraction (e2 = e3 = −1, which is

non-physical), and to no change in the lateral dimensions (e2 = e3 = 0). It is noted that
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theoretically the range could be expanded to values larger than 1 corresponding to an

increase in lateral dimensions as a result of increase in axial dimension. However, very

few materials exhibit this property [81][82] and it has not been relevant for this work.

Recalling the expansion of Sij in Eq. (2.56) in terms of partial derivatives of the

displacement ∂ui/∂Xj (Eq. (2.48)) can for such an uniaxial deformation, with use of

the elastic moduli in Eqs. (2.71) and (2.72), be expressed as [13, ch. 1.3]

Sij = (λδijδkl + µ(δikδjl + δilδjk))
∂uk
∂Xl

+ · · · . (2.78)

Note that the superscript (0) to denote the initial deformation of state Bt has been

dropped in the following. For a homogeneous uniaxial deformation the partial derivative

will only have non-zero elements along its diagonal, and it can thus be expressed by the

principal stretches λi, or conversley the elongations ei, as

δkl
∂uk
∂Xl

= δkl
∂xk
∂Xl

− δkl = λk − 1 = ek (2.79)

The restriction imposed by Eq. (2.77) leads thus to [25]

S22 = λ(e1 + 2e2) + 2µe2 = 0, (2.80)

which, when rearranged, gives the relation between the applied elongation e1 and the

resulting elongation e2 = e3 as

− e2
e1

=
λ

2(λ+ µ)
≡ ν, (2.81)

which is known as the Poisson’s ratio [13, ch. 1.3] (see Sec. 2.4).

Note that Eq. (2.80) only includes terms of order one in the applied deformations

u
(0)
i,j . By including higher order terms from Eq. (2.56) the contraction e2 can up to

second order in e1 be written as [25]

e2 = −νe1 − βe21 (2.82)

where ν is defined in Eq. (2.81) above, and [25]

β =
3κλ

8(λ+ µ)2
+

λ2A

8(λ+ µ)3
+

[
λ(λ− 2µ)

2(λ+ µ)2
+ 1

]
B

2(λ+ µ)
+

µ2C

2(λ+ µ)3
, (2.83)

where

κ = λ+
2

3
µ (2.84)
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2.3 Acoustoelasticity for uniaxial tension

is the infinitesimal bulk modulus [13, ch. 1.3].

Using the relation between Cauchy- and nominal-stress in Eq. (2.22) and the con-

stitutive relation for a homogeneous and uniaxial deformation in Eqs. (2.36), (2.70)

yields the relation [22, ch. 4.3.4][25]

S11 =
J

λ1
σ11 =

∂W

∂λ1
, (2.85)

where J/λ1 is the change in x2-x3 cross section area over which the tension is applied

(see Eq. (2.76)) By substituting the expansion of e2 from Eq. (2.82) into Eq. (2.85)

the relation between the pre-stress and pre-strain up to the second order in e1 can be

found, which [25] have shown to be

σ11 =
3κµ

λ+ µ
e1 + γe21 (2.86)

where

γ =
3κµ(5λ+ 3µ)

2(λ+ µ)
+

[
1− λ3

4(λ+ µ)3

]
A+

3µ(3λ2 + 4λµ+ 2µ2)

2(λ+ µ)3
B+

µ3

(λ+ µ)3
C. (2.87)

Note that 3κµ/(λ + µ) = Y is the infinitesimal Young’s modulus. We will come back

to alternative descriptions of the elastic moduli in Sec. 2.4, but will mainly focus on

the Lamé second order elastic moduli and third order elastic moduli of Eq. (2.71) and

(2.72). Conversely, it is possible to expand the pre-strain up to the second order of

pre-stress, which [25] have shown to yield

e1 =
λ+ µ

3κµ
σ11 +

(
λ+ µ

3κµ

)3

γσ211. (2.88)

For a load applied in the x1-direction, we take the acoustic propagation direction

(see Sec. 2.2.2.1 to be in the x3-direction (i.e. N = [0, 0, 1]). Selecting an orthonormal

set of polarisation vectors (i.e. describing the direction of particle motion) as

{m} =


m1 = x̂1 = [1, 0, 0] ‖ to applied tension
m2 = x̂2 = [0, 1, 0] ⊥ to applied tension
m3 = x̂3 = [0, 0, 1] ‖ toN

(2.89)
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leads, through Eq. (2.68), to the three sound velocities [25]

ρ0c
2
33 = B3333, ρ0c

2
31 = B1313, ρ0c

2
32 = B2323, (2.90)

where c33 is the sound velocity of the longitudinal wave (also denoted cl) where the

particle motion is parallel with the propagation direction, c31 is the sound velocity of

the transverse wave with particle motion polarised parallel to the direction of tension,

and c32 is the sound velocity of the transverse wave with particle motion polarised

perpendicular to the direction of tension (also denoted cs or csk where subscript k

signify polarisation direction of the particle motion). Including the elongation e1 in the

effective elastic moduli Bijkl of Eq. (2.63), the sound velocities can be expressed as [25]

(see App. A.4 for details on the expansion and the relevant values of Bijkl)

ρ0c
2
33 = λ+ 2µ+ a33e1, ρ0c

2
3k = µ+ a3ke1, k = 1, 2 (2.91)

where

a33 = −2λ(λ+ 2µ) + λA+ 2(λ− µ)B − 2µC

λ+ µ
(2.92)

a31 =
(λ+ 2µ)(4µ+A) + 4µB

4(λ+ µ)
(2.93)

a32 = −λ(4µ+A)− 2µB

2(λ+ µ)
(2.94)

are the acoustoelastic coefficients related to effects from third order elastic constants.

Abiza et al. [25] have also shown that acoustoelastic coefficients, bij , related to fourth

order elastic constants may also be important for some cases. Although they have not

been applied in this work, they have been included in App. A.4 for completeness.

The sound velocitys can also be expressed in terms of the corresponding pre-stress

σ11 up to second order as [25]

ρ0c
2
33 = λ+ 2µ+ a∗33σ11 + b∗33σ

2
11, ρ0c

2
3k = µ+ a∗ikσ11 + b∗ikσ

2
11, k = 1, 2 (2.95)

Using the relation in Eq. (2.88) to determine a∗ij and b
∗
ij as [25]

a∗ij =

(
λ+ µ

3κµ

)
aij , b∗ij =

(
λ+ µ

3κµ

)(
bij −

λ+ µ

3κµ
γaij

)
(2.96)
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To be able to compare theoretical values of the sound velocities with experimental

data the following three sound velocities have been implemented in numerical compu-

tation algorithms (see Sec. 4 for details) based on Eq. (2.91) and the acoustoelastic

constants in Eqs. (2.92), (2.93), and (2.94).

c33 =

√
λ+ 2µ+ a33e1

ρ0
(2.97)

c31 =

√
µ+ a31e1

ρ0
(2.98)

c32 =

√
µ+ a32e1

ρ0
(2.99)

The second index k in c3k indicate as before the polarisation direction of the par-

ticle motion (i.e. k = 3 signifies a longitudinal wave, while k = 1 and k = 2 signify

shear waves with direction of the particle motion polarised in the x1- and x2-direction

respectively). Note that for e1 = 0 this corresponds to c31 = c32 (i.e. no difference in

propagation velocity for shear waves with particle motion in the x1- or x2-direction in

the unstressed configuration, as expected for an isotropic material [30, ch. 2.10]).

2.4 Alternative descriptions of elastic moduli

2.4.1 Second order elastic moduli

For a hyperelastic isotropic material the second order elastic moduli Cijkl relating the

stress and strain can be expressed by two constant parameters λ and µ as shown in Sec.

2.2.2.2 Eq. (2.71). These two parameters are called Lamé’s first and second parameter.

µ is also known as the shear modulus as it is a suitable measurand relating the shear

stress to the shear strain (i.e. Sij = µui,j where i 6= j). Another suitable measurand is

the bulk moduls κ (Eq. (2.84)) which is connected to the dilatational part of the strain

(Sij = κui,j where i = j) which can be measured under hydrostatic pressure [13, ch.

1.3]. The linear part (dependent on the second order elastic moduli) of the constitutive

relation in Eq. (2.56) can thus be expressed by [22, ch. 6.1.6]

Sij = 2µui,j + λui,jδij . (2.100)
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By dividing the strain measure into a dilatational part describing the constitutive rela-

tion under influence of normal stresses only as [22, ch. 6.1.6]

Sijδij = κui,jδij (2.101)

and a distortional part describing the constitutive relation when the contribution from

the dilatational part is removed as [22, ch. 6.1.6]

Sij − Sijδij = 2µ(ui,j −
1

3
ui,jδij) (2.102)

the bulk modulus κ defined in Eq. (2.84) can be seen to have a direct relation to the

normal stresses (i.e. Sijδij). For physical reasons both the bulk and shear modulus

must be positive [22, ch. 6.1.6]

κ > 0, µ > 0 (2.103)

Young’s moduls can be used as a convenient measure of the elasticity a linear elastic

material which for of a long thin rod subjected to a uniaxial stress behaves according

to the generalised Hooke’s law (see definition given in relation to Eq. (2.58)) such that

[13, ch. 1.3]

Y ≡ Saxial
eaxial

(2.104)

where subscript axial denotes the uniaxial direction of the applied tension and coaxial

resulting strain (e.g. the experimental setup in Sec. 3.3 apply a uniaxial tension in the

x1-direction and under the assumption that the resulting deformation is homogeneous

Y = S11/u1,1 = S11/e1, where e1 is the elongation as defined in Sec. 2.3). Under

such a uniaxial deformation where the material is unconstrained in the other principal

(transverse) directions it usually tends to expand or contract depending on whether the

applied uniaxial stress is positive or negative respectively. The Poisson’s ratio ν is a

measure of how much the material deforms in the transverse direction when a long thin

rod is subjected to an axial load [13, ch. 1.3]

ν ≡ −etransverse
eaxial

(2.105)

where subscript transverse denotes either of the two principal directions orthogonal

to the axial direction in which the stress is applied (e.g. for the current experimental

setup in Sec. 3.3 this yields ν = −u2,2/u1,1 = −u3,3/u1,1 = −e2/e1 = e3/e1). It is
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2.4 Alternative descriptions of elastic moduli

noted that Y and ν are bulk material properties describing the elastic response of a

solid [13, ch. 1.3]. It should thus be independent of the geometry of the solid. However,

when estimating these elastic properties from the results of a tension test effects of the

geometry will affect the outcome based on deviations from ideal conditions (e.g. that

the test specimen is not ideally straight, has impurities, the accuracy of measurements,

etc., which will be further discussed in Sec. 3.6).

Selecting the axial and transverse directions in one of the principal directions of the

coaxial Sij and ui,j of Eq. (2.100) gives the relation between Young’s modulus and

Poisson’s ratio and the Lamé parameters as [13, ch. 1.3]

Y =
µ (3λ+ 2µ)

λ+ µ
, ν =

λ

2 (λ+ µ)
(2.106)

The linear elastic properties of a homogeneous isotropic hyperelastic material can be

described by combination of any two of these elastic moduli. And conversly, given any

two of the elastic moduli enables the calculation of the other.

Note also that from Eq. (2.91) the unstressed longitudinal and shear sound velocities

(i.e. e1 = S11 = 0) are related through the second order elastic moduli. More specifically

the ratio between the longitudinal and shear sound velocity can be expressed by

cl
cs

=

√
λ

µ
+ 2 =

√
2 (1− ν)

(1− 2ν)
. (2.107)

The elastic moduli of 8 steel samples are presented in Table 4.4 in Ch. 4, and based

on the Lamé parameters of these steel types the relation between the longitudinal and

shear sound velocities in an unstressed material can be approximated by

cl ≈ 1.83cs, or cs ≈ 0.55cl. (2.108)

2.4.2 Third order elastic moduli

The acoustoelastic effect describing the shift in sound velocities of acoustic waves prop-

agating in a body subjected to a finite pre-stress have been explained by the meticulous

consideration of higher order expansion of the constitutive relation and strain energy

of a material (see Sec. 2.1.3). Parts of this theory was already established correctly

back in 1925 by Brillouin [14], and later confirmed by Huges and Kelly [16] in 1953.

The third order elastic constants for an isotropic hyperelastic material A, B, C used in

this thesis is ascribed Landau & Lifshitz in 1986 [37]. However, based on the selected
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grouping of expanded terms different authors have proposed different sets of third order

constants. Norris [12] has summarised the most widely used in table form, and this is

reproduced here in Table 2.1.

Table 2.1: Relations between third order elastic constants for isotropic solids

Landau and Toupin and Murnaghan Bland Eringen and Standard
Lifshitz [37] Bernstein [18] [83] [35] Suhubi [36] CIJK [12]

1986 1961 1951 1969 1974
A ν1=2C l=B + C α=1

3C lE=1
3A+B + 1

3C C123=2C C111=2A+ 6B + 2C
B ν2=B m=1

4A+B β=B mE=−A− 2B C144=B C112=2B + 2C
C ν3=

1
4A n=A γ=1

3A nE=A C456=
1
4A C166=

1
2A+B

Reproduced from [12]

2.5 Plastic deformation

Many materials behave elastically when subjected to moderate stresses. However, if

subjected to stresses above a certain limit they acquire a permanent deformation that

do not dissapear when the stress is removed (i.e. the deformation is not reversible). For

crystalline materials like steel where the stress depends on previous deformation, but

not the rate of deformation, this phenomenon is called plasticity [29, ch. 10.5].

Looking at a typical stress-strain curve for a uniaxial tension applied to a typical

steel we note several points of interest (see Fig. 2.6). Point O represents the unstressed

state, while point A is called the point of initial yield. Within the section OA the

material is said to deform elastically, and a complete removal of the stress will return

the deformation of the material to its initial configuration [29, ch. 10.5]. The behaviour

of the material in this section is to a good approximation, that of the elastic theory

presented in Sec. 2.1. The slope of the curve OA is a good approximation of the Young’s

modulus Y defined in Eq. (2.104) [13, ch. 1.3]. Increasing the stress to values above

SA
11 the slope of the curve will change. This change may be abrupt or more gradual, it

may include a drop or a plateau, and is a signature of how a specific material deforms

plastically. If the force is removed after the material has been subjected to a stress

SB
11 at point B the unloading follows the curve BC, which to a good approximation is

parallel to AB. When the stress is completely removed there is a remaining residual

strain OC which corresponds to the plastic deformation the material has experienced.
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2.5 Plastic deformation

Figure 2.6: Typical stress-strain curve for a plastic solid

On reloading the path will follow CB closely up to point D, where it will gradually

return to continue the curve OAB towards point E. It should be noted that the value

of S11 at point D where the slope depart from the elastic slope is generally larger than

at the first loading SA
11 [29, ch. 10.5].

Materials that follow this type of stress-strain curve are usually crystalline solids.

Elastic deformation is explained on microscopic scale as small recoverable displacements

of the atoms in the crystal lattice. Or in other words that the distance between individ-

ual atoms change slightly, but that the lattice structure is mainly not changed. Plastic

deformation on the other hand is assumed caused mainly by permanent slip between

neighbouring planes of atoms, deforming the structure of the lattice, which is not re-

coverable [29, ch. 10.5].
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This study will not investigate the basic theoretical influence of plastic deformation

on the stress dependence of the acoustic velocity in a material. This is mainly because

of the diversity of plastic responses within the group of materials that behaves similarly

in the elastic regime, and will thus introduce the need to develop specific yield criteria,

yield functions, and plastic stress-strain relations for each material even though their

elastic properties may be very similar [70][84][85]. The parameters describing the plastic

behaviour need in most cases to be experimentally determined, and are thus to cumber-

some to be suitable in an industrial NDT setting. However, this work has measured the

acoustoelastic effect well in to the plastic region, and also in the elastic unloading and

loading after plastic deformation. To be able to compare the measured result with the

theory of acoustoelasticity two different approaches have been investigated. The first

approach has been to simply diregard the plastic contribution to the deformation and

comparing the measured effect with the theoretical effect of the corresponding elastic

deformation. Details on how this has been done can be found in Sec. 2.5.1. The other

approach was to compare the measured effect with a theory developed to include the

plastic effects. This has been evaluated as outside the scope of this work, however the

discussion around the approach has been included in Sec. 2.5.2.

2.5.1 Elastic and plastic strain

Although the previous sections have argued the case of a non-linear relation between

stress and strain for a hyperelastic material the assumption of a linear relation between

the applied tension and the resulting elastic strain is still a good approximation after

plastic deformation if one make the distinction between the resulting elastic and plastic

strain. This section will apply the nomenclature of a homogeneous uniaxial deformation

as described in Sec. 2.3, however, the more general description can also be applied. The

generalised Hooke’s law (see Eq. (2.58)) can be expressed as S11 = Y ee1 for the applied

uniaxial stress S11 and corresponding uniaxial homogeneous elastic elongation ee1 (see

Eq. (2.73) and Fig. 2.6), where Y is the Young’s mouduls as defined in Eq. (2.104) and

the superscript e denote the elastic part of the total elongation. Assuming that stresses

above the yield limit SA11 will plastically deform the material as shown in Fig. 2.6,

and that any unloading will follow a path parallel to the initial slope of the stress-strain

curve, it is possible to estimate the elastic elongation ee1 at any point on the stress-strain
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2.5 Plastic deformation

curve given by the stress S11 at that point as [29, ch. 10.5][70]

ee1 =
S11
Y

(2.109)

Thus, the plastic elongation ep(e1, S11) can be estimated as the difference between the

total elongation e1 and the elastic elongation ee1 (i.e. ep1 is the remaining elongation

when the stress is completely removed, S11 = 0) [29, ch. 10.5][70].

ep1 = e1 − ee1 = e1 −
S11
Y

(2.110)

Superscript e and p denote elastic and plastic deformation respectively.

As mentioned above this estimate of elastic and plastic strains are only valid if the

slope of the elastic unloading does not change when the material is plastically deformed

(i.e. that Y is constant). However, as will be shown in the result chapter (Ch. 5)

the slope of the linear unloading sequences after plastic deformation are not parallel

to the initial loading sequence. In the case of a different slope it has in this work

been assumed that the change in slope, or correspondingly change in Y , has a linear

dependence on the induced plastic strain (i.e. Y need to be continuous and differentiable

to avoid discontinuities in the both the elastic ee1 and plastic ep1 elongations, and a linear

dependence is a first approximation used between the three unloading sequences applied

in this work). Thus, between the current and previous unloading sequence the change

in Y is described by the linear relation

Y CB = Y OA + ξep1 (2.111)

where ξ is the linear increase or decrease in Y for a given plastic strain ep1 between the

linear loading sequences OA and BC.

A more generic way to extract the plastic and elastic contributions for all the prin-

cipal directions is to use the force-strain relation in the same way as the stress-strain

relation together with the Young’s modulus have been used above. Replacing the stress

with the force F = S11A0, where A0 is the unstressed cross section area (which change

under plastic deformation), and using the slope of the applied force versus elastic strain

represented by yei = F
eei

= S11A0
eei

= A0Y for all the principal elongations instead of the

Young’s modulus Y , Eq. (2.109) becomes

eei =
F

yei
. (2.112)
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Estimating the “remaining” strain if the current force F is reduced to 0 along the linear

slope of the elastic force-elongation relation (F = yeieei ). The plastic contribution then

becomes

epi = ei − eei = ei −
F

yei
(2.113)

The slope yei can be estimated from linear regression, and if the slope changes between

different unloading sequences, a linear relation between the two slopes can be used as

described above in Eq. (2.111). This has been used to estimate a plastic strain between

unloading sequences based on linear regression of the actual slopes yei of the measured

force-elongation curves as shown in Fig. 5.8 in Sec. 5.3.

After the measured elastic strains have been estimated using this approach they can

be implemented in the acoustoelastic theory of Sec. 2.3 to compare the theory with the

actual measured acoustoelastic effect. More on the setup of numerical calculations can

be found in Ch. 4.

2.5.2 Acoustoplasticity

Acoustoplasticity is an extension of the acoustoelastic theory presented in Sec. 2.2.2

to also include the effect of plastic deformation on the acoustic propagation velocities.

Several authors have investigated this effect [59] [61] [86] [87] [27]. However, the plastic

stress-strain relations are complex and difficult to establish. The linear-elastic properties

of a hyperelastic material, in our case steel, can be obtained through an uniaxial tension

test. Arguing that the non-linear elastic properties of a hyperelastic material are due

to non-linear effects in how the spacing of atoms in the crystal lattice change under

elastic loads[88, ch. 4,5] [70, ch. 2.2], it might be reasonable to assume that the third

order elastic constants of materials consisting of mainly the same type of atoms and

with the same type of crystal structure will be of similar magnitude [88, ch. 4,5]. The

elastic constants presented in Table 4.4 also suggest that this might be a reasonable

assumption. However, plastic behaviour depends on much more than the deformation

that can be ascribed to the interaction between single neighbourhoods of atoms. Some

of the mechanisms attributed to plasticity in polyctrystalline aggregates (e.g. composed

of large numbers of grains which individually has the structure of a simple crystal) are

explained in [88, ch. 4,5] [70, ch. 2.2], and it is evident that a thorough experimental

examination of each individual material (as well as a representative number of tests from

different spatial locations) is needed to establish a good material model for the plastic

60



2.6 Sound velocity measurement

behaviour for any given material. This is outside the scope of this study, and as argued

by Smith in his 1963 paper [45] where he argues that plastic strain and dislocations has

negligible effect in polycrystalline materials (like aluminium and steel). Thus this has

thus not been further investigated in this work. For some of the latest developments

in acoustoplastic research the reader is referred to [55] and [63], which also are good

sources on further reading.

2.6 Sound velocity measurement

There are currently several methods to assess the sound velocity with high accuracy (see

[4] [5]). This work has used the ART [7][8][9] developed by DNV to assess the possibility

of measuring the stress state of steel pipelines with the technology and methodology of

this existing tool.

2.6.1 Acoustic resonance

The ART methodology is based on transient acoustic reflections from layers and plates

(e.g. across the wall thickness of a pipeline) [65][10][11]. A broad band signal (e.g. a

linear chirp) is produced by a transducer which propagate a longitudinal pressure signal

through a coupling medium towards a plate at close to normal incidence. Assuming that

the radiated acoustic beam signal can be represented by a plane wave decomposition

of the incoming pressure field, the signal impinging on the plate can be described by a

set of plane waves with a distribution of incident angles around the normal incidence.

Some part of the energy will be reflected from the front interface (reflection Ri, i =

0, 1, 2, . . . in Figs. 2.7 and 2.8). The rest of the energy will through mode conversion

be propagated through the plate as both longitudinal pressure waves (P-waves) and

vertically polarised shear waves (SV-waves) [69]. These waves will both be reflected

and transmitted (transmitted waves Ti, i = 0, 1, 2, . . . in Fig. 2.7) at the back interface.

This is illustrated in Fig. 2.7 for a steel plate immersed in water where Ri signify

reflected pressure wave amplitudes and Ti signify transmitted pressure wave amplitudes.

The multiple reflections within the steel (Layer 2) will transmit some of its energy

both back toward the direction of the incoming signal in Layer 1 as well as away from

the incoming signal in Layer 3. If the thickness of Layer 2 is sufficiently small, the

transmitted amplitude from the internal reflections Ri where i > 0, will overlap with
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the amplitude R0 of the initial reflection from interface between Layer 1 and Layer 2.

This is illustrated in Fig. 2.8 where tpulse is the duration of the pulse and 2td is the

time it takes for the signal to travel the thickness of Layer 2 twice. The characteristic

acoustic impedance of the water in Layer 1 and Layer 3 is approximately

r1 = r3 = ρwcw ≈ 1000 kg/m3 · 1500 m/s = 1.5Mrayl, (2.114)

while for the steel in Layer 2 it is approximately

r2l = ρ0cl ≈ 7850 kg/m3 · 6000 m/s = 47.1Mrayl. (2.115)

r2s = ρ0cs ≈ 7850 kg/m3 · 3300 m/s = 25.9Mrayl. (2.116)

where ρw and ρ0 are the mass density of water and steel respectively, and cw is the

longitudinal sound velocity of water, while cl and cs are the longitudinal and shear

sound velocities of water and steel respectively. Thus

r2l > r2s > r1 = r3. (2.117)

Thus the first reflection R0 will be in phase with the incoming pulse I at the surface

boundary between Layer 1 and Layer 2. All the consecutive transmissions (Rsli or

Rlli , where i > 0) of the internal reflections within Layer 2 into Layer 1 will have a

phase that has been shifted 180◦ at the surface boundary between Layer 2 and Layer 3

[69][89]. The superscripts ll, ls, and ss, or other combinations (i.e. lsll etc.) in Fig. 2.7

denotes whether the internal reflected signal has propagated through mode conversion

as longitudinal and/or shear waves before it is transmitted back into Layer 1 or Layer

3 as a longitudinal pressure wave.

For plane wave theory and normal incidence the frequencies where an integer mul-

tiple of the half wave length λ/2 of either the longitudinal or shear waves matches the

thickness of the plate d (see Fig. 2.9), the internal reflections will interfere construc-

tively with each other and their collective amplitude can thus be called resonant. This

collective amplitude of several resonant internal reflections will, because of the phase

shift, interfere destructively with the initial reflection R0 when it is transmitted back

into Layer 1 (Ri, i > 0). However, after the first reflection has passed, the total am-

plitude of internal resonant reflections will be transmitted as a tail dominated by the

frequencies which have accumulated the largest constructive interference. These fre-

quencies will hence forth be referred to as the resonance frequencies fn (superscript n
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2.6 Sound velocity measurement

Figure 2.7: Multiple reflections from a solid layer (layer 2) imbedded within two
half-space fluid layers (layer 1 and layer 3). Solid and dashed lines represent
longitudinal (l) and shear (s) waves respectively, and Ri and Ti signify the
reflected and transmitted pressure wave amplitudes respectively.

denotes the integer harmonic number of matching half wave lengths). If the duration

of the incoming signal is significantly larger than the time it takes for the pulse to

cross Layer 2 twice, the signal have time to excite internal resonances, and the signal

will be reflected back into Layer 1 as a main echo followed by a lower amplitude tail

which mainly consists of these half-wave resonance frequencies [7][10][11]. Note that

shear waves would not be excited at normal incidence, and that the incoming signal

must have a component impinging at an oblique angle to excite shear waves [69]. The

experimental setup applied in this work have such an oblique component because of the

effective beam angle of the transducer used, and thus both longitudinal and shear waves

may be excited.
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Figure 2.8: Amplitude of overlapping reflections Ri (not including interference)

The resonant frequencies fn are found where an integer number n of half the wave-

lengths λ(nl)l or λ(ns)s matches the thickness d of the layer as [7][4]

nl
λ
(nl)
l

2
= d, ns

λ
(ns)
s

2
= d, nl, ns = 1, 2, 3, . . . , (2.118)

where subscript l or s signifies a longitudinal or shear wave respectivly, and where the

superscripts (nl) and (ns) signify the integer number for the respective longitudinal and

shear wave. The shear waves can also be decomposed into two orthogonal polarisations

of its particle motion [69][4]. The relation between the frequency f , wave length λ, and

the sound velocity c [4],

f =
c

λ
. (2.119)

gives thus the longitudinal and shear resonance frequencies as

f
(nl)
th =

nl
2

cl
d
, and f

(ns)
th =

ns
2

cs
d
, nl, ns = 1, 2, 3, . . . (2.120)
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2.6 Sound velocity measurement

Figure 2.9: Sketch of an integer number n half waves matching the thickness d
of a layer.

respectively, where the subscript th denotes plane wave theory, or conversely the longi-

tudinal and shear sound speed as

cl = 2d
f
(nl)
th
nl

, and cs = 2d
f
(ns)
th
ns

, nl, ns = 1, 2, 3, . . . (2.121)

Note that these relations are only a theoretical approximation according to plane wave

theory. First it is noted that for normal incidence no propagating shear waves will be

excited [69, ch. 9.D]. For incident angle θ > 0 shear waves will be excited, however their

resonance frequencies will be a function of the distance traveled by the wave, and thus

a function of the thickness d and the incident angle θ > 0 (see Fig. 2.7). The effect of

oblique incidence caused by the beam width of the transducer is discussed further in

Sec. 2.6.2. Based on the measured resonance frequency and the thickness of the test

specimen (distance traveled) it is thus possible to calculate the average sound velocity

across the test specimen through Eq. (2.121).
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2.6.2 Beam effects

The theory presented in Sec. 2.2.2 is derived using plane waves. This is one method

to develop a relation between the sound velocities of a material and the deformation

produced by the pre-applied stress to the material body. However, the description of

acoustic waves as plane waves is a choice of mathematical convenience, and other wave

representations can be used. The acoustic signal produced by the transducer in the

experimental setup is not a single plane wave when impinging at the interface of the

test specimen. In-house characterisation of the transducer produced by PCT [90] used

in this work has shown that the transmitter disk of the transducer has a beam angle

(θ6dB - see Sec. 3.5) varying between ∼ 5◦ at 800 kHz, ∼ 7◦ at 550 kHz, and ∼ 13◦ at

300 kHz [91], see Sec. 3.5 for details. Assuming that the radiated acoustic beam signal

can be represented by a plane wave decomposition of the incoming pressure field on

the first interface between Layer 1 and Layer 2 [92][93], the signal propagating through

the test specimen (Layer 2) can thus be regarded as a superposition of the transmitted

plane waves from the set of incoming decomposed waves. Recent work by Lohne et al.

[93], Aanes et al. [94] [95] [96], and Waag et al. [97] have compared the transmission of

actual acoustic beams with that of plane waves impigning at a layer immersed in a fluid.

Fig. 2.10 shows the absolute value of the transmission coefficient Tr for plane waves

(i.e. ranging from 0 (white) to 1 (black)) for the frequencies in the applied linear chirp

signal (300-800 kHz) excited by the transducer as a function of the incident angle θ and

the frequency of the plane wave. The black lines denoted L1, S2, S3, L2 corresponds

to the first and second symmetrical and second and third antisymmetrical leaky Lamb-

modes (Si and Ai, i = 0, 1, 2, . . . , in standard leaky Lamb-mode notation [93][94]). The

reason for using the notation L1, L2, S1, S3, etc. in this work has been to heighten the

awareness of the reader as to whether the observed resonance mode is dominated by

the longitudinal sound velocity (L1, L2, etc.) or the shear sound velocity (S1, S2, etc.)

at normal incidence. The dashed line in Fig. 2.10 shows a smoothed curve between

the three characterised beam angles at 300, 550, and 800 kHz. At normal incidence

(θ = 0) L1 and L2 corresponds to the cross-thickness longitudinal resonance modes

in Eq. (2.120) (i.e. f (nl) for nl = 1, 2 respectively). At normal incidence the shear

resonance modes are not excited, however, for small angles of incidence the S2 and S3
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Table 2.2: Input to transmission coefficient plot

Material Density Sound velocity Layer thickness
ρ [kg/m3] cl [m/s] cs [m/s] d [m]

Water 1000 1500 - ∞
Steel 7500 6000 3300 7.5 · 10−3

Typical values for steel and water based on values given in [4]

leaky Lamb-modes approach the cross-thickness shear resonance modes of Eq. (2.120)

(i.e. f (ns) for ns = 2, 3 respectively) [69][93][94][96][97].

Fig. 2.10 has been produced by implemented algorithms developed by Aanes et

al. [96] and Waag et al. [97] and recieved by personal communications courtesy of

these authors [76][75] (2013). The input to their plane-wave models was tentative

characteristic values for water and steel presented in Table 2.2.

As can be seen from Fig. 2.10 the resonance frequencies depend on the incident angle

[92] [75], and the resonance frequencies measured by the ART method should thus be

a superposition of a collection of plane waves impinging on the test specimen with an

angular distribution dictated by the beam angle of the transducer. This frequency shift

at normal alignment of the transducer towards the plate was shown through experiments

published by Lohne et al. in 2008 [92], and was indicated to be an effect of a finite beam

angle in the sound field of the applied transducer. This beam effect can be decomposed

into a spectrum of plane waves impinging on the steel plate with a distribution of

incidence angles. The beam effect and its influence on the measurement of thickness

and sound velocities in plate was discussed and theoretically explained and confirmed

by the angular spectrum method (ASM) in [93]. Others have later investigated this

effect as earlier mentioned [94] [95] [96] [97]. The result of this effect has been further

discussed in Sec. 3.5.1.

The fact that the propagated acoustic signal impigning on the test specimen has a

distribution of incident angles around the normal incident is thus the reason why shear

waves are excited in the test specimen [69][4, ch. 2.4].

2.7 Relevant measurement quantities

The sound velocities cl and cs measured through the relations in Eq. (2.121) are of

course relevant measurement quantities. However, as the theory of acoustoelasticity
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Figure 2.10: Transmission coefficients of plane waves impigning on a steel layer
immersed in water. Courtesy of Waag [75] and Aanes [76]. L1, L2, S2, S3
denotes the leaky Lamb-modes that corresponds to the 1st and 2nd cross-
thickness resonance modes dominated by the longitudinal sound velocity and
2nd and 3rd cross-thickness resonance modes dominated by the shear sound
velocity respectively. The dashed line indicates the -6dB beam angle of the
transducer used in this work.

presented in Sec. 2.2 shows, the magnitude of change in sound velocities as a function of

applied tension are small compared to the magnitude of the individual sound velocities.

It may thus be more appropriate to investigate the relative sound velocity changes. The

relative sound velocity change ∆cr can be expressed as

∆cr ≡
∆c

c0
=

c− c0
c0

=
c

c0
− 1 =

l3f
(n)

L3f
(n)
0

− 1 = ��L3(1 + e3)f
(n)

��L3f
(n)
0

− 1

=
(1 + e3)f

(n)

f
(n)
0

− 1, (2.122)
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where subscript 0 denotes the reference values measured at zero loading, c can be either

cl or cs, f (n) is either f (nl) or f (ns) (note that these frequencies are measured quantities

and do not have the subscript th denoting resonance frequencies based on plane wave

theory), and where l3 is the thickness which can be calculated as

li = Li(1 + ei) (2.123)

for i = 3 where e3 is the measured elongation in the thickness-, or x3-, direction. The

notations ∆q = q − q0 and ∆qr = (q − q0)/q0 have also been used for other relevant

measurement quantities q (e.g. f , c, etc.).

The relative sound velocity change ∆cr is dependent on thickness and frequency

measurements at both the zero loading- and current state. Thus the uncertainty in

the relative sound velocity change will be dependent on the uncertainty in all of these

parameters (see Ch. 6 for details on uncertainty calculation and propagation). As-

suming that thickness variation between test specimens, the uncertainty in the actual

thickness, and in the thickness development measurements are a significant portion of

the total uncertainty it would be convenient to remove the uncertainty related to the

thickness measurements. By comparing the ratio between the calculated relative sound

velocity change of waves which have different dependency on the applied stress this can

be achieved. A variant of this has been presented by Kim and Hong in their 2009 paper

[68] where they presented the linear relation between the ratio of time of flight (TOF)

measurements of a longitudinal wave and the TOF of a mode converted longitudinal-

shear wave and an applied tensile stress in the test specimen. This approach is similar

but based on a different measurement technique than the method applied here. For the

measured longitudinal and shear resonance frequencies measured in this work the larger

the difference in gradient of sound velocity change is, the larger the resulting relative

ratio change will be on increasing magnitude of the applied stress. As can be shown

on use of Eq. (2.91) and the elastic constants for steel in Table 4.4 the longitudinal

and shear modes have different, and sometimes opposite, gradients of their respective

sound velocity change and the ratio may thus enhance the measured change. The ratio

between longitudinal and shear sound velocities and/or resonance frequencies can be

calculated as
cl
cs

=
ns
nl

f (nl)

f (ns)
(2.124)
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where nl and ns signifies the harmonic number of the longitudinal and shear modes

respectively. The relative change in this ratio is then

∆

(
cl
cs

)
r

≡ ∆ (cl/cs)

cl0/cs0
=

cl/cs
cl0/cs0

− 1 =
f (nl)/f (ns)

f
(nl)
0 /f

(ns)
0

− 1 ≡ ∆

(
f (nl)

f (ns)

)
r

(2.125)

which does not depend on any thickness measurements, and thus reduce the uncertainty

in the sound velocity change measurements. The different measurements and derived

results are presented in Ch. 5 together with comparison with theoretical simulations.
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3

Experimental setup and
measurement methods

This chapter describes the experimental setup and measurement methods that have

been used in this work. While most other techniques to measure the sound velocity

in a steel sample needs careful placement of the acoustic measure equipment, it has

been a goal of this study to investigate the possibility of using the existing Acoustic

Resonance Technology (ART) method with a transducer that is not in physical contact

with the test specimen (i.e. normal incidence and liquid coupling). Other works [7][9]

have shown that the ART method can be used without physical contact between the

transducer and test specimen both in pressurised gas and atmospheric air. Although

it is possible to measure in atmospheric air, for convenience, water has been used as

a coupling medium to reduce the acoustic energy loss between the transducer and the

test specimen to get good pulse-echo recordings.

The different instruments used in the experimental part of this work have been

summarised in Table 3.1 in Sec. 3.1, and are discussed in more detail in the appropriate

sections in this chapter.
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3.1 Instruments

Table 3.1: Instruments

Instrument Make Type Function
Test specimen, initial geometry Sec. 3.2
Micrometer screw Mitutoyo 0-25mm Cone Used to measure thickness of test specimen.
Digital caliper Sylvac S_calpro Used to measure width of test specimen.
Steel ruler - - Used to measure length of test specimen.
Calibration blocks Mitutoyo Set no. BM1-103-0,

Serial no. 111276
Used to calibrate readings of the micrometer
screw, digital caliper, and steel ruler.

Tension test Sec. 3.3
Tension machine Instron [98] 8502 Tension machine with a load capacity of 300 kN

in tension
Control unit MessTek [99] Mobile control and ac-

quisition unit
Controlunit to control the load cell through dis-
placement or load

Acoustic measurements Sec. 3.5
DAQ National Instruments NI PXIe-1062Q Digital to Analog controller pc
DAQ National Instruments NI PXI-5421 Digital to Analog signal converter
DAQ National Instruments NI PXI-5922 Analog to Digital signal converter
RF amplifier Electronics &

Innovation
model 2100L Power amplifier between signal generator and

electronic matching circuit
Electronic transformer
/ matching circuit

Halfwave Custom made electronic
[100]

Electronic up-transformation of voltage signal
and matching of transducer impedance

Electronic gain circuit Halfwave Custom made electronic
[100]

Electronic 23dB gain for received voltage signal
by RX ring

PCT TX disk PCT [90] Custom made
transducer

Exciting acoustic pressure signal

Continue on next page. . .
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Instrument Make Type Function
PCT RX ring PCT [90] Custom made

transducer
Receiving acoustic pressure signal

Thermometer Hanna HI 93530 Thermometer, K-type thermoelement

Geometric measurements Sec. 3.6
Strain gauge TML [101] YFLA-2 2 mm x 1.8 mm strain gauge with a strain limit

of 15-20 %
Strain gauge TML [101] YFLA-5 5 mm x 2 mm strain gauge with a strain limit of

15-20 %
ARAMIS GOM [102] 5M ARAMIS system Photometric strain measurement system
Tension machine Instron [98] 8502 Applied displacement voltage reading
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3. EXPERIMENTAL SETUP AND MEASUREMENT METHODS

3.2 Test specimen

This work examines the ability of ART to measure the slight change of both longitudinal

and shear sound velocities predicted by the theory presented in Ch. 2. A common

construction steel has been used for the testing. The geometry of the test specimen

has been selected to reduce unwanted acoustic disturbances (e.g. thickness variation

and acoustic reflections from edges and/or other geometrical features). The simplest

geometry for measuring thickness resonance is that of an infinite plate. However, since

the specimen is also to be subjected to a homogeneous uniaxial stress, and the tension

machine has limitations with respect to the size of the specimen, a rectangular specimen

has been selected with dimensions 600 mm x 50 mm x 7.5 mm (length (L1) x width (L2)

x thickness (L3)) in the x1-, x2-, x3-direction respectively as shown in Fig. 3.1. Based

on these considerations several bars of a common construction steel “Bright rectangular

steel bar S235JRG2C+C” [79] from one production batch was procured. The density ρ

of the bars was 8000 kg/m3 [79], while the dimensions were (L1 x L2 x L3) 4000 mm x 50

mm x 8 mm [79], which has been cut in 600 mm lengths and CNC machined down to a

thickness of 7.5 mm with an accuracy of a few hundredths of a mm (more on the accuracy

of the dimensions in the Sec. 6.4.1.1). The pre- and post-test test specimen dimensions

(length, width, and thickness) was measured with a micrometer screw, a digital caliper

and a steel ruler respectively. The specimens were machined on both sides to reduce any

initial stresses. It is noted that heat treatment of the test specimens after machining

could have removed the stresses. Because of little experience and lack of control with

any furnace and heating processes which would have needed to be outsourced, it has

been deemed more appropriate to keep control of the geometry of the specimens. The

geometry has a direct effect on the measured resonance frequencies, and it is expected

that the levels of initial stresses are already low. Using the tentative un-stressed sound

velocity estimates given in Table 2.2 and the relation in Eq. (2.120) gives an estimate of

the longitudinal and shear harmonic frequencies that can be expected to be measured

over the thickness of the test specimen. The four lowest harmonics are presented in

Table 3.2.

The coordinate system used in this work has been aligned with the test specimen

such that the length-, width-, and thickness-dimensions are in the x1-, x2-, and x3−
directions respectively as shown in Fig. 3.1. The specimen dimensions will thus in the
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3.2 Test specimen

Figure 3.1: Rectangular specimen including aligned coordinate system and
showing measurement location of length (l1), width (l2), and thickness (l3)

Table 3.2: Tentative typical values for longitudinal and shear resonance frequencies based
on steel values in Table 2.2

Longitudinal modes Shear modes
nl, ns f (nl) (kHz) f (ns) (kHz)
1 400 220
2 800 440
3 1200 660
4 1600 880

following be referred to by the length in the aligned coordinate system (i.e. l = l1 in

the x1-direction, w = l2 in the x2-direction, and d = l3 in the x3-direction).
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The initial geomety of each test specimen is important when comparing the different

deformation paths and acoustic resonances. Thus, the dimensions of each test specimen

where measured by hand both before and after it was used in a test.

The measurements where taken in approximately the same area for each test spec-

imen and Fig. 3.1 indicates the locations. The numbered circles in Fig. 3.1 show the

location of micrometer caliper measurements of the thickness measured both before and

after each test run (denoted L3 and l3 in App. D, Table D.1). The numbered squares

show the location of caliper measurements of the width measured before and after each

test (denoted L2 and l2 in Table D.1). Finally L1 and l1 are the total length of the

test specimen measured before and after each test, lg11 denotes the length of the test

specimen that was gripped by the upper wedged clamp, while lg21 corresponds to the

length gripped by the lower clamp. Assuming that lg11 and lg21 are not subjected to any

lengthwise deformation the free length of the test specimen before and after the test

(denoted Lfree1 and lfree1 respectively in Table D.1) can be calculated as the difference

between L1 or l1 and the sum of lg11 and lg21 respectively.

Lfree1 = L1 − (lg11 + lg21 ) lfree1 = l1 − (lg11 + lg21 ). (3.1)

This method to determine the free length has been done because of difficulties in mea-

suring this while the test specimens were clamped fixed in the tension machine. Note

that lfree1 is the free length of the specimen that may deform during the test. Thus the

relationship between the current free length and the initial free length can be calculated

according to Eq. (2.123) as

lfree1 = Lfree1 (1 + e1) (3.2)

For each test Table D.1 thus include 5 lines where line 1 is the thickness measure-

ments before the test (L3), and line 2 is the thickness measurements after the test (l3)

were performed. Correspondingly line 3 and 4 are respectively the width measurements

before (L2) and after (l2) the test. Line 5 consist of four length measurements L1, l1,

lg11 and lg21 , and two calculated lenghts Lfree1 and lfree1 (see Fig. 3.10). In addition

the calculated mean, standard deviation and relative standard deviation have been in-

cluded for the relevant measurements. The first column also include the test specimen

number, and whether ART, ARAMIS, and/or strain gauges (denoted sg) measurements

have been performed during the test (when no type is specified the test have been done
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without ART, ARAMIS or strain gauge measurments - i.e. only MessTek recording

Instron displacement and force).

3.3 Tension test configuration

The test specimens have been tensioned in an Instron 8502 [98] tension machine with a

load capacity of 300 kN in tension. The Instron machine use two sets of wedged clamps

with a clamping pressure of 55 MPa and serrated clamping faces to fixate the flat test

specimens. An overview of the experimental setup is shown in Fig. 3.2, with close-ups

of the watertank with transducer and test specimen and the wedged clamp shown in

Fig. 3.3. A schematic of the tension setup including the acoustic measurement system

is shown in Fig. 3.6b. A control unit from MessTek [99] were used to control the applied

loadhistory during the tests.

To be able to investigate the acoustic behaviour of the steel subjected to a uni-

axial tension, a specific sequential load history has been selected to be able to compare

acoustic results from many test specimens. The load history should consist of loading

and unloading sequences in both the elastic and the plastic deformation range to be

able to investigate both regimes. As steel starts to deform plastically the elongation

can increase rapidly without a corresponding increase in the applied force. To be able

to control the deformation the loading sequences were done with the MessTek control

unit in displacement control mode, while the unloading sequences to an unstressed state

(0 kN) were done under force control. The MessTek unit measured continuously both

the displacement and force throughout each test.

The Instron tension machine operates with better accuracy during dynamic loading

compared to a static loading. This is because the control unit will cause the tension

machine to fluctuate around a given set-point and thus create an additional uncertainty

to the applied load/displacement reading. On the other hand, during a dynamic loading

the uncertainty will be closer to the uncertainty related to the actual measurement

reading only. The duration where each of the acoustic measurements interact with the

steel will also influence the uncertainty. This duration is approximately 90 µs.

The selected load history comprises three displacement-controlled loading sequences

with an approximately displacement velocity of 6 mm/min, and three intermittent

load-controlled unloading sequences with an approximately unloading velocity of -500

77



3. EXPERIMENTAL SETUP AND MEASUREMENT METHODS

kN/min. The average displacement history over the 37 specimens tested is shown in

Fig. 3.4 plotted against 306 predefined bins spanning approximately 1s each. The rea-

son for grouping measurments in predefined bins are discussed in Sec. 3.4. The average

force history is similarly shown in Fig. 3.5. Combining these two plots yields the force-

displacement history shown in Fig. 5.3 in Sec. 5.2. The displacement and force history

for the 37 individual test specimens have been included in Figs. C.1 and C.2 in App.

C.1. The duration of each test was approximately 300 seconds, or 5 minutes.

The first loading sequence is marked in Figs. 3.4 to 3.5 by the start point denoted

A and the endpoint denoted B, which for simplicity has been referred to as the load

sequence AB. The first unloading was done before the material reached the yielding

limit (i.e. before the specimen started to plastically deform) at 1.5 mm displacement

and is shown as the unloading sequence BA in Figs. 3.4 to 3.5. The second loading

sequence is then denoted AC, while the second unloading is marked CD and was done

well into the plastic region at 10 mm displacement. The last load/unloading sequences

is thus marked as DE and EF respectively, and deformed the test specimens close to

collapse of the material at a total displacement of 20 mm (point E). After the last

unloading EF the test specimens was permanently deformed with a plastic deformation

of approximately 17.4 mm. The combination of displacement and force measurements

are presented in Sec. 5.2.

The output force F from the Instron machine has been callibrated according to the

calibration certificate in App. B. However, the displacement output is not callibrated

since it is dependent on the relevant test specimen and the response of the wedged

clamps. Thus the displacement reading have only been used to control the displacement

history and to correlate different measurement quantities as discussed in Sec. 3.4.

Based on the measured force F and the initial dimensions described in Sec. 3.2 the

engineering stress S11 can be calculated according to Eqs. (2.85) and (2.76) in Sec. 2.3

for a uniaxial load.

S11 =
l2l3
L2L3

σ11 =
a

A0
σ11 =

F

A0
(3.3)

where F = σ11a is the applied force, A0 = L2L3 denotes the original cross section

area. L2 is the width of the test specimen and L3 is the thickness of the test specimen,

both measured in the reference configuration. a = l2l3 is the current cross section area,

where l2 is the current width and l3 is the current thickness. The elongation einstron1

can be calculated according to Eq. (2.73) from the original free length Lfree1 of the
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test specimen (i.e. the length of the test specimen not gripped by the clamping wedges

that is free to deform, see Fig. 3.1) and the applied deformation ∆x1 (i.e. recorded

displacement of Instron machine corresponding to change in free length of the test

specimen) in the x1-direction as

eInstron1 =
∆x1 − 0

Lfree1

(3.4)

The results are presented in Sec. 5.2. Note that the elongation calculated based on the

displacement recording of the Instron machine have been denoted by the superscript
Instron to ensure that it is not confused with the elongations measured by strain gauges or

the ARAMIS system. This distinction is necessary because the recorded displacement of

the Instron machine is not calibrated, and depends on the response of the test specimen

and the wedged clamps as described in Sec. 3.3. Thus the elongation eInstron1 may

deviate from the actual elongation of the test specimens, and has thus not been used

for any other purpose than visualising the load history. The elongations measured by

strain gauges described in Sec. 3.6.1 are in comparison local estimates over the extent

of the strain gauges.

It should be noted that the test specimens have been subjected to destructive plastic

deformation and have thus only been used once. In total 41 tests were run on an equal

number of individual test specimens. However, because of erroneous mounting of some

of the instruments and/or wrong load history applied for 4 test specimens, these have

been excluded from result pool, thus reducing the number of tests and test specimens

with valid results to 37 .

3.4 General measurement considerations

One challenge when combining results from different measurement systems to calculate

a final measurement quantity is to ensure that corresponding values are used in the

calculations. The different measurement setups sample their respecitve measurands at

different frequencies based on physical limitations and practicallity. This results in large

differences in the number of measurements over the applied load history. Each test was

run with the same pre-programmed load history as described in Sec. 3.3, which ran in

approximately 300 s, or 5 min. For the force and displacement recorded by the MessTek

control unit and the strain gauge measurements the sampling frequency was set to 10
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Figure 3.2: Experimental setup overview. a) acoustic setup, b) tension ma-
chine, c) control unit, d) water tank

(a) Transducer (a) and test specimen (b)
in watertank

(b) Upper clamping wedge

Figure 3.3: Close up of experimental setup
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Figure 3.4: Displacement (∆x1 from the Instron machine) history for the 37
test specimens. 1 bin spans approximately 1s

Figure 3.5: Load history (F from the Instron machine) for the 37 test speci-
mens. 1 bin spans approximately 1s
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Table 3.3: Measurement types and number of measurements per test

Type Number of measurements/test
Instron displacement ∼ 3000
Instron force ∼ 3000
Strain gauges ∼ 3000
ARAMIS ∼ 300
ART ∼ 12000

Hz, which resulted in just above 3000 measurements over the duration of each test (see

Sec. 3.3 and 3.6.1. For the ARAMIS photometric measurement system (Sec. 3.6.2) the

amount of computation time needed to process each measurement where significant, and

thus it was decided to measure every 1 s. This resulted in just above 300 measurements

for each test, or one measurement for every 10 reading of force, displacement or strain

gauge.

As this investigation looks into the change in sound velocity at different stress states

the acoustic measurements have on the other hand been done as fast as the hardware and

experiment setup has allowed to avoid interference between individual measurements

during the dynamic loading of the test specimen. To be sure to capture the echo the

recording takes 500 µs, and is together with the latency in the data acquisition unit

(DAQ) and electronics the limiting factor on how often samples can be recorded. The

system was for practical reasons set up to continuously shoot and record 1000 chirp

pulses followed by a 1 s delay before the next group of 1000 pulses was recorded, and

so onward until the end of the loading sequence. This has yielded approximately 12

000 recordings for each ART test, which corresponds to 4 acoustic measurements per

force, displacement, or strain gauge reading, or 40 acoustic measurements per ARAMIS

measurement. A summary of the number of measurements for each measurement type

is shown in Table 3.3.

Because of the different sampling frequencies, latency between groups of samples,

difference in initiation time of the measurement cycles, and the fact that many of the

measurements have been performed on different test specimens, it has been important to

find a way to combine the different types of measurements with corresponding values of

other measurements and other tests. To be able to correlate the different measurements,

a common measurand which behave in a predictable and linear fashion is needed. Time

is such a linear common measurand. However, the change in time is constant for all
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the different stages of the load history, and it has thus not been possible to determine

the current load state by time alone. The load history was displacement controlled

with a constant displacement velocity for all the loading sequences, while the resulting

displacement velocity for the load controlled unloading sequences were also very close

to constant. Thus, the displacement measurements changed linearly for the whole load

history (see Figs. 3.4 and 3.5, which is based on the underlying data of the 37 tests

shown in Figs. C.1 and C.2 in App. C.1). Note that for a small period of time where

the loading change from displacement controlled to load controlled, or vice versa, the

displacement were constant to the degree of accuracy in the MessTek [99] control unit.

This makes the displacement measurement an ideal measurand to be able to correlate

different types of measurements. Thus, the displacement voltage has been measured

simultaneously for all the measurements, and because of its linear behaviour it has thus

been possible to interpolate to get corresponding values for the measurands where the

sampling frequencies were different.

Another challenge is the large amount of data per test and how to combine relevant

values from these data sets with corresponding data across the number of tests. To

ensure that the measurements used in further calculations correspond with resonable

reliability each loading/unloading sequence have been divided into a set number of bins

which have been used to represent one specific state of deformation. The bins have

been arranged across each loading/unloading sequence so that each bin includes an

equal number (different for each measurement type) of measure points for the particular

measurement. Each measurement type have been sampled at regular time intervals, and

the number of bins of the different load sequences have been chosen so that they span

approximately 1s, or correspondingly approximately 0.1 mm displacement. The benefit

of grouping measurements into predefined bins which are equally spaced throughout each

load sequence is that one gets estimated values that correspond with eachother across

the different measurement setups. In addition, for measurements with few measurement

points across the total number of experiments, this binning can reduce the effect of

minor observation uncertainties and produce a representative value within each bin.

This reduces the number of evaluated states to a manageble number, however, it also

introduces a variation in the measurands because they might be measured at sligtly

different states. The uncertainties introduced by this has been further discussed and

analysed in Ch. 6.
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Table 3.4: Result bins

Sequence Number of Displacement
bins [-] start [mm] end [mm]

1. loading AB 15 0.0 1.5
1. unloading BA 15 1.5 0.0
2. loading AC 100 0.0 10.0
2. unloading CD 25 10.0 7.5
3. loading DE 125 7.5 20.0
3. unloading EF 26 20.0 17.4
Total 306

Because of the regular sampling frequency the mean of the measurements within

each bin have been used as an estimated value of the particular measurement in the

range of states covered by the bin size. This has then been combined with similar and

corresponding mean values of other measurement quantities. All plots presented in this

thesis are of this type of binned data if not otherwise stated.

During the elastic loading/unloading each bin corresponds to approxiemetly a span

of 8 kN. The loading sequences with the number of bins and approximate start and end

displacement limits are summarised in Table 3.4. As an example the 2nd unloading is

divided into 25 bins, and starts when the tension machine has displaced the sample 10

mm (see Fig. 3.4 point C, bin #130). It then reduces the applied force to zero as shown

in Fig. 3.5 segment CD, bin #130-155 . The displacement is correspondingly reduced

to approximately 7.5 mm at point D which is a permanent deformation (Fig. 3.4 point

D, bin #155).

3.5 Acoustic measurements

The acoustic measurement configuration was comprised of a custom built piezo com-

posite transducer from PCT [90] where the specimen under investigation is placed ap-

proximately 11 cm from the transducer and the system is aligned with an approximate

normal angle of incidence. It also included a water tank, a function generator, a data ac-

quisition (DAQ) unit, both transmitting and receiving electronics, and a computer with

software to control the function generator and process the recorded acoustic data. A

box model is shown together with a schematic of the setup in Fig. 3.6. The instruments

used are listed in Table 3.1.
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(a) ART box model (b) Tension machine and ART set up (side
view)

Figure 3.6: ART measurement set-up

The transducer was custom built by PCT Ltd [90] and consist of a transmitter (TX)

disk with radius aTX of 12.5 mm with a receiver (RX) ring placed outside the TX disk

with an outer radius of 50 mm. Both the TX and RX is operable in the frequency

band 300-800 kHz [91]. For the frequency f spanning from 300 kHz to 800 kHz this

corresponds to kaTX values ranging from 15.7 to 41.9 for the TX respectively, where

k = ω/c is the wave number defined by the angular frequency ω = 2πf and the sound

velocity c in the coupling medium water (see Table 2.2 for values used). Assuming an

axial response of the TX similar to that of a plane circular piston in a stiff baffle the

axial limit of strong interference is assumed to be at the axial distance r = a2TX/λ−λ/4
[89], which corresponds to the range 3.1 cm to 8.3 cm for the respective frequency range.

Thus it is assumed that the specimen placed at ∼11 cm has been placed outside the

range of strong interference. In-house characterisation of the transducer produced by

PCT [90] used in this work has shown that the transmitting piezo composite disk of the

transducer has a beam angle (θ6dB - the angle from axial direction to where the peak to

peak recorded voltage level is reduced by 6dB) varying between 4.6◦ at 800 kHz, 6.7◦

at 550 kHz, and 12.7◦ at 300 kHz [91].

The transducer was aligned perpendicularly to the x1, x2 plane such that the axial
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direction of the transducer was in the thickness (x3) direction of the test specimens (nor-

mal incidence). Placing the transducer approximately 11 cm from the test specimen will

with the specified beam angles result in an acoustic footprint (-6dB) of approximately

2.5 cm at 300 kHz and down to approximately 0.9 cm at 800 kHz on the face of the test

specimen.

In this work a 30 µs chirp signal with linear frequency sweep from 300 kHz to 800

kHz has been used to excite transient standing half-wave acoustic harmonics across the

thickness of the test specimen under investigation as described in Sec. 2.6.1. From

the computer controller the signal generator generates the chirp signal which is passed

through the matching electronic circuit and the TX part of the transducer. This excites a

propagating acoustic wave which propagates from the transducer to the test specimen,

interacts with the testspecimen, and finally propagates back towards the transducer.

The interaction with the test specimen is described in Secs. 2.6.1 and 2.6.2. It has

been assumed that the water-tank has large enough dimensions that any energy that

is not directly reflected from the test specimen back toward the receiving part of the

transducer leaves the system and can thus be neglected from further considerations.

When the energy of the reflected echo, consisting of a main echo and a transient tail,

propagates back toward the transducer, it is received by the ring RX and the receiving

electronics. The DAQ hardware and software records the recieved acoustic pressure

signal. It is noted that the only signal processing other than what is described in Sec.

3.5.1 is an electronic matching circuit on the transmitter side and a gain circuit on the

receiving side (see Table 3.1) [100]. No additional filtering has been used except a lower

limit of 300 kHz and an upper limit of 1200 kHz on the FFT. The upper limit is set

higher than the upper range of the chirp (800 kHz) to make sure to include one of the

resonance frequencies that is predicted at 800 kHz (see Table 3.2).

The propagation velocity in the coupling medium (water) is approximately 1500

m/s, and with a distance between the transducer and the test specimen of 11 cm, the

propagation time for the round trip transducer - test specimen is approximately 150

µs. The DAQ records the acoustic pressure measured by the RX ring from the time

when the chirp pulse is produced by the TX disk and for ∼ 500 µs to be sure that

the echo is recorded. The resonance frequencies are then extracted from the transient

tail behind the main reflected echo. The tail used in this study has a length twice the
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lenght of the original pulse. The applicable interaction time in this setup have thus

been approximaetly 90 µs.

As the test specimen is placed close to the finite transducer the generated acoustic

signal will impinge the water/steel interface with a distribution of incident angles. If a

longitudinal wave impinge with an incident angle on the surface of the layer, vertically

polarised shear waves (SV) (named based on their component of particle motion in the

same “vertical” direction as the impigning longitudinal wave) can be excited through

mode conversion. Horizontally ploarised shear waves (SH) have no coupling to the

impigning longitudinal wave and will thus not be excited [69, ch. 9]. It has been

assumed that the acoustic field around the acoustic axis of the transducer has a circular

symmetry around the normal incidence. Thus SV waves with polarisation directions (in

this context the polarisation directions refer to the component of shear wave particle

motion in plane of incidence and the “horizontal” direction of the layer surface (see

[69, ch. 9] for details)) in all the directions of the surface plane should be excited.

Based on this assumption the SV waves excited in the test specimen should have an

approximately equal distribution of waves with particle motion in parallell as well as

perpendicular to the applied tension. Thus, both longitudinal and shear waves will be

excited in the steel layer. Both the shear and longitudinal waves inside the steel layer

will in turn excite longitudinal waves propagating away from the steel layer through

the water half-spaces. This enables the system to record both longitudinal and shear

resonance frequencies within the steel, even though the shear waves will not propagate

through water (see Sec. 2.6.2 for details).

The thickness of the test specimen has been selected in such a way that the frequency

range of the PCT transducer excites both a shear and a longitudinal harmonic resonance

that is easily distinguishable. From Table 3.2 and Fig. 3.9 the 3rd shear harmonic at

approximately 660 kHz and the 2nd longitudinal harmonic at approximately 800 kHz

is such a pair.

As mentioned in Sec. 3.3, a dynamic displacement velocity of approximately 6 mm/min

and an unloading of -500 kN/min have been used for the loading and unloading se-

quences respectively. Combining this with the interaction time of 90 µs yields a dis-

placement of approximately 9 µm per acoustic shot, or conversely -0.75 N per acoustic

shot. This is below the accuracy of the static load control, and also much less than

the applied pre-load. Thus it has been assumed that this effect is insignificant for the
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overal acoustic behaviour for the purpose of this study. Each acoustic shot will give a

result which can be regarded as the mean over the range of the relevant displacement.

The uncertainties related to the acoustic shots will be further discussed in Sec. 6.2.

Of the total 37 test specimens, 16 were performed including acoustic measurements.

The remaining test specimens were tested with other measurement systems to charac-

terise the geometrical change of the specimens during loading (See Sec. 3.6).

3.5.1 Signal processing

The resonance frequencies are extracted from the acoustic signal by digital signal pro-

cessing (DSP) techniques that can be found in any textbook on the subject (e.g. [66]).

Mainly it entails a routine to cross-correlate the input signal with the recorded echo

(shown in Fig. 3.7) [66, ch. 7] to pinpoint the main echo in the reflected signal, thus

enabeling the extraction of the constructively resonating tail signal as shown in Fig. 3.8.

Then a Fast Fourier Transform (FFT)[103] and its corresponding frequency spectrum

have been computed by applying a Hanning window [66, ch. 7-12] to the tail of the

echo. The sampling frequency Fs of the signal was 15 MHz while the length T of the

FFT was 60 µs corresponding to N = TFs = 900 samplepoints, which yields a spectral

frequency resolution of the FFT of 16.7 kHz (see [66, ch. 9]) which should be sufficient

to distinguish the resonance modes presented in Table 3.2. However, this resolution

is not good enough to distinguish the potential separation of shear resonance modes

due to the effect of polarised particle motion as explained in Sec. 2.3, Eqs. (2.98) and

(2.99). This will be discussed further in Secs. 6.2, 6.3, and 7.6.1.

The signal processing has been performed utilising the Python 2.7 [104] program-

ming language, and more specifically the numerical computational libraries NumPy and

SciPy [103]. The peaks of the FFT spectrum corresponding to the resonance frequencies

have been found using a peak-detection algorithm and the maximum of a spline inter-

polation around each peak. The peaks have then been categorised according to whether

they fit a longitudinal or shear resonance mode by comparing an estimated tentative

harmonic number nl or ns from Eq. (2.120) with the resonance frequencies for longitu-

dinal and shear resonance modes based on the tentative data in Table 2.2. A measured

peak has been accepted as a resonance peak if the measured resonance frequency was

within 5 % of any of the estimated shear resonance frequencies and 10 % of any of

the longitudinal resonance frequencies given in Table 3.2. The acceptance criteria for
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the longitudinal resonance frequencies has been increased compared to the shear modes

because of the shift in resonance frequency caused by the beam effect discussed below

and explained in Sec. 2.6.2.

The FFT spectrum of the recorded tail signal of Fig. 3.8 is shown in Fig. 3.9,

where the resonance frequencies according to plane wave theory for both longitudinal

and shear sound waves (Eq. (2.120) with updated estimates of the sound velocities

estimated in Sec. 5.6 and presented in Table 5.5) have been plotted as vertical dotted

and dashed lines and denoted L1, L2, S2, S3 for the 1st and 2nd longitudinal, and

2nd and 3rd shear resonance frequencies respectively. The discrepancy between the

theoretical and measured resonance frequency of Fig. 3.9 are due to the beam effect

explained in Sec. 2.6.2. The resonance peaks in Fig. 3.9 should, according to the

beam effect, be dependent on the superposition of a collection of plane waves impigning

on the test specimen with an angular distribution dictated by the beam angle of the

transducer. Comparing the resonance peaks in the FFT spectrum (Fig. 3.9) and the

leaky Lamb modes in Fig. 2.10 it is clear that for a distribution of plane waves with

incidence angle less than the -6dB beam angle of < 13◦ for frequencies around 300 kHz

that the combined response of such waves would shift the measured resonance peaks

slighly down in frequency as seen in Fig. 3.9. Correspondingly a distribution of plane

waves with incidence angles less than the beam angle of < 7◦ for frequencies around 550

kHz, and < 5◦ for 800 kHz, suggest that the combined response for both the S2 and L2

mode would be shifted up in the frequency spectrum. From Fig. 2.10 in Sec. 2.6.2 the

S3 mode is not affected by the angle of incidence before it is approximately 6◦. Thus it

is reasonable to assume that this mode is not as much affected by the beam effect as the

other modes presented. The shifts seen in the FFT (Fig. 3.9) corresponds qualitatively

well with the above discussed beam effect, and is thus assumed related to the directivity

of the transducer. Because the angle between the acoustic axis of the transducer and

the face of the test specimen does not change during testing it has been assumed in this

work that the observed shift is close to constant throught each individual test.

3.5.2 Temperature

The sound velocities in steel are dependent on the temperature [105]. Thus the temper-

ature in the water tank has been measured before and after the acoustic measurements

were performed. The test specimens and water tank weere installed into the tension
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Figure 3.7: a) Recorded signal showing acoustic echos reflected from the test
specimen and b) simultaneously recorded displacement voltage signal from the
Instrom machine. Variations in the diplacement voltage relates to random
variations / noise in the recorded voltage and not actual displacement.

Figure 3.8: Zoomed in on 1st echo in Fig. 3.7 a) with the reference pulse
(linear chirp) overlaid and the extracted tail
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Figure 3.9: Calculated FFT spectrum of extracted tail with 1st and 2nd longi-
tudinal, and 2nd and 3rd shear resonance frequencies denoted L1, L2, S2, and
S3 respectively.

machine before the test specimen was fixed in the bottom clamp and the orifice through

the bottom of the water tank was sealed shut. Then the water tank was filled with tap

water and the system was set to reach the equilibrium temperature while the rest of

the rig was prepared (approximately 10-20 minutes). The temperature of the water was

measured just before the tension test was initiated and just after the test finished. The

results have been presented in Table 5.4 in Sec. 5.4.

3.6 Geometrical measurement configuration

As the load was applied in the x1-direction (see Figs. 3.1, 3.6b) the Poisson effect

reduces the thickness of the test specimen [13, ch. 1.3]. From Eq. (2.120) it is clear

that a negative relative change in thickness will have the same effect on the measured

resonance frequencies as a corresponding positive relative change in sound velocity. The

contribution owing to thickness change can be removed by comparing the resonance

frequencies of different harmonics as described in Sec. 2.7. However, to consolidate the

results and to measure the strains which are used as input to the theoretical calculations

(see Sec. 2.3 and Ch. 4), two methods have been used to measure the geometrical change

of the test specimen during loading. In addition to the effect on the measured frequency,
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the theory presented in Sec. 2.3 uses strain in its calculation of the acoustoelastic effect.

Thus the strains (or equivalently the elongation for a unaxial test) in the principal

directions are needed, both as input to the acoustoelastic theory, and to calculate the

true stress, or Cauchy stress σ11, (applied force per actual cross section area).

As mentioned in Sec. 2.4 the measured uniaxial stress and strain from an uniaxial

tension test can also be used to estimate both the Young’s modulus Y and the Poisson’s

ratio ν. Y and ν is directly related to the other second order elastic constants as

described in Sec. 2.4, Eq. (2.106), and are thus a convenient measure to be able to

compare the elastic properties of the current steel with other reported steels found in

the literature. The estimate is done under the ideal assumption that all the stress is

used to elongate the test specimen in the uniaxial direction. The ideal geometry for

such a measurement is that of a long, thin, and straight bar. However, when the bar

is not ideally straight some of the initial applied stress will be used to straighten the

test specimen. Also, if the fixation points are not ideally aligned it will also introduce

a slight shearing in the test specimen. Such deviations from the ideal setup will affect

the accuracy of estimates of the elastic properties. For estimates of the Poisson’s ratio

the thin bar introduce an additional inaccuracy as it is also more difficult to measure

the contraction of a thin bar with high accuracy compared to the elongation in the

axial direction. This is because it is more difficult to align e.g. strain gauges in parallel

with the short transverse directions compared to the long axial direction. The test

specimens used in this study have been CNC-machined with a high geometric accuracy

as described in Sec. 3.2, and any deviation from a straight sample is less than visually

detectable when put on a plane surface (i.e. it is not possible to visually see gaps

between the test specimen and the plane surface if it lays flat on top of the surface). The

alignment of the test specimen in the tension machine have been done using a vertical

leveling instrument, and thus it has been assumed that the initial strain/stress used to

“straighten” or “shearing” the sample have been small compared to the overall applied

stress/strain level. The measured stress and strain can then with good approximation

be used to estimate the linear elastic properties. This has been explained in Sec. 3.6.3.

The principal strains have been monitored throughout the tests using two indepen-

dent measurement systems. Strain gauges have been bonded directly on to the surface

of the test specimens in different locations with different principal orientations, while

the ARAMIS system have measured relative displacement (strains) between points in
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3.6 Geometrical measurement configuration

a spraypainted stochastic pattern on the surface of the x1-x2-plane. The ARAMIS

sofware have, based on photometric analysis of the development of this stochastic pat-

tern, calculated the principal x1, x2, and x3-strains. The two different methods have

been described in Secs. 3.6.1 and 3.6.2 respectively, and the principal strains (or corre-

spondingly principal elongations in the uniaxial setup used in this work) in the x1-, x2-,

x3-direction have been named e1, e2, e3 respectively for the strain gauges and emajor,

eminor, ez for the ARAMIS measurements to be able to distinguish them. The two

methods described above are local measurements giving estimates at some relevant po-

sitions on the test specimens. In addtion a global estimate in the axial (x1-direction)

has been based on the uniaxial displacement of the Instron tension machine recorded

by the MessTek control unit as described in Sec. 3.3.

3.6.1 Strain gauge

The most common method of geometrical measurements is the strain gauge. This is

small strips of electric conductors that were bonded to the test specimen in such a

fashion that they follow the local deformation of the specimen (see Eq. (2.73) where

Li is the original length of the strain gauge and li is the current length of the strain

gauge). When they are elongated or compressed the resistance over the conductor

change, which allows measurements of the elongation/compression of the strips. The

strain gauges used in this setup were of the type YFLA-2 and YFLA-5 produced by

TML - Tokyo Sokki Kenkyujo Co., Ltd., with a strain limit of 15-20 % strain [101]. The

strain gauges yields good measurements over the area where they are placed, however

because of their limited physical extension (2 mm x 1.8 mm for the YFLA-2 and 5 mm

x 2 mm for the YFLA-5 [101]) they can not give a distributed strain field over the test

specimen. In addition, small variations in the alignment of the strain gauges also affect

the measured strains. They would also have introduced an uncertainty in the acoustic

measurements if they were present at a location in which it could influence the acoustic

signal. Thus, for the test specimens including acoustic measurements the strain gauges

have been placed in the area just below the upper wedged clamp (see Fig. 3.6b), away

from the acoustic footprint to mitigate any influence on the acoustic signal. Because of

a limited number of strain gauges, not all tests have been run with strain gauges. To

get a statistical representation of relevant elongation for those tests run without strain

gauges, the placement of the strain gauges have been varied between combinations of
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3. EXPERIMENTAL SETUP AND MEASUREMENT METHODS

placement and alignment on selected test specimens. Both with and without acoustic

measurements (described in Sec. 3.5), and with and without the geometrical ARAMIS

measurements (described in Sec. 3.6.2). Note that only a limited number of strain

gauges (41 ) have been available for this work, and the number of strain gauges per

test specimen, where they have been included, has been varied between 1 and 6. Strain

in the x1- and x2-direction, or for the principal directions applied in this work referred

to as elongation ei, i = 1, 2, 3, have been measured at either the front or/and the back

plane of the specimen, while the x3-direction has been measured across the thickness

on either the left or/and right side of the specimen. In addition some tests have been

run without acoustics where the strain has been measured at the center, where the

acoustic signal has been focused. The statistical average over all of these measurements

(as described in Ch. 5) have been used where applicable. The locations of placements

are indicated in Fig. 3.10. The strain gauges indicated at the front and back of the

middle of the test specimen have not been included when acoustic measurements have

been performed as it is located at the acoustic footprint.

Note also that the elongation measured by strain gauges is denoted by ei, while the

axial elongation estimated based on the applied displacement recorded by the Instron

tension machine and MessTek control unit is labeled eInstron1 (Eq. (3.4)).

Of the total 37 tests, 18 were performed including strain gauges.

3.6.2 ARAMIS photometric measurement

To be able to get a more distributed strain measurement, a photometric measurement

system called ARAMIS developed by “Gesellschaft für Optische Messtechnik” (GOM)

[102],[106],[107] has been used. This system uses two digital cameras to obtain a stereo

image of a stochastic pattern sprayed on the test specimen. These stereo images can

then be used to calculate displacement and strain fields for the imaged area. According

to the system description the accuracy can be as good as 0.01 % strain [107]. A sketch

of the ARAMIS measuring system and a strain distribution calculated by the ARAMIS

software is shown in Figs. 3.11a and 3.11b (Note that the overlayed image in Fig.

3.11b is not of the test specimens used in this work, but of a similar steel specimen

including two u-shaped notches on each short side to create strain consentrations). The

2D strain field measured by ARAMIS on the surface of the specimen can, according to

[107], be used to calculate a thickness reduction strain (i.e. ez), under the assumption

94



3.6 Geometrical measurement configuration

Figure 3.10: Rectangular specimen with illustration of the strain gauge place-
ments used. Different combinations of placements with different number of
gauges have been used for different test specimens.

of material volume constancy. The applicability of this statement has not been verified,

but the ARAMIS measurement results have been compared with the corresponding

strain gauge measurements, and the result of this is discussed further in Sec. 5.3.1.

The ARAMIS measurements give results distributed over a region of the specimen,

e.g. where the acoustic beam is focused. Unfortunately the ARAMIS system can

not be operated through the water tank of the ART setup. Therefore the ARAMIS

measurements have been done on a set of separate test specimens to create a distribution

of strain measurements throughout the load history. Because of processing time the

delay between each photometric measurement was set to 5 s.

Of the total 37 tests, 15 were performed including the ARAMIS measurement sys-
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tem.

(a) ARAMIS schematic (b) Strain field

Figure 3.11: ARAMIS system with example of stochastic pattern and estimated
strain field of a notched test specimen (blue indicate low leveles of strain while
red indicate higher levels of strain)

3.6.3 Strain derivatives

The challenge of measuring the geometric deformation simultaneously and at the same

location as the acoustic response has been best solved by placing strain gauges across

the thickness (i.e. x3-direction) at the center of the test specimen. As described in

Sec. 2.6.2 the width and length of the test specimen is assumed to be so large that no

effect of reflections from the edges interferes with the cross thickness resonance modes.

Thus it is also assumed that strain gauges placed on the edge at the center of the test

specimen measuring across the thickness does not affect the acoustic signal significantly.

3.6.3.1 Sound velocity

Even though the thickness dependency can be removed as described in Sec. 2.7, the

measurements can be used to corroborate the results by visualising the relative change
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3.6 Geometrical measurement configuration

in the actual sound velocities (Eq. (2.121) including d as the reduced thickness in Eq.

(2.123)) for comparison with theory, and not just their ratio.

When estimating the absolute magnitude of the sound velocities it is important to

evaluate contributions from the beam effect described in Sec. 2.6.2, this shift of the

L1 and L2 mode will produce a similar discrepancy in calculated longitudinal sound

velocity. We have the relations (from Eq. (2.108)) for a common unstressed steel

cl
cs
≈ 1.83, (3.5)

which together with Eq. (2.121) leads to the relation

cl
cs

=
ns
nl

f
(nl)
0,th

f
(ns)
0,th

≈ 1.83. (3.6)

Now, looking at the stressed longitudinal velocity based on plane wave theory we get

through Eqs. (2.121) and (2.123)

cl =
2l3
nl
f
(nl)
th =

2L3(1 + e3)

nl
f
(nl)
th =

2L3(1 + e3)

nl

f
(nl)
th

f (nl)
f (nl)

=
2L3(1 + e3)

nl
η(nl)f (nl), (3.7)

where l3 and L3 is the current and initial thickness (d) respectively, subscript th denotes

plane wave theory, and f (nl)l is the measured nl resonance frequency mode. Correspond-

ingly the same relation can be developed for the plane wave theory shear wave velocity

and the measured ns resonance frequency modes as

cs =
2l3
ns
f
(ns)
th =

2L3(1 + e3)

ns
η(ns)f (ns). (3.8)

In the above two equations

η(nl) ≡
f
(nl)
th

f (nl)
and η(ns) ≡

f
(ns)
th

f (ns)
(3.9)

has been introduced as a correction factor of the beam diffraction effect for the longi-

tudinal nl and ns-modes.

To correct for the beam diffraction effect the unstressed longitudinal frequencies have

been estimated based on the relation between the measured unstressed longitudinal and

shear sound velocities of Eq. (3.6) and the assumption that the S3 mode (ns = 3) does
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not experience any shift for the relevant incident angles. This latter assumption has

been based on the relative constant location of the S3 mode at ∼ 660 kHz observed for

a beam angle < 6◦ in Fig. 2.10 which then yields the relation

η(ns=3) ≡
f
(ns=3)
th

f (ns=3)
≈
f
(ns=3)
0,th

f
(ns=3)
0

≈ 1. (3.10)

Thus the correction factor for the nl-modes become

η(nl) ≡
f
(nl)
th

f (nl)
≈

f
(nl)
0,th

f
(nl)
0

=
1.83nl

3

f
(ns=3)
0,th

f
(nl)
0

≈ 1.83nl
3

f
(ns=3)
0

f
(nl)
0

, (3.11)

where f (ns=3)
s0 is the measured unstressed S3 (ns = 3) resonance mode, while f (nl)l0 is

the measured unstressed nl resonance mode. It is noted that the same methodology

and equations can be used to establish an estimate of the correction factor for shear

resonance modes as well by substituting the subscript l with s denoting longitudinal

and shear waves respectively.

Assuming also that the beam diffraction effect is constant throughout each test (ar-

gued in Sec. 3.5.1) this leads to the plane wave theory frequency used when estimating

the magnitude and development of the longitudinal sound velocity based on both the

L1 and L2 resonance mode as

f
(nl)
0,th ≈ η

(nl)f
(nl)
0 , (3.12)

and the S3 resonance mode as

f
(ns=3)
0,th ≈ f (ns=3)

0 . (3.13)

Note that this adjustment has only been used when estimating the absolute longitudinal

sound velocities based on the measured frequencies of the L1, L2, and S3 resonance

modes presented in Fig. 5.17. For all other measurements this correction is either not

relevant, or it cancels out as is the case for relative measurements.

3.6.3.2 Stress

When presenting results involving stress it has been decided to use the Cauchy stress σ11
instead of the nominal stress S11. The two stresses are related through the deformation
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3.6 Geometrical measurement configuration

as seen in Eqs. (2.76) and (2.85). The reason for this selection is based on Cauchy stress

giving a more intuitive representation of the relation between the applied deformation

and the needed force / current cross section area to achive this deformation.

Stress is generally a second order tensor field. However, in this work an uniaxial

load has been applied and the stress can thus be described by a stress tensor (σ) with

the only non-zero component aligned with the direction of the applied force (in this case

the x1-direction), i.e. σ11 = F/a where F is the applied force and a = l2l3 is the current

cross section area of the test specimen. All the other stress components is assumed to

be zero, i.e. σij = 0 for i, j = 1, 2, 3 where i = j 6= 1. When the term stress is used

in the following, this non-zero component in the x1-direction is implied if not otherwise

stated.

To calculate the change in cross sectional area two approaches have been used. The

straight forward approach is where both elongation in the x2- and the x3-direction (e2
and e3 respectively) are available for a given test specimen. The Cauchy stress can then

be found by (Eqs. (2.76) and (2.85))

σ11 = J−1λ1S11 =
S11A0

a
=

F

l2l3
=

F

L2(1 + e2)L3(1 + e3)
, (3.14)

where F = S11A0 is the applied force, a = l2l3 denotes the current cross sectional area,

l2 is the current width (w) of the test specimen, and l3 is the current thickness (d) of

the test specimen, and A0 = L2L3 is the initial unstressed cross section. The relation

between the initial and current width or thickness is given by the same equation as

used for the reduced thickness in Eq. (2.123). The subscript 0 signifies a measurement

at the initial unstressed state, and e2 is the measured elongation in the width- (x2-)

direction and e3 is the measured elongation in the thickness- (x3-) direction. If, however,

only one of the e2 or e3 is available, the cross section area can be calculated under the

asumption that for an isotropic solid an elongation in the x1-direction will induce a

relative contraction equal in both the x2- and x3-direction (see the Poisson’s effect in

Eq. (2.105)). Thus the current cross section area can be found by applying Eq. (2.85)

as

σ11 =
F

a
=

F

l2l3
=

F

L2L3(1 + e2)2
=

F

L2L3(1 + e3)2
. (3.15)

These two methods will give slightly different values for the estimated σ11 based on

the difference in the measured e2 and e3. To evaluate how large this difference is the
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relative difference has been calculated as

σ11(e2)

σ11(e2, e3)
− 1, or

σ11(e3)

σ11(e2, e3)
− 1. (3.16)

The results have been discussed in Sec. 5.3.

3.6.3.3 Linear elastic moduli

The linear elastic properties Young’s modulus Y and Poisson’s ratio ν can also be

estimated based on stress-strain measurements as described in Sec. 2.4.1. Young’s

modulus Y can be estimated from Eq. (2.104) as the gradient of the Lagrangian stress-

strain relation in the x1-direction for the linear elastic region. The Poisson’s ratio ν

can be estimated from Eq. (2.105) as the negative ratio between the measured elastic

elongation in the x2- or x3-direction and in the x1-direction for the linear elastic region

as

ν = −e
e
2

ee1
= −e

e
3

ee1
(3.17)

As the Young’s modulus is defined through the Lagrangian nominal stress Sij relative

to the initial, unstressed, cross section area (see Sec. 2.1.2). The Youngs’s modulus after

plastic deformation should thus be estimated with respect to the Lagrangian nominal

stress relative to the current, plastically deformed, unstressed cross section area (see

Sec. 2.5). Thus the Young’s modulus has been calculated through the relation (Eqs.

(2.104) and (3.14))

Y ≡ S11
ee1

=
F/A0

ee1
(3.18)

which yields

Y (ep1 > 0) =
F/ap

ee1
=
S11A0

ee1a
p

=
S11
ee1

1

(1 + ep2)(1 + ep3)
, (3.19)

where eei is the elastic part of the total strains (i = 1, 2, 3, see Eq. (2.109)), epi is the

plastic part of the total strain (see Eq. (2.110)), and ap = A0(1+ep2)(1+ep3) is the plastic

part of the total deformed cross section area a = A0(1 + e2)(1 + e3) (i.e. corresponding

to the unstressed cross section area after the test specimen has experienced plastic

deformation, a(ee2 = 0, ee3 = 0, ep2, e
p
3)). The equivalent expression using the Cauchy

stress is

Y =
σ11
ee1

a

ap
=
σ11
ee1

(1 + e2)(1 + e3)

(1 + ep2)(1 + ep3)
. (3.20)
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The former of the equivalent expressions (Eq. (3.19)) is recognised as the slope

of the measured nominal stress - elongation curve in the elastic loading and unloading

regions. The average Young’s modulus and Poisson’s ratios in these linear elastic regions

can thus be estimated based on the slope of linear regression of the stress-elongation

relation, and Eq. (3.19) has thus been used in this work. The resulting estimates have

been presented in Sec. 5.3.1.

101



3. EXPERIMENTAL SETUP AND MEASUREMENT METHODS

102



4

Numerical simulation set-up

This work investigates the applicability of ART used as a method of NDT to measure

and monitor the stress/strain state of offshore pipelines. As a variety of steel types

is used in the offhsore industry this work has limitited its scope to investigate the

measurement capability of the ART equipment/method, and has not tried to establish

the third order elastic moduli of any steel types used in the industry. However, to be

able to compare the measured acoustoelastic effect with the current development of

theory, third order elastic constants for different types of steel found in the literature

[44][39][46] have been used to calculate the theoretical sound velocity change predicted

by the theory presented in Sec. 2.3. A list of these steels have been collected in Table

4.1. Although this is not ideal because of the lack of knowledge of third order elastic

moduli for the specific steel used in this work, it should give a good idea of the variability

of the acoustoelastic effect in different but common types of steel. The elastic moduli

for 5 different types of steel is presented in [44] and is reproduced in Table 4.2. One type

of steel is presented in [39] while [46] present the moduli of two different samples of the

same type of steel, all of which are reproduced in Table 4.3. These values are reported

using the notation of Tupin and Bernstein [18] and Murnaghan [83] respectively. To

be able to use them in the formalism adopted in this work the conversion between the

different notations of Table 2.1 have been used and the resulting constants in the Landau

and Lifshitz [37] notation is presented in Table 4.4. To be able to easily compare the

second-order elastic constants (Lamé parameters) of the different steel types with easily

obtained experimental values, the conversion to Young’s modulus and Poisson’s ratio

using Eq. (2.106) is presented in Table 4.5. Note that [44][39][46] have not reported
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the confidence level of their reported uncertainties, thus this work has treated it as a

standard uncertainty with a confidence level of approximately 68.3 % [74].

The sound velocities presented in Eqs. (2.97) to (2.99) from the acousto-elastic

theory in Sec. 2.3 have been implemented using the programming language Python 2.7

[104] and the numerical computational libraries NumPy and SciPy [103]. The sound

velocities have then been simulated using all of the second- and third-order elastic

moduli presented in Table 4.4 together with the measured uniaxial elastic elongation

from strain gauges as input. The results of these simulations have been presented in

Sec. 5.7.

Table 4.1: List of steels with determined third-order elastic moduli found in literature

Material Composition [%] Density ρ [kg/m3] Source
Hecla 37 (0.4 % C) C, 0.4; Si, 0.3; Mn, 0.8 7823 [44]
Hecla 37 (0.6 % C) C, 0.6; Si, 0.2; Mn, 0.8 7825 [44]
Hecla 138A C, 0.4; Cr, 0.6; Mo, 0.5; Ni,

2.5
7843 [44]

Rex 535 Ni steel Not known 7065 [44]
Hecla ATV austenitic Ni, 36; Cr, 10; Mn, 1 8065 [44]

Nickle-steel S/NTB Not known Not known* [39]

Rail steel C, 0.67-0.80; Si, 0.10-0.25;
Mn, 0.70-1.00; P, <0.04; S,
<0.05

7800 ± 23 [46]

Compared with steel used in this PhD
S235JRG2C+C C, <0.17; Si, 0.15-0.30; Mn,

<1.40; P, <0.045; S, 0.020-
0.045

8000 [79]

*Where the density is not known a value of 7850 has been used in the numerical simulations where
applicable
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Table 4.2: Lamé and Toupin and Bernstein constants in GPa

Lamé constants Toupin and Bernstein constants
Material λ µ ν1 ν2 ν3
Hecla 37 (0.4 % C) 111± 1 82.1± 0.5 -358± 70 -282± 30 -177± 8
Hecla 37 (0.6 % C) 110.5± 1 82.0± 0.5 -134± 20 -261± 20 -167± 6
Hecla 138A 109± 1 81.9± 0.5 -323± 50 -265± 30 -177± 10
Rex 535 Ni steel 109± 1 81.8± 0.5 -175± 50 -240± 50 -169± 15
Hecla ATV austenitic 87± 2 71.6± 3 34± 20 -552± 80 -100± 10
Reproduced from [44]

Table 4.3: Lamé and Murnaghan constants in GPa

Lamé constants Murnaghan constants
Material λ µ l m n

Nickle-steel S/NVT 109.0± 1 81.7± 0.2 -56± 20 -671± 6 -785± 7

Rail steel sample 1 115.8± 2.3 % 79.9± 2.3 % -248± 2.8 % -623± 4.1 % -714± 2.7 %
Rail steel sample 4 110.7± 2.3 % 82.4± 2.3 % -302± 2.8 % -616± 4.1 % -724± 2.7 %
Reproduced from [39][46]

Table 4.4: Lamé and Landau and Lifshitz constants in GPa for the constants of Tables
4.2 and 4.3 using the conversion in Table 2.1

Lamé constants Landau & Lifshitz constants
Material λ µ A B C

Hecla 37 (0.4 % C) 111± 1 82.1± 0.5 -44.3± 2.0 -282± 30 -179± 35
Hecla 37 (0.6 % C) 110.5± 1 82.0± 0.5 -41.8± 1.5 -261± 20 -67.0± 10
Hecla 138A 109± 1 81.9± 0.5 -44.3± 2.5 -265± 30 -162± 25
Rex 535 Ni steel 109± 1 81.8± 0.5 -42.3± 3.8 -240± 50 -87.5± 25
Hecla ATV austenitic 87± 2 71.6± 3 -25.0± 2.5 -552± 80 17.0± 10

Nickle-steel S/NVT 109.0± 1 81.7± 0.2 -785± 7.0 -279± 6.9 -223± 21

Rail steel sample 1 115.8± 2.6 79.9± 1.8 -714± 19 -266± 27 18.0± 28
Rail steel sample 4 110.7± 2.5 82.4± 1.9 -724± 20 -254± 27 48.0± 28
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Table 4.5: Lamé parameters converted to Young’s modulus and Poisson’s ratio

Young’s Poisson’s
modulus [GPa] ratio [-]

Material Y ν

Hecla 37 (0.4 % C) 211.4± 1.1 0.287± 0.001
Hecla 37 (0.6 % C) 211.1± 1.1 0.287± 0.001
Hecla 138A 210.5± 1.1 0.285± 0.001
Rex 535 Ni steel 210.3± 1.1 0.286± 0.001
Hecla ATV austenitic 182.5± 6.9 0.274± 0.006

Nickle-steel S/NVT 210.1± 4.7 0.286± 0.003

Rail steel sample 1 207.1± 4.3 0.296± 0.004
Rail steel sample 4 212.1± 4.4 0.287± 0.004
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5

Experimental and theoretical
results

In this chapter the results from the tensional deformation history of 37 individual test

specimens have been presented. The pool of results from the 37 tension tests are com-

prised of 16 tests where ART measurements was included (Sec. 3.5), 18 tests including

strain gauges (Sec. 3.6.1), and 15 tests including the ARAMIS measurement system

(Sec. 3.6.2), where the former measures the resonance frequency across the specimen

thickness as described in Sec. 3.5, while the latter two are tests to measure the geo-

metrical change as described in Sec. 3.6. Strain gauges have been used on a selected

set of test specimens both alone and toghether with ART or ARAMIS measurements.

In addition both the displacement and force of the Instron tension machine has been

recorded for all the test by the MessTek control unit.

Note that for some of the experiments some of the measured data may be missing,

or has been deemed to be obviously erroneous. In these cases the missing/erroneous

measurements have been removed from the result pool. Although some of the data

might be missing/erroneous, the data that was deemed useful has been included in

the result pool. E.g. if a strain gauge was not correctly fitted to the test specimen,

giving obviously erroneous measurements, this data set was removed from the result

pool. However, independent measurements (e.g. acoustic measurements or other strain

gauges) from the same test have been included. A short overview of the excluded data

has been presented in Table 5.1
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Table 5.1: Measurements removed from the result pool

Test Setup Measurement Reason
number
1 Tension All except ini-

tial geometry
Wrong load history

4, 6, 8, 9 Tension Strain e1,e3 The strain gauge in x1- and x3-direction
did not produce any ouput (zero-
readings).

16, 26, 27,
28, 29, 30

ARAMIS Strain Bad accuracy in ARAMIS data.

14, 17 ARAMIS eminor strain Inability of developed algorithm to dev-
ide the measurement into the appropriate
elastic and plastic loading sequences.

23 ART Acoustics Missing corresponding displacement read-
ing. Not possible to associate the res-
onance frequency with applied stress or
strain.

31, 36 ART Acoustics Large jumps in both acoustic resonance
and corresponding displacement. Might
be an effect of the processing routine.

34, 39 ART Upper strain
region

The samples experienced significantly
more plastic deformation close to the up-
per clamp at the end of the load history.

When the test specimens were clamped into the tension machine small variations in

the initial position and tension force may have been introduced (in the order of 1 mm and

5 kN respectively). To align the measurements to better be able to compare them the

position measurement (either displacement or measured strain) has been transposed

to correct the measurement offset so that the endpoint of the first unloading was at

zero displacement/strain where the applied unloaded force was zero (point A after the

specimen have deformed along ABA in Figs. 3.4, 3.5 or 5.2). This has been justified

by the fact that the first loading sequence was elastic (displacement / 1.5 mm, see

Table 3.4 and Figs. 3.4 and 3.5) and does not induce plastic deformation. The target

setpoint for the first unloading was at zero applied force, thus returning the specimen

to its unstressed state. The same argument can be made for those measurement types

where the measurement value has been expected to be zero when the first unloading has

brought the specimen to a state of zero applied force. This is relevant for the measured
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5.1 Test specimen

force, and thus the stress, and any relative change measurements (i.e. measurements on

the form ∆x/x0, where ∆x = x−x0 is the difference of the current measurement x and

the reference measurement x0 at the zero force state). For any absolute measurements

(e.g measurement of the resonance frequencies) the actual measurement values have

been used without any alignment of the first unloaded zero force state.

Finally, all plotted result data in this work has been presented with the experimental

standard uncertainty (grey error bars - describing a variation of the spread in outcome

of any given measurement series) and/or the experimental standard uncertainty of the

mean (black error bars - describing a variation in spread of the estimated mean of several

measurement series) as described in Ch. 6, if not otherwise stated. The confidence

level of the standard uncertainties used throughout this work is approximately 68.3 %,

corresponding to ± one standard deviation of a standard normal distribution [74]. The

resulting combined standard uncertainties have been presented in Ch. 6 and discussed

in Ch. 7.

Only the main results have been included in this chapter, intermediate and support-

ing results have been included in App. C.

5.1 Test specimen

The initial dimensions of each test specimen where measured by hand before it was used

in the tension machine as described in Sec. 3.2. The dimensions where also measured

after the tension test and the results have been presented in Table D.1 in App. D.1.

The variation in dimensions between the test specimens both before and after the

tension test can help indicate how much of the uncertainty in the desired result quanti-

ties can be ascribed to variations in the actual test specimen geometry. This has been

discussed in Sec. 6.4.1.1.

5.2 Engineering stress and displacement elongation

The basis for the experiment results has been the loading and displacement pattern

of each individual test. It has been important that the load history and displacement

pattern are equivalent across the test specimens to ensure comparable results. Fig. 5.1

shows force versus displacement development for 37 test specimens where each measure-

ment set (from individual test specimens) has been divided into 306 bins as explained in
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Sec. 3.4. Thus each of the 37 series in Fig. 5.1 consist of 306 points with representative

bin values, representing one individual test specimen. In Fig. 5.2 each of the binned

values from the 37 tests have been combined across the 37 tests and averaged to give

a representative value over all the experiments for the load state of the relevant bin.

Note that this way of presenting results for individual experiments and average values

over several experiments, respectively, have been used throughout this work. Note also

that the flat part of the displacement force curve (between the yield point (somewhat

above point B) and point C, and between point C and E) corresponds to where the test

specimen deforms plastically. Fig. 5.2 is the combination of the individual displace-

ment and force histories shown in Figs. 3.4 and 3.5. Fig. 3.5 shows that for a constant

applied displacement velocity (corresponding to the linear increase in displacemen seen

in Fig. 3.4), the force needed to achieve the target displacement stops following the ini-

tial linear relation (corresponding to the linear stress-strain relation of the generalised

Hooke’s law). These parts of the load history are thus recognised as regions of plastic

deformation.

Using the estimated free length Lfree1 the calculation of the elongation eInstron1 and

engineering stress S11 can be done as described in Sec. 3.3. Fig. 5.3 shows S11 versus

eInstron1 .

The legend in Fig. 5.1 signifies that the plot includes results from 37 experiments

(exp. for short) performed on individual test specimens. This short form has been used

in some plots to avoid cluttered legends and it denotes the number of experiments /

test specimens the presented plot is based on. A plot of the 37 individual tests which

Fig. 5.3 is based on is shown in App. C.1, Fig. C.3.

5.3 Strain, stress and plastic deformation

The acoustoelastic theory presented in Sec. 2.3 has been derived with respect to elastic

strain and stress. Measurements of these quantities have thus been required to be

able to compare the measured sound velocity change with equivalent estimates based

on the theory presented in Sec. 2.3. The results of strain, or elongation, and stress

measurements described in Sec. 3.6 have been presented in this section, together with

the extraction of both the elastic and plastic contributions (see Sec. 2.5.1). The three
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Figure 5.1: Displacement x1 and force recordings in 306 predefined bins for the
37 test specimens

Figure 5.2: Average of x1 displacement and force over 37 test specimens
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Figure 5.3: Average of engineering stress S11 and elongation eInstron1 based on
the recorded Instron displacement x1 over 37 test specimens

principal elongations ei for the uniaxial deformation used in this work have all been

plotted against the estimated Cauchy stress (σ11) as described in Sec. 3.6.3, Eqs.

(3.14) or (3.15). Note in the following that from the 41 only 27 have been included in

the result pool presented here. The reason for the significant number of strain gauges

measurements not included is described in Table 5.1 under “Test number” 4, 6, 8, 9, 34,

and 39.

Elongation in the x1-direction (e1) is important as the main input to the theory

of calculating the sound velocity change in this uniaxial tension setup. The average

measured values presented in Fig. 5.4 are based on 7 strain gauges placed on 6 test

specimens. The 7 strain gauges have been placed at one or two of the different locations

described in Sec. 3.6.1, Fig. 3.10, for each of the 6 test specimens. Note the increase

in uncertainty of the measured elongation e1 between the different loading/unloading

sequences AB, CD, and EF, i.e. as the test specimen deforms plastically. Fig. 5.4 is

the average over the 7 individual strain gauge measurements presented in App. C.2.1,

Fig. C.4. Looking at the individual measurements it is evident that the increase in

uncertainty is not related to increasing uncertainty within each measurement series,

but rather differences in how the strain gauges and/or the test specimens respond to

the applied displacement. These variations have been discussed further in Sec. 6.4.1.2,
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5.3 Strain, stress and plastic deformation

and are also evident for the e2 and e3 measurements presented below.

Figure 5.4: Average of e1 elongation over 7 strain gauges on 6 test specimens
plotted against σ11

The e2 elongation in the x2-direction is not used directly in calculating the change

in sound velocity, but it can be used to measure the change in cross section area of the

test specimens, and thus be a part of the estimation of true stress (see Eqs. (3.14) and

(3.15)). The average measured values of e2 presented in Fig. 5.5 are based on 3 strain

gauges placed at one or two of the different locations described in Sec. 3.6.1, Fig. 3.10,

on 2 test specimens.

Elongation in the x3-direction (e3) is directly relevant when calculating the sound

velocity change based on cross-thickness resonance frequencies as can be seen from Eqs.

(2.121) and (2.123) where the thickness d is a function of the e3 elongation. In addition

it is also used to calculate the change in the cross section, and thus also relevant for

the calculation of the true stress. The average measured values presented in Fig. 5.6

are based on 16 strain gauges placed both in the center, at the top, and on the left and

right side of 13 test specimens.

The results of the individual strain gauges have been included in Figs. C.4 to C.6

in App. C.2.1.

Based on the measured force F and the elongations presented above it is possible
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Figure 5.5: Average of e2 elongation over 3 strain gauges on 2 test specimens
plotted against σ11

Figure 5.6: Average of e3 elongation over 16 strain gauges on 13 test specimens
plotted against σ11
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to estimate the Cauchy stress σ11. Cauchy stress has been selected as a convenient

measurand (see Sec. 3.6.3.2) to visualize the load history as done above. As mentioned

in Sec. 3.6.3 the estimated σ11 can vary slightly based on whether it is calculated

using both e2 and e3 measurements, or only one of them under the assumption that

the Poisson’s ratio is valid in both lateral directions for an isotropic material (see Sec.

3.6.3). The results of the comparison between these two methods have been presented

in App. C, Fig. C.7, for the strain gauge measurements. The relative difference in

values estimated by the two methods is less than 0.25 %, which has been considered to

be sufficiently low to give reasonable estimates of the stress level from both methods.

The estimated stress shown in Fig. 5.7 have been based on estimation of σ11(e2, e3)

(Eq. (3.14)), and σ11(e2) and σ11(e3) (Eq. (3.15)) based on the measured e2 and e3

elongations and plotted against the measured e1 elongation. It should be noted that

this estimated Cauchy stress σ11 is the same stress as have been used when plotting the

different strain components in Figs. 5.4 to 5.6 above.

Figure 5.7: Average of σ11 stress and e1 elongation based on measured contrac-
tion elongations e2 and/or e3

To be able to estimate the Young’s modulus Y and Poisson’s ratio ν the elastic

and plastic contributions of the elongations need to be extracted as described in Sec.

3.6.3. The elastic contribution is also needed as input to the acoustoelastic theory to be
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able to compare the predicted change in sound velocity to the estimated change based

on the acoustic measurements done in this work. In Fig. 5.8, the black curve is the

measured elongation e1 plotted against itself. The blue curve is the elastic contribution

ee1 calculated from the relation in Eq. (2.112), where the elastic loading and unloading

sequences can be recognised as the sequences AB, CD, and EF as before. The red curve

is the plastic strain ep1 calculated according to Eq. (2.113), and the sum of the elastic

and plastic contribution reproduce the original total elongation e1 (black curve). Note

how each elastic region have a corresponding horizontal region in the plastic contri-

bution, indicating no plastic deformation while the test specimens were subjected to

elastic loading or unloadeding. Similar plots of the elastic and plastic contributions for

the measured elongations e2 and e3 have been included in App. C.2.1, Figs. C.8 and

C.9. The Young’s modulus Y and Poisson’s ratio ν estimated based on the measured

elongations as described in Sec. 3.6.3.3 have been presented in Sec. 5.3.1.

Figure 5.8: Elastic and plastic elongations (ee1, e
p
1) plotted against total mea-

sured elongation e1

The same quantities as presented for the strain gauge measurements above have

also been measured using the ARAMIS photometric measurement system (Sec. 3.6.2),

which result in corresponding results based on the ARAMIS elongations emajor, eminor,

and ez. As will be explained in Sec. 5.3.1 the ARAMIS results have not been used in
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Table 5.2: Estimated Young’s modulus and Poisson’s ratio based on average over strain
gauge measurements

Sequence Young’s modulus Poisson’s ratio
Y [GPa] ν(e2) [-] ν(e3) [-]

1. loading 209 0.28 0.31
1. unloading 212 0.29 0.28
2. loading (elastic) 208 0.28 0.28
2. unloading 185 0.31 0.29
3. loading (elastic) 186 0.30 0.28
3. unloading 179 0.31 0.30

further evaluations in this work and have thus only been included in App. C.2.2 for

reference.

5.3.1 Young’s modulus and Poisson’s ratio

The Young’s modulus and Poisson’s ratio have been estimated based on the slope of a

linear regression of the stress strain relation in the linear elastic regions as described

in Sec. 3.6.3, Eq. (3.19), for the strain gauge measurements (see Sec. 3.6.1) and the

ARAMIS strain measurements (see Sec. 3.6.2). The results have been presented in

Table 5.2 and 5.3. As will be further discussed in Ch. 7, the strain measurements based

on strain gauges provides the best comparison with measurements done by other authors

(e.g. by comparing the estimated Young’s modulus Y and Poisson’s ratio ν with the

values for common steels presented in Table 4.5). The values of ν(e3) > 0.5 estimated

based on the ARAMIS estimated e3-elongation are in fact unphysical since ν ∈ {−1, 0.5}

[13]. Thus, in the following, where strain measurements are relevant for the estimated

results, only the results based on strain gauge measurements have been presented. The

ARAMIS results are thus only included in this section for reference and to support the

estimated reduction in Young’s modulus with increasing plastic deformation which have

been discussed in more detail in Sec. 7.8. Note that only the nominal values have been

presented here while the uncertainties related to these estimates will be discussed in

Sec. 6.4.2.
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Table 5.3: Estimated Young’s modulus and Poisson’s ratio based on average over
ARAMIS photometric measurements

Sequence Young’s modulus Poisson’s ratio
Y [GPa] ν(e2) [-] ν(e3) [-]

1. loading 237 0.22 0.81
1. unloading 255 0.19 0.88
2. loading (elastic) 288 0.29 0.98
2. unloading 179 0.31 0.66
3. loading (elastic) 182 0.27 0.67
3. unloading 165 0.24 0.64

5.4 Temperature

The sound velocity in a body is dependent on the temperature of the body. A tempera-

ture change in the test specimen during the tests will thus affect the measured resonance

frequencies. Some data on the temperature dependency of steel can be found in [105].

The data presented therein shows a change in sound velocity for both longitudinal and

shear waves of less than 1 (m/s)/◦C. This corresponds to an approximate relative sound

velocity change of 0.02 %/◦C for longitudinal waves (cl ≈ 6000 m/s) and 0.03 %/◦C

for shear waves (cl ≈ 3300 m/s). The data in [105] have been measured on an alloy

steel, which is not the same as the construction steel used in this work. However, it is

assumed that the properties are sufficiently similar to be a relevant approximation of

the sound velocity contribution from any change in the temperature in this work.

The temperature measurements performed before and after the acoustic tests have

been presented in Table 5.4. The measured temperature differences was in the order

of the resolution of the digital thermometer. Combining this with the approximate

dependency yields a sound velocity change based on temperature of approximately

0.002 % and 0.003 % for longitudinal and shear sound velocities respectively. This has

been included in the uncertainty analysis in Ch. 6, and has been judged to be negligible

compared to other uncertainties.

5.5 Acoustic resonance

The sound velocity across the test specimens is related to the thickness of the specimen

and the resonance frequencies as described in Sec. 2.6.1. The ART measures the

acoustic resonance frequencies across the thickness of the specimens, and the result
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Table 5.4: Temperature measurements

Test specimen Temperature [◦C]
Room Water tank

Start End ∆

21 23.3 - 31.6 -
22 27.5 30.3 30.4 0.1
23 23.8 33.1 32.7 -0.4
24 23.2 33.4 33.4 0.0
25 25.7 34.5 - -
31 22.6 11.8 11.9 0.1
32 25.4 11.6 - -
33 26.1 13.2 13.2 0.0
34 - 12.7 12.8 0.1
35 25.4 - - -
36 21.4 13.2 13.2 0.0
37 21.5 13.2 13.2 0.0
38 22.8 12.8 - -
39 23.4 12.8 12.8 0.0
40 24.0 12.9 - -
41 23.7 12.9 12.9 0.0

of these measurements have been presented in this section. Note that the resonance

frequencies presented here are the extracted FFT peaks from the recorded acoustic

signal (see Sec. 3.5.1), not correcting for the beam diffraction effect (Sec. 2.6.2 and

3.6.3.1). This correction has been done in relation with the estimated sound velocities

presented in Sec. 5.6.

After processing and categorising each acoustic shot from all the ART tests as de-

scribed in Sec. 3.5, the development of the resonance frequency responses of the first

and second longitudinal modes and the third shear mode have shown good coherence

throughout the tests withouth large erratic noise. Fig. 5.9 shows the extracted frequen-

cies based on the L2 resonance peaks throughout 13 different acoustic tests (as extracted

from the recorded acoustic signal - see Sec. 3.5.1). Remember from Sec. 3.4 that each

series represent one test, and that each point (306 in total) represent the average value

over each predefined bin. Grey error bars indicate the standard deviation within each

bin. However, for the L2 resonance in Fig. 5.9 the standard deviation within each bin

is so small that the error bars are hard to see. As also can be seen in Fig. 5.9, the

development of the L2 resonance frequency appear to be similar, however with a varia-
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tion in the initial unstressed frequency at point A. Some of this variation is assumed to

be caused by slight variations in thickness between different test specimens and maybe

slight differences in temperature etc. at the unstressed condition (e.g. a 5 kHz difference

for the L2 resonance f (nl=2) corresponds to a difference in thickness d of approximately

0.05 mm, Eq. (2.120)). Fig. 5.10 shows the average over corresponding bins for the 13

test specimens. Here the black error bar shows the experimental standard deviation of

the mean for the 13 test specimens (see Eq. (6.2) in Ch. 6). This is how results over

several test specimens have been presented in the following if not otherwise stated. The

presented uncertainties have been estimated and propagated using the numerical com-

putational library Uncertainties: a Python package for calculations with uncertainties

[108]. The input to these calculations have been discussed and presented in relevant

sections in Ch. 6.

Recalling the load history described by the sequence A-B-A-C-D-E-F as presented

in Sec. 3.3 the same notation have been used in this section to visualise the loading and

unloading sequences.

Figure 5.9: Frequency development of the measured L2 resonance mode
(f (nl=2)) for 13 test specimens

When the test specimens have been uniaxially deformed in the x1-direction, the

thickness d over which the acoustic resonance has been measured has decreased (see

Sec. 2.3). According to Eq. (2.120) a reduction in thickness d will induce an increase in
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Figure 5.10: Average of frequency development of the measured L2 resonance
mode (f (nl=2)) over 13 test specimens shown in Fig. 5.9

measured resonance frequencies f . This behaviour is clearly seen in Fig. 5.10 all the way

from point A (unstressed) to point E (largest applied deformation). Correspondingly

during the relaxation of the applied uniaxial tension (sequence BA, CD, and EF) the

thickness d increase and the measured frequency decrease as expected. Based on this

observation it has not been possible to say if any of the observed frequency change were

due to a change in longitudinal sound velocity cl or if it was solely a result of the change

in thickness d. Similar results have been observed for the L1 resonance mode shown in

Fig. 5.11.

However, for the shear mode S3 which depends on the shear sound velocity, one

property observed in Fig. 5.12 differ significantly from the behaviour of the L1 and

L2 longitudinal modes. Looking at the elastic loading and unloading sequences AB,

BA, AB, CD, DC, and EF it is obvious that the frequency f (ns=3) (mode S3) decrease

as the thickness d also decrease. From Eq. (2.120) this is not physically possible if

not the sound velocity cs also decrease under uniaxial increased deformation. This

indicate that the sound velocity of longitudinal and shear propagation modes behave

very differently when the test specimens were subjected to elastic uniaxial tension. The

effect that longitudinal and shear waves change with opposite and different magnitudes

when an isotropic hyperelastic material is subjected to either compression or tension
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Figure 5.11: Average of frequency development of the measured L1 resonance
mode (f (nl=1)) over 13 test specimens shown in Fig. C.21

Figure 5.12: Average of frequency development of the measured S3 resonance
mode (f (ns=3)) over 13 test specimens shown in Fig. C.22
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was shown as early as 1958 by [32] in Aluminium, by Smith et al. [44] in 1966 for

several polycrystalline materials, by Crecraft [39] in 1967 for both aluminium and steel,

and later confirmed by several other authors (see Sec. 1.4 for a more detailed account).

Note however that the theoretically predicted separation of the shear sound velocities

for shear waves polarised parallel and perpendicular to the applied tension (shown by

e.g. [32], [44], and [39]) have not been observed for the recorded S3 shear resonance

mode. Because of the frequency separation resolution of the FFT of 16.7kHz (see Sec.

3.5.1), which corresponds to a sound velocity resolution in the unstressed test specimen

of approximately 3.8 %, it is not possible to detect different resonance frequencies with

less separation in the frequency domain than this. The frequency, or sound velocity,

separation resolution is more than one order of magnitude larger than the observed

and predicted relative frequency change. Thus the measured S3 resonance mode should

consists of the combined contribution from shear waves propagating with both parallel

and perpendicular particle motion polarisation.

The individual results from the 13 test specimens making the basis for both the L1

and S3 modes in Figs. 5.11 and 5.12, have been included in App. C.3, Figs. C.21 and

C.22 respectively.

Because of small variations in inital thickness of the test specimens, and possible

other factors like difference in tempereature between tests etc., the unstressed resonance

frequencies can vary with large absolute values between the different tests. This effect

can clearly be seen for the resonance modes in Figs. 5.9, C.21 and C.22. Because this

work is concerned with the changes caused by the stress state of the steel, one way to

circumvent this effect is to look at the relative change of the measured quantity and

to transpose the measurements so that the unstressed state of the first unloading is

aligned for all the tests. This has been done by estimating a reference frequency at the

un-stressed / zero loading state as described in the introduction of Ch. 5. The frequency

value in the last bin of the first unloading (see Table 3.4) is a convenient choice of ref-

erence frequency since the applied force for this bin has been load controlled to 0 kN.

This alignment has been done for the L2 mode in Fig. 5.13. (Corresponding figures for

the L1 and S3 modes can be found in Figs. C.23 and C.24 in App. C.3). The different

resonance modes and their experimental mean of relative frequency change have been

plotted and compared in Fig. 5.14, where red is the L1 mode, blue is the L2 mode and

123



5. EXPERIMENTAL AND THEORETICAL RESULTS

yellow is the S3 mode as in the previous plots of the individual resonance modes.

Figure 5.13: Relative frequency development of the L2 resonance mode for 13
test specimens shown in Fig. 5.9

Figure 5.14: Average of relative change in resonance frequency for the L1, L2,
and S3 modes based on the results presented in Figs. C.23, 5.13, and C.24
respectively
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5.6 Sound velocity change

5.6.1 Thickness dependent estimates

The sound velocity can be calculated based on the measured resonance frequencies and

the measured thickness change according to Eqs. (2.121) and (2.123). Combining the

frequencies from the L1, L2 and S3 modes with the original measured thickness L3 and

the thickness elongation (e3) based on strain gauge measurements yields the absolute

and relative sound velocity changes.

Figure 5.15: Sound velocity cl based on the L2 mode including thickness re-
duction compensation (e3), but not the beam diffraction correction

Fig. 5.15 shows the longitudinal sound velocity c(nl=2)
l based on the L2 resonance

mode presented in Fig. 5.10, including the measured thickness reduction (e3), but not

including the beam diffraction correction described in Sec. 3.6.3.1 (this will be included

in Fig. 5.17). Similarly to the frequency development of the L2 mode, the elastic regions

AB, CD, and EF shows an increase in the estimated sound velocity for increasing applied

deformation. It is also possible to visually observe that the longitudinal sound velocity

have similar slopes of change in the elastic regions. However, contrary to the continued

increase in frequency as the test specimens have deformed plastically (region BC and

CE), the estimated sound velocity shows a decrease in the sound velocity. Although it

is recognised that the observation of the magnitude of change in sound velocity may
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be an effect of systematical inaccuracies in the thickness measurements, it is clear that

there exist a relation between the applied deformation e1 and the longitudinal sound

velocity cl, and that this relation is different under elastic and plastic deformation. The

large error bars seen in Fig. 5.15 are mainly due to the same effect as described for

the L2 resonance frequencies, e.g. slight variation in initial thickness and temperature

of the test specimens leads to variation in the estimated initial sound velocity. These

effects are effectively removed by comparing relative change of the sound velocity as

will be presented in Fig. 5.19.

Figure 5.16: Sound velocity cl based on the L1 mode including thickness re-
duction compensation (e3), but not the beam diffraction correction

In Fig. 5.16 the longitudinal sound velocity estimations c(nl=1)
l based on the L1

resonance mode of the same 13 acoustic tests with the same approach as for the L2

mode are shown. A very similar development of the sound velocity can be seen in

both these figures. However, one distinct difference is noted. The initial unstressed

longitudinal sound velocity is estimated to be ∼ 5563 m/s and ∼ 5954 m/s based on

the L1 and L2 resonance modes respectively. This difference in the order of 7 % is much

larger than the standard uncertainty in the order of 0.1 % for the sound velocities based

on each of the resonance modes from several test specimens (see Sec. 6.3. As have

been explained in Sec. 3.6.3 this large difference is thus probably related to the beam

effect described in Sec. 2.6.2. To correct for this beam effect the estimated longitudinal
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sound velocities have been adjusted according to Eq. (3.7) and plotted in Fig. 5.17.

For the 13 test specimens the correction factor ηnl=1 have varied between 1.050 and

1.062 (i.e. an underprediction of approximately 5-6 %), while for ηnl=2 varied between

0.982 and 0.989 (i.e. an overprediction of approximately 1-2 %). After the adjustment

the estimated longitudinal sound velocities based on both the L1 and L2 mode have

an initial unstressed magnitude of ∼ 5872 m/s. The development of both estimates

can be seen in Fig. 5.17. The initial unstressed longitudinal sound velocities have

been corrected for the beam diffraction effect and the development shows very similar

behaviour. However, these two estimated developments should theoretically have been

the same. The discrepancy between the longitudinal sound velocity estimated based on

the measured frequencies of the L1 and L2 resonance modes might thus be an effect of

the probable erroneous assumption that the beam diffraction effect (see Sec. 2.6.2, Fig.

2.10) is constant throughout each test run. This discrepancy will be further discussed

in Sec. 7.4.1. Note also that the uncertainties related to the measured frequencies,

unstressed thickness, and thickness reduction have been propagated to the calculated

sound velocities using a numerical computational library as described in Sec. 6.1. This

has also been done for any other calculated estimates based on measurements in the

following if not otherwise stated.

Figure 5.17: Sound velocity based on the L1 and L2 modes including thickness
reduction compensation (e3), including the beam diffraction correction
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The last sound velocity estimated has been the shear sound velocity based on the S3

resonance frequencies using Eqs. (3.7) and (3.9). This has been presented in Fig. 5.18.

This plot shows the opposite sound velocity development for the shear sound waves

compared to the elastic regions of the longitudinal sound velocity in Fig. 5.17. This is

as predicted for the elastic regions by the corresponding decrease in measured frequency

for the S3 resonance mode in Fig. 5.12, and is a combination of the change in sound

velocities for shear waves with particle motion polarised in parallel to or perpendicular to

the applied tension (see Secs. 5.5 and 3.5.1). The estimated initial unstressed magnitude

of the shear sound velocity is ∼ 3229 m/s.

Figure 5.18: Sound velocity based on the S3 mode including thickness reduction
compensation (e3), and the beam diffraction correction η(ns=3) ≈ 1.

Removing the uncertatainty related to variation across test specimens by calculating

the relative sound velocity change (see Sec. 2.7, Eq. (2.122)), and plotting the three

different estimates together results in the plot shown in Fig. 5.19. When calculating

the relative change the beam correction factor is on combination of Eq. (2.122) and

(3.7) canceled out and is thus not needed.

As can be visually seen from Fig. 5.19 the longitudinal sound velocity estimated

based on both the L1 and L2 resonance mode have similar development in the elastic

regions with aproximately the same gradient of change in estimated sound velocity

with respect to applied strain, both in magnitude and sign. However when the test
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Figure 5.19: Average of relative change in estimated sound velocity based on
resonance frequencies of the L1, L2, and S3 mode including thickness reduc-
tion compensation (e3). Note that the beam diffractin correction falls out for
relative measurements.

specimen deforms plastically the magnitude of the velocity gradient is slightly different

as mentioned above. When it comes to the shear sound velocity estimated based on

the S3 resonance mode the development and its gradient with respect to applied strain

has opposite sign, and as mentioned in Sec. 5.5 the opposite negative development

of the shear sound velocity can only be an effect of actual sound velocity change and

not an effect of innsuficiently good measurements of the thickness development. It is

possible that the negative trend of all the curves in the plastic regime (from point B to

C and from C to E) might be an effect of change in second order elastic constants, or

it might be an effect of unknown systematic uncertainties in the e3 measurement (see

Eq. (2.122)). The potential change in linear elastic moduli is estimated in Sec. 5.6.1.1.

To remove the uncertainty introduced by the thickness change measurements and avoid

that problem the ratio between either of the two estimated longitudinal sound velocities

and the shear sound velocity have been calculated according to Sec. 2.7 and presented

in Sec. 5.6.2.
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Table 5.5: Estimated linear elastic moduli based on unstressed sound velocity estimates
including beam diffraction correction

Based on Sound velocities Lamé constants Young’s modulus Poisson’s ratio
mode cl [m/s] cs [m/s] λ [GPa] µ [GPa] Y [GPa] ν [-]
Unstressed reference configuration (point A)
L1,L2,S3 5872±6 3229±3 109.0±1.1 83.4±0.9 214.1±2.2 0.283±0.001

Unstressed configuration after 1st plastic deformation (point D)
L1,S3 5848±6 3221±3 107.7±1.1 83.0±0.8 212.8±2.2 0.282±0.001
L2,S3 5858±6 3221±3 108.6±1.1 83.0±0.8 213.0±2.2 0.283±0.001

Unstressed configuration after 2nd plastic deformation (point F)
L1,S3 5831±6 3212±4 106.9±1.2 82.5±0.8 211.6±2.2 0.282±0.001
L2,S3 5846±6 3212±4 108.3±1.2 82.5±0.8 211.9±2.2 0.284±0.001
ρ0 = 8000± 1% kg/m3[79]

5.6.1.1 Linear elastic moduli based on sound velocity

Recalling the relation between the sound velocity and the Lamé moduli presented in

Eq. (2.91) it is possible to estimate the linear elastic moduli λ and µ (Lamé constants)

based on the measured unstressed sound velocities cl and cs, and to further estimate the

Young’s modulus Y and Poisson’s ratio ν through the relations in Eq. (2.106) respec-

tively. This has been done by including the adjustment of the unstressed longitudinal

resonance frequencies with respect to the beam effect (see Sec. 3.6.3.1). The results

have been presented in Table 5.5 for the three unstressed configurations (point A, D,

and F). As can be seen from the results in Table 5.5 the potential change in the Young’s

modulus based on observed change in sound velocities is in the order of -0.5 % and -1 %

at point D and F respectively. Note that the uncertainty related to the beam diffraction

correction of the frequencies have not been included in the reported uncertainties. This

has been discussed in Sec. 6.3.

5.6.2 Ratio of longitudinal and shear resonance frequencies

As described in Sec. 2.7, for two sound velocities which have opposite sound velocity

response when subjected to a deformation, the ratio between the two will enhance the

measured difference as well as remove any thickness dependence. The relative change

of the ratios between the measured frequencies of the L2 and S3, and the L1 and

S3, resonance modes have been calculated according to Eq. (2.125), where the beam
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5.6 Sound velocity change

diffraction correction cancels out as described in relation with the relative sound velocity

change presented in Fig. 5.19. In addition the relative change of the ratio between the

two longitudinal modes L1 and L2 have also been calculated, and the relative change

in the three frequency ratios (or equivalently the relative change in the sound velocity

ratios) have been presented in Fig. 5.20. Plots of the individual ratios per test specimen

have been included in Figs. C.25 to C.27 in App. C.3.

Figure 5.20: Average of relative change in ratio of resonance frequency modes
L1/S3, L2/S3, and L2/L1. Note that both the need for thickness reduction
compensation and beam diffraction correction falls out as described in Secs.
2.7 and 3.6.3.1

Since both the longitudinal modes L1 and L2 are dependent on the same physical

longitudinal sound veloctiy both should experience the same amount of change. Thus

the relative change of the ratio L2/L1 should give a theoretical relative change equal

to zero. As can be seen from Fig. 5.20 this is evidently not the case. However,

recalling the beam effect described in Sec. 2.6.2 the L1 mode is measured slightly below

the theoretical plane wave value, while the L2 mode is measured slightly above the

theoretical plane wave value. It is possible that the observed increase in the relative

L2/L1 ratio is related to a thickness dependence of the beam effect. The effect of this

has been further discussed in Sec. 7.4.1. For the L1/S3 and L2/S3 ratios it is apparent

that the slope of the relative change in the elastic regions (AB, CD, EF) all have linear

dependencies on the applied uniaxial elongation which are similar.
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In the plastic regions however, the observed relative change in sound velocity ratios

are significantly less. In fact, the dependence of the sound velocity ratios on the plastic

strain are opposite for the L2/S3 and L1/S3 ratio. As discussed above this is probably

related to the beam effect not beeing constant throughout the tests (i.e. a possible

thickness dependence). This has been further discussed in Sec. 7.4.1.

5.7 Simulation of acoustoelastic theory

As described in Ch. 4 the theoretical expressions relating the longitudinal sound velocity

c33 (Eq. (2.97)), and the shear sound velocities c31, and c32 (Eqs. (2.98) and (2.99))

to the elastic part (ee1) of the applied uniaxial elongation e1 (see Sec. 2.5.1) have been

implemented and simulated based on the two second order elastic constants λ and

µ, and the three third order elastic constants A, B, and C for the 8 steels found in

literature and presented in Table 4.4. Remember from Sec. 2.3 that the subscripts c33
signify a longitudinal wave propagating perpendicular to the applied tension, c31, and

c32 signifying a shear wave propagating perpendicular to the applied tension, but with

polarisation respectively in parallel to- and perpendicular to- the applied tension.

Note that the theory presented in Sec. 2.3 is limited to the elastic regime, while the

test specimens have been deformed well in to the plastic regime. To be able to com-

pare the measured sound velocity change after the test specimens have been plastically

deformed, the elastic part ee1 of the total elongation e1 has been extracted as shown

in Fig. 5.8, where the blue curve represents the elastic contribution ee1 and the black

curve is the corresponding total measured elongation e1. Any plastic contribution has

been ignored in the simulations (see argumentation in Sec. 2.5.2). Thus the theoreti-

cal simulation in this section shows the predicted sound velocities of the acoustoelastic

theory with the extracted elastic elongation ee1 (blue curve in Fig. 5.8) as input to the

simulations, while the simulated results have been plotted against the total measured

elongation e1 to be able to compare it with actual measured results.

5.7.1 Absolute magnitude of sound velocities

Fig. 5.21 shows the simulation of the 8 steels in Table 4.4. Examining Eq. (2.97) it

is clear that the magnitude of the initial unstressed sound velocity is determined by

the density ρ0 and the elastic constants λ and µ (i.e. e1 = 0), and thus the location
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of the different series representing the absolute magnitude of the sound velocities for

the 8 steels might be widely separated based on variations in these parameters. This

spread in absolute magnitudes will not be relevant when investigating the relative sound

velocity change presented in Sec. 5.7.2. Note also that the plot of the magnitude of the

theoretical sound velocities presented here are of nominal values without uncertainties

included. The relevant uncertainties have been investigated in the following sections.

Figure 5.21: Simulated sound velocity development (c33) of longitudinal waves
propagating perpendicular to the applied stress based on elastic properties
given in Table 4.4

It is noted that 6 of the steels have an unstressed longitudinal sound velocity c33 of

approximately 5900 m/s, while one is as low as ∼ 5300 m/s and one is as high as ∼ 6200

m/s. The elastic loading and unloading sequences are also visible as slight gradients

and is marked previously by AB, CD and EF. It is difficult to investigate details of the

development of the sound velocities from the absolute magnitudes in Fig. 5.21, and

thus the more relevant relative change of the sound velocities have been investigated

below.

The magnitude of the shear sound velocities c31 and c32, and their development have

also been plotted and are included in Figs. C.28 and C.29 respectively in App. C.4.

It is noted for reference that 6 of the steels (the same as above) have an unstressed

shear sound velocity of approximately 3200 m/s, while the lowest is just below 3000

m/s, and the highest is at approximately 3400 m/s. Comparing the simulations with
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the estimated longitudinal and shear sound velocity presented in Sec. 5.6 of 5870 m/s

and 3230 m/s respectively, shows a representative agreement with the simulated val-

ues of the 6 steels above. The development of the simulated sound velocities will be

compared to the estimated sound velocities presented in Sec. 5.6 in Sec. 5.7.4. It is

noted that the density of the Nickle-Steel, denoted NiSteel, was not reported in the

literature, thus the simulations have assumed a density of 7850 kg/m3 for this steel,

which is a reasonable value compared to the other reported steels (see Table 4.2). Note

also that the effect of the density is canceled out according to Eq. (2.91) when investi-

gating the relative change of the sound velocities as will be done in the following section.

5.7.2 Relative change of simulated sound velocities

The relative development of the longitudinal sound velocity have been calculated based

on the simulations and has been presented in Fig. 5.22. This figure shows that the

simulated relative change of the longitudinal sound velocity migth both be positive and

negative, depending on the variation in both the elastic constants λ and µ, and the

acousto elastic coefficients A, B, and C (see Eqs. (2.97) to (2.99) and (2.92) to (2.94)

for the relations). Three steels have a positive development of the relative change in c33
(Railsteel-1, Railsteel-4, and NiSteel) spanning from approximately 0.05 % to 0.3 %.

The other five steels have a negative development of the relative change in c33 spanning

from appoximately -0.05 % to -0.25 %. Note also that the reported uncertainty in

the second order elastic constants (λ, µ) and the third order elastic constants A, B,

and C from Table 4.4 have been propagated to the simulated results by the numerical

computation library Uncertainties: a Python package for calculations with uncertainties

[108]. The uncertainties have been further discussed in Sec. 6.5.

Fig. 5.23 shows in the same manner as above the relative change in the simulated

shear sound velocity with a polarisation parallel to the applied tension, c31. The relative

changes of the simulated c31 do also vary significantly across the 8 steels, however, here

all the steels exhibit a negative development as a function of applied elongation. Four of

the steels exhibit a maximum negative relative change between 0 and 0.05 % (Hecla138A,

Hecla37-0.4 % C, Hecla37-0.6 % C, and Rex535Ni), while the other four (Hecla ATV,

Railsteel-1, Railsteel-3, and NiSteel) have a maximum negative relative change between

-0.3 % and -0.6 %.
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5.7 Simulation of acoustoelastic theory

Figure 5.22: Simulated relative sound velocity development of longitudinal
waves propagating perpendicular to the applied stress (c33) based on elastic
properties given in Table 4.4

For the shear sound velocity c32 polarised perpendicular to the applied tension, the

simulated results based on the 8 steels have been presented in Fig. 5.24. In Fig. 5.23

showing the plot of the shear waves polarised parallel to the applied tension it can be

seen that the three steels with the largest maximum negative c31 change (Railsteel-1,

Railsteel-3, and NiSteel), are the three steels with the least maximum absolute change

for the c32 sound velocity (between 0 and 0.05 %), and it is slightly positive. The

four steels with the least absolute relative change for the c31 are all negative and with

a maximum negative relative change betwen -0.3 % and -0.4 % for the c32 presented

in Fig. 5.24. The last steel (HeclaATV) has a negative development for both the c31
and c32, with a maximum negative relative change of approximately -0.4 % and -0.8 %

respecitively.

Comparing the findings of the three different simulated relative sound velocities with

the acousto elastic constants presented in Table 4.4 it is clear that the 8 steels can be

grouped in three groups based on the simulations and the acoustoelastic constants. The

three groups have been divided based on the slope of the relative change in the different

sound velocities, longitudinal c33, shear polarised parallel to applied tension c31, and

shear polarised perpendicular to applied tension c32. Recall from Secs. 2.3 and 3.5

that the acoustic propagation direction have been perpendicular to the applied tension.
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Figure 5.23: Simulated relative sound velocity development of shear waves
propagating perpendicular to-, and polarised parallel to the applied stress (c31)
based on elastic properties given in Table 4.4

Figure 5.24: Simulated relative sound velocity development of shear waves both
propagating and polarised perpendicular to the applied stress (c32) based on
elastic properties given in Table 4.4
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5.7 Simulation of acoustoelastic theory

Group 1 is the collection of steels that for increasing elongation e1 have shown a decrease

in c33 (denoted by dc33/de1 < 0), relative small, but negative, changes in c31 (denoted

by dc31/de1 . 0), and a decrease in c32 (denoted by dc32/e1 < 0). Similarly Group 2

have shown a decrease in all of the sound velocities, i.e. dc33/de1 < 0, dc31/de1 < 0,

and dc32/de1 < 0. Group 3 have shown an increase in c33 (dc33/de1 > 0), a decrease in

c31 (dc31/de1 < 0), and relative small, but positive, changes in c32 (dc32/de1 & 0). The

development of the longitudinal sound velocity c33 can be seen in Fig. 5.22, while the

shear sound velocities c31 and c32 can be seen in Figs. 5.23 and 5.24. The groups of

steels together with the acoustoelastic constants have been presented in Table 5.6.

From these groups it can also be confirmed that steels with similar acousto elastic

constants behave in similar manners. This is especially obvious when looking at the

numerical value of the constants A and B within the different groups. These results

will be further discussed in Sec. 7.6.

Table 5.6: 8 steels from Table 4.4 grouped by simulated behaviour of sound velocities
toghether with Lamé and Landau & Lifshitz constants in GPa

Lamé constants Landau & Lifshitz constants
Material λ µ A B C

Group 1: d
de1

(c33) < 0, d
de1

(c31) . 0, d
de1

(c32) < 0

Hecla 37 (0.4 % C) 111± 1 82.1± 0.5 -44.3± 2.0 -282± 30 -179± 35
Hecla 37 (0.6 % C) 110.5± 1 82.0± 0.5 -41.8± 1.5 -261± 20 -67.0± 10
Hecla 138A 109± 1 81.9± 0.5 -44.3± 2.5 -265± 30 -162± 25
Rex 535 Ni steel 109± 1 81.8± 0.5 -42.3± 3.8 -240± 50 -87.5± 25

Group 2: d
de1

(c33) < 0, d
de1

(c31) < 0, d
de1

(c32) < 0

Hecla ATV austenitic 87± 2 71.6± 3 -25.0± 2.5 -552± 80 17.0± 10

Group 3: d
de1

(c33) > 0, d
de1

(c31) < 0, d
de1

(c32) & 0

Nickle-steel S/NVT 109.0± 1 81.7± 0.2 -785± 7.0 -279± 6.9 -223± 21
Rail steel sample 1 115.8± 2.6 79.9± 1.8 -714± 19 -266± 27 18.0± 28
Rail steel sample 4 110.7± 2.5 82.4± 1.9 -724± 20 -254± 27 48.0± 28

5.7.3 Longitudinal and shear velocity ratios

As described in Sec. 2.7 the thickness dependence of the measured sound velocities

presented in Sec. 5.6 can be removed by investigating the relative change of the ratio
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between the sound velocity of longitudinal and shear waves instead. To be able to

compare these measurements with theoretically simulated values the relative change of

the two ratios c33/c31 and c33/c32 have been calculated based on the simulated results

presented in Sec. 5.7.1 above. Note that the theory predicts two different developments

of the shear sound velocity based on their polarisation as shown in Sec. 5.7.2, while only

one distinct development have been measured as presented in Sec. 5.6. This discrepancy

will be further discussed in Sec. 7.6.1, however, both simulated alternatives have been

presented here to be able to compare the simulation and measurement results. Fig.

5.25 shows the relative change in the ratio c33/c31 for the 8 steels. For the Group 3

steels (Railsteel-1, Railsteel-4, and NiSteel) which have a positive relative change in c33
and negative relative change in c31, the ratio c33/c31 shows a larger maximum relative

change (between approximately 0.6 % and 0.9 %) than the individual maximum absolute

relative changes in c33 and c31 respectively and has “enhanced” the relative change as

expected. For the Group 2 steel (HeclaATV) the relative change in both c33 and c31 are

negative, but the relative change in c33 has a gentler slope in the elastic regions than

c31, and the relative change of the ratio is thus positive as seen in Fig. 5.25. Group

1 (Hecla37-0.4 % C, Hecla7-0.6 % C, Hecla138A, and Rex535Ni) also have a negative

relative change in both c33 and c31, however the relative change in c31 is much less

prominent than in c33, and thus the relative change in the ratio c33/c31 is negative. For

Group 1 and 2 the ratio between the longitudinal c33 and the shear c31 does not enhance

the relative change from the respective individual relative change, but rather diminish

the effect compared to the maximum relative change in either of the two individual

sound velocities because both change in the same direction.

Fig. 5.26 is similar to Fig. 5.25, but shows the ratio c33/c32, where the shear sound

velocity is polarised perpendicular to the applied tension. Comparing the relative change

of c33 in Fig. 5.22 and c32 in Fig. 5.24 it is clear that the three groups experience relative

sound velocity changes for both c33 and c32 with the same sign, and thus the relative

change of the ratio is diminished compared to the maximum relative change in either

of the two individual sound velocities. For the steels in Group 2 the relative change

is positive, and c33
′(e1) > c32

′(e1), thus leading to a positive relative change for the

ratio c33/c32. For the steels in Group 1 and 3 the relative change is negative, and

c33
′(e1) < c33

′(e1), thus also leading to a positive relative change for the ratio c33/c32.
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Figure 5.25: Simulated relative change of ratio between longitudinal (c33) and
shear sound velocity polarised parallel to applied stress (c31) based on elastic
properties given in Table 4.4

Figure 5.26: Simulated relative change of ratio between longitudinal (c33) and
shear sound velocity polarised perpendicular to applied stress (c32) based on
elastic properties given in Table 4.4
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As seen from the measurement results presented in Sec. 5.6, Fig. 5.19 the measured

longitudinal sound velocity experience a positive relative change, while the measured

shear sound velocity experience a negative relative change, for increasing elastic defor-

mation in the elastic regions (AB, CD, EF). This behaviour have also been seen for the

steels in Group 3, for the longitudinal c33 and shear c31. Thus only these steels and

modes have been included when comparing the simulation results with the measurement

results in Sec. 5.7.4.

5.7.4 Comparison between simulations and measurements

In Figs. 5.27 to 5.29 the simulated relative change in sound velocities c33, c31, and the

ratio c33/c31 respectively, for the Group 3 steels found in literature (see Table 5.6) have

been plotted as solid lines togheter with the corresponding measurement quantities

presented in Figs. 5.19 and 5.20. As seen in all of the figures there are similarities

between the simulated behaviour (solid lines) and the measured behaviour for both the

longitudinal sound velocity (denoted c(L1, e3) and c(L2, e3) in Fig. 5.27) and the sound

velocity of the shear waves polarised parallel to the applied tension (denoted c(S3, e3) in

Fig. 5.28). The measured relative change of the frequency (or sound velocity) ratios are

denoted L1/S3 and L2/S3. Note that the measurements plotted here are the same as

those presented together in Figs. 5.19 and 5.20 in Secs. 5.6 and 5.6.2. A more thorough

discussion of these results have been done in Sec. 7.6.

It is noted that the predicted split of the unstressed shear sound velocity into the

perpendicular polarised c31 and c32 which should experience different relative sound ve-

locity change have not been seen in the measured and estimated sound velocity c(S3, e3).

c(S3, e3) shows most resemblance with the c31 for the Group 3 steels, and c32 has thus

not been compared in this section. The apparent discrepancy between the theory and

the observed results has been discussed further in Sec. 7.6.1.
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Figure 5.27: Comparison of relative sound velocity development of longitudi-
nal waves measured (c(L1, e3) and c(L2, e3) from Fig. 5.19) and the simulated
longitudinal sound velocity c33 for the Group 3 steels in Fig. 5.22

Figure 5.28: Comparison of relative sound velocity development of shear waves
measured (c(S3, e3) from Fig. 5.19) and the simulated shear sound velocity c31
for the Group 3 steels in Fig. 5.23
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Figure 5.29: Comparison of relative change of the ratio between measured
longitudinal and shear sound velocities (or resonance frequencies L1/S3 and
L2/S3 from Fig. 5.20) and the simulated relative change of the ratio c33/c31 for
the Group 3 steels in Fig. 5.25
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6

Uncertainty analysis

6.1 General

This section is based on the intrinsic uncertainties in the measurment equipment and

the experimental measurement results presented in Ch. 5. It strives to identify, present

and quantify the combined uncertainties related to each relevant measurement quantity.

The uncertainty analysis has been done with reference to the document Guide to the

expression of uncertainty in measurement known as the GUM [74]. The details of this

document has not been presented here, but the relevant equations have been presented

as they fit in to the subsequent order of this chapter.

Note that for convenience the calculation of propagated uncertainties has been done

using the numerical computation library Uncertainties: a Python package for calcu-

lations with uncertainties [108]. A test has been run to verify that the computation

library works as expected and the result from this has also been presented in Sec. 6.5.

This means that although the combined uncertainty expressions derived in this chapter

have not been used directly in the propagation of uncertainties presented in Ch. 5, they

have been included here to better understand which intrinsic uncertainties contribute

to the overall uncertainties. The input uncertainties used to estimate the combined

uncertainties presented in Ch. 5 through the Python package have been presented in

Tables 6.1, 6.4, 6.5, 6.7, 6.8, and 6.11, as well as resulting propagated uncertainties. In

addition the propagated uncertainties for the sound velocity estimates and linear elastic

moduli have also been presented in Tables 6.2 and 6.9.
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This chapter has been ordered based on the main result (i.e. relative change of

frequency ratios and subsequent estimated sound velocities). The functional relationship

of these results have been analysed with respect to contributing uncertainty factors.

Each contributing factor has been analysed and broken down into its own constituent

uncertainties.

The uncertainties presented in this chapter have been divided into three groups,

namely the standard deviation of a measurand, the standard deviation of the mean of

a measurand, and the combined standard uncertainty of a measurement result, and/or

estimated results. The difference between these uncertainties are readily available in

[74]. However, in the experience of the author the application of these different types

of uncertainty measures might lead to some confusion if not explicitly explained. If the

reader is familiar with the GUM [74] and the above mentioned uncertainty expressions

he or she may skip the rest of this section and continue at Sec. 6.2.

The most fundamental uncertainty in a measurand quantity q is called the standard

deviation σq and is estimated by the experimental standard deviation s(q) of n inde-

pendent observations qk (k = 1 . . . n) under the same measurement conditions. This

quantity characterises the dispersion of the observed values qk about their mean q̄ and

is estimated by [74, Sec. 4]

σ2q ≈ s2(q) =
1

n− 1

n∑
k=1

(qk − q̄)2. (6.1)

The next level of uncertainty is closely related to the experimental standard devi-

ation. However, instead of describing how widely spread one independent observation

of a quantity may be from the mean value of that quantity (Eq. (6.1)), it quantifies

how well the observed mean q̄ of n independet observations estimates the expectation

value µq of q (note that a barred variable signify the mean value over k measurments

of that variable). Thus this uncertainty is called the experimental standard deviation of

the mean, and it is estimated by [74, Sec. 4]

σ2(q̄) ≈ s2(q̄) =
s2(q)

n
, (6.2)

where s(q) is the experimental standard deviation estimating the standard deviation σq
of the quantity q. The experimental standard deviation of the mean calculated by Eq.
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(6.2) is a good approximation of the standard uncertainty u(qi) where qi = Q̄i is the

estimate of an input quantity Qi [74, Sec. 4]. That is

u(qi) ≈ s2(q̄i). (6.3)

The standard uncertainty u(qi) can also be obtained in other ways which have been

treated in [74, Sec. 4].

Finally, when estimating a quantity based on other measured quantities it is nec-

essary to propagate the uncertainty of the measured quantities to the estimated one.

The uncertainty of the estimated value has been termed the combined standard uncer-

tainty, and is denoted by uc(y) where y = f(q1, . . . qi) is the estimated quantity with the

functional relation f(q1, . . . qi) depending on i input quantities qi [74, Sec. 5]. Because

the absolute value of the standard uncertainties may vary significantly between mea-

surands the relative standard uncertainty, which is the standard uncertainty divided by

the absolute value of the measurand as [74, Sec. 4]

ur =
u(y)

|y|
, (6.4)

have also been used in this work .

The combined standard uncertatinty, uc(y), of a measurement result is an unam-

biguous way to present the uncertainty, and has been used throughout this work where

applicable. All uncertainties reported and plotted in this work have used the standard

uncertainty (coverage factor kp = 1) which has a confidence level of approximately 68.3

% if not stated otherwize [74]. For the uncertainties obtained from other works the

original confidence level and probability distribution has been presented if available,

before it has been converted to a standard uncertainty and used in this work. If no

information about the confidence level was available it has been assumed that it was

reported as a standard uncertainty of a normal distribution.

This chapter has been ordered by presenting the uncertainties related to the acoustic

measurements and the estimated change in sound velocities first. Then the uncertainties

related to the underlying measurement quantities of geometry and geometry change

have been presented before any supporting measurement quantities like for example the

estimated stress and linear elastic properties. Finally a few supporting tables have been

included to summarise and describe the different uncertainties presented in this chapter.
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6.2 Relative change in ratio of longitudinal and shear fre-
quencies and/or sound velocities

The measured relative change of the ratio between longitudinal and shear sound ve-

locities presented in Sec. 5.6.2 is a function of the longitudinal and shear resonance

frequencies toghether with their unstressed reference values as seen from Eq. (2.125).

The relative combined standard uncertainty according to [74] for both the relative fre-

quency ratio and the relative sound velocity ratio can be expressed by

ucr(∆(cl/cs)r) =
uc(∆(cl/cs)r)

|∆(cl/cs)r|
=
uc(∆(f (nl)/f (ns))r)

|∆(f (nl)/f (ns))r|
(6.5)

=
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where the terms within the curly brackets {} are the covariance terms expressed with

the correlation coefficient r(xi, xj) between measurand xi and xj .

Each of the measured frequencies in Eq. (6.5) may have contributing uncertainty

factors from the measurement system, the way they have been measured, and systematic

contributions. This section aims to discuss the different contributions and present an

estimate of the overall uncertainties in the estimated ratios.

The acoustic measurement system was set up with a sampling frequency of the

resulting voltage from the acoustic pressure acting on the ring receiver (RX) of 15

Mhz during each acoustic shot. The relevant acoustic resonance frequencies lie between

300 and 800 kHz, which results in approximately 20 to 50 measurepoints of the RX-

voltage (from the acoustic pressure) over the cycle of one sinusodial wave and a total

of 900 measurepoints over the duration of interaction between the acoustic wave and

the test specimen (90 µs). The extraction of the peak location in the FFT can be

done to numerical precision and the uncertainty related to the numerical extraction of

the resonance frequencies have thus been treated as negligible. However, the tail of

the signal used to extract the resonance frequencies has a duration of 60 µs and the

sampling frequency of the DAQ setup was 15 MHz. This yields a resolution in the
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FFT frequency spectrum of ∆fFFT =16.7 kHz [66, ch. 9] as described in Sec. 3.5.1.

This resolution is a measure of how close two distinct frequencies can be in the FFT

frequency spectrum without merging into a single entity, and is inversly proportional

to the length of the signal analysed and/or the number of sampling points within this

signal. This resolution is sufficiently good to distinguish the resonance modes presented

in Table 3.2. However, it is not good enough to distinguish the potential separation of

shear resonance modes due to the effect of polarised particle motion as explained in Sec.

2.3, Eqs. (2.98) and (2.99). Thus the measured S3 resonance mode for a sufficiently

large applied stress should be the combined effect of shear waves with both polarisation

directions. This also means that the estimated shear sound velocity also will be the

result of the combined effect of shear waves with both polarisation directions.

Among external sources of uncertainty, both acoustic and electromagnetic noise can

affect the recorded acoustic pressure. Acoustic noise in the air surrounding the water

tank has been assumed to be negligible because of the high attenuation of acoustic en-

ergy in air compared to the signal generated in the water tank. The tension machine in

itself, as well as other acoustic noise propagating through the floor of the laboratory, can

carry acoustic noise to the water tank which again will influence the recorded acoustic

pressure. This noise should vary randomly, and thus by sampling consequtively and

averaging over a number of samples, this effect should be minimised. The same applies

for electromagnetic noise. The interference of eloctromagnetic noise on the cicuitry can

also be mitigated by shielding the electronic circuits using a Faraday shield. Both the

wiring and electronic circuits have been wrapped in aluminum foil and grounded. Some

of the initially observed noise was effectively removed in this way. Other than these and

possible other external factors, the uncertainties are related to signal excitation, propa-

gation, response of target, signal capturing and internal electronic processing. The total

uncertainty contribution from all these factors have been estimated by calculating the

standard deviation over a set of acoustic shots done under close to the same conditions.

As described in Ch. 5 each test has been divided into a set of bins where relevant

measurements have been grouped to be able to compare measured values across different

test specimens. However, this benefit comes at a cost. Since the bin spans a small

range of states, the standard deviation of the values in the bin will incorporate both the

random measurement uncertainty of the measurand as well as actual variation due to

change of measurement state. For linear data the arithmetic mean over the binned data
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will represent a good approximation of an interpolated value at the midpoint of the bin.

However, the standard deviation over each bin will be much larger for liner data than the

actual uncertainty of the individual measurements. Thus the estimated experimental

uncertainty for linear data will be larger than it actually is (i.e. a large portion of the

estimated standard uncertainty over the bin is actually due to change of state). On the

other hand, for data with large measurement uncertainties the measurepoints across the

bin will look more stochastic. For this type of data the standard deviation over the bin

will still incorporate both the measurement uncertainty and variation due to change

of state. It can thus be used as an estimate for the upper limit of the measurement

uncertainty of the binned measurement quantity. These bins span approximately 1s

and include ∼40 acoustic shots. In this time the test specimen experienced a change

in applied displacement of approximately 0.1 mm according to the description in Sec.

3.3. This corresponds to a variation of the stress state across the bins depending on its

position in the load history. For the elastic regions the variation has a standard deviation

across the bin of approximately 8 MPa (or 0.04 % elongation in the x1-direction), while

for the plastic region the standard deviation of the stress state is approximately 1 MPa

(or 0.06 % elongation in the x1-direction) across each bin. Note that the variation in

measured elongation in the plastic regions are somewhat larger than in the elastic region

even though the displacement velocity should be held constant by the control unit. This

is probably an effect of the accuracy of the control system and the plastic response of

the test specimens. The background for these values have been explained and further

discussed in Sec. 6.4.1.2.

Because of the change in stress- / strain-state the sound velocity may change slightly

across each bin. In addition, the test specimen will also experience a slight thinning of

the sample which affects the resonance frequency across each bin (Eq. (2.121)). Thus

the standard deviation of the measured resonance frequencies in each bin incorporate

both the random measurement uncertainties, some variation due to thinning of the

sample, and some variation due to actual change in sound velocity. Since this standard

deviation includes both variation due to thinning and sound velocity change in addition

to the random measurement uncertainties it has been assumed to be a good measure of

the upper bound of uncertainty related to the unspecified random variations. The calcu-

lated standard uncertainty over each bin for the measured f (nl=1) resonance frequencies
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have been plotted in Fig. 6.1. This plot shows one coloured line for each test speci-

men, where each point represent the standard uncertainty u(f (nl=1)) for the individual

bins. For the L1 resonance mode it can be seen that the standard uncertainty is less

than approximately 80 Hz, which corresponds to a relative uncertainty, denoted by the

subscript r (as in ur(f (nl=1)) Eq. (6.4)), of approximately .0.02 %. Fig. 6.2 shows the

relative uncertainties based on the measured standard uncertainties presented in Fig.

6.1. Corresponding figures have also been made for the f (nl=2) and f (ns=3) resonance

frequencies as well and these have been included in App. C.3, Figs. C.30, C.31, C.32,

and C.33. The maximum observed standard uncertainties observed in these plots have

been presented in Table 6.1.

Figure 6.1: Standard uncertainty within each bin of the L1 resonance frequency
throughout each of the 13 tests

Note that in the plots the short forms L1, L2, and S3 have been used to represent

the frequencies f (nl=1), f (nl=2), and f (ns=3) as introduced in Sec. 5.5. The subscript

r represent in the context of uncertainties the relative uncertainty and follows the un-

certainty symbol u, while for the above short forms it denotes the relative change (i.e.

L1r = ∆f
(nl=1)
r ≡ ∆f (nl=1)/f

(nl=1)
0 as introduced in Eq. (2.122)).

The best estimate of the upper bound of the uncertainties related to the acoustic

measurements could have been taken as the standard deviation of the resonance fre-

quencies in a bin where the displacement and force has been fixed. However, because the
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Figure 6.2: Standard uncertainty within each bin of the relative change in the
L1 resonance frequency throughout each of the 13 tests

force and displacement vary in such a “static” configuration because of the fluctuations

around the given set point in the integral control unit, the observed uncertainty in e.g.

bin 30 (at zero force after the first unloading) has not been observed to be significantly

lower than the uncertainty in a bin under dynamic deformation.

The systematic uncertainty contribution related to the beam effect described in Secs.

2.6.2 and 3.6.3.1, has been accounted for when presenting the estimated longitudinal

sound velocity in Sec. 5.6, Fig. 5.17 (It has also been accounted for when considering

the shear sound velocity c(f (ns=3)) in Fig. 5.18 by assuming that the correction factor

η(ns=3) = 1). The systematic uncertainty estimated through Eq. (3.11) for the L1

mode has been caluclated to be an underprediction of approximately 5-6 %, while

the L2 mode has been overpredicted with approximately 1-2 % (see Sec. 5.6). The

uncertainty introduced in the absolute value of the sound velocity by correcting this

systematic effect has been ignored since this work does not require the absolute value of

the estimated sound velocities. Assuming that the beam effect is constant throughout

the tests (argued in Sec. 3.5.1) this systematic uncertainty cancel out when looking

at relative changes of the frequencies or sound velocities. Thus it has been ignored in

the following, and only been included in Table 6.1 for completeness. This has been
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discussed further in Sec. 7.4.1.

As described in Sec. 5.5 the absoulute value of the unstressed resonance frequency

for each mode can vary a lot across the test specimens (see Figs. 5.9, C.21, C.22).

Since this work has investigated the relative change in sound velocity each resonance

frequency has been divided by a reference frequency to calculate a relative change (see

the equivalent Eq. (2.122) for relative sound velocity). This reference frequency can

be arbitrarily chosen and is a pure mathematical operation that does not carry any

uncertainty in itself. Thus it has been assumed that u(f
(nl)
0 ) = u(f

(ns)
0 ) = 0, and

the only non-zero covariance term in Eq. (6.5) are the ones not including any of the

reference frequency values. The reference frequency has for each test specimen and

each resonance mode been chosen so that it is measured at the zero stress state. This

happens in bin number 30, which has been controlled to be at the first zero stress state

(without any plastic deformation) after the first unloading, and have thus been used as

the reference frequency.

The uncertainties related to the individual test specimens have been discussed above.

To increase the confidence in the observed results, 13 acoustic experiments have been

performed under as close to identical conditions as practically reasonable. As described

in Sec. 6.1 the averages over the relevant number of experimental measurements for

any measurement quantity (q̄i) are the values used when presenting results and when

estimating derived results in Ch. 5.

Note that because the three relevant resonance frequencis of the first and second lon-

gitudinal mode (f (nl=1), f (nl=2)), and the third shear mode (f (ns=3)), are all extracted

from the same time signal of acoustic pressure. The uncertainties related to any exter-

nal variation should thus be close to fully correlated since all of the extracted modes

experience the same external influence. However, the uncertainty related to the actual

propagation of the different modes in the test specimen may not be fully correlated.

The results estimated based on the ratio between any two of the resonance modes have

been presented with the correlated uncertainty. The correlation coefficient r has been

estimated according to [74] as

r(qi, qj) =
u(qi, qj)

u(qi)u(qj)
≈ s(q̄i, q̄j)

s(q̄i)s(q̄j)
. (6.6)
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where the standard deviations have been calculated according to Eq. 6.1 and the co-

variance term has been calculated by [74]

s(q̄i, q̄j) =
1

n(n− 1)

N∑
k=1

(qik − q̄i)(qjk − q̄j), (6.7)

for the quantity pairs qi and qj corresponding to the binned data of f (nl=1) and f (ns=3),

f (nl=2) and f (ns=3), and f (nl=1) and f (nl=2).

To investigate the contribution from correlation the combined relative uncertainty

ucr(fi, fj), where fi is either f (nl=1) or f (nl=2) and fj is either f (ns=3) or f (nl=1) (Eq.

6.5 with u(f
(nl=1)
0 ) = u(f

(nl=2)
0 ) = u(f

(ns=3)
0 ) = 0) has been divided by the sum of

squares for the relative measurement uncertainty of the different resonance modes (i.e.

Eq. (6.5) as above with the correlations term r(fi, fj) = 0). This ratio has been plotted

in Fig. 6.3. The plot shows that the correlation between the frequencies may increase

or decrease the combined uncertainty compared to an assumption of not correlated

frequencies. However, as can be seen the negative contributions are less than approx-

imately 10 % and the positive contributions are less than approximately 20 % for all

of the three ratios investigated here. Thus an assumption of uncorrelated frequencies

would not have changed the uncertainty contribution significantly.

Figure 6.3: Ratio of the relative combined uncertainty of the frequency ratios
with and without correlation between the three resonance modes L1, L2, and
S3.
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Figure 6.4: Relative combined uncertainty of the relative development of the
three resonance modes L1, L2, and S3, and their ratios over the 13 acoustic
experiments.

The maximum standard uncertainty per experiment (as shown in Figs. 6.1 and 6.2

for absolute and relative frequencies respectively) have been estimated as described in

this section and is based on the absolute and relative frequency measurements from

the 13 test specimens presented in Figs. 5.9 and 5.13 in Sec. 5.5 (L2 mode) and

Figs. C.21 to C.24 in App. C.3 (L1 and S3 modes). Fig. 6.4 shows the experimental

standard uncertainty over the 13 test specimens where acoustic measurements have

been performed. The maximum of each uncertainty presented in this section together

with the maximum of the standard uncertainty per experiment have been summarised

in Table 6.1 for f (nl=1), f (nl=2), f (ns=3), their relative change, and the relevant ratios.

In this work all result plots of the average over several experiments include the

estimated standard uncertainty over the relevant experiments as dark grey error-bars

(standard deviation of the mean). Those result plots which include several individual

test specimens include the standard uncertainty of the values within each bin plotted

as light grey error-bars.

From the uncertainty values presented in Table 6.1 it can be seen that the experi-

mental standard uncertainty over the 13 test specimens are dominating the uncertainty

contributions (i.e. the standard uncertainty over the 13 test specimens are close to
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twice the maximum observed standard uncertainty within any of the individual test

specimens, or more).

Table 6.1: Uncertainty in frequency measurements

Variable xi µ(xi) u(xi) Confidence u(xi)
|xi| Based

level [%] [%] on
Instrumentation
fFFT ∼300-800 kHz - Hz 68 negligible

FFT resolution
∆fFFT ∼300-800 kHz 16.7 kHz 68 2-6

Systematic uncertainty related to the beam diffraction effect
f (nl=1) ∼371-375 kHz 68 ∼ -6 Fig. 3.9
f (nl=2) ∼794-805 kHz 68 ∼ 2 Fig. 3.9
f (ns=3) ∼645-654 kHz 68 ∼ 0 Fig. 3.9

Maximum observed standard uncertainty in the 13 individual relevant experiments
f (nl=1) ∼371-375 kHz <80 Hz 68 <0.022 Figs. 6.1,6.2
f (nl=2) ∼794-805 kHz <52 Hz 68 <0.007 Figs. C.30,C.32
f (ns=3) ∼645-654 kHz <230 Hz 68 <0.036 Figs. C.31,C.33

Standard uncertainty over the 13 relevant experiments
f (nl=1) ∼371-375 kHz <216 Hz 68 <0.058 Fig. C.21
f (nl=2) ∼794-805 kHz <615 Hz 68 <0.077 Fig. 5.9
f (ns=1) ∼645-654 kHz <389 Hz 68 <0.060 Fig. C.22
f
(nl=1),(nl=2),(ns=3)
0 ∼371,794,645 kHz 0 Hz 100 0 see Sec. 6.3
f
(nl=1)
r 1 - <0.042 % 68 <0.042 Figs. 6.4,C.23
f
(nl=2)
r 1 - <0.039 % 68 <0.039 Figs. 6.4,5.13
f
(ns=3)
r 1 - <0.049 % 68 <0.049 Figs. 6.4,C.24

Standard combined uncertainty over the 13 relevant experiments
(f (nl=1)/f (ns=3))r 1 - <0.067 % 68 <0.067 Figs. 6.4,C.25
(f (nl=2)/f (ns=3))r 1 - <0.073 % 68 <0.073 Figs. 6.4,C.26
(f (nl=2)/f (nl=1))r 1 - <0.067 % 68 <0.067 Figs. 6.4,C.27

Note that the term uncertainty in individual relevant experiments corresponds to the variation within
one bin for one single experiment, while the term standard uncertainty over relevant experiments
corresponds to the variation across all experiments for each bin number.

Recall that the f (ns=3) resonance frequency consists of the contributions from both

shear waves with particle motion polarised in parallel as well as perpendicular to the
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applied tension, which have different sound velocity change dependencies (see Secs. 2.3

and 3.5.1). The uncertainty related to the contribution of the different particle motion

polarisations will not affect the actual measured f (ns=3) resonance frequency, and have

thus not been considered in this work. This has been left to future studies. It is

however noted that the spectral frequency resolution of 16.7kHz (see Sec. 3.5.1) only

can be reduced by either increasing the length of the transient tail of the signal or by

increasing the sampling frequency.

6.3 Sound velocity estimates

The associated relative combined standard uncertainty of the sound velocity in Eq.

(2.121) can be expressed as [74]

uc(c)

|c|
=

√(
u(fn)

fn

)2

+

(
u(l3)

l3

)2

, (6.8)

where c is either cl or cs, and the frequency (f (n) = f (nl), or f (n) = f (ns) correspond-

ingly) and thickness measurement have been assumed to be independent since they are

measured by two independent measaurement systems (the strain gauges or ARAMIS

setup and the ART setup respectively). The thickness l3 can be expressed by Eq.

(2.123) and has the associated standard uncertainty [74]

u(l3)

|l3|
=

√(
u(L3)

L3

)2

+

(
e3

1 + e3

)2(u(e3)

e3

)2

(6.9)

where the measurment of the original thickness and the elongation in the thickness

direction have been assumed to be independent based on the same argument of inde-

pendent measurement systems as above. The uncertainty in the thickness development

has been discussed in Sec. 6.4.1.2 while the uncertainty of the original thickness has

been discussed in Sec. 6.4.

Because of variations in the individual test specimens and the setup between the

different tests the reference un-stressed frequency can vary across the test specimens.

This will affect the absolute value of the calculated sound velocity and will introduce

large experimental uncertainties. In addition the beam diffraction effect correction ap-

plied to the measured frequencies of the L1 and L2 resonance modes to align the two

155



6. UNCERTAINTY ANALYSIS

different estimations of the unstressed longitudinal sound velocities also introduce un-

certainties. This adjustment has only relevance for the determination of the absolute

values of the longitudinal sound velocities. For all other measurement quantities it is

either not relevant, or as is the case for relative measurements, is canceled out. By

investigating the relative change in frequency or sound velocity the experimental varia-

tions caused by differences in initial, or reference, frequency can be removed. Although

there are uncertainties associated with the determination of the reference frequency, the

measurement data can be adjusted by an arbitrarily chosen reference frequency f ref0 to

align the relative frequency change with a known point on the load history curve as

described in Sec. 6.2, this has been regarded as a pure mathematical operation and

thus does not carrying any uncertainty.

The relative sound velocity of Eq. (2.122) is a function of three measurement quan-

tities, where the referance value f0 does not carry any uncertainty. Thus the assosiated

relative combined standard uncertainty of the relative sound velocity becomes [74]

uc(cr)

|cr|
=

√(
u(fn)

fn

)2

+
�

���
��

(
u(f ref0 )

f ref0

)2

+

(
u(1 + e3)

(1 + e3)

)2

=

√(
u(fn)

fn

)2

+

(
u(e3)

e3

)2

(6.10)

The standard uncertainty for both the estimated relative and absolute sound ve-

locities have been estimated through Eqs. (6.8) and (6.10) based on the average over

relevant test specimens for the measured frequencies f (ns) and f (nl), the measured initial

thickness L3, and the thickness elongation e3 measured by strain gauges. The estimated

propagated standard uncertainty has been presented as dark grey errorbars in the result

plots presented in Sec. 5.6. Fig. 6.5 shows the standard uncertainty in the estimated rel-

ative sound velocity change for the 13 test specimens including acoustic measurements

presented in Figs. 5.19. The maximum of each uncertainty plotted here are the val-

ues reported in Table 6.2 for the relative sound velocity change cr(f (nl=1)), cr(f (nl=2)),

cr(f
(ns=3)). The relative sound velocity change uncertainties are as described above

(Eq. (6.10)) a combination of the propagated uncertainties of the measured relative

frequency change (Fig. 6.4), the measured initial thickness (see Table 6.4), and the

measured elongation e3 (Fig. 6.7).
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Figure 6.5: Relative combined uncertainty of the relative development of the
sound velocities based on the three resonance modes L1, L2, and S3, and the
thickness development (elongation e3) over the 13 acoustic experiments.

Table 6.2: Standard combined uncertainties in estimated sound velocities

Variable xi µ(xi) u(xi) Confidence u(xi)
|xi| Relevant

level [%] [%] Eq. #
c(f (nl=1)) ∼5870 m/s <6.8 m/s 68 <0.12 (2.121),(3.7)
c(f (nl=2)) ∼5870 m/s <6.4 m/s 68 <0.11 (2.121),(3.7)
c(f (ns=3)) ∼3230 m/s <3.6 m/s 68 <0.11 (2.121)
cr(f

(nl=1)) 1 - <0.059 % 68 <0.059 (2.122)
cr(f

(nl=2)) 1 - <0.056 % 68 <0.056 (2.122)
cr(f

(ns=3)) 1 - <0.061 % 68 <0.061 (2.122)

Note that the uncertainty related to the ratio between c(f (nl=1)) and c(f (ns=3)), and

c(f (nl=2)) and c(f (ns=3)), are the same as the uncertainties related to the corresponding

frequency ratios presented in Table 6.1 because the expressions are identical (see Eq.

(2.125)).

Note also that the sound velocities c(f (nl=1)) and c(f (nl=2)) where the resonance fre-

quencies have been corrected for the beam effect do not include the uncertainty related

to the calculated correction factor η(nl) in Eq. (3.13). Since this work concentrates on

the relative change of the sound velocity and not the absolute value it has not been

deemed necessary to try to quantify the uncertainty related to the beam diffraction
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correction, and thus it has been disregarded. This will also have an influence on the es-

timated uncertainties in the linear elastic moduli estimated based on the sound velocity

in Table 5.5. This should however not be of any importance since the estimated linear

elastic moduli have only been used to indicate the similarity of the currently used steel

to those steel types already presented in literature (see Ch. 4).

For the shear sound velocity c(f (nl=2)) the uncertainty related to the contribution

of the different particle motion polarisations (see Sec. 3.5.1) will not affect the actual

estimates, similarly as for the measured f (ns=3) resonance frequency. Thus it has not

been considered in this work.

6.3.1 Temperature contribution

The acoustic sound velocities also depend on the temperature of the medium. To be

able to quantify the change in sound velocities caused by temperature change during

the tests, the temperature was measured before and after each acoustic test using a

digital thermometer (see Table 3.1) with a resolution of 0.1◦ C.

From the measured data presented in Sec. 5.4, it is obvious that the temperature

is close to constant throughout the test runs. The highest measured temperature dif-

ference over a test was -0.4◦C. This was measured at one of the tests that have been

removed from further evaluation because of missing displacement measurements. Thus

the largest temperature difference measured for one of the samples which have been

used in the evaluation of sound velocity change is 0.1◦C. This is the same as the digital

thermometer resolution, and the distribution of the temperature uncertainty can be

assumed to be rectangular. With a sound velocity - temperature dependency of ∼0.02
%/◦C (See Sec. 5.4 and [105]), this amounts to a relative uncertainty in the sound

velocities of steel due to temperature difference (< 0.1◦C) assuming a rectangular prob-

ability distribution of 0.02%/◦0.1◦√
3

≈0.0012 % [74, Sec. 4], which has been regarded as

insignificant, and thus ignored.

An empirical functional relationship between the unstressed longitudinal and shear

sound velocities and the temperature have been presented by [105] as

c = a T 2 + b T + c (6.11)

with temperature T given in Kelvin. The coefficients a, b, c for two types of steels

investigated in [105] have been reproduced in Table 6.3.
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Table 6.3: Empirical coefficients for sound velocity dependence

Steel Velocity a b c

X14CrMoS17 cl −2.1 · 10−4 −0.73 6230
cs −7.2 · 10−4 0.15 3258

X90CrMoV18 cl −6.5 · 10−4 −0.016 6032
cs −9.2 · 10−4 0.41 3203

Reproduced from [105]

This yields a uncertainty contribution from any uncertainty in the temperature

measurements less than [74]
u(c(T )) =

√
(aT + b)2u(T ) (6.12)

For a temperature of 24◦C (297 K) this yields u(cl(T )) = 0.79u(T ) and u(cs(T )) =

0.06u(T ) for the X14CrMoS17 steel, and u(cl(T ))) = 0.21u(T ) and u(cs(T )) = 0.13u(T )

for the X90CrMoV18 steel. Assuming that these values are relevant for the current steel

the propagated uncertainty is less than the uncertainty in the temperature measurement,

which is less than the measured temperature change over the experiments. Thus this

contribution has also been regarded as insignificant.

6.4 Test specimen geometry

One of the challenges in this work has been that the predicted changes in the sound

velocities are very small (in the order of a few tenths of a percent) as seen in Secs. 5.6.2.

To improve the statistical base of the resulting measurements and ensure repeatability

of the experiment results a set of 41 test specimens have been tested under as close to

the same conditions as practically reasonable. The first step to control the measurement

conditions has been to obtain steel with the same geometry and material properties as

described in Sec. 3.2.

This section discusses the uncertainties related to change in the geometry and de-

rived measurands which depend on the geometry of the test specimen. The uncertainty

related to the base measurements have been presented first while the relevant derived

quantities have been discussed next.

6.4.1 Geometry change

As already presented in Sec. 6.3 the thickness l3 depends on the initial thickness L3

and the thickness elongation e3 as given in Eq. (2.123) with the associated standard
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relative uncertainty of Eq. (6.9). Similarly the width l2 depends on the initial width

L2 and the elongation in the x2-direction e2 as

l2 = L2(1 + e2). (6.13)

and have the associated standard uncertainty [74]

u(l2)

|l2|
=

√(
u(L2)

L2

)2

+

(
e2

1 + e2

)2(u(e2)

e2

)2

(6.14)

while the current free length depends on a few more measurements as described in Sec.

3.2, Eq. (3.2). The associated standard uncertainty is

u(lfree1 )

|lfree1 |
=

√√√√(u(Lfree1 )

Lfree1

)2

+

(
u(lg11 )

lg11

)2

+

(
u(lg21 )

lg21

)2

+

(
e1

1 + e1

)2(u(e1)

e1

)2

.

(6.15)

The uncertainty in geometry change, and more specific the cross sectional area, is

thus dependent on the initial geometry; free length Lfree1 , width L2 and thickness L3,

as well as the measured elongations in the three principal directions e1, e2, and e3. The

associated uncertainties in these measurement quantities have been discussed in this

section.

6.4.1.1 Initial unstressed geometry

The uncertainty related to the variation in initial geometry between test specimens has

been quantified by measurements of the physical dimensions by hand tools. This intro-

duces, in addition to the variation across measurement points and across test specimens,

uncertainties related to the actual measurement device. The length of each test speci-

men has been measured using a steel ruler, while the width and thickness was measured

using a digital caliper and a micrometer caliper respecitvely. Although the readout

of the measurement equipment is easy and inherent uncertainties in the readouts are

well defined (presented in Table 6.4 under “Instruments”), these types of measurements

are prone to systematic uncertaintes related to how the measurement equipment has

been used by the user. To avoid this, each equipment has been calibrated against a

calibration sample with known dimensions, and any systematic uncertainty has been

corrected for (see Table 3.1 for name and make of calibration blocks and measurement
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equipment). If any correction has been done, the uncertainty in the systematic correc-

tion has been assumed to be negligible for the dimensional measurement equipment.

To estimate the variation in dimensions over the area where the acoustic signal has

been focused, a set of thickness and width measurements distributed over the center of

the specimen were taken in approximately the same area for each test specimen. Fig.

3.1 shows the approximate location of these measurements. The physical extent of the

measurepoints can, in addition to the thickness of the test specimen at those locations,

indicate how parallel the faces of the test specimen were. From Table D.1 and Fig. 3.1

it can be seen that the largest difference between the thickness on the left and right side

was 0.04 mm (test no. 7). For a width of approximately 50 mm this corresponds to a

deviation from parallel faces of θ = arctan 0.04/50 ≈ 0.046◦. In addition, all the tests

were placed on a machined plane surface to visually inspect for any curvature in the

test specimens. This was not observed, and it has been assumed that the surfaces were

sufficiently plane and parallel. Any slight deviations in the order of what was observed

and described above have been regarded as insignificant, and thus neglected.

In addition to the uncertainty in thickness and width measurement which propagate

to other derived measurement quantities (see Sec. 5.3), the variation in dimensions

between test specimens both before and after the tension test can help indicate how

much of the uncertainty in the desired result quantities can be ascribed variation in the

actual test specimens.

The length, width, and thickness measurements have been presented in Table D.1,

while the experimental standard uncertainty have been summarised in Table 6.4.

The uncertainties related to the variation in material properties between test spec-

imens and within each test specimen are hard to evaluate without damaging the test

specimens. However, a good indication on how the material properties have varied

across the test specimens can be evaluated based on the variation in deformation path

between the test specimens. This has been discussed further in Sec. 6.4.4. However,

it is worth noticing that the combined uncertainty for both relative frequency change

and relative change of frequency ratios in Fig. 6.4, and for the relative change in sound

velocity in Fig. 6.5, have their largest values at the end of the deformation path (located

in sequence EF). Comparing the largest combined relative standard uncertainty of the

frequencies f (nl=1)
r , f (nl=2)

r , f (ns=3)
r , ratios (f (nl=1)/f (ns=3))r, (f (nl=2), f (ns=3))r, and

sound velocities cr(f (nl=1)), cr(f (nl=2)), cr(f (ns=3)) in Table 6.1 and 6.2 which have
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Table 6.4: Uncertainties in measured unstressed geometry

Variable xi µ(xi) u(xi) Confidence u(xi)
|xi|

level [%] [%]
Instruments
Micrometer caliper, L3 7.50 mm 0.01 mm 100 0.08
Digital caliper, L2 50 mm 0.01 mm 100 0.01
Steel ruler, L1 600 mm 0.5 mm 100 0.05

Maximum observed standard deviation in individual test specimens (see Table D.1)
L3 at #18 7.49 mm 0.001 mm 68 0.21
L2 at #2 49.89 mm 0.008 mm 68 0.15
Lfree1 at #39 449 mm 0.05 mm 100 0.11

l3 at #38 7.28 mm 0.019 mm 68 2.7
l2d at #35 47.95 mm 0.18 mm 68 3.8
lfree1 at #39 467. mm 0.05 mm 100 0.11

Standard uncertainty over 37 test specimens (from Table D.1)
L3 7.50 mm 0.001 mm 68 0.013
L2 49.84 mm 0.004 mm 68 0.008
L1 600 mm 0.03 mm 100 0.003
Lfree1 449.85 mm 0.03 mm 100 0.004

l3 7.36 mm 0.003 mm 68 0.047
l2 48.92 mm 0.032 mm 68 0.065
l1 618.25 mm 0.22 mm 100 0.021
lfree1 456.79 mm 2.4 mm 100 0.31

Note that the term uncertainty in individual relevant experiments corresponds to the variation within
one bin for one single experiment, while the term standard uncertainty over relevant experiments
corresponds to the variation across all experiments for each bin number.

standard relative uncertainties spanning from 0.039 % to 0.073 %, it is evident that

much of this may be induced by variation in deformation path of the test specimens

which has an observed standard uncertainty in the deformed thickness l3 over all 37

test specimens of 0.047 % (Table 6.4).

6.4.1.2 Strain gauge measurements

Strain gauges have been used to measure the strain in all the principal directions

(x1,x2,x3). The gauges used were of the type YFLA-2 and YFLA-5, produced by

Tokyo Sokki Kenkyujo Co. [101]. They have a very good temperature tolerance of
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±0.85(µm/m)/◦C [101]. However, the main contributing factor to uncertainties in the

strain gauge measurements are related to alignment of the gauge with the desired prin-

cipal strain direction, and how well the gauge was bonded to the specimen. Experienced

laboratory personnel at DNV [109] evaluated this systematical uncertainty to be in the

order of 2-4 % of the measured value. Note that uncertainty both in the orientation

and in the bonding leads to under-prediction of the measured strain. This has not been

included in the following calculations. The reason and any implication of this has been

discussed in Sec. 6.4.1.3.

Fig. C.4 in App. C.2.1 shows the measured e1 elongation from 7 strain gauges

fastened to 6 individual test specimens. The experimental standard deviation across

these 7 e1 elongation measurements have been presented in Fig. 5.4 in Sec. 5.3. Fig. 6.6

shows the standard deviation of the elongation e1 across each bin for the 7 strain gauge

measurements. Note that the variation in measured elongation in the plastic regions

are somewhat larger than in the elastic region. When comparing the standard deviation

over each bin for the e1-elongation with the standard deviation over the same bins for

the x1-displacement measured by the Instron machine shown in Fig. 6.12 in Sec. 6.4.4

it is clear that the standard deviations of the x1-displacement has a close to constant

value of ∼0.04 mm throughout the tests (with exceptions at the position where the load

history change from loading to unloading and vice versa, which have been discussed

in Sec. 6.4.4), which indicate a constant displacement velocity. The observed increase

in standard deviation in the e1-elongation is probably an effect of the accuracy of the

control system which might have more difficulties to control the needed applied force to

produce the set displacement velocity when the response of the test specimens become

plastic, and thus don’t need any additional applied force to continue to deform the test

specimen.

Fig. 6.7 shows the experimental standard uncertainty across the 18 test specimens

including strain gauges based on the variation observed in Figs. C.4, C.5, and C.6 (App.

C.2.1). As can be seen from the figure the experimental standard uncertainty of each

of the elongations in the principal directions are small (<0.005 %) for the first 50 bins.

This corresponds to the first elasic loading and unloading sequences (AB, BA), as well as

the elastic part of the second loading sequence (AB), and the low standard uncertainty

across the test specimens in this region indicate that the measured deformation of the

test specimens were very similar before they where plastically deformed. The increase
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in standard uncertainty towards bin number 100 indicate that the measured plastic

deformation of the different test specimens are slightly different. This effect might

have different origins. If for example the test specimens do not deform uniformely

under plastic deformation the measured total elongation will be dependent on where

the strain gauge is placed on the test specimen. Also, if the strain gauges are placed

with slightly different angles off the principal axis to which it should be aligned, this

will result in discrepancies in the measured elongation which will increase and become

more apparent for larger deformations. This is thus an uncertainty related both to the

measurement system and the response of the individual test specimen. The effect is

also evident in Fig. C.4 where one can see that the measured elongation e1 at the start

of the second unloading (C) are at slightly different values. Fig. 6.7 then shows a flat

area with no significant increase in standard uncertainty between bin number 130 and

180. This corresponds to the second elastic unloading (CD) and the elastic part of the

third load sequence (DC). The experimental standard uncertainty increase towards bin

number 280 corresponding to the plastic deformation CE whith the associated increasing

spread in total measured elongation as observed at point E in C.4. Over the last 26

bins the standard uncertainty does not change significantly, which corresponds to the

third, and last, elastic unloading.

Figure 6.6: Standard deviation of e1 elongation across each bin from 7 strain
gauges on 6 test specimens
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Figure 6.7: Standard uncertainty over the 18 test specimens were strain gauges
have been included

Similar plots for the e2- and e3-elongations have been included in App. C.2.1,

Figs. C.5, C.6, C.34, and C.35. The standard uncertainties related to strain gauge

measurements have been listed in Table 6.5.

Table 6.5: Uncertainties related to strain gauge measurements

Variable xi µ(xi) u(xi) Confidence Based
level [%] on

Strain gauges
ei ∼0 - 4.1 % 0.85·10−5 % 68 [101]

Systematic
ei ∼0 - 4.1 % ∼-2–4 % 68 [109]

Maximum observed in individual relevant experiments
e1 0 - 4.1 % <0.01 % 68 Fig. 6.6
e2 -1.83 - 0 % <0.005 % 68 Fig. C.34
e3 -1.75 - 0 % <0.005 % 68 Fig. C.35

Standard uncertainty over relevant experiments
e1 0 - 4.1 % <0.09 % 68 Fig. 6.7
e2 -1.83 - 0 % <0.07 % 68 Fig. 6.7
e3 -1.75 - 0 % <0.04 % 68 Fig. 6.7
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Table 6.6: Estimated Young’s modulus and Poisson’s ratio based on strain gauge mea-
surements and adjusted for sytematic underprediction

Systematic adjustment of elongation measurements [109]
0 % 2 % 4 %

Sequence Estimated Young’s modulus Y [GPa]
1. loading 209 205 201
1. unloading 212 208 204
2. loading (elastic) 208 204 200

6.4.1.3 Systematic underestimation of elongation

As mentioned above an unquantified systematic underprediction of the measured elon-

gation by strain gauges and the implication of leaving this contribution out will be

discussed here. First it is noted that the measured elongations do not have any in-

fluence on the actual measured change in the ratio between longitudinal and shear

sound velocity cl/cs, and not on any of the measurements in the unstressed state where

e1 = e2 = e3 = 0. What it does influence is the estimate of the magnitude of the

applied stress, the Young’s modulus and the Poisson’s ratio, the theoretically estimated

acoustoelastic effect, and the estimated change in sound velocities.

Recalling the estimated Young’s moduli Y and Poisson’s ratios ν presented in Table

5.2, these values have been estimated based on the actual measurement values without

adjusting for any systematic uncertainty. If the measured elongations are adjusted by 2

% and 4 % respectively to compare the effect on the estimated Y , this yields the results

presented in Table 6.6 (note that only the loadsequences without any plastic deformation

have been included, AB, BA, and AB). The Young’s modulus based on the estimated

unstressed sound velocities (corrected for the beam effect) has been presented in Table

5.5 and was estimated to 214.1±0.4 GPa. This estimate is independent of the measured

elongations, and one would expect the values based on either measured elongations

and stresses or sound velocities should be comparable. The Young’s moduli estimated

without adjusting for the systematic uncertainty are closest to the Young’s modulus

based on estimated sound velocities, which might indicate that the underestimation

might not be as large as indicated by [109]. Note that because the Poisson’s ratio

is a function of the relation between two measured elongations (see Eq. (2.105)) any

relative adjustment percent will lead to an equal relative change in both measurands
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which will not have any effect on the estimated value. The Poisson’s ratio has thus not

been included in this comparison.

Since the estimated stress and linear elastic properties have not been used for any

other purposes than illustrating the load history and to validate that the current steel

have elastic properties that are comparable to those steels reported in the literatur (see

Ch. 4), it has been assumed that any adjustment to eliminate the systematic uncertainty

in the strain gauge measurements will not have an impact on the conclusions of this

work.

The influence on the theoretically estimated acoustoelastic effect has been plotted

in Fig. 6.8 for the relative change in longitudinal sound velocity. The results based on

the 0 %, 2 %, and 4 % adjustment is plotted with continuous, dashed and dotted lines

respectively. Similar plots for the other theoretically estimated sound velocities and

ratio’s have been included in Figs. C.36 to C.37 in App. C.4. As can be seen, there is

very little difference between the unadjusted and adjusted curves, much less than the

uncertainty related to the second and third order elastic moduli (Figs. 5.22 to 5.26).

It has thus been decided to use the unadjusted strain gauge measurements since they

yield the Young’s moduli Y that are closest to the one estimated based on unstressed

sound velocities, and because any adjustment would not affect the conclusions.

Figure 6.8: Relative longitudinal sound velocity c33 development based on elas-
tic properties given in Table 4.4 and the measured elastic strains with 0 %, 2
%, and 4 % adjustment for possible systematic underestimation
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The elastic and plastic part of the total strain is calculated based on the relations

in Eqs. (2.112) and (2.113). The associated standard uncertainties are thus [74]

u(ee)

|ee|
=

√(
u(F )

F

)2

+

(
u(yei)

yei

)2

(6.16)

and

u(ep)

|ep|
=

√(
u(e)

e

)2

+

(
u(ee)

ee

)2

(6.17)

respectively where the uncertainty related to the generic linear regression slope of the

stress-strain relations yei (see Sec. 2.5.1) has been estimated as an experimental stan-

dard uncertainty of the linear regression slopes across the experiments including the

relevant strain gauge measurements for each elastic loading and unloading sequence.

The uncertainty related to the elastic and plastic elongation contributions has been

plotted in Fig. 6.9. In this figure the three principal elongations e1, e2, and e3 have

been plotted using the markers 4, ×, and · respectively. The total elastic elongation

has been plotted in black, while the elastic and plastic contributions have been plotted

in blue and red respectively. For clarity it is notede that the curves marked with 4

lie above the corresponding curves marked with ×, which lie above the curves marked

with ·. The black and red (total and plastic elongation) curves lies almost on top of

eachother, while the blue (elastic) curves all lie almost on top of each other below the

red and black curves. From this it is clear that the uncertainty in the estimated elas-

tic elongation is much less than the uncertainties related to the total and/or plastic

elongation measurements. The colours used when plotting the estimated contributions

corresponds to the colours used in the figures on which the data is based (i.e. Figs. 5.8,

C.8, and C.9). The black curves indicating the standard uncertainty in the total mea-

sured elongations ei corresponding to the curves in Fig. 6.7. The maximum estimated

uncertainty for the measured total, and the estimated elastic and plastic, elongations

shown in Fig. 6.9, have been presented in tabulated form in Table 6.7.

Note that the maximum of the ranges reported for the plastic, and elastic elongations

in Table 6.7 do not add up to the maximum of the total elongation perfectly. This is

because the maximums have not been found at the exact same position in the load

history, and thus may vary slightly.
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Figure 6.9: Experimental standard uncertainty of total elongation and elastic
and plastic contribution for the e1, e2, and e3 elongations

Table 6.7: Experimental standard uncertainty in estimated elastic and plastic contribu-
tion to total elongation from Fig. 6.9

Variable xi µ(xi) u(xi) Confidence
level [%]

e1 0 - 4.1 % <0.09 % 68
ep1 0 - 3.77 % <0.09 % 68
ee1 0 - 0.35 % <0.0035 % 68

e2 -1.83 - 0 % <0.08 % 68
ep2 -1.73 - 0 % <0.08 % 68
ee2 -0.11 - 0 % <0.0011 % 68

e3 -1.75 - 0 % <0.04 % 68
ep3 -1.64 - 0 % <0.04 % 68
ee3 -0.11 - 0 % <0.0011 % 68

6.4.1.4 ARAMIS

The photometric ARAMIS system has also been used to measure the geometric de-

formation as described in Sec. 3.6.2. The accuracy can be as good as 0.01 % strain

according to the system description [107]. However, because of the limited experience

of the author with this type of measurement system this work has evaluated the actual
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achieved measurement uncertainty based on the results as described below.

One way to quantify this uncertainty is to calculate the standard deviation of the

output strain field over a relevant area on the test specimen. This has been done over

an area chosen to be a circle of diameter 20 mm in the center of the test specimen

(at the location where the acoustic signal has been focused). The standard deviation

of the ARAMIS calculated elongation emajor (in the x1-direction) for 8 experiments

has been plotted in Fig. 6.10. The variations in the level of standard deviation for

the different test specimens are assumed to be a result of differences in the quality of

the stochastic spray painted pattern applied to the face of the test specimens (see Fig.

3.11b). Compared to the uncertainty of the e1 elongation measured by strain gauges

shown in Fig. 6.6 it is obvious that the uncertainty in the ARAMIS measurements,

which are approximately in the order of 0.05-0.2 %, are significantly larger than the

uncertainty associated with the strain gauge measurements which are a full order of

magnitude less (0.005-0.01 %).

Figure 6.10: Standard deviation of emajor elongation over a circle of diameter
20 mm in the center of the test specimen for 8 ARAMIS measurements

Similar plots for the ARAMIS measured elongation in the x2- and x3-directions have

been included in App. C.5, Figs. C.38 and C.39.

In addition to the inferior uncertainty associated with the ARAMIS measurements

on a general basis, some of the tests run with the ARAMIS system resulted in very
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Table 6.8: Uncertainties in measured geometry change by ARAMIS

Variable xi µ(xi) u(xi) Confidence Based
on

ARAMIS system
ei ∼0-4.5 % 0.01 % 68 [107]

Maximum observed in individual relevant experiments
emajor 0-4.5 % .0.5 % 68 Fig. 6.10
eminor -2-0 % <0.2 % 68 Fig. C.38
ez -2-0 % <0.5 % 68 Fig. C.39

Standard uncertainty over relevant experiments
emajor 0-4.5 % <0.06 % 68 Fig. C.11
eminor -2-0 % <0.05 % 68 Fig. C.14
ez -2-0 % <0.04 % 68 Fig. C.17

poor resolution in the stochastic spray painted pattern which has led to even larger

variations of the ARAMIS calculated elongation within the relevant measurement area

than shown in Fig. 6.10. These results have been deemed to poor to be included in

evaluations in this work, and have thus been excluded (see Table 5.1). As argued in Sec.

5.3.1, the estimated stress versus strain/elongation relations and subsequent estimates

of the Young’s modulus Y and Poisson’s ratio ν based on the ARAMIS elongation

measurements do not fit accepted nominal values for steels, and it has thus been decided

to exclude all the ARAMIS measurements from evaluation of any of the strain derived

measurement quantities described in Sec. 3.6.3.

For reference the maximum standard uncertainty per experiment and the experi-

mental standard uncertainty over the experiments have been presented in Table 6.8.

6.4.2 Linear elastic properties

The linear elastic properties Young’s modulus Y and Poisson’s ratio ν of the current

steel can be estimated based on force measurements (or stress estimates) and elonga-

tion measurements according to Eqs. (3.19), and (2.105) respectively. The associated
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uncertainty for the Young’s modulus Y can thus be represented by [74]
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or assuming that the deformation is uniaxial and that the contraction in the transverse

directions are biaxial (i.e. that e2 = e3 as in Eq. (3.15))
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where F is the measured force recorded by the MessTek control unit with uncertainties

presented in Sec. 6.4.4, L2 and L3 are the initial width and thickness respectively with

uncertainties presented in Sec. 6.4.1.1, and ei where i = 1, 2, 3 are the elongations

measured by strain gauges with uncertainties presented in Secs. 6.4.1.2.

For Poisson’s ratio the associated uncertainty can be estimated through Eq. (3.17)

by [74]
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By combining the standard uncertainty over the relevant experimental tests the

combined standard uncertainty of the Young’s modulus Y and Poisson’s ratio ν have

been estimated and presented in Table 6.9 for each of the elastic loading and unloading

sequences (see Table 3.4). Note that the uncertainties presented here are based on

measured values from the upper region of the elastic regions (i.e. where the estimated

elongations are largest - close to point B, D, and F in Figs. 5.8, C.8, and C.9). This

has been done because of the increase towards infinity in relative uncertainty as the

estimated elastic elongations approach zero at point A (the unstressed state). This

applies to all measurement quantities that at some stage might be close to zero. Thus, in

this work it has been assumed that the relative uncertainty in this kind of measurements
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Table 6.9: Standard combined uncertainties in estimated linear elastic constants

Variable xi µ(xi) u(xi) Confidence u(xi)
|xi| Relevant

level [%] [%] Eq. #
1. loading sequence AB
Y 209 GPa 2.6 GPa 68 1.2. (3.14),(3.19)
ν(e1, e2) 0.29 - 0.004 - 68 1.4 (2.105)
ν(e1, e3) 0.31 - 0.004 - 68 1.4 (2.105)

1. unloading sequence BA
Y 211 GPa 2.6 GPa 68 1.2 (3.14),(3.19)
ν(e1, e2) 0.29 - 0.004 - 68 1.4 (2.105)
ν(e1, e3) 0.28 - 0.004 - 68 1.4 (2.105)

2. loading sequence AB
Y 208 GPa 2.5 GPa 68 1.2 (3.14),(3.19)
ν(e1, e2) 0.28 - 0.004 - 68 1.4 (2.105)
ν(e1, e3) 0.28 - 0.004 - 68 1.4 (2.105)

2. unloading sequence CD
Y 185 GPa 2.2 GPa 68 1.2 (3.14),(3.19)
ν(e1, e2) 0.31 - 0.004 - 68 1.4 (2.105)
ν(e1, e3) 0.29 - 0.004 - 68 1.4 (2.105)

3. loading sequence DC
Y 186 GPa 2.3 GPa 68 1.2 (3.14),(3.19)
ν(e1, e2) 0.30 - 0.004 - 68 1.4 (2.105)
ν(e1, e3) 0.29 - 0.004 - 68 1.4 (2.105)

3. unloading sequence EF
Y 179 GPa 2.1 GPa 68 1.2 (3.14),(3.19)
ν(e1, e2) 0.31 - 0.004 - 68 1.4 (2.105)
ν(e1, e3) 0.30 - 0.004 - 68 1.4 (2.105)

can be estimated at a point where the absolute value is the largest. Applying this to

the estimated relative uncertainty in Eqs. (6.18) or (6.19), and (6.20) leads to a relative

standard uncertainty of the estimated Young’s modulus Y of approximately 1.2 %, while

for Poisson’s ratio it is 1.4 %.
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6.4.3 Stress estimates

Two stress estimates have been presented in this work. The uniaxial Lagrangian stress

S11 and Cauchy stress σ11 which are related through Eq. (3.14). Their respective

associated relative standard uncertainties can based on Eq. (3.14) be expressed as [74]
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Similar to the calculation of the Young’s modulus the Cauchy stress can be obtained

assuming that e2 ≈ e3 (see Figs. 5.5 and 5.6). Thus the Cauchy stress can be estimated

as a function of both e2 and e3, or of e2 or e3 individually. This has been done, and the

propagated uncertainties have been estimated based on Eq. (6.22) and plotted in Fig.

6.11. Recognising the relative constant standard uncertainty for the bins below point C

and point E as the part of the load history where the test specimens deform plastically

(and thus do not experience much change in the applied force), it is obvious that the

uncertainty in the stress estimate is less during plastic deformation than during elastic

deformation. The maximum levels of standard uncertainty in the estimated stress have

been estimated based on Fig. 6.11 for both the elastic and plastic part of the load

history, and have been presented in Table 6.10. Although these uncertainties have not

been used in this work, they have been included for reference since the stress can be

used as input in the acoustoelastic theory as described in Sec. 2.3.

Table 6.10: Standard combined uncertainty in Cauchy stress over relevant experiments

Variable xi µ(xi) u(xi) Confidence
level [%]

σe11 0-630 MPa <9 MPa 68
σp11 0-630 MPa <1 MPa 68
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Figure 6.11: Propagated uncertainty of estimated σ11 based on measurement
and uncertainty values from force F , and the combination of or the individual
elongations e2 and e3

6.4.4 Tension machine

Even though the steel is from the same production batch there will always be variations

of the material between the test specimens, but also within each test specimen. These

variations will mainly affect the deformation path of the test specimens. The deforma-

tion paths (force and displacement) have been recorded by the MessTek control unit

during each test. However, beacuse of slightly different initial conditions and the fact

that the tests are dynamic makes it difficult to ensure that each measurepoint of the

deformation path of any given test specimen has an exact corresponding measurepoint

at any of the other test specimens. The results have been binned to be able to compare

measured values across different test specimens, as described in Sec. 3.4 and discussed

in Sec. 6.2.

The tension force and displacement of the Instron tension machine has been recorded

as voltage signals by the MessTek controll unit. The force and displacement voltage

signals have been sampled at a frequency of 10 Hz throughout each test. This sample

rate was so slow that random variations in the voltage signal over the measurement

caused by electric disturbances and fluctuations in the control system were small com-

pared to the voltage change between two measurements. This ensures that both the
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displacement and force measurements are monotonically increasing or decreasing during

elastic loading / unloading respectively with approximately linear behaviour between

measurepoints. However, when the test specimen starts to plastically deform the ten-

sion machine continue to deform the test specimen displacement controlled while the

applied force stays approximately the same. Thus the test specimen experience large

displacement without a corresponding increase in the applied force as it did in the elas-

tic regime. Thus, random variations in the force voltage will start to be significant

compared to the actual change in force between two measurepoints. However, the dis-

placement change linearly both in the elastic and the plastic region (with the current

setup of the control unit). This property makes the displacement ideal as a reference

measurement to which all other measurements can be related to be able to combine

them at a later stage.

The displacement measurement x1 is not a good measurement to estimate any of the

desired results related to change in sound velocity as mentioned in Sec. 5.2. However,

because of its close relation to both the force/stress in the steel sample and the strain

state of the sample, that it behaves linearly throughout the tests, and that it is one

of the two entities the tension machine control the load history by, it is an important

measurement quantity. The uncertainty in the actual value of the displacement is

however not that important as long as the relative measurements along the deformation

path or across the different test specimens do not vary significantly. As described in

Ch. 5, the measurements have been grouped in bins spanning approximately 0.1 mm of

displacement (or 1 s). Fig. 6.12 shows the standard deviation of measured displacement

in the 306 bins for 37 test specimens. This shows that the standard deviation within

each bin is close to constant at ∼0.04 mm for all bins and tests. Assuming linear

behaviour of the displacement within each bin spanning ∼0.1 mm, the mean value of

each bin should be half way between the minimum and maximum value, and all values

should be within approximately ±0.05 mm defining the whole bin. This implies that the

displacement control moves at a constant speed and is accurate relative to itself across

the whole load history as well as across the different test specimens. The 6 distinct dips

in this plot (point A,B,C,D,E,F) indicate that the variation in displacement over the

current bin is close to zero, and corresponds to the locations where the control system

holds the current displacement and force constant between changes from a loading to

an unloading sequence or vice versa. The standard deviation of displacement here is
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<0.01 mm (based in the data shown in Fig. 6.12), and can be used as an estimate

of how well the system controls a static displacement. Note that the readout from the

control system will be more accurate when the system is dynamically loaded than during

static loading (either displacement of force controlled) because of fluctuations around a

specified set value in the control unit. Fig. 6.13 is a similar plot showing the standard

deviation of measured force in each of the 306 bins. The same dips corresponding to

where the tension machine holds the current position and force is clearly visible in this

plot as well. In addition, there are two areas where the standard deviation is close to

zero (0) for a longer period of time (spanning several consequtive bins over the sequence

BC and CE). These identify areas where the force does not change significantly over the

span of a bin and corresponds to where the test specimen deformes plastically (i.e. no

significant additional force is needed for the test specimen to continue to deform. Based

on this it is possible to deduce that in the elastic loading/unloading sequences the force

changes relatively constant so that the standard deviation over the measurements in

a bin is between 3 kN and 4 kN, while where the test specimen deformes plastically,

the force changes less such that the standard deviation over a bin is <1kN. Note also

that these plots shows the standard deviation across each bin and not the standard

uncertainty.

Figure 6.12: Standard deviation of the recorded displacement voltage (x1) from
the Instron machine within each bin
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Figure 6.13: Standard deviation of the recorded force voltage (F ) from the
Instron machine within each bin

For all the different type of measurements a simultaneous reading of the displacement

and force voltages have been recorded, with the exception of the acoustic (ART) mea-

surements. Because of limitations of input channels on the DAQ in the acoustic setup,

only a concurrent displacement voltage has been recorded. The ART measurements

have been sampled at a frequency of approximately 40 Hz (i.e. 40 individual acoustic

shots have been performed per second). For each of the acoustic shots/measurements

the acoustic signal has been sampled at a frequency of 15 MHz by the DAQ, while

simultaneously recording the displacement voltage at the same sampling frequency. At

this high sampling rate random electric noise becomes observable over the acoustic shot

/ measurement period (90 µs). This can be seen in Fig. 3.7 b). The mean recorded

displacement voltage over the acoustic interaction period (reference signal + tail) has

been used to correlate the acoustic measurements to the concurrent force or other mea-

surement quantities. The observed standard deviation in recorded displacement over

the acoustic shot is less than approximately 0.008 mm. This is only 1/5 of the mag-

nitude of the almost constant standard uncertainty over each bin of 0.04 mm shown

above. Since the displacement voltage recorded by the acoustic setup and the MessTek

are in fact the same voltage signal, the observed uncertainty across each bin from the

MessTek displacement voltage recording does in fact include the uncertainty observed
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over each acoustic shot. Thus the uncertainty observed across the acoustic shot has

been disregarded when propagating uncertainties related to the displacement voltage

reading for the acoustic measurements.

Since the reference displacement voltage behaves in a monotonically linear fashion,

the relation between the recorded displacement voltages for different acoustic shots and

the corresponding force can be extracted by linear interpolation from the displacement

and force voltages recorded by Instron. The recorded displacement has as explained

in Sec. 3.4 been used to relate the acoustic measurements to the other measurement

quantities.

The Instron machine has been calibrated with respect to force (see App. B). The

uncertainties in the force measurements are presented in Table 6.11. This force has

been used to estimate the stress state of the test specimens, and to estimate the linear

elastic properties of the current steel as described in Sec. 3.6.3, and the propagation of

the related uncertainties have been discussed in Secs. 6.4.2 and 6.4.3.

The displacement output has not been calibrated since it incorporates the movement

of the machine, the clamping wedges, and deformation of the test specimen itself. The

uncertainty in the displacement reading is not vital for any further evaluation of esti-

mated quantities and has not been evaluated beyond what has been described above,

except as a measure of how well the deformation path of the different test specimens

match each other. The standard uncertainty (see Eq. (6.2)) of the displacement and

force over the 37 experiments have been plotted in Figs. 6.14 and 6.15 based on the

recorded data from the individual tests shown in Figs. C.1 and C.2. The maximum

observed uncertainty has been presented in Table 6.11. Recall that the standard uncer-

tainty over n experiments is related to the variation of the mean over all the experiments

and is inversely proportional to the number n of experiments. Thus this experimen-

tal standard uncertainty over the 37 tension experiments are less than the uncertainty

within an individual experiment.
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Figure 6.14: Standard uncertainty over 37 test specimens of the recorded dis-
placement voltage (x1) from the Instron machine

Figure 6.15: Standard uncertainty over 37 test specimens of the recorded force
voltage (F ) from the Instron machine applied in the x− 1-direction
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Table 6.11: Uncertainties related to tension machine

Variable xi µ(xi) u(xi) Confidence u(xi)
|xi| Based

level [%] [%] on
Instron/MessTek
xInstron1 ∼0-22 mm NA - - - -
F ∼20-250 kN - % 68 <0.7 App. B

Maximum observed in relevant experiments
xART1 0-20 mm ∼0.008 mm 68 - similar data as shown in

Fig. 3.7 b)
x1 0-20 mm <0.05 mm 68 - Fig. 6.12
F e 0-250 kN ∼3-4 kN 68 - Fig. 6.13
F p 0-250 kN <1 kN 68 - Fig. 6.13

Standard uncertainty over relevant experiments
x1 0-20 mm <0.03 mm 68 - Fig. 6.14
F 0-250 kN .2 kN 68 - Fig. 6.15

Where xART
1 and xInstron

1 denote the displacement measured by the Instron voltage recorded by the
acoustic setup and the MessTek control unit respectively, while F e and F p denotes force measurements
in the elastic and plastic region respectively.
Note that the term uncertainty in individual relevant experiments corresponds to the variation within
one bin for one single experiment, while the term standard uncertainty over relevant experiments
corresponds to the variation across all experiments for each bin number.

6.5 Simulation - uncertainty evaluation

No second or third order elastic constants have been available for the currently used

construction steel. However, to be able to compare the measured values with the theory,

the second and third order elastic constants for 8 steels found in the literature [39] [44]

[46] have been used as presented in Sec. 5.7.4. The second order, Lamé constants λ

and µ can be estimated based on estimated Young’s modulus Y from the measured

stress-strain relation, and the Poisson’s ratio ν related to the contraction in the x2- and

x3-direction compared to the elongation in the x1-direction as done in Sec. 5.3.1. It

has also been assumed that the uncertainty in the elastic constants presented in Table

4.2 and 4.3 from the above mentioned literature corresponds to a standard uncertainty

(i.e. a coverage factor kp = 1).

The propagation of these uncertainties through Eqs. (2.92), (2.93), (2.94), and

(2.97), (2.98), (2.99) is complex, and to avoid rigorous derivation of uncertainty budgets

a more convenient approach has been used. A numerical computation library called
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Uncertainties: a Python package for calculations with uncertainties which utilise linear

error propagation theory [108], has been used to propagate the stated uncertainties.

To verify that the computation library works a case for the Railsteel (sample 4) from

[46] has been run where all the lower and upper bound of different combinations of

nominal values and stated uncertainties (kp = 1) have been combined when calculating

the sound velocity change. That is; the three values λ− u(λ), λ, and λ + u(λ) for the

input parameter λ have been combined with the same three value variations for µ, A, B,

C, and ρ resulting in 729 variations. The nominal, maximum and minimum resulting

sound velocity changes from this variation have been compared to the calculations using

the Python package Uncertainties [108]. The result of this comparison has been plotted

in Fig. 6.16 where the gray lines are the estimates based on the varied combinations of

inputs. This shows that the uncertainty package calculates uncertainties on the same

scale as the variation of input does. As can be seen from Fig. 6.16 the uncertainty

estimated based on the Python package is less than the variation seen between the

maximum and minimum from the parameter variation. This is as espected as it is more

unlikely that the estimated parameters are combined in such a way as to maximise

or minimise the effect of the combination. The nominal value plotted in Fig. 6.16

is the same as already shown for Railsteel-4 in Fig. 5.22, including the propagated

uncertainties using the Python package.
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6.5 Simulation - uncertainty evaluation

Figure 6.16: Uncertainty propagation in calculation of relative longitudinal
sound velocity change for Railsteel (sample 4) (see Table 4.4) using the python
package Uncertainties and by varying the input parameters as described in
Sec. 6.5.
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Discussion

In this chapter the relevant measurement results are discussed, together with a compar-

ison between the measurements and the predicted theoretical results. Together with the

actual measurement results this forms the basis for the overall conclusions summarised

in Ch. 8.

7.1 Tension test results

Sec. 5.2 presents the load history and displacement pattern for each of the 37 test spec-

imens that form the basis of the experimental investigation performed in this study. As

can be seen in Fig. 5.1 the displacement behaviour of all the 37 test specimens are close

to identical for the given load history. Based on the similarity of the initial geometry it

is evident from Fig. 5.1 that all the 37 test specimens have a very similar deformation

response for the axial elongation (in x1-direction) when subjected to the applied load

history. From this it is reasonable to assume that all the test specimens are subjected

to approximately the same history of stress/strain levels. Thus the acoustoelastic effect

measured in any of the test specimens should experience the same level of pre-stress and

be comparable across the test specimens. The fact that all the test specimens have been

subjected to the same load history and deformation response is a requirement to be able

to statistically evaluate and compare measurements from all of the test specimens.

7.2 Elongation and true stress

There are mainly two reasons why the strain/elongation and stress development through-

out the test sequences have been measured. The first reason is related to how the
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measured acoustoelastic effect can be compared with results from the theory presented

in Ch. 2. As shown in Eqs. (2.91) and (2.95) the predicted change in sound velocity

is a function of either applied e1-elongation (axial) or true stress. The other reason,

which has been argued to be obsolete, is to be able to calculate the sound velocity

across the test specimen based on the measured resonance frequencies. The resonance

frequencies are dependent on the actual thickness at the moment of each resonance fre-

quency measurement, which can be estimated based on the measured elongation in the

thickness direction (elongation in the x3-direction). Thus the estimated sound velocities

are also dependent on the actual thickness of the test specimen. However, because of

the removal of the thickness dependence by investigating the development of the ratio

between resonance frequencies as described in Sec. 2.7, the elongation measurements

are not actually needed to be able to measure the effect predicted by the acoustoe-

lastic theory. Nevertheless resulting sound velocity estimates gives valuable additional

information of the acoustic behaviour and have been included in this work.

In addition, two second-order elastic moduli may be estimated from the relations

between different elastic elongation and stress measurements as described in Secs. 2.4

and 3.6.3.3.

Two different approaches have been used to measure local elongation of the test

specimens in the x1-, x2-, and x3-direction. As described in Sec. 3.6.1 one of the ap-

proaches was to use strain guages adhered to specified relevant locations on the test

specimens. These strain gauges have given good average measurements in one direction

over the area of their physical extent at the location where they are fastened. The

measured elongation and estimated stress from several strain gauges in the x1-, x2-,

and x3-direction on different test specimens have been presented in Figs. 5.4 to 5.7.

With the approximately uniform geometry of the test specimens and homogeneous dis-

placement the elongation measured at one specific location should be a good estimate

for the elongation in the same direction at any other point on the test specimen. By

varying the location of placement of the strain gauges and comparing the results for all

the relevant tests, as done in the figures mentioned above, this has been shown to be a

reasonable assumption. The estimated values for the elastic moduli Young’s modulus

Y and Poisson’s ratio ν based on the elongation and stress measurements from the

strain gauge setup have been presented in Table 5.2. They have also been estimated
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based on the estimated sound velocities in the unstressed state (Table 5.5) which shows

reasonable good coherence with the estimates based on elongation measurements and

values reported in the literature (Table 4.4). This also corroborate the method used

to estimate the sound velocities including the beam diffraction correction (discussed in

Sec. 7.5). As discussed in Sec. 6.4.1.2 the strain gauges have an assumed associated

systematical underprediction error related to the orientation of placement and bond-

ing of the strain gauge on the test specimens. Experienced laboratory personelle at

DNV estimate this underprediction to be in the order of 2-4 % of the measured elon-

gation [109]. However, the calculated elastic moduli Y and ν based on the uncorrected

elongation measurements (see Table 6.6) are closer to those estimated based on esti-

mated unstressed sound velocities in Table 5.5, and they fit reasonably well with the

second-order elastic moduli for other steels presented in Table 4.5. The implication of

disregarding the systematic error in the strain gauge measurements have been presented

in Table 6.6 in Sec. 6.4.1.2. It is evident from Eq. (2.105) that the estimated Poisson’s

ratio is not significantly affected if one assumes that the same order of magnitude of

error appears both for the axial (e1) as well as the transverse (e2, e3) elongations. For

the estimation of Young’s modulus in Eq. (3.19) the true stress is a function of elonga-

tion in both the transverse directions (e2, e3). Because the effect of underprediction of

e2 and e3 on the stress is much less than the effect on the e1 elongation (see Sec. 6.4.3),

and thus the Young’s modulus is overpredicted by close to the same amount as the e1
elongation is underpredicted.

From Eqs. (2.121) and (2.122) it is also evident that both the absolute and relative

sound velocity changes are affected by an underprediction in e3 elongation values. The

change in ratio between longitudinal and shear sound velocities (Eq. (2.124)), or its

relative change (Eq. (2.125)), is however not affected by this underprediction of the

elongations. It should however be noted that since the results presented in this work

are plotted against the measured elongations the plotted points might have a horisontal

shift in the order of up to 4 % of their elongation value. This one-sided tentative

additional uncertainty in the presented elongation measurements has not been included

in the error bars of the plotted elongations in this work.

Without documentation on the actual underprediction, the relative good fit with

other steel data, and the fact that the accuracy of the absolute elongation values does
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not influence on the measured effect of acoustoelasticity for the ratios between longitu-

dinal and shear sound velocities, it has been decided to use the uncorrected elongation

measurements from the strain gauges when presenting the results from this work.

The other approach to stress and strain measurements was a photometric measure-

ment technique called ARAMIS (Sec. 3.6.2), which gives a two-dimensional strain field

in the x1-x2-plane on the surface of the test specimens. Based on this 2D strain field

a thickness reduction strain in the x3-direction was also estimated by the ARAMIS

software (see Sec. 3.6.2 for details). The measurement results from the ARAMIS setup

have been shown in Figs. C.10 to C.19 in App. C.2.2. The estimated values for the

elastic moduli Young’s modulus Y and Poisson’s ratio ν based on the ARAMIS mea-

surements have been presented in Table 5.3. When comparing these elastic moduli with

the ones estimated based on strain gauge measurements in Table 5.2 and the ones for

steels presented by other authors in Table 4.5, the ARAMIS measurements result in es-

timated values which differ considerably from the values which are commonly accepted

as reasonable values for steel types. The values of ν(e3) > 0.5 estimated based on the

ARAMIS estimated e3-elongation are in fact unphysical since ν ∈ {−1, 0.5} [13]. In

addition, the maximum measured uncertainty of the ARAMIS measurements are con-

siderably larger than the corresponding uncertainties in the strain gauges (see Table 6.8

in Sec. 6.4.1.4). Based on these considerations the ARAMIS measurements have only

been included for reference in App. C.2.2, and all relevant conclusions are thus based

on the measured elongations by strain gauges.

7.3 Temperature

As argued both in Secs. 5.4 and 6.3.1 the relative uncertainty in the sound velocity due

to temperature difference is ∼0.0006 % for the actual measurements performed in this

study. This is two to three orders of magnitude less than the actual observed sound

velocity change (which is in the order of 0.1 % for the elastic ranges, AB, CD and EF in

Fig. 5.19). The sound velocity of both longitudinal and shear waves are also negatively

correlated with increasing temperature [105], which can not explain the different sign of

the sound velocity change observed for the longitudinal and shear sound velocity. Thus,

any temperature contribution has been assumed to be negligible in this work.
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7.4 Acoustic resonance

Comparing the different acoustic resonance frequencies (the L1, L2, and S3 mode) across

the different test specimens shows that there is a large spread in the measurements

(See Fig. 5.9 in Sec. 5.5 and Figs. C.21, and C.22 in App. C), both across the

tests as well as within some of the tests. By grouping the acoustic shots in bins as

described in Sec. 3.4 (Table 3.4) it is possible to investigate the mean behaviour across

the number of test specimens. The result of this has been presented in Figs. 5.10,

5.11, and 5.12. By comparing the relative change instead of the absolute values the

variability is further reduced as can be seen in Fig. 5.14. From this, it can be seen

that there is a similar resonance frequency response in all of the test specimens as a

function of applied elongation. As an increase in frequency corresponds either to an

increase in sound velocity, or a reduction in the thickness of the specimen, according

to Eq. (2.121), it is difficult from the relative change in resonance frequencies (Fig.

5.14) alone to draw any conclusions to whether the change in resonance frequencies are

related to sound velocity change or thickness change. However, examining the elastic

loading and unloading regions below approximately 0.2 % (AB), 2 % (CD), and 4 %

(EF) applied elongation e1, it is evident that the S3 resonance frequency changes in a

negative manner compared to the opposite positive change of the L1 and L2 resonance

frequencies. This can not be attributed to the change of thickness, and as such must be

related to a corresponding change in sound velocity. Because of the obvious difference in

behaviour of the longitudinal and shear resonance frequencies it is possible to eliminate

the thickness dependency as described in Sec. 5.6.2.

Fig. 5.20 shows a clear dependency between the applied elastic elongation level and

the measured ratio of longitudinal (L1 and L2) and shear (S3) resonance frequencies.

The L1/S3 or L2/S3 ratio shows a linear dependency on the applied elongation e1 with

a relative change of just above 0.2 % over the elastic loading regions AB, CD, and EF.

In the plastic regions the L1/S3 and L2/S3 ratio have much less dependence on the

applied elongation e1, and the two ratios also show different sign of the slope of the

relative change during plastic deformation. This discrepancy in the behaviour of the

two ratios has been further discussed in Sec. 7.4.1.

The relative change in L1/S3 and L2/S3 frequency ratios are independent of the

thickness and is thus only related to the change in sound velocity as a function of the
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applied elongation level. Based on this finding it is evident that the ART method is

capable of measuring a systematic significant effect of acoustoelasticity as function of

applied uniaxial stress/elongation. The systematic significance has been discussed in

more detail in Sec. 7.7 where the results from this work has been reviewed in light of

the objective of this study.

7.4.1 Beam effect

Theoretically, the longitudinal sound velocity giving rise to both the longitudinal reso-

nance frequencies (mode L1 and L2) should be the same, and thus it could be argued

that the development of the L1/S3 and L2/S3 frequency ratios should be equal. This is

obvious not true from both Figs. 5.14 and 5.20. Recalling the beam effect discussed in

Sec. 2.6.2, the different resonance modes will be shifted either up or down in frequency.

This effect depend on angle of incidence compared to the resonance frequencies created

by waves propagating perpendicular to the interfaces of the rectangular test specimen.

The L1 resonance mode measured for the different ART tests has been shifted down-

wards in frequency by approximately 4.5 %. Conversly the measured L2 mode has

been shifted upwards in frequency by approximately 1.5 %, while the S3 mode has no

significant systematic shift caused by the beam effect (see Figs. 2.10 and 3.9). If the

beam diffraction effect is constant throughout the tests it will fall out of the relative

change relations. However, if the frequency shift depends on the thickness and/or stress

state, or other factors that vary throughout the load history, it may have lead to a

more complex relation that will not fall out of the relative change relations. Thus, it

is concievable that the discrepancy between the L1/S3 and L2/S3 ratios seen in Fig.

5.20 is due to the beam effect not beeing constant throughout the tests. According to

Eq. (2.121) the ratio L2/L1 should ideally have 0 relative change throughout the tests,

and this discrepancy may simlilarly be an effect of the downward- and upward-shift of

the L1 and L2 modes respectively. The beam diffraction effect has been investigated by

other authors [92][93][96][97] (see Sec. 2.6.2), but its influence on the acoustoelasticity

has not been within the scope of this work (with the exception of correcting the initial

estimated longitudinal sound velocity as described in Sec. 3.6.3.1).
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7.5 Sound velocity change

The longitudinal and shear sound velocities and their corresponding relative change can

be calculated based on the measured resonance frequency and the measured thickness

change as described in Sec. 5.6. The acoustoelastic effect predicts changes in the lon-

gitudinal and polarised shear sound velocities as a function of the applied deformation

or stress level. The relative change in sound velocities are predicted to be different

for both different propagation directions and different particle motion directions. This

effect of velocity changes of longitudinal and shear waves for an isotropic hyperelastic

material subjected to either compression or tension has been proved by several authors

for many polycrystalline materials including both aluminium and steel (see [32] [44] [39]

and Sec. 1.4). The observed change in the sound velocities presented in Sec. 5.6 corrob-

orates thus these earlier works, as well as confirm the capability of the currently applied

measurement method to measure the acoustoelastic effect. However, the uncertainties

associated with the estimation of actual sound velocities, or their relative change, are

very much dependent on the uncertainties related to the initial thickness and/or its

development (Sec. 6.3). As such the uncertainties in the sound velocity measurements

are much larger than those associated with the ratio of longitudinal and shear sound ve-

locities where the thickness dependence fall out. Because of the thickness independence

of the relative change of sound velocity ratio (Eq. (2.125)), or conversely of resonance

frequencies, this ratio is a more accurate method of measauring the acoustoelastic effect

than by measuring the relative change of the individual sound velocities. Thus it has

been selected as the main measurement result to investigate the capability of measuring

the acoustoelastic effect by the ART methodology.

It is also noted that a beam diffraction correction of the estimated initial sound ve-

locities of the L1 and L2 resonance modes as shown in Fig. 5.17 can be done to mitigate

the shift in estimated longitudinal sound velocities based on the beam diffraction effect

described in 3.6.3.1. This way of correcting for the beam diffraction effect has not, in

the knowledge of the author, been done before. The beam diffraction effect will however

not affect the relative change in sound velocities if the same correction factor η(nl) in

Eq. (3.11) is applicable throughout the tests. However, it is noted that this might not

be the case and further investigation and inclusion of the beam effect presented in Sec.

2.6.2 are needed to adequately account for the changing resonance thicknesses.
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The good coherence between the linear elastic moduli estimated based on elonga-

tion measurements (Table 5.2) and based on estimated longitudinal and shear sound

velocities for the unstressed configuration (Table 5.5) also corroborate the method used

to estimate these sound velocities (including the beam diffraction correction).

7.6 Comparison of experiments and simulation

Figs. 5.22 to 5.26 shows a large variety in simulated acoustoelastic responses based

on the reported third-order elastic constants from 8 steel types found in literature (see

Table 4.4). Figs. 5.27 to 5.29 show the same simulated acoustoelastic development for

the three steel types (Group3 in Table 5.6) that have the same type of sound veloc-

ity development for both longitudinal and shear modes overlayed with the measured

acoustoelastic development of the current steel type used in this work (“Bright rect-

angular steel bar S235JRG2C+C” [79]). It is evident that the measured developments

are similar to several of the theoretical development curves, however, it is also evident

that one can not assume a certain behaviour of a relevant steel type without extensive

experimental testing to establish the acoustoelastic constants. Looking at the spread

in L1/S3 and L2/S3 ratios (Figs. C.25 and C.26), this may also indicate that the

acoustoelastic effect may be slightly different for different test specimens from the same

production batch (e.g. spatial variation in third-order elastic constants for one steel

type). Establishing the necessary third-order elastic constants through extensive test-

ing is impractical for most inspection situations where the steel under investigation may

be from several production batches, and even different manufacturors. Based on the

relative concurrence of the acoustoelastic behaviour across the test specimen seen in

this work, it might be possible to establish an acoustoelastic relation based on simple

tension tests for the relevant steel. As can be seen from the three different groups of

steels with similar magnitude third order elastic constants presented in Table 5.6, the

results from the theoretically simulated behaviour presented in Sec. 5.7.2 are similar

for the steels within each group. Although it is not possible to establish the correct

theoretical relation between a relative change in sound velocities (or the ratio between

sound velocities) and an applied elongation through such a simple tension test, it might

nevertheless provide a sufficiently good empirical relation for the steel under investiga-

tion as done by Gaschi in 2009 [64] as mentioned in Sec. 1.4. This is an area that needs
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further investigation of many more steel types to be able to categorize the steels which

behave in such a manner that this approach is applicable.

Note also that the benefit of using the ratio between the longitudinal and shear

sound velocities/frequencies to remove the thickness dependency is most prominent

when the longitudinal and shear sound waves experience opposing changes in relative

sound velocity change. It is conceivable that in the case where the longitudinal and

shear sound velocity change with the approximately the same relative magnitude and

sign, the benefit of making the measurement thickness independent may be opposed by

diminishing measured change in the ratio cl/cs.

The observed variation in the measured relative sound velocity change for the dif-

ferent test specimens from the same production batch, with a magnitude in the order

of the acoustoelastic effect, indicate that local variation of the second- and third-order

elastic parameters may also be present within each test specimen of the investigated

steel. This indicates that it might be difficult to experimentally deterimine second-

and third-order elastic parameters which are reliable and relevant for arbitrary mea-

surement points on a given steel. A more generic apporach may be to rather rely on

empirically established relations between the applied stress/strain and relative change

in L1/S3 or L2/S3 ratios for the relevant steel, and statistical analysis of independent

measurements.

7.6.1 Polarisation of shear waves

One particular area of discrepancy between the theory and the current measurements

that has not been discussed yet is the seamingly missing predicted effect of different

sound velocity change of the shear waves polarised (i.e. with particle motion) parallel

(c31, Eq. (2.98)) and perpendicular (c32, Eq. (2.99)) to the applied tension (i.e. for

σ11 6= 0 and e1 6= 0). This effect has been proved by other authors (see [32], [44], and

[39] and Sec. 1.4) and shown in the simulations of the different steel types in Figs.

5.23 and 5.24 respectively. As argued in Sec. 3.5, waves of all polarisation directions

(uniform circular distribution) should be excited in the test specimen, leading to an

equal amount of vertically polarised shear waves (SV) polarised in the direction of- as

well as perpendicular to- the applied tension. However, the measured relative change of

the shear sound velocity shows a similar behaviour as the simulated sound velocities for

the shear waves polarised in parallel to the applied tension for the Group 3 steels (see
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Tbl. 5.6) as shown in Fig. 5.28. Thus it has been assumed in this work that the shear

wave with particle motion polarised in parallel with the applied tension has the most

dominating sound velocity change, and thus dominate the contribution to the sound

velocity induced relative change in the S3 resonance mode. This is also in concordance

with the observations reported in e.g. [32], [44], and [39], where the shear sound velocity

polarised in parallel with the applied stress experience a larger relative magnitude of

change in sound velocity that the shear wave polarised perpendicular to the applied

stress. The difficulty in distinguishing the potential different resonance peaks of shear

waves polarised in parallel or perpendicular to the applied stress is discussed below.

For all the steels compared in Figs. 5.23 and 5.24, the simulated change in sound

velocity for the shear waves polarised parallel to the tension is different in magnitude to

the shear waves polarised perpendicular to the applied tension, and some times also with

opposite sign of change [32] [44] [39]. This is also the effect utilised in the bifurcation

measurements presented in e.g. [50] mentioned in Sec. 1.4. If the currently tested

steel specimens exhibit the same behaviour one would expect the even distribution of

shear wave polarisations of the un-stressed S3 resonance frequency to split into two

destinct peaks for a sufficiently large applied stress (i.e. σ11 6= 0 and e1 6= 0). This split

of a resonance peak in the frequency spectrum, corresponding to two perpendicularly

polarised shear waves (parallel and perpendicular to the applied tension) propagating

perpendicular to the applied tension across the thickness of the test specimen, must be

sufficiently large to be detected by the FFT algorithm. However, for the small changes

in the resonant frequencies as have been measured in this work (approximately -0.2 %

over the elastic ranges AB, CD, and EF - corresponding to approximately -1 kHz), the

potential splitting of the S3 frequency spectrum peaks are to close to each other for the

FFT algorithm to distinguish them (i.e. from Sec. 3.5.1 the FFT of the current recorded

signal has a spatial frequency resolution of 16.7 kHz compared to the potential split of

less than 1 kHz). For the Group 3 steels (having the most similar simulated velocity

change behaviour compared to the currently used steel) the maximum simulated change

in c31 is between -0.3 % and -0.6 %, while the maximum change in c32 is positive and an

order of magnitude less (between 0 and 0.05 %). This corresonds to a frequency change

of approximately -2 to -4 kHz for the waves polarised parallel to the applied tension

(c31), and approximately +0 to + 0.3 kHz for the waves polarised perpendicular to the

applied tension (c32). Although the FFT algorithm can determine the peak position of
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the resonance peak to numerical precision, it is less adequate to distinguish two nearby

peaks as the full width at half maximum value of the S3 peak is approximately 40

kHz. See Fig. 7.1 and the shear resonance frequency peak at approximately 660 kHz.

For reference, dark blue lines indicate the measurements at the start of the test while

increasing warmth through lighter blue, green, and yellow tones signify measurements

along the load history, finally reaching bright red at the end of the test. As the full

width at half maximum is approximately 10 times the expected difference in resonance

peaks of the waves propagating at the respective sound velocities c31 and c32, it has been

assumed that the S3 resonance peak is actually a superposition of the two shear wave

resonance peaks. Thus the measured S3 peaks are probably measured at some frequency

value in-between the frequencies corresponding to the individual polarised waves. The

development of the S3 resonance measured in this study is thus probably the combined

effect of shear waves polarised both perpendicular and parallel to the applied tension.

Note that if it is assumed that the Group 3 steels are a good representation of the

current steel, this means that the measured relative change in the S3 resonance should

be somewhere between the simulated change in c31 with a maximum between -0.3 %

and -0.6 %, and the maximum simulated relative change in c32 between 0 and 0.05 %.

The maximum relative change observed in the elastic regions AB, CD, EF is in the

order of -0.2 %, which fits well with this assumption for the Group 3 steels.

Even though the different polarisation directions in the worst case could behave in a

way that cancel out the acoustoelastic effect, the measured shear resonance will still be

important because of its capability of making the acoustoelastic response through the

ratio of longitudinal and shear resonance frequencies independent of thickness change.

Its also has the ability to enhance the relative change where shear and longitudinal waves

have opposite development behaviour, which can be used in an empirical calibration of

the acoustoelastic effect for a relevant test specimen material as earlier mentioned was

done in [64]. The effect of excited polarisation of shear waves, and algorithms and

hardware able to distinguish them, should be further investigated in future work.

7.7 Results compared to the literature

The objective of this work is to investigate the possibility for using a non-contact acous-

tic measurement system measuring the cross-thickness resonance frequencies across a
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Figure 7.1: FFT spectrum development of test specimen # 32 throughout the
load history. Dark blue signify the start of the load history, while increasing
warmth through lighter blue, green, and yellow tones signify measurements
along the load history, finally reaching bright red at the end of the test.

steel plate to detect changes in material properties at very high stresses. The investi-

gated method used in this work relates the measured resonance frequencies and changes

therein to changes in the compressional sound wave velocity, cl , and/or the shear sound

wave velocity, cs, which have been shown in the literature to depend on the stress state

of the steel as mentioned in Sec. 1.4 e.g. [32], [44], and [39]. The measurement methods

used in the literature presented in Sec. 1.4 commonly utilise a system of transducers

bonded directly to the test specimen (see e.g. [61], [67], [64]), although there are ex-

amples of setups using non-contact methods (e.g. [52] utilising longitudinal pressure

waves with a frequency of 12.5 MHz to excite the test specimen). However, in their

2009 paper [68], Kim and Hong studied a non-contact setup utilising oblique incidence

of longitudinal waves and mode-conversion and time of flight (TOF) of a pulse-echo sys-

tem to measure the sound velocity of both cl and cs in the test specimen. They noted

that the method was limited by the resolution and sensitivity necessary to generate the

high-frequency ultrasound needed to detect small changes in TOF.

The currently applied measurement method utilise the same phenomenon of mode-

conversion to excite both longitudinal and shear waves in the specimen by an incoming

longitudinal pressure wave. The excited waves reflect within the specimen and transmitt
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longitudinal pressure waves which propagate back toward the transducer system includ-

ing information on the cross-thickness resonance frequencies of both longitudinal and

shear waves. This work has shown that the acoustic resonance technology is capable of

measuring small changes in these resonance frequencies. The accuracy of the measured

resonance frequencies is limited by the stochastic uncertainty in resonance modes which

has been estimated to be in the order of <0.02 % for the two longitudinal modes L1 and

L2 and <0.04 % for the shear mode S3 (see Sec. 6.2, Table 6.1). Note that the spatial

resolution of the FFT limiting the ability to distinguish two resonance frequencies in

close proximity as discussed in Sec. 7.4.1 means that the stochastic variation in the

measured S3 mode is related to the determination of the possibly combined FFT peak.

Combining the longitudinal and shear resonance modes to measure the relative change

in the cl/cs ratio removes the thickness dependency as described in Sec. 2.7. This is

a plane wave theory simplification, and because of the beam diffraction effect the cl/cs
ratio may not be entirely thickness independent (see Secs. 2.6.2, 5.6.2, and 7.4.1). The

propagated stochastic uncertainty in the ratio has been estimated to be in the order

of .0.07 % (Sec. 6.2, Table 6.1), which is less than the maximum measured relative

change over the elastic regions AB, CD and EF of ∼0.2 % (see Sec. 5.6.2 Fig. 5.20).

Although the maximum stochastic uncertainty is approximately 35 % of the maximum

measured relative velocity ratio change, it has been shown that the experimental mean

is changing in a non-stochastic manner throughout the loadhistory of the test specimen.

Even though the uncertainty of one measurement is too high to be able to estimate the

stress state, the measurement method has been regarded sufficiently accurate when com-

paring several consequtive measurements to measure a systematic significant effect of

acoustoelasticity as function of applied uniaxial stress/elongation over the elastic range

of the steel applied in this work. The relative change in the estimated mean value over

the 13 acoustic test specimens for the sound velocities c(f (nl=1), e3), c(f (nl=2), e3), and

c(f (ns=3), e3) are in the order of .0.08 % for the two longitudinal estimates, and .0.2

% for the shear estimate respectively (see Sec. 5.6). However, eventhough these relative

changes are in the order of the changes measured for the cl/cs ratio, they ared depen-

dent on the e3 measurements and its related uncertainty. Thus, to avoid the actual

need of performing thickness measurements, it is convenient to remove this dependency

by using the cl/cs ratio (see Secs. 5.6 and 6.3).
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The result of this work has shown the capability of a non-contact acoustic measure-

ment method to measure predicted and previously confirmed effects of the acoustoelastic

theory (e.g. [32], [44], and [39]), both for longitudinal and shear sound velocity develop-

ment. It has also shown how the acoustoelastic effect can be measured with a thickness

independent quantity by combining opposite development of the longitudinal and shear

sound velocity and their ratio cl/cs (i.e. (2.124)). This is an important development

with respect to industrial use where sufficiently accurate thickness measurements may

be difficult to obtain.

One challenge identified by the current work has been the large diversity of the

acoustoelastic behaviour for different steels. This has been suggested by the simulation

of the theory using second- and third-order elastic constants for different steel types

presented in the literature. The simulations indicate that steels with similar second-

order elastic constants may have third-order elastic constants resulting in very different

simulated behaviour of the longitudinal and shear sound velocities. Although the steel

used in this work seems to change according to one class of steel types where at least one

of the shear modes have a negative sound velocity development while the longitudinal

pressure mode have a positive change under tensional loads, which will increase the

measured relative change of the cl/cs ratio (i.e. ∆
(
cl
cs

)
r
in Eq. (2.125)), other steels

may behave in a manner that instead reduce the measured relative change of this ratio.

For industrial application it is important to understand the mechanism which distinguish

different steels to either enhance the measured relative change by utilising the cl/cs ratio,

or where this actually reduce the measured relative change.

7.7.1 Potential industrial application of results

As this work has been performed utilising an existing ART measurement system devel-

oped for inline inspection of pipelines it is natural to view the results in light of this

application.

It has been observed that steels with small variations of the second order elastic

parameters (λ and µ) may have significantly different third order elastic parameters (A,

B, and C) result in significantly different dependencies of the sound velocities on the

applied elongation/stress state (see Sec. 5.7.2 and Table 5.6). Accurately determined

elastic properties are needed to estimate the stress dependency on the acoustic sound

velocities, as well as an unstressed reference state to be able to estimate the relative
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change in the sound velocities, is needed to estimate the stress state. As such, this

renders a single measurement of resonance frequencies incapable of determining the

elongation/stress state in steel.

However, by performing a set of uniaxial tension tests it might be possible to es-

tablish a relevant empiric dependency between the applied elongation/stress and the

relative change in ratio of longitudinal and shear resonance frequencies for a relevant

isotropic steel. This dependency is independent of the thickness of the sample / mea-

surement object. Thus, if the sound velocity - stress dependency has a sufficiently

significant variation over the elastic deformation range, it may be possible to use ART

to estimate the uniaxial elastic elongation/stress state at a specific location given an

established reference measurement for an unstressed state. Continous monitoring of

the stress level at a given location where the measurement system can be installed

permanently and operated continuously may thus be a potential industrial application.

For in-line inspections using an ART pipeline inspection gauge (PIG) it is not pos-

sible to establish the above mentioned reference measurements for an unstressed state

of already installed pipelines. However, using statistical methods two potential appli-

cations have been identified:

◦ With N independent sensors measuring around the circumference of the pipeline

it may be possible to establish the mean resonance ratio cl/cs response around

the cross-section of the pipeline. By comparing consequtive sets of circumfer-

ential measurements in the axial direction, one should be able to identify any

circumferential location with a consistent significant deviation from the circum-

ferential mean over a finite axial length. This would then indicate an area with

hoop strain/stress consentration compared to the surrounding areas, and could to-

gether with the thickness measurements identify a corroded area where the hoop

stress level is close to the structural capacity. This method requires the pipeline

to be operated at operating pressure, so that the steel is subjected to the critical

dominating hoop-stress, to be able to identify the relevant critical areas.

◦ Another application may be to identify locations along the pipeline where exces-

sive strains/stresses are localised due to global buckling of the pipeline. Where the

pipeline is subjected to bending the cross-section of the pipeline will be subjected

to a range of stress states ranging from compressive stress on the inside of the bend,

through a state of zero stress in the midle of the pipeline, to a tensional stress on
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the outside of the bend. Thus, by comparing the circumferential measurements

along the axis of the pipeline it should be possible to identify areas where the

pipeline has been subjected to global buckling. This method require the pipeline

to be run at low operating pressure so that the axial stress is the dominating stress.

For the current steel investigated it is also noted that the shear frequency decrease

under increasing applied elastic stress (Figs. 5.12 and 5.18). However, when the spec-

imen start to plastically deform the shear resonance frequency has been observed to

increase. This indicates that the thickness-reduction, giving rise to an increase in mea-

sured frequency (Eq. (2.120)), under plastic deformation is larger than any negative

change in sound velocity according to the acoustoelastic effect. Thus, if the load is

known to be stable or increasing together with an observed increase in the measured

shear resonance frequency, this might indicate that the elastic limit has been exceeded

for the current steel. Such considerations might thus be used as an indication if the

material has seen plastic deformation during the measurement period.

7.8 Change of Young’s modulus

The experimental work performed in this study has revealed an, to the author, unex-

pected effect where the Young’s moduls Y changes significantly after the test specimens

were plastically deformed (in the order of -15 % for 4.5 % axial elongation). This was

not expected with reference to e.g. [29, ch. 10.5]. However, similar observations have

been reported in the literature before in e.g. [110], [111], and [112]. The current obser-

vation has been presented in Sec. 5.3.1 and discussed here. Although the observation

discussed in this section is not within the objective of this work it is an interesting phys-

ical behaviour that the author have not found readily discussed in current literature.

Thus this section have been included for reference.

Repeated testing of steel samples from a common construction steel “Bright rectan-

gular steel bar S235JRG2C+C” [79] have shown a consistent reduction of the Young’s

modulus as a function of applied plastic elongation. It has been observed that the

relation between applied stress (calculated from force and cross sectional elongation)

and elongation in the x1-direction (measured by strain gauges and ARAMIS) does not
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follow the same slope for all elastic loading/unloading sequences. In the elastic regime

before first yield (plastic deformation) the slope of the stress-elongation curve yields

a Young’s modulus (Y ) (estimated from linear regression) of approximately 210 GPa,

which fits well with the other unstressed steels presented in the literature (see e.g. Ta-

ble 4.5). However, after the test specimens have been plastically deformed, the next

unloading at approximately 2 % e1 elongation yields a Young’s modulus of ∼185 GPa,

while the last unloading at ∼4 % e1 elongation yields a Young’s modulus as low as

∼179 GPa (see Table 5.2). This is a lowering of the Young’s modulus of approximately

-12 % and -15 % respectively (The uncertainty in the estimated Y has been estimated

to be approximately 1.2 % in Sec. 6.4.2). This effect was not expected, and while it

could concievably be an effect of degredation in the strain gauges used to measure the

deformation, the independent photometric ARAMIS measurements showed a similar re-

duction in estimated Y (see Table 5.3). Note that the ARAMIS measurements have not

been used in any evaluations done in this work due to high uncertainties related to the

absolute value of the strain measurements. However, eventhough the absolute values

have a large uncertainty, the decrease in estimated Y still corroborate the corresponding

results based on the strain gauge measurements. This effect was not anticipated, how-

ever, the author has found similar observations reported in literature (see for example

[110], [111], and [112]).

Since the acoustic sound velocity in solids can to the first order of approximation

be expressed as (from Eqs. (2.97), (2.98), and (2.99))

cl =

√
λ+ 2µ

ρ0
=

√
Y (1− ν)

ρ0(1 + ν)(1− 2ν)
(7.1)

cs =

√
µ

ρ0
=

√
Y

2ρ0(1 + ν)
. (7.2)

A significant decrease in the Young’s modulus Y should result in a corresponding de-

crease of the sound velocities given that ρ0 and ν do not change significantly. Note that

a change in the Young’s modulus Y does not affect the ratio of cl and cs as(
cl
cs

)2

=
1− ν

2(1 + ν)
. (7.3)

Thus this ratio removes the uncertainty associated with the change in Young’s modulus.
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These equations show that both the longitudinal and shear sound velocities depend

on the square root of the Young’s modulus. This imply that a -12 % and a -15 % decrease

in Young’s modulus should respectively result in a -6 % and -8 % decrease in both the

longitudinal and shear sound velocities (if the Poisson’s ratio ν and the density ρ0 are

unchanged). Including a 3.5 % positive change in the Poisson’s ratio ν (see change in

mean values of ν(e2) and ν(e3) from 1. loading to 3. unloading in Table 5.2) does not

contribute to more than approximately 1 % positive change in the longitudinal sound

velocity. Using the maximum change in ν(e2) from Table 5.2 of approximately 11 %

change contribute approximately to a 4 % increase. For the shear sound velocity the

contributions are in the order of -1 % for the same increases in Poisson’s ratio.

The maximum decrease in sound velocity observed is in the order of -0.6 % (see

Fig. 5.22), a full order of magnitude lower than the above values for both the shear

and longitudinal sound velocities. Thus the corresponding decrease in density should

be in the order of approximately -10 % to -15 % to account for the decrease in Young’s

modulus. This corresponds to an decrease in density ρ0 of approximately 1000 kg/m3,

which is assumed to be highly unlikely. It is noted that the densities of the test specimens

before and after the tests have unfortunately not been measured in this work.

conversely, the estimated linear elastic moduli as a function of change in the esti-

mated sound velocity have been presented in Table 5.5. The maximum estimated change

in the Young’s modulus in Table 5.5 is approximately -1 %, which is significantly lower

than the observed change of -15 %.

The lack of a corresponding velocity change based on the observed change in Youngs

modulus are very interesting and deserve further investigation. As the industry com-

monly assumes that any unloading after a plastic deformation follows the initial elastic

response [29, ch. 10.5], this reduction in Young’s modulus Y might have impact on struc-

tural analysis of materials that have seen large plastic deformations [113]. However this

has not been a part of this work and is highly recommended for further investigation.

202



8

Conclusions

8.1 Summary

The main conclusions of this work have been presented in short form in this section,

while more details can be found in Sec. 8.2

This work has shown that the ART can be used to measure variation in sound veloc-

ities across a rectangular steel specimens subjected to uniaxial tension with statistically

significant accuracy under controlled laboratory conditions as presented in Sec. 5.6. The

measurement results also show reasonable reseamblance with numerical simulations of

the acoustoelastic effect for a collection of steels presented in the literature as shown in

Sec. 5.7.4. Based on these findings the main objective of this work has been achieved

by showing that a linear dependecy of the measured quantity (cl/cs or f (nl)/f (ns) in

Fig. 5.20) with respect to the applied elastic deformation ee1 of the current steel test

specimens can be measured with statistically significant accuracy by the ART method.

The obtained linear dependency was measured to be approximately a 0.25 % relative

change in the cl/cs ratio over the elastic deformation range ee1 ∈ {0, 0.3 %}. In the elas-

tic loading sequence ABAB the standard uncertainty in the measured cl/cs ratio were

less than 0.04 % corresponding to a relative standard uncertainty of approximately 16 %.

The main contribution of this work to the scientific field of the acoustoelastic ef-

fect and the application thereof has been to show the possibility of using a non-contact

broadband measurement technique (ART) to accurately measure relative change in both

longitudinal and shear sound velocities (Sec. 5.6). This has then been used to show
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how these sound velocities depend on the stress state in a uniaxially tensioned rect-

angular steel test specimen, as predicted by the acoustoelastic theory (Sec. 2.3). It

has also been shown that the measurement quantity f (nl)/f (ns) yields a thickness in-

dependent measure of the acoustoelastic effect. This may be important for industrial

applications where good quality thickness measurements may be impractical to perform.

8.2 Detailed conclusions

This work includes two different aspects. The main part consists of a controlled labo-

ratory experimental setup described in Ch. 3, where uniaxial tension has been applied

to rectangular test specimens while measuring the acoustic resonance frequencies across

their thickness. The acoustoelastic theory presented in Sec. 2.3 predicts small changes

in the acoustic sound velocities of acoustic waves propagating in a hyperelastic isotropic

solid subjected to changing levels of stress. The experiments have been performed to

investigate how accurately the currently applied acoustic measurement system (ART)

is able to measure the predicted changes in the acoustic sound velocities. Based on

these measurements it has been an objective of this work to investigate if the measured

changes can be related consistently to the applied stress state. To corroborate the ex-

perimental results a set of simulations have been done to simulate the expected changes

in the sound velocities according to the acoustoelastic theory based on acoustoelastic

parameters for steels found in the literature presented in Ch. 4. The main conclusions

based on the discussion in Ch. 7 are presented in this section.

The acoustic resonance frequencies have been measured on 13 test specimens as they

have been exposed to a predefined load history. For the tested steel “Bright rectangu-

lar steel bar S235JRG2C+C” [79] the first and second harmonic longitudinal resonance

frequencies (L1 and L2) and the third harmonic shear resonance frequency (S3) have

shown a consistent and systematic development with a clear linear dependency on the

applied elongation/stress while the test specimen deformed elastically. Although the

measured relative changes in resonance frequencies show a significant variation across

the 13 test specimens where acoustic measurements have been performed, the experi-

mental mean shows a consistent development in the resonance frequencies. The negative
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relative change in the S3 resonance mode can only be related to a change in the shear

sound velocity cs (and not thickness reduction), confirming the predicted acoustoelastic

effect. By including measurements of the thickness change it has also been shown that

part of the relative change in longitudinal resonance modes also relates to a change in

the longitudinal sound velocity cl (see Fig. 5.19).

The test specimens have been deformed uniaxially well into the plastic regime with

intermediate elastic unloading sequences. The three elastic loading and unloading

sequences (marked by AB, CD, and EF in the result figures) show a linear depen-

dency of the L1, L2, and S3 resonance frequencies. The elastic loading sequences (i.e.

ee1 ∈ {0, 0.3 %}) corresponds to a relative change in the resonance frequencies of ap-

proximately 0.1 % for the longitudinal resonance frequencies, and -0.1 % for the shear

resonance frequencies. However, during plastic deformation both longitudinal and shear

resonance modes have experienced a relative increase.

It is not possible to determine how much of the relative changes in the resonance

frequencies are due to thickness reduction and how much is caused by the acoustoelastic

effect based on the individual resonance frequency measurements alone. This work has

shown that the ratio between measured longitudinal and shear resonance frequencies

(L1/S3 and L2/S3) can be used to minimize/remove the effect of change in sample

thickness during uniaxial loading of the rectangular test specimens (see Eq. 2.125). In

addition, if the longitudinal and shear sound velocities have opposing relative change

development over the elastic loading sequences (AB, CD, EF) these ratios will also in-

crease the maximum estimated value of relative change as shown in Fig. 5.20 compared

to Fig. 5.19. The ratio of longitudinal and shear sound velocities (cl/cs = f (nl)/f (ns))

of waves travelling across the sample is independent of the thickness according to Eq.

2.125, and thus the uncertainty contribution from changing thickness is effectively re-

moved in this way when evaluating the acoustoelastic effect (see Sec. 7.4. An additional

benefit of using the ratio between resonance frequencies of different sound velocities,

specifically when they have opposing development of change depending on the applied

elongation/stress state, is that the measured elongation/stress dependency will be in-

creased compared to the dependency of each individual resonance frequency (which also

will be more affected by the quality of thickness measurements). For the elastic loading

sequences (AB, CD, EF) an applied elastic elongation ee1 ∈ {0, 0.3 %} results in a rela-

tive change in the L1/S3 and L2/S3 ratios of approximately 0.25 % as can be seen in
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Fig. 5.20. For the part of the load sequences where the test specimen deform plastically

(BC, CE) the measured relative change in the L1/S3 and L2/S3 ratios are significantly

less prominent than during elastic deformation, approximately -0.2 % and 0.2 % respec-

tively over approximately 3.8 % of plastic elongation (ep1). The relative change of the

L1/S3 ratio shows a negative development during plastic deformation while for L2/S3

the relative change is positive. This difference has been discussed in Sec. 7.4.1.

The experimental combined standard uncertainty over the 13 test specimens of the

two thickness independent frequency ratios (L1/S3 and L2/S3) has been estimated to

have their highest value in the order of 0.07 % at the end of the load history (see Sec.

6.2). Compared with the maximum difference in relative change measured over the

elastic load sequences of approximately 0.25 %, this corresponds to a relative standard

uncertainty of 28 %. At this point late in the load history much of the variation across

the test specimens may be influenced by differences in the plastic response. Looking at

the experimental combined standard uncertainty in the elastic regions before first yield

(loading sequence ABA in Fig. 6.4), the maximum combined standard uncertainty is

less than 0.04 %. This corresponds to approximately a relative standard uncertainty

of 16 %. Thus, for the collection of the 13 tests including acoustic resonance measure-

ments, it has been shown that the currently applied measurement technique is capable

of measuring a significant effect of the acoustoelastic effect in the current steel during

elastic loading.

For the estimated sound velocities and their estimated relative change the positive

relative changes in the estimated longitudinal sound velocities have been observed to

be just less than 0.06 % and 0.08 % for the c(f (nl=1), e3) and c(f (nl=2), e3) respectively

(see Fig. 5.19). Both c(f (nl=1), e3) and c(f (nl=2), e3) have an estimated experimental

standard uncertainty of approximately 0.06 % (at the end of the test shown in Fig. 6.5).

Comparing the standard uncertinaties in Fig. 6.5 and the observed relative change in

sound velocities in Fig. 5.19, this yields a relative experimental standard uncertainty

(u(x)/|x|) of 100 % and 75 % for the respective maximum measured elastic longitudinal

sound velocity change for c(f (nl=1), e3) and c(f (nl=2), e3) respectively. Within the ABA

load sequence, the standard uncertainties are 0.03 % and 0.01 % for c(f (nl=1), e3) and

c(f (nl=2), e3). This yields a relative experimental standard uncertainty of 50 % and 17
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8.2 Detailed conclusions

% for c(f (nl=1), e3) and c(f (nl=2), e3) respectively. Only the latter can give estimates

in relative changes that are comparable in accuracy to the ratios L1/S3 and L2/S3 as

described above, but c(f (nl=2), e3) is dependent on good quality measurements of the

thickness change, which is impractical in most industry applications. Thus the L1/S3

and L2/S3 ratios are more applicable for the investigated application.

It is also noted that during the loading sequence deforming the test specimens plas-

tically (BC and CE), the estimated longitudinal sound velocity as well as the shear

sound velocity have a decreasing development. The acoustoplastic effect has not been

within the scope of this work, however, it is noted that; during plastic deformation

the estimated sound velocities experience close to the same negative change (-0.7 %

for c(L1, e3), -0.4 % for c(L2, e3), and -0.6 % for c(S3, e3) shown in Fig. 5.19) wich

result in the slight relative decrease and increase for the L1/S3 and L2/S3 ratio already

mentioned and shown in Fig. 5.20.

The beam effect described in Sec. 2.6.2 and discussed in Sec. 7.4.1 has been as-

sumed to be constant throughout the tests, and will thus fall out when comparing

relative change of the L1/S3 and L2/S3 ratios. However, if this assumption is valid,

the two ratios should have the same development throughout the load history. This is

contradictory to the developement shown in Fig. 5.20. This work has shown (Fig. 5.20)

that such an effect is not that prominent for the two ratios (L1/S3 and L2/S3) during

elastic loading when the acoustoelastic effect is opposite for the longitudinal and shear

sound waves. However, during plastic deformation (BC and CE) all the sound veloc-

ities experience close to the same negative relative change, and thus the ratios L1/S3

and L2/S3 do not experience the same prominent change as during elastic deformation.

The observed discrepancy between the L1/S3 and L2/S3 ratios observed during plastic

deformation (Fig. 5.20) may thus possibly be attributed to the beam effect as discussed

in Sec. 7.4.1.

The methodology developed to correct for the beam diffraction effect has success-

fully been utilised in the unstressed state. Further investigation is needed to understand

its dependency on thickness change, and how it may be used to correct for the beam

diffraction effect throughout the load history of similar tests.
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8. CONCLUSIONS

Even though steels of similar composition and crystal structure have third-order

elastic constants of the same magnitude, the acoustoelastic effect can vary significantly

between them. This work has shown that the investigated steel “Bright rectangular

steel bar S235JRG2C+C” [79] has a similar acoustoelastic response as the simulated

results of three steels (Group 3 in Tbl. 5.6) reported in the literature. However, other

steels show significantly different acoustoelastic behaviour, even having opposite signs

of relative change in some of the simulated sound velocities shown in Figs. 5.22, 5.23,

and 5.24.
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Further work

As stated in the conclusion the ART can be used to measure a significant variation in

resonance frequencies across a rectangular steel specimen subjected to uniaxial tension

in a laboratory setup. This is a first step to investigate the potential for an existing ul-

trasonic wall thickness measurement technology that is also applicable for determining

locations in steel pipelines with a high stress and/or strain state. To reach a level where

the technology can be qualified for such applications the technology and the measured

response need to be further investigated. This section presents identified areas of re-

search that need to be investigated.

It has been recognised through this work that both longitudinal and shear waves

are excited in the steel specimen for a normal beam incidence. This is related to the

distribution of incident angles because of the transducer radiating with a finite beam

angle between 4◦ and 13◦ for different frequencies as described in Sec. 2.6.2. This study

has identified one easily recognised shear resonance mode with the current experimental

setup, namely the 3rd harmonic (S3). According to the acoustoelastic theory (Sec. 2.3,

Eq. (2.68)) the shear wave speed in an isotropic medium under uniaxial load is depen-

dent on the polarisation of the particle motion of the shear wave. Since, as discussed

in Sec. 7.4.1, the current experimental setup excite shear waves with an even distribu-

tion of polarisations in all directions (circular symmetry), it has been assumed that an

equal amount of shear waves polarised both perpendicular and parallel to the applied

stress is excited. Because of the developmental differences of the resonance frequency

based on the polarisation of the particle motion (in the order of 0.05 % and -0.6 %

for particle motion perpendicular and parallel to the applied tension respectively for
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9. FURTHER WORK

the Group 3 steels in Figs. 5.23 and 5.24) the measured S3 shear resonance frequency

should thus split in two peaks differing by less than approximately 4 kHz. This is, as

discussed in Sec. 7.4.1, one order of magnitude less than the frequency resolution of the

FFT spectrum as discussed in Sec. 7.6.1, and the resonance peak is thus most likely a

superposition of the contributing effect from the two potential different polarisations of

the shear waves. To account for this superposition further work should investigate the

effect of polarisation and look into the possibility of designing the transducer setup in

such a way as to be able to control the polarisation of excited shear waves.

The evident discrepancy between the ratio of the two longitudinal resonance modes

(L1 and L2) to the shear resonance mode (S3), and its dependence on the applied plastic

elongation and/or thickness reduction might also be an area of further investigation. If

this is a consistent effect which can be explained by the theory behind the beam diffrac-

tion effect (e.g. [92] [93] [96] [97]), it could add valuable information to an inspection

application.

The seemingly large theoretical variety of sound velocity changes shown in Sec.

5.7.2, and thus, resonance frequency change due to applied elongation/stress for differ-

ent classes of steel types should be investigated. More specifically further work should

look into the possibility of establishing a characteristic mean resonance-response for a

specific steel through simple uniaxial testing. This kind of classification can also es-

tablish which class of steels have longitudinal and shear sound velocities that behave

in such a way that they enhance the measured relative change in the cl/cs ratio as

discussed in Sec. 7.7.

The uncertainties related to the currently used experimental setup have been dis-

cussed in Ch. 6. Future work may be able to reduce some of these uncertainties by

considering alternative setups. It may for example be possible to reduce the uncertainty

in the measured acoustic resonance frequencies across different tests by using a more

accurate rig to position the transducer in the exact same relative position to the test

specimen for each test. Another example may be to carefully control the incident angle

and with better characterisation of the beam angle it might be possible to control the

amount of shear waves with a certain particle motion polarisation. In this way it might

be possible to excite shear waves with particle motion in a predominate direction either
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in parallel or perpendicular to the applied tension, and thus control which shear mode

to be dominant.

The current experimental setup used a rectangular test specimen with a thickness

to width ratio of 7.5/50 = 0.15, assuming it behaved as an infinite plate. The effect

of this assumption should be investigated. For industrial application to pipelines it is

also important to investigate the effect of a plate with curvature, i.e. how the resonance

modes behave in a pipe shell as a function of the pipe radius.

Another area of investigation is the influence of a bi-axial stress state. The inves-

tigation of this work have focused on uni-axial stress states, but a pipline subjected

to internal pressure, temperature gradients, residual stress from installation, etc. will

have a combination of hoop and axial stresses. It is important to include the effect of

a bi-axial stress state to increase the confidence in real-world measurements.

The above mentioned fields of study are intended to gain knowledge about the acous-

tic response at any, but nevertheless at one specific, location. However, there may be a

lot of information and knowledge gained by looking at the collective measurement data

from a distribution of measurement points over the object under investigation. For

the ART method already developed for pipelines one should look into already estab-

lished measurement data and apply the methodology developed in this work to examine

distributed measurements. The thickness independence increases the possible applica-

tion of this method to combine measurements at neighbouring locations to extract

information about the distributed strain/stress state of a pipeline. Both concentration

of strain/stress around corrosion defects under operation as well as the difference in

strain/stress state over the cross section where the pipeline has been subjected to bend-

ing are examples of areas that could be further investigated, and where the industry

would benefit from more knowledge.

Finally, the conundrum related to the relatively large observed decrease in Young’s

modulus with increasing plastic strain and the lack of a corresponding decrease in

sound velocity needs more study. Note also that the test specimens have not been

loaded after the tests were run (i.e. after a latency) to check if any relaxation effects

could be observed to restore the Young’s modulus. The observed effect with respect to
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9. FURTHER WORK

the decreasing Young’s modulus has been outside the scope of this work, but it is an

interesting observation that would benefit from future studies.
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Appendix A

Detailed derivations

A.1 Lagrangian and Eulerian strain

This section is a reproduction of an excerpt from the lecture notes given in [114].

Using Fig. 2.2 the separation between two material points P and Q in the reference

configuration can be described by the vector

dX = (dX1, dX2, dX3) (A.1)

and correspondingly between the same material points p and q in the current configu-

ration as

dx = (dx1, dx2, dx3). (A.2)

The absolute distance between the material points can be taken as the absolute mag-

nitude of these vectors and are

dS ≡ |dX| =
√
dX · dX =

√
dXmdXm, m = 1, 2, 3 (A.3)

ds ≡ |dx| =
√
dx · dx =

√
dxidxi, i = 1, 2, 3 (A.4)

where the summation convention over repeated indices is used. Looking at the difference

between the square of these two quantities yields

(ds)2 − (dS)2 = dxidxi − dXmdXm, m, i = 1, 2, 3. (A.5)

For the Lagrangian description where x = x (X, t) and by using the chain rule Eq. (A.5)
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A. DETAILED DERIVATIONS

becomes

(ds)2 − (dS)2 = dxidxi − dXmdXm

=
∂xi
∂Xk

dXk
∂xi
∂Xl

dXl − dXmdXm

=

(
∂xi
∂Xk

∂xi
∂Xl

− δkl
)
dXkdXl

= 2EkldXkdXl (A.6)

where

Ekl ≡
1

2

(
∂xi
∂Xk

∂xi
∂Xl

− δkl
)

(A.7)

is the Lagrangian finite strain tensor defined in Eq. (2.15) [29], and δkl is the Kronecker

delta. Correspondingly using the Eulerian description where X = X (x, t) this becomes

(ds)2 − (dS)2 = dxmdxm − dXidXi

= dxmdxm −
∂Xi

∂xk
dxk

∂Xi

∂xl
dxl

= dxkdxlδkl −
∂Xi

∂xk

∂Xi

∂xl
dxkdxl

= 2ekldxkdxl (A.8)

where

ekl ≡
1

2

(
δkl −

∂Xi

∂xk

∂Xi

∂xl

)
(A.9)

is the Eulerian finite strain tensor defined in Eq. (2.15) [29]. To get the Lagrangian and

Eulerian strain tensors in terms of displacement we use the displacement introduced in

Eq. (2.3) on component form as

ui = xi −Xi. (A.10)

The partial derivatives of Eq. (A.7) for the Lagrangian description becomes

∂xi
∂Xk

=
∂ui
∂Xk

+ δik, (A.11)

and from Eq. (A.9) for the Eulerian description

∂Xi

∂xk
= δik −

∂ui
∂xk

. (A.12)
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Substituting with the relevant indices yields

Ekl =
1

2

[(
∂ui
∂Xk

+ δik

)(
∂ui
∂Xl

+ δil

)
− δkl

]
=

1

2

(
∂ui
∂Xk

∂ui
∂Xl

+
∂ul
∂Xk

+
∂uk
∂Xl

+ δikδil − δkl
)

=
1

2

(
∂ul
∂Xk

+
∂uk
∂Xl

+
∂ui
∂Xk

∂ui
∂Xl

)
(A.13)

and

ekl =
1

2

[
δkl −

(
δik −

∂ui
∂xk

)(
δil −

∂ui
∂xl

)]
=

1

2

(
δkl − δikδil +

∂ul
∂xk

+
∂uk
∂xl
− ∂ui
∂xk

∂ui
∂xl

)
=

1

2

(
∂ul
∂xk

+
∂uk
∂xl
− ∂ui
∂xk

∂ui
∂xl

)
(A.14)

which are the exact Lagrangian and Eulerian strain tensors presented in Eq. (2.16).

A.2 Constitutive relation

Recalling the stress power densities of Eq. (2.30) it can be shown that [22, ch. 3.5.1-2]

tr(SḞ) = Jtr(σΣ). (A.15)

From the restriction on the strain-energy density function W imposed in Eq. (2.32)

defining a conjugate stress and strain tensor pair, it can be shown that several such

conjugate pairs exist [22, ch. 3.5.2]. For the purpose of this work only the Lagrangian

strain E defined in Eqs. (2.15) and (2.16) and its conjugate, the 2nd Piola-Kirchhoff

stress tensor defined as [29, ch. 9.5][22, ch. 4.2.6]

T = S(F−1)
T (A.16)

are included here. This leads to the relation between the stress power densities as [22,

ch. 3.5.2]

tr(SḞ) = tr(TĖ). (A.17)

Using the same argument as when developing the constitutive relation between S and

F in Eq. (2.36) it is clear that [22, ch. 4.3.1]

T =
∂W

∂E
(E). (A.18)
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The further restriction that the strain-energy density function W should be objective

leads to [22, ch. 5.1.1]

W (F) = W (E). (A.19)

Combining Eqs. (A.16), (A.18), and (A.19) with the constitutive relation of Eq. (2.36)

yields

S ≡ ∂W

∂F
(F) = TFT =

∂W

∂E
(E)FT , (A.20)

and thus
∂W

∂F
(F) =

∂W

∂E
(E)FT (A.21)

A.3 Small-on-large

The objective of Sec. 2.2.2 is to derive the equation of motion for an additional distur-

bance u(1) in terms of the intermediate deformation u(0). Recalling the Lagrangian law

of motion in Eq. (2.46) rewritten in terms of the small-on-large coordinate vectors x′

as

Div S = ρ0χ̈(X, t), (A.22)

where x′ = χ(X, t), we first investigate the right-hand side of the equation. The total

displacement of the material points can be described by Eq. (2.47) as

u = u(0) + u(1), (A.23)

and the initial static and additional dynamic displacement in Eq. (2.48)

u(0) = x−X, u(1) = x′ − x, (A.24)

A.3.1 Time dependent part of the Lagrangian law of motion

First we look at the time dependent part of the Lagrangian law of motion in Eq. (A.22).

Rearranging the total displacement given by Eqs. (A.23) and (A.24) yields the right-

hand side of Eq. (A.22) as

ρ0ẍ
′ = ρ0

∂2

∂t2
(u(0) + u(1) + X)

= ρ0
∂2u(1)

∂t2
(A.25)
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under the assumption that both the unstressed state B0 and the initial deformation

state Bt are static and thus ∂2/∂t2(X) = ∂2/∂t2(u(0)) = 0 [24]. This is the time depen-

dent term of the small-on-large additional deformation that appears as the right-hand

side of Eq. (2.62).

A.3.2 Expansion of partial derivatives in X

In our further consideration of the left-hand side of the Lagrangian law of motion in Eq.

(A.22) an expansion of partial derivatives with respect to Xj in xj has been used. This

has been done to be able to divide the space dependent part of the Lagrangian law of

motion (Eq. (2.62)) into one part related to the static displacement u(0)k and one part

related to the additional dynamic displacement u(1)k as done in Sec. A.3.4.

Using the chain rule, and changing the variable through the total displacement in

Eqs. (A.23) and (A.24) the partial derivatives of Eq. (2.62) can be expanded in terms

of the static displacement u(0)k as [24]

∂

∂Xj
=

∂

∂xk

∂xk
∂Xj

=
∂

∂xk

∂

∂Xj

(
Xk + u

(0)
k

)
=

∂

∂xj
+
∂u

(0)
k

∂Xj

∂

∂xk

=
∂

∂xj
+
∂u

(0)
k

∂xj

∂

∂xk
+ · · ·

=
∂

∂xj
+ u

(0)
k,j

∂

∂xk
+ · · · (A.26)

A.3.3 Expansion of S

Considering the left-hand side of Eq. (A.22) we first look at how Sji from Eq. (2.55)

can be expressed by the shorter form in Eq. (2.56). Replacing the Lagrangian strain

tensor Ekl with the expansion given in Eq. (A.13) yields

223



A. DETAILED DERIVATIONS

Sβq =

(
∂uα
∂Xq

+ δαq

)[
1

2
Cαβkl

(
∂ul
∂Xk

+
∂uk
∂Xl

+
∂ur
∂Xk

∂ur
∂Xl

)
+

1

3!

{
1

4
Cαβklmn

(
∂ul
∂Xk

+
∂uk
∂Xl

+
∂ur
∂Xk

∂ur
∂Xl

)(
∂un
∂Xm

+
∂um
∂Xn

+
∂us
∂Xm

∂us
∂Xn

)
+

1

4
Cijαβmn

(
∂uj
∂Xi

+
∂ui
∂Xj

+
∂ur
∂Xi

∂ur
∂Xj

)(
∂un
∂Xm

+
∂um
∂Xn

+
∂us
∂Xm

∂us
∂Xn

)
+

1

4
Cijklαβ

(
∂uj
∂Xi

+
∂ui
∂Xj

+
∂ur
∂Xi

∂ur
∂Xj

)(
∂ul
∂Xk

+
∂uk
∂Xl

+
∂ur
∂Xk

∂ur
∂Xl

)}
+ · · ·

]

≈ 1

2
Cqβkl

(
∂ul
∂Xk

+
∂uk
∂Xl

)
+

1

2
Cqβkl

∂ur
∂Xk

∂ur
∂Xl

+
1

2
Cαβkl

(
∂uk
∂Xl

∂uα
∂Xq

+
∂ul
∂Xk

∂uα
∂Xq

+
∂ur
∂Xk

∂ur
∂Xl

∂uα
∂Xq

)
+

1

3!

{
1

4
Cqβklmn

(
∂uk
∂Xl

∂um
∂Xn

+
∂uk
∂Xl

∂un
∂Xm

+
∂ul
∂Xk

∂um
∂Xn

+
∂ul
∂Xk

∂un
∂Xm

+ O3 + O4

)
+

1

4
Cijqβmn

(
∂ui
∂Xj

∂um
∂Xn

+
∂ui
∂Xj

∂un
∂Xm

+
∂uj
∂Xi

∂um
∂Xn

+
∂uj
∂Xi

∂un
∂Xm

+ O3 + O4

)
+

1

4
Cijklqβ

(
∂ui
∂Xj

∂uk
∂Xl

+
∂ui
∂Xj

∂ul
∂Xk

+
∂uj
∂Xi

∂uk
∂Xl

+
∂uj
∂Xi

∂ul
∂Xk

+ O3 + O4

)
+O3 + O4 + O5

}
+ · · · (A.27)

Neglecting third order terms (O3) and higher in ∂ui/∂Xj and introducing the short

form given in Eq. (2.57)

Mijklmn = Cijklmn + Cijlnδkm + Cjnklδim + Cjlmnδik, (A.28)

it can be shown through rigorous expansion and grouping of the terms in Eq. (A.27)

that it can be written as [22][23]

Sji = Cijkl
∂uk
∂Xl

+
1

2
Mijklmn

∂uk
∂Xl

∂um
∂Xn

+
1

3
Mijklmnpq

∂uk
∂Xl

∂um
∂Xn

∂up
∂Xq

+ · · · (A.29)

which is the form used in Eq. (2.56).
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A.3.4 Space dependent part of the Lagrangian law of motion

Considering the left-hand side of Eq. (A.22) this can be expanded with use of the

expansions in Eqs. (A.26) and (A.29) as

∂Sji
∂Xj

≈ ∂Sji
∂xj

+ u
(0)
p,j

∂Sji
∂xp

≈ Cijkl

(
∂2uk
∂xj∂xl

+ u
(0)
q,l

∂2uk
∂xj∂xq

+ u
(0)
q,lj

∂uk
∂xq

)
+u

(0)
p,jCijkl

(
∂2uk
∂xp∂xl

+ u
(0)
q,l

∂2uk
∂xp∂xq

+ u
(0)
q,lp

∂uk
∂xq

)
+

1

2
Mijklmn

{(
∂2uk
∂xj∂xl

+ u
(0)
q,l

∂2uk
∂xj∂xq

+ u
(0)
q,lj

∂uk
∂xq

)(
um,n + u(0)r,num,r

)
+
(
uk,l + u

(0)
q,l uk,q

)( ∂2um
∂xj∂xn

+ u(0)r,n
∂2um
∂xj∂xr

+ u
(0)
r,nj

∂um
∂xr

)}
+u

(0)
p,j

1

2
Mijklmn

{
· · ·
}

+ · · · (A.30)

where the short form u
(0)
m,n ≡ ∂u(0)m /∂xn has been introduced.

If we now assume that the total stress Sij related to the total displacement dis-

placement uk can be split into two contributions, one which is caused by the initial

static displacement u(0)k , denoted S(0)
ji (u

(0)
k ), and one which is related to the additional

dynamic displacement u(1)k , denoted S(1)
ji (u

(0)
k , u

(1)
k ) yields

∂Sji(uk)

∂Xj
=
∂S

(0)
ji (u

(0)
k )

∂Xj
+
∂S

(1)
ji (u

(1)
k )

∂Xj
. (A.31)

Recalling the Lagrangian form of the Cauchy’s first law of motion (Eq. (2.24)) without

body forces (b = 0) and where the initial deformation of Bt is in equilibrium (i.e. that

the body is at rest (ẋ = 0)) ensure that

∂S
(0)
ji

∂Xj
= 0. (A.32)

Thus, expanding the total displacement as uk = u
(0)
k + u

(1)
k and disregarding any term

in Eq. (A.30) that solely depends on u(0)k (justified by reasoning that only the initial

displacement u(0)k contributes alone to S(0)
ij as well as any contribution to S(1)

ij must be

caused by an additional displacement u(1)k ) when the the initial state Bt is in equilibrium.
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Assuming further that third order or higer terms in u(1)m,n are insignificant leads to the

simplification of Eq. (A.30) as

∂Sji
∂Xj

≈ ∂Sji
∂xj

+ u
(0)
p,j

∂Sji
∂xp

≈ Cijkl

(
∂2u

(1)
k

∂xj∂xl
+ u

(0)
q,l

∂2u
(1)
k

∂xj∂xq

)
+ u

(0)
p,jCijkl

(
∂2u

(1)
k

∂xp∂xl

)

+
1

2
Mijklmn

{
∂2u

(1)
k

∂xj∂xl
u(0)m,n + u

(0)
k,l

∂2u
(1)
m

∂xj∂xn

}
=

(
Cijkl + Cijkqu

(0)
l,q + Cipklu

(0)
j,p

) ∂2u
(1)
k

∂xj∂xl

+
1

2

(
Cijklmn + Cijlnδkm + Cjnklδim + Cjlmnδik

){ ∂2u
(1)
k

∂xj∂xl
u(0)m,n + u

(0)
k,l

∂2u
(1)
m

∂xj∂xn

}
=

(
Cijkl + Cijkqu

(0)
l,q + Cipklu

(0)
j,p

) ∂2u
(1)
k

∂xj∂xl

+
1

2

{
Cijklmn(u(0)m,n + δkmδlnu

(0)
k,l ) + Cijln(u

(0)
k,n + δlnu

(0)
k,l ) + Cjnkl(u

(0)
i,n + δikδlnu

(0)
k,l )

+Cjlmn(δiku
(0)
m,n + δikδkmδlnu

(0)
k,l )

}
∂2u

(1)
k

∂xj∂xl

=

(
Cijkl + δikCjlqru

(0)
q,r + Crjklu

(0)
i,r + Cirklu

(0)
j,r + Cijrlu

(0)
k,r + Cijkru

(0)
l,r

+Cijklmnu
(0)
m,n

)
∂2u

(1)
k

∂xj∂xl

= Bijkl
∂2u

(1)
k

∂xj∂xl
(A.33)

where

Bijkl = Cijkl + δikCjlqru
(0)
q,r +Crjklu

(0)
i,r +Cirklu

(0)
j,r +Cijrlu

(0)
k,r +Cijkru

(0)
l,r +Cijklmnu

(0)
m,n.

(A.34)

Combining the time and space dependent part of the Lagrangian law of motion Eq.

(A.22) can thus be written as a linear equation for the additional disturbance u(1)(x, t)

through Eqs. (A.25) and (A.33) as [24]

Bijkl
∂2u

(1)
k

∂xj∂xl
= ρ0

∂2u
(1)
i

∂t2
, (A.35)

which is the form used in Eq. (2.62).
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A.4 Expansion of sound velocities

With the effective elastic moudli Bijkl of Eq. (A.34) and the elastic moduli of Eqs.

(2.71) and (2.72) for a hyperelastic isotropic material as [12]

Cijkl = λδijδkl + 2µIijkl, (A.36)

Cijklmn = 2C δijδklδmn + 2B(δijIklmn + δklImnij + δmnIijkl)

+
1

2
A(δikIjlmn + δilIjkmn + δjkIilmn + δjlIikmn), (A.37)

the longitudinal sound velocity c33 in Eq. (2.90) can be expanded using the uniaxial

homogeneous displacements in Eq. (2.79). The results of this expansion have been

presented in [25], and the detail of this expansion is shown here to complement this

result. Note that the symbol ρ is used for the undeformed density in [25] while it is

subscripted with 0 in this work for consistency. Note also that the first index of cij
is 3 in this work, while 2 in [25]. This is related to the selected propagation direction

perpendicular to the tension, which for an isotropic material is interchangeable.

Thus, for a longitudinal sound wave with propagation direction perpendicular to the

applied tension (in this work denoted c33 as described in Sec. 2.3) can on use of

u
(0)
i,j =

{
ei for i = j

0 for i 6= j
(A.38)

and e2 = e3, be expanded in e1 as

ρ0c
2
33 = B3333

= C3333

+C3311u
(0)
1,1 +�����C3312u

(0)
1,2 +�����C3313u

(0)
1,3 +�����C3321u

(0)
2,1 + C3322u

(0)
2,2 +�����C3323u

(0)
2,3

+�����C3331u
(0)
3,1 +�����C3332u

(0)
3,2 + C3333u

(0)
3,3 +�����C1333u

(0)
3,1 +�����C2333u

(0)
3,2 + C3333u

(0)
3,3

+�����C3133u
(0)
3,1 +�����C3233u

(0)
3,2 + C3333u

(0)
3,3 +�����C3313u

(0)
3,1 +�����C3323u

(0)
3,2 + C3333u

(0)
3,3

+�����C3331u
(0)
3,1 +�����C3332u

(0)
3,2 + C3333u

(0)
3,3 + C333311u

(0)
1,1 +������

C333312u
(0)
1,2 +������

C333313u
(0)
1,3

+������
C333321u

(0)
2,1 + C333322u

(0)
2,2 +������

C333323u
(0)
2,3 +������

C333331u
(0)
3,1 +������

C333332u
(0)
3,2 + C333333u

(0)
3,3

= C3333 + (C3311 + C333311)e1 + (C3322 + C333322)e2 + (5C3333 + C333333)e3

(A.39)
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= λ+ 2µ+ (λ+ 2C + 2B)e1 + (6λ+ 10µ+ 4C + 8B + 2A)e2

= λ+ 2µ+

[
(λ+ 2C + 2B)− λ

2(λ+ µ)
(6λ+ 10µ+ 4C + 8B + 2A)

]
e1

= λ+ 2µ+
(λ+ µ)(λ+ 2C + 2B)− λ(3λ+ 5µ+ 2C + 4B +A)

(λ+ µ)
e1

= λ+ 2µ+
−2λ2 − 4λµ− λA− 2λB + 2µB + 2µC

(λ+ µ)
e1

= λ+ 2µ− 2λ(λ+ 2µ) + λA+ 2(λ− µ)B − 2µC

(λ+ µ)
e1

= λ+ 2µ+ a33e1 (A.40)

where a33 is the acoustoelastic coefficient related to effects from third order elastic

constants used in Eq. (2.92). Similarly it can be shown that

ρ0c
2
3k = µ+ a3ke1, k = 1, 2 (A.41)

This section has thus shown the method of expansion of the sound velocities as a func-

tion of the initial elongation of a homogeneous uniaxial deformation for an hyperelastic

isotropic material. The expansion of the other acoustoelastic coefficients are not explic-

itly done here but follows imediately from the expansion of B1313 and B2323. Note also

that higher order acoustoelastic coefficients can be included by including higher order

terms in the expansion of Bijkl shown in App. A.3.4. Abiza et al. [25] have shown

that the acoustoelastic coefficients, bij , related to effects from fourth order elastic con-

stants (E,F,G,H) may also be important for some cases. Although they have not been

applied in this work, they have been included here for completeness together with the

corresponding expressions for the sound velocities.

ρ0c
2
33 = λ+ 2µ+ a33e1 + b33e

2
1, ρ0c

2
3k = µ+ a3ke1 + b3ke

2
1, k = 1, 2 (A.42)

b33 = −λµ(λ+ 2µ)

(λ+ µ)2
− λ(2λ2 − µ2)

2(λ+ µ)3
A− 3µ(3λ2 + 3λµ+ µ2)

(λ+ µ)3
B − µ(3λ2 + 4λµ+ 3µ2)

(λ+ µ)3
C

− λ2

4(λ+ µ)3
A2 − 2(3λ2 + 2λµ+ 2µ2)

(λ+ µ)3
B2 − 2µ2

(λ+ µ)3
C2 − 5λ2 + 2λµ+ 2µ2

2(λ+ µ)3
AB

−3λ2 + 2λµ+ 6µ2

(λ+ µ)3
BC − λ2 + 2µ2

2(λ+ µ)3
AC +

3λ(λ− 2µ)

2(λ+ µ)2
E +

3λ2 + 4µ2

(λ+ µ)2
F

+4

[
1 +

λ2

(λ+ µ)2

]
G+

12µ2

(λ+ µ)2
H (A.43)
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b31 = b13 − γ −
3κµ2

(λ+ µ)2
(A.44)

b32 = − λµ2

(λ+ µ)2
+
λ(3λ2 − µ2)
4(λ+ µ)3

A− 3µ(3λ2 + 2λµ+ µ2)

2(λ+ µ)3
B − µ3

(λ+ µ)3
C − λ2

8(λ+ µ)3
A2

−3λ2 + 2λµ+ 2µ2)

2(λ+ µ)3
B2 − 2λ2 + λµ+ µ2)

2(λ+ µ)3
AB − µ2

(λ+ µ)3
(A+ 2B)C − 3λµ

2(λ+ µ)2
E

+
µ2

(λ+ µ)2
F +

[
2 +

λ2

(λ+ µ)2

]
G (A.45)

where b13 is

b13 = 6µ+
9(λ+ 2µ)

8(λ+ µ)
A+

9µ

2(λ+ µ)
B − λ2

16(λ+ µ)3
A2 − 3λ2 + 2λµ+ µ2

2(λ+ 2µ)3
B2

−5λ2 + 2λµ+ 2µ2)

8(λ+ µ)3
AB − µ2

4(λ+ µ)3
(A+ 4B)C +

3µ(λ+ 2µ)

4(λ+ µ)2
E (A.46)

+
µ2

(λ+ µ)2
F +

[
2 +

λ2

(λ+ µ)2

]
G
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Appendix C

Figures

C.1 Instron measurements

Figs. C.1 and C.2 shows the recorded Instron displacement x1 from the 37 individual

test specimens which is the basis for the experimental average presented in Figs. 3.4

and 3.5 in Sec. 3.3.

Figure C.1: Recorded x1 displacement in 306 predefined bins for the 37 test
specimens

Fig. C.3 shows the results from the 37 individual test specimens which is the basis

for the experimental average presented in Fig. 5.3 in Sec. 5.2.
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Figure C.2: Recorded applied force in x1-direction in 306 predefined bins for
the 37 test specimens

Figure C.3: Average of calculated engineering stress S11 and elongation eInstron1

in 306 predefined bins
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C.2 Geometrical change

C.2 Geometrical change

C.2.1 Stress and strains from strain gauge measurements

Figs. C.4 to C.6 shows the measured strain from individual strain gauges placed on a

variety of test specimens. These plots are the basis of the reported experimental average

presented in Sec. 5.3, Figs. 5.4, 5.5, and 5.6 respectively.

Figure C.4: Measured e1 elongation from 7 strain gauges on 6 test specimens
plotted against σ11
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Figure C.5: Measured e2 elongation from 3 strain gauges on 2 test specimens
plotted against σ11

Figure C.6: Measured e3 elongation from 16 strain gauges on 13 test specimens
plotted against σ11
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C.2 Geometrical change

Fig. C.7 shows the ratio between stresses estimated by assuming the Poisson’s effect

is valid and either of the two transverse elongations e2 or e3 and the stresses estimated

based on both of the transverse elongations. The symmetry of this plot can be explained

by investigating the ratios from Eq. 3.16 as

(1− e2)(1− e3)
(1− e2)2

=
(1− e2)
(1− e3)

, and
(1− e2)(1− e3)

(1− e3)2
=

(1− e3)
(1− e2)

(C.1)

where it is easily seen that the first ratio is the inverse of the second ratio. The figure

include all the possible combinations of σ11(e2, e3), σ11(e2), and σ11(e3) from the only

two test specimens where strain gauges for all the principal directions (i.e. e1, e2, and

e3) were included (i.e. experiments #14 and #17).

Figure C.7: Ratio between σ11 stress estimated by e2 or e3 (Eq. (3.15)) and σ11
stress estimated by e2 and e3 (Eq. (3.14))

Figs. C.8 and C.9 shows the elastic and plastic part of the total measured elongation

in the x2- and x3-direction respectively. The corresponding plot for the elongation in

the x1-direction have been explained in Sec. 5.3 and shown in Fig. 5.8.
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Figure C.8: Elastic and plastic elongation (ee2, e
p
2) plotted against total measured

elongation e2

Figure C.9: Elastic and plastic elongation (ee3, e
p
3) plotted against total measured

elongation e3
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C.2 Geometrical change

C.2.2 ARAMIS stress and strains

As explained in Sec. 5.3.1 the ARAMIS results were deemed too uncertain to use in

this work. Thus the results from the ARAMIS measurements have only been included

here for reference. The plots below corresponds to those presented and explained in

Secs. 5.3 and C.2.1 for the strain gauge measurements.

Figure C.10: Average of emajor strain over 8 test specimens

Figure C.11: Measured emajor strain
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Figure C.12: Elastic and plastic elongation (eemajor, e
p
major) plotted against total

measured elongation emajor

Figure C.13: Average of eminor strain over 6 test specimens
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C.2 Geometrical change

Figure C.14: Measured eminor strain

Figure C.15: Elastic and plastic elongation (eeminor, e
p
minor) plotted against total

measured elongation eminor
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C. FIGURES

Figure C.16: Average of ez strain over 8 test specimens

Figure C.17: Measured ez strain
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C.2 Geometrical change

Figure C.18: Elastic and plastic elongation (eez, epz) plotted against total mea-
sured elongation ez

Figure C.19: Average of σmajor stress and emajor strain based on measured
contraction strains (eminor and ez)
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Figure C.20: Ratio between σmajor stress estimated by eminor or ez (Eq. (3.15))
and σmajor stress estimated by eminor and ez (Eq. (3.14))

C.3 ART

Figs. C.21 and C.22 shows the development of recorded frequencies for the L1 and S3

mode in the 13 individual test specimens and corresponds to the plot of the L2 mode

presented in Fig. 5.9. The experimental average over these measurements have been

presented in Figs. 5.11 and 5.12.
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C.3 ART

Figure C.21: Resonance frequency for the L1 mode

Figure C.22: Resonance frequency for the S3 mode
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C. FIGURES

Based on the L1 and S3 resonance frequencies in Figs. 5.11 and 5.12, their relative

change have been calculated and shown in Figs. C.23 and C.24. This is the basis for

the experimental average presented in Figs. 5.14.

Figure C.23: Relative resonance frequency change for the L1 mode

Figure C.24: Relative resonance frequency change for the S3 mode
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C.3 ART

The relative change of the ratio between the longitudinal modes L1 or L2 and the

shear mode S3 are the main results discussed in this work, and have been presented in

Sec. 5.6.2, Fig. 5.20. To illustrate the spread across the 13 acoustic tests the individual

ratios have been included here in Figs. C.25 to C.27.

Figure C.25: Relative change in ratio of resonance mode L1 and S3

Figure C.26: Relative change in ratio of resonance mode L2 and S3
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Figure C.27: Relative change in ratio of resonance mode L2 and L1

C.4 Simulation

Because of differences in the reported density and Lamé constants of the different steel

types simulated the absolute magnitude of the simulated initial unstressed sound veloc-

ities have a relative large variation (as already shown for the longitudinal sound velocity

in Sec. 5.7.1 Fig. 5.21). See Table. 4.1 and 4.4, and Eq. (2.97) for the relation between

the parameters and the initial unstressed sound velocity. The absolute magnitude of

the simulated shear sound velocities have thus just been included here for reference

(Figs. C.28 and C.29), and corresponds to Fig. 5.21 for the simulated longitudinal

sound velocity. The initial unstressed sound velocity of the steel applied in this work

have been measured to be approximately 3230 m/s, which fits reasonably well with the

main part of the steels presented here.
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C.4 Simulation

Figure C.28: Simulated sound velocity development of shear waves propagating
perpendicular to-, and polarised parallel to the applied stress (c32) based on
elastic properties given in Table 4.4

Figure C.29: Simulated sound velocity development of shear waves propagating
perpendicular to-, and polarised perpendicular to the applied stress (c32) based
on elastic properties given in Table 4.4
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C.5 Uncertainty

The figures presented in this section is used as basis for some of the results presented

in the uncertainty chapter (Ch. 6).

Figs. C.30, C.31, C.32, and C.33 are basis for the uncertainties realted to each mea-

surement bin of the measured L2 and S3 resonance mode frequencies and their relative

change respectively, and corresponds to Figs. 6.1 and 6.2 presented in Sec. 6.2 for the

L1 resonance mode. The maximum within these plots have been presented in Table 6.1.

Figure C.30: Standard uncertainty within each bin of the L2 resonance fre-
quency throughout each of the 13 tests
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C.5 Uncertainty

Figure C.31: Standard uncertainty within each bin of the S3 resonance fre-
quency throughout each of the 13 tests

Figure C.32: Standard uncertainty within each bin of the relative change in
the L2 resonance frequency throughout each of the 13 tests
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Figure C.33: Standard uncertainty within each bin of the relative change in
the S3 resonance frequency throughout each of the 13 tests

Figs. C.34 and C.35 corresponds to Fig. 6.6 discussed in Sec. 6.4.1.2.

Figure C.34: Standard deviation of e2 elongation across each bin from 3 strain
gauges on 2 test specimens
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C.5 Uncertainty

Figure C.35: Standard deviation of e3 elongation across each bin from 16 strain
gauges on 13 test specimens

Figs. C.36 and C.37 corresponds to Fig. 6.8 discussed in Sec. 6.4.1.2 relating to the

possible systematic underprediction of the strain gauge measurements.
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Figure C.36: Relative shear sound velocity development of shear waves propa-
gating perpendicular to the applied stress and polarised parallel to the applied
stress c31 based on elastic properties given in Table 4.4 and the measured elastic
strains with 0%, 2%, and 4% adjustment for possible systematic underestima-
tion.

Figure C.37: Relative sound velocity development of shear waves propagating
perpendicular to the applied stress and polarised perpendicular to the applied
stress c32 based on elastic properties given in Table 4.4 and the measured elastic
strains with 0%, 2%, and 4% adjustment for possible systematic underestima-
tion.
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C.5 Uncertainty

Figs. C.38 and C.39 corresponds to Fig. 6.6 discussed in Sec. 6.10.

Figure C.38: Standard deviation of eminor elongation over a circle of diameter
20 mm in the center of the test specimen for 6 ARAMIS measurements

Figure C.39: Standard deviation of ez elongation over a circle of diameter 20
mm in the center of the test specimen for 8 ARAMIS measurements

261



C. FIGURES

262



Appendix D

Tables

263



D
.
T
A
B
L
E
S

D.1 Thickness, width, and length measurement of the test specimens

The length (l1), width (l2), and thickness (l3) measurement of the test specimens before and after the tests have been measured

as described in Sec. 3.2, and the results have been presented in Table D.1. The first column include the test specimen number,

and whether ART, ARAMIS, and/or strain gauges (denoted sg) measurements have been performed during the test (when

no type is specified the test have been done without ART or ARAMIS measurments - i.e. only MessTek recording Instron

displacement and force).

Table D.1: Length (l1), width (l2), and thickness (l3) measurement of the test specimens

Test Variable mean std Relative
Type 1 2 3 4 5 6 7 8 9 [mm] [mm] std [%]
1 L3 7.5 7.49 7.51 7.51 7.51 7.52 7.52 7.52 7.5 7.51 0.011 0.14
- l3 7.34 7.33 7.35 7.35 7.35 7.38 7.38 7.39 - 7.36 0.022 0.29

L2 49.85 49.88 49.86 49.83 49.82 49.82 49.83 49.85 49.86 49.84 0.021 0.04
l2 48.9 48.91 48.97 48.93 49.02 48.82 48.83 48.78 - 48.90 0.081 0.17
L1 599 l1 - lg11 75.5 lg21 76 Lfree

1 447.5 lfree1 -
2 L3 7.52 7.52 7.52 7.51 7.5 7.5 7.5 7.52 7.52 7.51 0.010 0.13
- l3 7.35 7.33 7.33 7.32 7.3 7.31 7.29 7.31 7.35 7.32 0.021 0.29

L2 49.98 49.95 49.96 49.86 49.88 49.85 49.85 49.86 49.82 49.89 0.058 0.12
l2 49.01 48.66 48.55 48.68 48.8 48.56 48.56 48.54 48.6 48.66 0.155 0.32
L1 600 l1 623 lg11 73.5 lg21 76 Lfree

1 450.5 lfree1 473.5
3 L3 7.5 7.5 7.5 7.5 7.5 7.51 7.51 7.51 7.5 7.50 0.005 0.07
sg l3 7.35 7.35 7.37 7.37 7.37 7.38 7.36 7.38 7.41 7.37 0.018 0.25

L2 49.94 49.88 49.89 49.88 49.91 49.89 49.9 49.89 49.92 49.90 0.020 0.04
l2 49.01 48.95 49.01 49.03 49.03 48.97 49 49.04 49.07 49.01 0.036 0.07
L1 600 l1 617 lg11 75 lg21 75 Lfree

1 450 lfree1 467.0
4 L3 7.5 7.5 7.5 7.51 7.51 7.51 7.51 7.52 7.52 7.51 0.008 0.10

Continue on next page. . .
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Test Variable mean std Relative
Type 1 2 3 4 5 6 7 8 9 [mm] [mm] std [%]
sg l3 7.38 7.36 7.38 7.37 7.38 7.39 7.38 7.4 7.4 7.38 0.013 0.18

L2 49.84 49.84 49.83 49.86 49.83 49.89 49.89 49.86 49.87 49.86 0.023 0.05
l2 49.12 49.08 49.15 49.12 49.01 49.01 49.04 48.96 48.79 49.03 0.110 0.22
L1 600 l1 618 lg11 73 lg21 76 Lfree

1 451 lfree1 469.0
5 L3 7.51 7.52 7.5 7.5 7.51 7.49 7.5 7.5 7.52 7.51 0.010 0.14
sg l3 7.37 7.38 7.36 7.36 7.36 7.35 7.36 7.36 7.38 7.36 0.010 0.14

L2 49.87 49.85 49.82 49.88 49.86 49.84 49.83 49.83 49.86 49.85 0.020 0.04
l2 49 48.96 48.85 48.88 48.97 48.91 49.05 48.98 48.94 48.95 0.062 0.13
L1 600 l1 617 lg11 72 lg21 75 Lfree

1 453 lfree1 470.0
6 L3 7.49 7.49 7.5 7.5 7.5 7.51 7.51 7.51 7.51 7.50 0.008 0.11
sg l3 7.37 7.34 7.35 7.37 7.36 7.39 7.37 7.38 7.42 7.37 0.023 0.32

L2 49.86 49.86 49.89 49.88 49.84 49.85 49.85 49.83 49.82 49.85 0.022 0.04
l2 49.14 49.14 49.13 49.09 48.87 48.85 48.79 48.79 48.87 48.96 0.157 0.32
L1 600 l1 618 lg11 73.5 lg21 76 Lfree

1 450.5 lfree1 468.5
7 L3 7.52 7.53 7.52 7.51 7.51 7.49 7.49 7.51 7.52 7.51 0.014 0.18
sg l3 7.4 7.39 7.4 7.38 7.38 7.37 7.37 7.39 7.41 7.39 0.014 0.19

L2 49.84 49.85 49.88 49.86 49.82 49.82 49.82 49.82 49.87 49.84 0.024 0.05
l2 49.01 49.06 49.12 49.06 49.06 49.07 48.93 48.97 48.84 49.01 0.087 0.18
L1 600 l1 618 lg11 73 lg21 75 Lfree

1 452 lfree1 470.0
8 L3 7.52 7.52 7.51 7.51 7.5 7.49 7.49 7.5 7.51 7.51 0.011 0.15
sg l3 7.4 7.4 7.4 7.38 7.37 7.38 7.37 7.35 7.39 7.38 0.017 0.23

L2 49.84 49.86 49.86 49.85 49.88 49.88 49.84 49.86 49.85 49.86 0.015 0.03
l2 49.1 49.04 49.05 49.02 49.1 48.95 49.05 49.07 48.87 49.03 0.074 0.15
L1 600 l1 618 lg11 73.5 lg21 75.5 Lfree

1 451 lfree1 469.0
9 L3 7.49 7.49 7.5 7.51 7.51 7.52 7.52 7.52 7.5 7.51 0.012 0.16
sg l3 7.36 7.37 7.36 7.37 7.39 7.39 7.41 7.38 7.36 7.38 0.017 0.23

Continue on next page. . .
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Test Variable mean std Relative
Type 1 2 3 4 5 6 7 8 9 [mm] [mm] std [%]

L2 49.82 49.82 49.82 49.81 49.87 49.81 49.81 49.84 49.88 49.83 0.027 0.05
l2 48.93 49 48.98 49 49.03 49.06 49 48.99 48.9 48.99 0.048 0.10
L1 600 l1 618 lg11 73 lg21 76 Lfree

1 451 lfree1 469.0
10 L3 7.51 7.51 7.51 7.5 7.5 7.49 7.49 7.5 7.51 7.50 0.008 0.11
sg l3 7.38 7.38 7.39 7.38 7.36 7.38 7.38 7.37 7.39 7.38 0.009 0.13

L2 49.87 49.85 49.86 49.83 49.86 49.81 49.85 49.86 49.88 49.85 0.021 0.04
l2 49.03 49.01 49.05 49.11 49.11 49.06 49.03 49.04 49.02 49.05 0.037 0.07
L1 600 l1 618 lg11 74 lg21 75.5 Lfree

1 450.5 lfree1 468.5
11 L3 7.51 7.51 7.51 7.51 0.000 0.00
aramis l3 7.37 7.39 7.36 7.37 0.015 0.21

L2 49.87 49.83 49.83 49.84 49.84 0.019 0.04
l2 49.05 48.89 48.89 48.87 48.93 0.084 0.17
L1 600 l1 618 lg11 73.5 lg21 76 Lfree

1 450.5 lfree1 468.5
12 L3 7.51 7.5 7.48 7.50 0.015 0.20
aramis l3 7.35 7.39 7.35 7.36 0.023 0.31

L2 49.85 49.88 49.86 49.86 0.015 0.03
l2 48.98 48.91 48.97 48.95 0.038 0.08
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
13 L3 7.5 7.49 7.51 7.50 0.010 0.13
aramis l3 7.36 7.37 7.36 7.36 0.006 0.08

L2 49.84 49.85 49.83 49.84 0.010 0.02
l2 49.04 48.98 48.9 48.97 0.070 0.14
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
14 L3 7.5 7.5 7.51 7.50 0.006 0.08
aramis l3 7.37 7.37 7.37 7.37 0.000 0.00
sg L2 49.86 49.88 49.88 49.87 0.012 0.02

Continue on next page. . .
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Test Variable mean std Relative
Type 1 2 3 4 5 6 7 8 9 [mm] [mm] std [%]

l2 48.97 49.08 48.92 48.99 0.082 0.17
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
15 L3 7.51 7.5 7.52 7.51 0.010 0.13
aramis l3 7.36 7.35 7.39 7.37 0.021 0.28

L2 49.83 49.83 49.88 49.85 0.029 0.06
l2 48.92 48.9 49.05 48.96 0.081 0.17
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
16 L3 7.5 7.51 7.5 7.50 0.006 0.08
aramis l3 7.4 7.38 7.35 7.38 0.025 0.34

L2 49.96 49.95 49.91 49.94 0.026 0.05
l2 48.9 49.06 48.97 48.98 0.080 0.16
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
17 L3 7.5 7.5 7.5 7.50 0.000 0.00
aramis l3 7.36 7.35 7.37 7.36 0.010 0.14
sg L2 49.84 49.87 49.89 49.87 0.025 0.05

l2 48.86 49.03 48.98 48.96 0.087 0.18
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
18 L3 7.49 7.48 7.51 7.49 0.015 0.20
aramis l3 7.35 7.38 7.36 7.36 0.015 0.21

L2 49.87 49.85 49.82 49.85 0.025 0.05
l2 49.1 48.93 48.87 48.97 0.119 0.24
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
19 L3 7.49 7.5 7.51 7.50 0.010 0.13
aramis l3 7.36 7.35 7.36 7.36 0.006 0.08

L2 49.86 49.86 49.84 49.85 0.012 0.02
l2 49 48.94 48.95 48.96 0.032 0.07

Continue on next page. . .
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Test Variable mean std Relative
Type 1 2 3 4 5 6 7 8 9 [mm] [mm] std [%]

L1 600 l1 618 lg11 74 lg21 76 Lfree
1 450 lfree1 468.0

20 L3 7.5 7.49 7.5 7.50 0.006 0.08
aramis l3 7.37 7.37 7.35 7.36 0.012 0.16
sg L2 49.89 49.86 49.85 49.87 0.021 0.04

l2 49.05 49.1 48.86 49.00 0.127 0.26
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
21 L3 7.51 7.5 7.51 7.51 0.006 0.08
art l3 7.38 7.35 7.4 7.38 0.025 0.34

L2 49.86 49.85 49.88 49.86 0.015 0.03
l2 48.78 49.01 49.02 48.94 0.136 0.28
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
22 L3 7.49 7.5 7.49 7.49 0.006 0.08
art l3 7.37 7.35 7.38 7.37 0.015 0.21

L2 49.82 49.81 49.83 49.82 0.010 0.02
l2 48.81 49 49.06 48.96 0.131 0.27
L1 601 l1 618 lg11 74.5 lg21 76 Lfree

1 450.5 lfree1 467.5
23 L3 7.49 7.49 7.49 7.49 0.000 0.00
art l3 7.38 7.34 7.37 7.36 0.021 0.28

L2 49.87 49.87 49.81 49.83 49.89 49.85 49.89 49.82 49.85 49.85 0.029 0.06
l2 48.78 48.97 48.97 48.99 49.06 49.01 49.03 49.02 48.98 0.086 0.18
L1 600 l1 618 lg11 74.5 lg21 76 Lfree

1 449.5 lfree1 467.5
24 L3 7.49 7.49 7.5 7.49 0.006 0.08
art l3 7.38 7.35 7.39 7.37 0.021 0.28

L2 49.85 49.82 49.85 49.84 0.017 0.03
l2 48.72 49.08 49.11 48.97 0.217 0.44
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
Continue on next page. . .

268



D
.1

T
h
ickn

ess,
w
id
th
,
an

d
len

gth
m
easu

rem
ent

of
th
e
test

sp
ecim

en
s
. . . continue from previous page

Test Variable mean std Relative
Type 1 2 3 4 5 6 7 8 9 [mm] [mm] std [%]
25 L3 7.5 7.51 7.51 7.51 0.006 0.08
art l3 7.38 7.35 7.39 7.37 0.021 0.28

L2 49.82 49.82 49.81 49.82 0.006 0.01
l2 48.83 49.05 49.05 48.98 0.127 0.26
L1 600 l1 618 lg11 74 lg21 76 Lfree

1 450 lfree1 468.0
26 L3 7.49 7.5 7.5 7.50 0.006 0.08
aramiss l3 7.37 7.36 7.38 7.37 0.010 0.14

L2 49.82 49.86 49.82 49.83 0.023 0.05
l2 48.89 49.01 48.98 48.96 0.062 0.13
L1 600 l1 617 lg11 75 lg21 76 Lfree

1 449 lfree1 466.0
27 L3 7.51 7.52 7.51 7.51 0.006 0.08
aramiss l3 7.39 7.4 7.4 7.40 0.006 0.08

L2 49.84 49.84 49.86 49.85 0.012 0.02
l2 49.02 49.11 49.06 49.06 0.045 0.09
L1 600 l1 615 lg11 75 lg21 75 Lfree

1 450 lfree1 465.0
28 L3 7.49 7.49 7.48 7.49 0.006 0.08
aramiss l3 7.37 7.38 7.35 7.37 0.015 0.21

L2 49.84 49.84 49.85 49.84 0.006 0.01
l2 49.04 49.06 48.77 48.96 0.162 0.33
L1 600 l1 617 lg11 74 lg21 76 Lfree

1 450 lfree1 467.0
29 L3 7.49 7.5 7.49 7.49 0.006 0.08
aramiss l3 7.33 7.37 7.35 7.35 0.020 0.27
sg L2 49.83 49.85 49.83 49.84 0.012 0.02

l2 48.93 48.89 48.97 48.93 0.040 0.08
L1 600 l1 617 lg11 76 lg21 75 Lfree

1 449 lfree1 466.0
30 L3 7.49 7.5 7.51 7.50 0.010 0.13

Continue on next page. . .
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Test Variable mean std Relative
Type 1 2 3 4 5 6 7 8 9 [mm] [mm] std [%]
aramiss l3 7.36 7.37 7.36 7.36 0.006 0.08
sg L2 49.81 49.83 49.87 49.84 0.031 0.06

l2 49.08 48.95 48.9 48.98 0.093 0.19
L1 600 l1 618 lg11 76 lg21 75 Lfree

1 449 lfree1 467.0
31 L3 7.5 7.51 7.51 7.51 0.006 0.08
art l3 7.42 7.24 7.37 7.34 0.093 1.27

L2 49.85 49.84 49.82 49.84 0.015 0.03
l2 48.88 49.18 49.04 49.03 0.150 0.31
L1 600 l1 618 lg11 lg21 Lfree

1 - lfree1 -
32 L3 7.5 7.5 7.51 7.50 0.006 0.08
art l3 7.39 7.33 7.38 7.37 0.032 0.44
sg L2 49.85 49.82 49.82 49.83 0.017 0.03

l2 48.4 49.16 49.07 48.88 0.415 0.85
L1 600 l1 618 lg11 lg21 Lfree

1 - lfree1 -
33 L3 7.5 7.49 7.51 7.50 0.010 0.13
art l3 7.39 7.3 7.39 7.36 0.052 0.71

L2 49.8 49.85 49.83 49.83 0.025 0.05
l2 48.78 49.11 49.06 48.98 0.178 0.36
L1 600 l1 618 lg11 lg21 Lfree

1 - lfree1 -
34 L3 7.48 7.48 7.49 7.49 7.5 7.51 7.51 7.51 7.52 7.50 0.015 0.19
art l3 7.35 7.37 7.36 7.37 7.37 7.38 7.38 7.38 7.35 7.37 0.012 0.16
sg L2 49.81 49.81 49.84 49.81 49.82 49.81 49.82 49.88 49.81 49.82 0.023 0.05

l2 48.93 49.05 49.15 49.01 49.1 49.03 49.03 49.02 49.1 49.05 0.064 0.13
L1 600 l1 618 lg11 lg21 Lfree

1 - lfree1 -
35 L3 7.49 7.48 7.51 7.49 0.015 0.20
art l3 7.37 7.17 7.35 7.30 0.110 1.51

Continue on next page. . .
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Test Variable mean std Relative
Type 1 2 3 4 5 6 7 8 9 [mm] [mm] std [%]

L2 49.89 49.82 49.84 49.85 0.036 0.07
l2 45.83 49.01 49.03 47.96 1.842 3.84
L1 600 l1 623 lg11 lg21 Lfree

1 - lfree1 -
36 L3 7.5 7.5 7.48 7.49 0.012 0.15
art l3 7.39 7.31 7.37 7.36 0.042 0.57

L2 49.81 49.79 49.83 49.81 0.020 0.04
l2 48.68 49.02 49.09 48.93 0.219 0.45
L1 600 l1 618 lg11 75.5 lg21 75 Lfree

1 449.5 lfree1 467.5
37 L3 7.5 7.5 7.52 7.51 0.012 0.15
art l3 7.39 7.26 7.38 7.34 0.072 0.99

L2 49.81 49.83 49.79 49.81 0.020 0.04
l2 48.91 48.96 49.03 48.97 0.060 0.12
L1 600 l1 620 lg11 76 lg21 75 Lfree

1 449 lfree1 469.0
38 L3 7.5 7.5 7.5 7.50 0.000 0.00
art l3 7.39 7.06 7.4 7.28 0.193 2.66
sg L2 49.83 49.81 49.8 49.81 0.015 0.03

l2 46.83 49.07 49.02 48.31 1.279 2.65
L1 600 l1 620 lg11 75 lg21 76 Lfree

1 449 lfree1 469.0
39 L3 7.49 7.48 7.49 7.5 7.51 7.51 7.51 7.49 7.52 7.50 0.013 0.18
art l3 7.36 7.36 7.37 7.37 7.38 7.37 7.39 7.28 7.35 7.36 0.032 0.43
sg L2 49.81 49.82 49.79 49.79 49.82 49.81 49.8 49.79 49.8 49.80 0.012 0.02

l2 48.76 48.28 48.82 48.89 48.94 49.02 49.12 49.01 48.86 48.86 0.243 0.50
L1 601 l1 619 lg11 76 lg21 76 Lfree

1 449 lfree1 467.0
40 L3 7.5 7.5 7.49 7.50 0.006 0.08
art l3 7.36 7.33 7.33 7.34 0.017 0.24
sg L2 49.84 49.8 49.79 49.81 0.026 0.05

Continue on next page. . .
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Test Variable mean std Relative
Type 1 2 3 4 5 6 7 8 9 [mm] [mm] std [%]

l2 48.7 49.04 59.79 52.51 6.307 12.01
L1 600 l1 619 lg11 75 lg21 76 Lfree

1 449 lfree1 468.0
41 L3 7.49 7.49 7.5 7.49 0.006 0.08
art l3 7.37 7.26 7.35 7.33 0.059 0.80

L2 49.82 49.82 49.81 49.82 0.006 0.01
l2 48.35 48.98 48.72 48.68 0.317 0.65
L1 600 l1 620 lg11 76 lg21 75.5 Lfree

1 448.5 lfree1 468.5
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