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Abstract Cell-centered finite volume methods are prevailing in numerical simulation of flow in porous
media. However, due to the lack of cell-centered finite volume methods for mechanics, coupled flow and
deformation is usually treated either by coupled finite-volume-finite element discretizations, or within a
finite element setting. The former approach is unfavorable as it introduces two separate grid structures,
while the latter approach loses the advantages of finite volume methods for the flow equation. Recently,
we proposed a cell-centered finite volume method for elasticity. Herein, we explore the applicability of
this novel method to provide a compatible finite volume discretization for coupled hydromechanic flows
in porous media. We detail in particular the issue of coupling terms, and show how this is naturally
handled. Furthermore, we observe how the cell-centered finite volume framework naturally allows for
modeling fractured and fracturing porous media through internal boundary conditions. We support the
discussion with a set of numerical examples: the convergence properties of the coupled scheme are first
investigated; second, we illustrate the practical applicability of the method both for fractured and heter-
ogeneous media.

1. Introduction

Geomechanical response to subsurface exploration has long been accepted as important as evidenced
through subsidence associated with both petroleum and ground water extraction. Coupled hydromechani-
cal processes are furthermore emerging as increasingly important in a range of rapidly expanding subsur-
face engineering applications. These include, but are not limited to, CO2 storage, unconventional oil and
gas production, and geothermal energy recovery. Particular cases have gained recent attention: surface
uplift due CO2 injection has emerged as an appealing monitoring mechanism [Rutquist et al., 2010]; the
shale-gas revolution is enabled due to improved understanding of hydraulic fracturing [Cipolla et al., 2013];
and finally unlocking geothermal resources heavily relies on accurate understanding of fluid flow, heat
transfer, and mechanical response [Tester, 2006].

Common for most subsurface applications is that the fluids are of primary economic or environmental inter-
est. Thus, the simplest analysis, in terms of screening, research, and decision purposes, involves only flow
calculations [see, e.g., Celia and Nordbotten, 2009]. As additional physical complexity is required, we there-
fore frequently confront a situation wherein the mechanical response is desired in a context for which the
flow calculations are already established. This motivates us to seek ways to seamlessly integrated mechani-
cal response within the context of flow in porous media. We note that this is in contrast to problems related
to earthquakes, wave loading, and consolidation, where it is the material deformation which is of primary
interest, and the fluid flow is of secondary importance [Lewis and Schrefler, 1998].

Two strategies can be readily identified in order to couple mechanical responses and flow simulations. The
classical approach is to consider a separate framework for mechanical deformations, and couple it to the
flow calculations by passing appropriate variables. This can be implemented in both a sequential or iterative
setting. There has been recent work providing rigorous analysis of coupling schemes for hydromechanical
systems [see, e.g., Kim et al., 2011; Mikelic and Wheeler, 2012]. This approach is also standard for industrial
simulation, as evidenced by the software packages Visage and Eclipse, respectively, for mechanics and flow,
both marketed by Schlumberger. This classical approach has the advantage that established numerical
methods and software packages can be used for the two subproblems. However, the coupling of different
software packages and grid structures may lead to both excessive numerical diffusion, as well as slow con-
vergence of the coupling schemes [Pettersen, 2012].
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Herein, we advocate a different approach. Our perspective is that the mechanical response needs to be
within the same numerical and software frameworks as the flow calculations. This will allow equivalent grids
and parameter representations to be used in the two parts of the problem, moreover it avoids the use of
iterative coupling schemes, thus facilitating simultaneous and fully coupled solution strategies [Haga, 2011].
Fully coupled simulation has previously been recognized to have superior accuracy [see, e.g., Lewis and
Schrefler, 1998]; however, it has to the best of our knowledge primarily been implemented with node-
centered or face-centered variables for the mechanical deformation (e.g., finite elements [Lewis and Schre-
fler, 1998; Kim et al., 2011; Haga, 2011] or face-centered finite volume [Lemaire, 2013]). An example of node-
centered variables for deformation and cell-centered variables for flow is also analyzed in Wheeler et al.
[2013]. Since the majority of flow and transport simulation in porous media relies on a cell-centered finite
volume structure, we advocate that coupled hydromechanical simulations must be resolved within a con-
sistent framework utilizing cell-centered finite volumes also for the deformation problem. Utilizing finite vol-
ume methods also for elasticity gives the practical advantage of equivalent data structures for flow and
deformation, which simplifies both the design of linear and nonlinear solvers, as well as the inclusion of
irregular domain features such as fractures (as we will discuss later). A similar idea was briefly considered in
the petroleum literature [Shaw and Stone, 2005; Stone et al., 2000], using finite volume methods similar to
those proposed in Jasak and Weller [2000]. Their approach is however not suited to accurately handle dis-
continuities [Liu et al., 2004].

A cell-centered discretization for mechanics was recently introduced by the author for the purpose of geo-
mechanical applications (J. M. Nordbotten, 2013, Cell-centered finite volume discretizations for deformable
porous media, submitted to International Journal of Numerical Methods in Engineering). Herein, we explore
the coupling of this novel discretization with a compatible discretization for flow. This involves in particular
identifying appropriate and consistent treatment of the coupling terms between mechanics and flow. A par-
ticular feature of cell-centered variables is furthermore that they represent the mean solution within the
grid cell, and as such do not explicitly provide a spatially continuous approximation. While this may be a
deficiency in some applications, we show that this allows for a particularly simple approach to modeling
fractured materials.

As a comment, we note that it is not appropriate in the context of fluid flow and deformation in heterogene-
ous porous media to consider finite volume methods as simply an interpretation of finite element methods.
Indeed, the notion of conservative postprocessing of finite elements [Hughes et al., 2000] does not align with
the discontinuous material coefficients prevailing in porous media, and arithmetic means are recovered
where harmonic means are desired [Babuska and Osborn, 1983]. The treatment of fractures discussed below
would also not adapt naturally to such an approach. On the other hand, deriving finite volume methods by
exploiting reduced integration for mixed finite element methods [Russell and Wheeler, 1983] is complicated
by the lack of simple mixed finite element methods for elasticity [Arnold and Winther, 2002].

We structure the manuscript as follows. In the next section, we state the model equations, including the
description of fractures as internal boundary conditions. This is followed in section 3 by the identification of
appropriate coupling between flow and deformation in a cell-centered finite volume framework. We vali-
date our approach in section 4 by comparison to analytical solutions. These validations are supplemented
in section 5 by examples containing prototypical problems from applications. Finally, in section 6, we sum-
marize and conclude the paper.

2. Governing Equations

We will model the porous medium as a poroelastic material according to Biot’s equations [Biot, 1941]. Fur-
thermore, we emphasize the inclusion of fracture faces in the form of internal boundaries of the material. In
general, fluid flow equations can be considered within the fractures, we will herein, for simplicity, make the
approximation that the potential drop within a (connected) fracture system is low, such that the fluid poten-
tial is constant within any connected fracture network. This conceptualization leads to the model equations
as given below. For a more complete description, see, e.g., Lewis and Schrefler [1998].

2.1. Equations for the Porous Material
For concreteness, we will denote our model domain as X. For this, and other domains, we denote the
boundary using the symbol @, such that the boundary of our model domain is given as @X.
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Acceleration is given by the imbalance of mechanical forces according to Newton’s law for any subdomain
x of our model domain which is fixed in time [Temam and Miramville, 2000],

ð
x

qs
@2

@t2
D dV5

ð
@x

TndS2

ð
x

qsg dV (1)

Here we denote the material deformation as D, the force exerted on a surface with normal vector n as Tn, the
density of the material as qs, and finally the forces acting on the bulk are given by the gravitational vector g.

Similarly, the accumulation of fluid mass for any subdomain is given by the imbalance of fluid mass flowing
through the boundary and the internal sources or sinks,

d
dt

ð
x

m dV1

ð
@x

qf wn dS5

ð
x

q dV (2)

Here fluid mass is denoted m, the fluid flux through a surface with normal vector n as wn, the density of the
fluid qf, and finally sources (or sinks) are denoted by q.

For both the fluid flux and the surface forces, a geometric argument (Cauchy’s first law) allows us to write
the dependency of the surface terms on the normal vector as a linear function, such that we have both

Tn5r � n and wn5w � n (3)

The variables r and w are known as the Cauchy stress tensor and the Darcy flux, respectively.

Equations (1) and (2) represent the fundamental balance laws from which the finite volume methods are derived.
Both for the analysis of the equations, as well as to derive the finite element discretizations, it is common to con-
sider the differential representation of the system. For balance of momentum, the differential equation is

qb
@2

@t2
D5 r � r2qbg (4)

while for conservation of mass

@m
@t

1r � qf wð Þ50 (5)

In the continuation, we will work with equations (1–3) directly, without explicitly considering the differential
equations (4) and (5).

The conservation laws given above are complemented by constitutive laws. Here we consider only linear
constitutive laws, corresponding to small deformations of an elastic porous material with slow flow of the
fluid. Then for the solid, Biot introduced the fluid pressure as an addition to Hooke’s law, to obtain that the
stress is linearly dependent on both the displacement gradient and the fluid pressure p

r5C : rD2apI (6)

The fourth-order tensor C is the stiffness tensor of the material, and a is Biot’s coupling coefficient.

For the fluid, the constitutive law is given by Darcy as:

w52Kðrp2qf gÞ (7)

We will abuse convention, and refer to the linear coefficient in Darcy’s law as the permeability, suppressing
the dependence on the fluid viscosity. Finally, we note that in a porous medium the fluid mass is
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proportional to the density and porosity, where the former is modeled as a function of pressure and the lat-
ter as a function of the compression of the solid,

m5qf pð Þ/ r � Dð Þ (8)

Equations (1–3) together with equations (6–8) form a complete system of equations for flow and deforma-
tion of porous media. Our exposition has neglected the nuances which appear between Eularian and
Lagrangian coordinates, and it is therefore implicit that this formulation is only valid in the limit of small
deformations. For increasing deformations, the transformation of variables induced by the deformation D
itself becomes of importance; this is beyond the scope of the current paper.

2.2. Boundary Conditions and Inclusion of Fractures
Fractures physically represent internal discontinuities in the porous material, and may be subject to other
governing equations than those governing the flow and deformation within the material. Here we will only
consider two types of fractures: closed fractures and open fractures. These will both be included as internal
boundary conditions within the domain, but are distinguished by different boundary conditions.

To be precise, we can without loss of generality assume that the domain contains a single connected frac-
ture system (multiple fractures systems are handled equivalently). A fracture system may contain multiple
fractures, but by definition each fracture system is connected. Let the external boundary of the domain Xbe
denoted C, and the boundary between the fracture and the domain be denoted c. For an open fracture, the
boundary c will encompass a volume, while for a closed fracture c will be a simple surface.

To solve the equations given in section 2.1, we require boundary conditions on the full boundary of the
domain @X5C [ c. For the outer boundary C, we assume that suitable boundary conditions have been cho-
sen. Out interest is the boundary conditions for the fracture system c.

2.2.1. Closed Fractures
We define closed fractures as closed surfaces c, which are either permeable or impermeable to flow, but are
in full contact from a mechanical perspective. Thus, denoting by superscripts 1 and 2 the variables on the
two sides of the internal boundary, with flux continuity (Neumann) boundary conditions for the fluid:

w1
n 5 w2

n (9)

Where for the impermeable fractures we have w1
n 5w2

n 5 0, while for permeable fractures, we have the
additional constraint of continuity of pressure p1 5 p2 (although note that for slightly permeable fractures
there will in general be a jump in pressure proportional to the flux wn). We complement the fluid conditions
by continuity in displacement and surface forces for the solid:

T1
n 5T2

n ; D15D2 (10)

Considering the closed fractures in the context of the continuity equations (1) and (2), we note that permea-
ble closed fractures are themselves simply expressions of conservations (and thus do not affect the system),
while impermeable closed fractures represent an impermeable internal surface to the fluid flow. Our main
interest will therefore be in open fractures.

2.2.2. Open Fractures
We define open fractures as surfaces c enclosing a fluid volume. We will assume for simplicity that the varia-
tion in fluid potential within this volume is negligible. This assumption is valid in the limit of fluids or gases
of low viscosity—the extension to more complex models of flow in the fracture is possible [see, e.g., Sousa
et al., 1993]; however, since the focus of this contribution is on the hydromechanical coupling in the porous
medium, we will prefer to keep the simplest model for fluid flow in the fractures. Denote thus the constant
fluid potential within the fracture as wf. The fluid flow equation then assumes a Dirichlet boundary condi-
tion on c
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p5wf 1qgz (11)

Furthermore, the solid stress is carried purely by the fluid pressure at the boundary

Tn52 wf 1qgzð Þn (12)

In applications where a pressure-controlled well injects directly into a fracture network (which will some-
times be the case for hydraulic fracturing), the fracture potential wf will be known. Otherwise, the fracture
itself will satisfy the conservation law (4), which provides a closure relationship for wf.

3. Finite Volume Approximation of Coupling Terms

We seek to develop a finite volume approximation for the equations of hydromechanics as outlined in sec-
tion 1. We will achieve this goal by exploiting standard finite volume discretizations for the mass balance
equations, coupled with a recent finite volume discretization for the deformation. The key issue in this sec-
tion will be to properly understand the discrete representation of the coupling terms.

3.1. Finite Volume Setting
To be precise, let xi represent the cells of a nonoverlapping partition of the domain. Then equations (1) and
(2) must hold for very cell, and we obtain the balance of mechanical forces for each cell i as

ð
@xi

ðC : EÞ � n dS1

ð
xi

qbg dV5

ð
@xi

apn dS (13)

Here we have used Biot’s stress tensor, and split the surface integral to emphasize the structure. The left-
hand side of (13) is thus the standard terms appearing with the stress tensor from Hook’s law, while the sur-
face integral on the right-hand side of the equation represents the coupling between the mechanical defor-
mation and the fluid.

Before we state the conservation of mass, we note that from equation (8) we have as a consequence of the
chain rule

@m
@t

5/qf cf
@p
@t

1qf a
@

@t
ðr � DÞ (14)

Here cf � 1
qf

@qf
@p is the compressibility of the fluid, while the porosity is assumed to only be a function of the

trace of the strain, hence a5 @/
@ðtr EÞ. For the conservation of fluid mass, we then obtain

ð
xi

/qf cf
@p
@t

1qf a
@

@t
ðr � DÞ dV1

ð
@xi

qf w � n dS5

ð
xi

q dV (15)

In the quasi-linear regime (or within an iterative solver for the fully nonlinear system), this simplifies to the
model equation for mass balance

/qf cf
d
dt

ð
xi

pdV1qf

ð
@xi

w � n dS2

ð
xi

q dV52qf a
d
dt

ð
xi

r � D dV (16)

Again we have reorganized the equation to emphasize the structure. The left-hand side terms of equation
(16) are the standard terms appearing in discretizing flow in porous media. The volume integral on the
right-hand side represents the coupling with the mechanical deformation arising from the change in vol-
ume available for the fluid.

Finite volume approximations to equation (13) and (16) are usually written in terms of cell-average and
face-average quantities. We define pi, Di, and qi as the cell-average values of p, D, and q, respectively. For
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the face @xi;j separating cells i and j, we further define the face-averaged fluid fluxes and mechanical
stresses as

fi;j �
1
j@xi;j j

ð
@xi ;j

w � n dS and ~T i;j �
1
j@xi;jj

ð
@xi;j

ðC : EÞ � n dS (17)

Note carefully that ~T i;j only represents the mechanical component of the face-average force.

With these definitions, the model equations (13) and (16) can be stated as

X
j

j@xi;jj
jxij

T~i;j1qbg5a
1
jxij

ð
@xi

pn dS (18)

and

/qf cf
dpi

dt
1qf

X
j

j@xi;jj
jxi j

fi;j2qi52qf a
d
dt

1
jxij

ð
@xi

D � n dS

� �
(19)

It is important to note that equations (18) and (19) are exact expressions of conservation.

Local finite volume approximations to the fluxes fi;j are well known in literature. The inconsistent two-
point flux (using only the values of pi in the cells neighboring the face) is most widely used [Aziz and Set-
tari, 1979], while consistent approximations have received significant attention the last two decades [see,
e.g., Aavatsmark, 2002; Aavatsmark et al., 1996; Klausen and Winther, 2006]. Herein we chose to apply the
multipoint flux approximations (MPFA) as described in Aavatsmark [2002]. In contrast, local finite volume
approximations to normal stress have not received similar attention, since finite element approximations
or node-centered finite volume methods have generally been preferred for deformations [Lewis and
Schrefler, 1998]. As noted in the introduction, the MPFA methods have recently been extended to normal
stress, where they are referred to as multipoint stress approximations (MPSA; J. M. Nordbotten, submitted
manuscript, 2013).

We will adopt the MPFA and MPSA stencils for the internal fluxes and surface forces appearing in equa-
tions (18) and (19). This approach is also applicable for Dirichlet boundary conditions on both internal
and external boundaries. For the fluxes and surface forces which align with internal or external Neumann
boundaries, we will explicitly use the boundary conditions directly in equations (18) and (19). Note that
the choice of discrete flux and surface force representations inherit the limitations associated with these
methods. For the MPFA methods, limitations are well understood, with the most general argument
established by Agelas and coworkers [Agelas et al., 2010]. For the MPSA method, similar analysis is not
yet complete due to the added challenges associated with the nontrivial kernel for the elasticity
operator.

It remains to obtain the coupling terms on the right-hand side of these equations. Fortunately, both pres-
sures and displacements are available at cell faces as part of the MPFA and MPSA calculations. In both
instances, these expressions have received little attention, since the MPFA and MPSA stencils have not been
considered for coupled hydromechanics before. We will therefore review them below.

3.2. Approximation of Coupling Terms
We will approximate the coupling terms in the framework of the MPFA and MPSA methods. To this aim,
let us first briefly review the main idea behind these methods, while referring to other publications for
details (J. M. Nordbotten, submitted manuscript) [Aavatsmark, 2002]. We will in the following few para-
graphs for simplicity only refer to the scalar discretization (MPFA), as the situation for the vector equation
is analogous.

Considering a grid as illustrated by solid black lines in Figure 1, where cell centers are denoted xi. The MPFA
method then utilizes a concept of a dual grid, whose cells are termed ‘‘interaction regions,’’ as illustrated by
gray solid lines. Note that by considering the intersection of the primal and dual grid each cell will be
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subdivided into multiple subcells,
while each face will be subdi-
vided into two (in 2-D) or multi-
ple (in 3-D) subfaces. The key
purpose of the MPFA methods is
now to obtain explicit expres-
sions of the fluxes for each
subface.

For concreteness consider face
@x1;2, which is in Figure 1 further
subdivided into two subfaces. To
calculate the flux (normal stress)
across the upper subface, the
MPFA O(g) methods utilize the fol-
lowing local calculation. Within
each subcell, the pressure (dis-
placement) is allowed to vary line-
arly. In 2-D, this gives rise to 3
degrees of freedom in each sub-

cell. These degrees of freedom are constrained by matching the pressure in the cell center xi, and at one point
on each subface, denoted ~x i;j;k . Furthermore, using Darcy’s law, also flux is forced to be continuous across
each subface. For the scalar equation, this leads to a solvable local system on most geometries [Aavatsmark,
2002], while for the vector equation, additional constraints are imposed (J. M. Nordbotten, submitted manu-
script). We comment that the variable g refers to the position of the continuity points for pressure (displace-
ment), and can in general be different from cell to cell [see, e.g., Nordbotten et al., 2007] or between the scalar
and vector discretizations. The choice of g can in special cases lead to a higher-order methods [Edwards and
Rogers, 1998], and more generally impacts the monotonicity of the discretization [Nordbotten et al., 2007].

Solving the local systems as outlined above give explicit expressions for the subface fluxes (normal stresses)
as functions of the nearby cell-center pressures (displacements). This is the traditional use of the MPFA
methods, which then determines the linear systems arising on the left-hand side of equations (18) and (19).

The above local calculation yields as an intermediate calculation the local expressions for the subface pres-
sures at the continuity points. Note that since Darcy’s law was used in the local calculation, this local expres-
sion for the subface pressure is not a simple geometric average of the nearby cell-center values, but also
honors the effect of anisotropy and local heterogeneity in permeability. Using these subface pressures, the
surface integral appearing in the right-hand side of equation (18) can readily be approximated with the con-
tinuity points taking the role of quadrature points for the integral.

Similarly, for the vector case, the displacement at continuity points is a consequence of the local calcula-
tions. As in the scalar case, the resulting expressions are not simply dependent on the geometry of the grid,
but also honor the physics as expected from Hooke’s law. As in the scalar case, the surface integral appear-
ing in the right-hand side of equation (19) can readily be approximated.

The fact that the calculation of the coupling terms are dependent on the underlying constitutive laws,
implies that even though the coupling terms are formally adjoint operators for the continuous problem,
their matrix representations in the discrete setting will in general not be negative transposes. This forms a
contrast to pure finite element discretizations for hydromechanics, but is similar to the situation for some of
the coupled schemes as described in the introduction.

3.3. Application to Fracturing Materials
As discussed in section 2, we consider fractures as boundaries of the poroelastic domain. The finite volume
methods of the preceding section naturally accept both Dirichlet and Neumann boundary conditions, and
as such static fractures pose no particular problems [Aavatsmark, 2002].

Of interest are also materials where the fractures evolve over time. We consider the setting where the frac-
ture evolution is governed by a prescribed fracture mechanical model at a local scale [see, e.g., Boone et al.,

Figure 1. Sketch of key concepts for MPFA and MPSA discretizations.
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1986], and are concerned with how this fracture evolution can be combined with the overall poroelastic dis-
cretization. In this setting, there are two main classes of models. In applications where the precise structure
of the fracture is important, significant (adaptive) grid refinement will be desired around the fracture tip. As
the grid is locally updated for each time step, this is from a spatial discretization perspective equivalent to
the problem with static fractures. The finite volume methods utilized herein are well adapted to grid refine-
ment as required in this class of models [Aavatsmark et al., 2010]. However, the novelty of this contribution
does not lie in adaptive grid refinement.

The second class of models concerns applications where the fractures are part of a much larger domain of
interest, the grid is typically not refined around the individual fractures, and thus the grid is conceptually
static despite the changing fractures. This is the case where the present methodology has particular
advantages.

For standard methods for solid mechanics, such as finite elements, the displacement is by choice of function
spaces inherently continuous. To accommodate fractures, either nodes must be ‘‘doubled,’’ or special elements
are introduced, with fractures propagating internally to the elements of the grid. One such concept is the
extended finite elements [Sukumar et al., 2000]. While this is conceptually straight-forward, practical problems
arise when multiple fractures are present within the same element, especially for general grids in 3-D. Further-
more, in both the above approaches the number of degrees of freedom increases during the simulation, leading
to additional work in updating the data structures for the linear solvers in time-dependent problems [Sukumar
et al., 2000]. While extended finite elements have been extended to fluid flow in fractures [e.g., Fumagalli, 2012],
this author is not aware that full hydromechanical simulation has been undertaken with this methodology.

In the finite volume setting, fractures naturally coincide with the cell faces, since no explicit continuity is
required by the discretization. This allows us to consider two possible models for time-evolving fractures.
The simplest approach is to constrain fractures to follow existing faces of the original discretization. This has
the advantage that the number of unknowns in the discretization remains unchanged during the simula-
tion, and only the discretization where the fracture has moved needs to be updated. The second approach
is to allow fractures to intersect a grid cell, effectively splitting it into two parts. This approach is conceptu-
ally similar to the extended finite elements, and thus provides limited benefit in terms of using a finite vol-
ume discretization.

In the results section, we will therefore emphasize with numerical examples simulations wherein the frac-
tures that are allowed to evolve along the existing faces of the grid, allowing the grid structure to remain
unchanged for the full duration of the simulation.

3.4. Prototypical Discretization
We close the section with recalling prototypical discretization of poroelasticity, based on the spatial stencils
discussed in sections 3.1 and 3.2 [see also Lewis and Schrefler, 1998]. We refer to the standard finite volume
discretization matrices as MD and Mp for stress and fluid flux, respectively. Similarly, we refer to the coupling
terms as Mgrad and Mdiv for the coupling terms on the right-hand sides of equations (18) and (19), recogniz-
ing that the continuum limits these terms, represent the gradient and divergence, respectively. We consider
a single-step discretization (so-called h-Euler) of the temporal term, as is standard in industrial applications,
after which the linear system can be expressed as

MD 2aMgrad

aMdiv bV1hDtMpð Þ

 !
Dn

h

pn
h

 !
5r (20)

Here we have used b5/cf , and represented all right-hand side entries by r, which for the purpose of time
integration is defined as

r �
2gh

Dtqh

 !
1

0 0

aMdiv bV2 12hð ÞDtMpð Þ

 !
Dn21

h

pn21
h

 !
(21)

The superscripts on the solution variable indicate the time level, and the discretization parameter h is
related to the time discretization. The customary choices are h5 0; 1

2 ; 1
� �

, which yield the so-called explicit,
midpoint, and implicit discretizations, respectively.

Water Resources Research 10.1002/2013WR015179

NORDBOTTEN VC 2014. The Authors. 4386



In the general setting of heterogeneous parameters, the general structure of the system will remain the
same. As such we will for simplicity frequently refer to equation (20), while keeping in mind the more gen-
eral system given by equations (18) and (19).

Finally, we point out again that when arising from a finite element discretization (20) will be symmetric
whenever the stress tensor is symmetric, as both MD and Mp are symmetric and also Mdiv 52Mgrad . As
noted previously in the section, none of these hold for finite volume discretizations, which lead to a (weakly)
nonsymmetric system (20). This has three immediate implications. First, the stability of the discretization
with respect to spatial grid refinement cannot be immediately established, and we will therefore verify the
convergence of the coupled discretization numerically in the next section. Second, the linear solvers chosen
for (20) must be designed for nonsymmetric systems (e.g., Generalized Minimal Residual (GMRES)). Finally,
the time discretization may for certain problems have a lower bound on the time step in order to obtain sta-
bility [Lewis and Schrefler, 1998]. Unconditionally stable finite volume discretizations for poroelasticity is a
topic of ongoing research [see, e.g., Lemaire, 2013]; at present, no results are known for cell-centered meth-
ods on general grids.

4. Numerical Validation

Finite volume discretizations in general are well established and validated. Of particular relevance for the
current manuscript are theoretical results proving, in various settings, the convergence of the finite volume
discretizations for the fluid problem [see, e.g., Klausen and Winther, 2006]. Both the fluid and mechanical dis-
cretizations have also been validated for a wide range of heterogeneities and grid distortions in, e.g.,
Aavatsmark et al. [2010], Eigestad and Klausen [2005], and J. M. Nordbotten (submitted manuscript). The pur-
pose of this section is therefore restricted to novel issues, which may arise from the coupling. In particular,
we will verify that (a) the discretization of the coupling terms found on the right-hand sides of equations
(18) and (19) are convergent, and (b) that the fully coupled system on the form given in equation (20) is sta-
ble and convergent. Since our primary interest is in the spatial discretization, we will in both cases (a) and
(b) restrict ourselves to considering refinements of the spatial grids. Here and in the examples in section 5,
we specify the MPFA method as the so-called O(0) method, and the MPSA method as the generalized O-
method.

Recognizing the importance of unstructured grids in order to capture the complex geometries associated
with geological porous media, all convergence and stability tests are conducted with both structured (quad-
rilateral) and unstructured grids (triangles and general polygons).

We utilize the unit square where suitable analytical solutions can be defined by use of elementary differen-
tiable functions. In particular, we will for these tests use the analytical solution

Dðx1; x2Þ5
x1 12x1ð Þsin 2px2ð Þ

sin 2px1ð Þsin 2px2ð Þ

 !
(22)

and p5D � e1. These functions satisfy zero Dirichlet boundary conditions, and the problem is thus driven by
internal source-sink terms (for the flow equation) and body forces (for the momentum equation).

We consider three types of grids, square, triangular, and general polygons. The square grid forms a regular
lattice. The triangular grid is formed by subdividing each square of a perturbed regular lattice along the
shortest diagonal. Finally, we obtain the unstructured grid by taking the dual grid of the triangular grid.
Examples of triangular and unstructured grids at the third level of grid refinement are given in Figure 2. For
each grid, we assign the characteristic grid density as the square root of the number of grid cells. This gen-
eralizes the notion of number of grid cells in each dimension. To clearly identify the behavior of the
method, we also considered the case where the coupling terms are omitted (by setting a 5 0 in equation
(20)); however, the results were indistinguishable from the coupled situation and are therefore not dis-
played in separate figures.

The convergence results for the coupled problem are shown in Figures 3. Here two layers of information are
provided. The black lines give the approximation error for the two problems, and show that the
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discretizations are convergent in both the primary variables, as well as the coupling terms. We note that for
square grids, the approximation error for all terms converge with second-order accuracy. For triangular and
unstructured grids, the pressures and displacements still converge as second order; however, the coupling
terms are only first-order convergent. These results are comparable to what could be expected from lowest-
order finite elements, where for the uncoupled problem the discretization is typically second-order accurate
in primary variables but only first-order accurate in the coupling terms. The second layer of information is
given with gray lines on the figure, where the coupling terms are applied to the pressures and displace-
ments of the analytical solution. We see that only minor differences are observed, indicating that the
observed accuracy of the coupling terms is inherent to their definition, and not a result of pollution from
the accuracy of the discrete solutions.

5. Example Applications

We consider three example applications to assess the flexibility of the coupled finite volume discretizations
presented herein. The first application is to a heterogeneous material subject to external loading, where we
assess the time evolution of the compression of the poroelastic material. The second application is to a frac-
tured porous media, where two fractures intersect at a nonorthogonal angle in the interior of the domain.
Here we consider the steady state of the system. Finally, we apply the coupled discretization to the tensile
fracturing of a heterogeneous rock. Throughout the three applications we utilize a range of grids, giving us
further opportunity to assess the flexibility and robustness of the finite volume framework.

5.1. Loading of a Layered Material
This example has a geometry that is motivated by loading of a layered material at the laboratory scale.

We consider a 1 m by 1 m sample, wherein softer, more permeable, material is embedded into a harder,
less permeable material, as illustrated in Figure 4. We are interested in the response of the material to a
loading on the top left-hand half of the sample. To be specific, we take the two materials separated by 2
orders of magnitudes in their parameters. Thus, we consider the materials to have permeabilities of 10212

m2 and 10214 m2, respectively, and Lam�e coefficients of 1 and 100 GPa. This is within the range of values
that may be observed for rocks in the Earth’s crust [Ji et al., 2010]. Furthermore, we take the width of the
soft material to be 20 cm, and the external loading to be 106 N. For this case, we consider mixed boundary
conditions wherein the lower boundary is fixed, while the remaining boundaries have zero stress. The boun-
daries are furthermore open to fluid flow. We have chosen a quadrilateral grid, where the corners are per-
turbed randomly only in the horizontal direction to not interfere with the layered heterogeneity.

Since there is no fluid forcing function, the steady state solution for this problem is equivalent to the elastic
problem, and thus we are interested in the time-dependent solution. The solution after 10 s is shown in Fig-
ure 5 (left). Note that within the high-permeable region, the fluid has equilibrated to a near-constant pres-
sure, while significant pressure buildup remains in the low-permeable regions. The solution also conforms

Figure 2. Example of (left) triangular and (right) unstructured grids used in convergence study. Note that the unstructured grid is the dual
of the triangular in the sense that cell centers and cell corners are interchanged. Furthermore, each edge in the triangular grid crosses
exactly one edge of the unstructured grid.
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to our expectation that the majority of the compaction happens in the soft layer, while the hard layers are
either at rest (the lower layer) or exposed to near-rigid motion (upper layer). For this example, we also show
the maximum pressure and the deformation as a function of time in Figure 5 (right). The figure clearly illus-
trates both how the heterogeneous material introduces two time scales into the problem, and also how the
fluid sustains loading during the transient phase.

This example thus verifies the applicability of the coupled finite volume approach to standard problems of
fluid flow and loading with parameters typical of those encountered in subsurface applications.

5.2. Injection Into Fractured Material
This example has a geometry that is motivated by geothermal energy production. In this application, injec-
tion typically occurs into a fracture network, and it is therefore important to understand the response of the
material due to such operations.

For concreteness, we consider a 1 km by 1 km domain, wherein two fractures are placed horizontally and at
a 62� angle (two-to-one slope of the inclined fracture). We resolve the domain using a grid that conforms to
the fractures, and choose triangular grid cells for this example. Notice that the grid is constructed so that
the aspect ratio of the triangles degenerates toward two of the corners of the grid. This apparently presents
no numerical problems, which is consistent with previous studies [Klausen et al., 2008], (J. M. Nordbotten,
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Figure 3. Convergence of discretization errors on (top left) square, (top right) triangular, and (bottom left) unstructured grids. The figures show with black lines the normalized error in
the discrete solution and the coupling terms as compared to an analytical solution on the unit square. For comparison, the error in the coupling terms assessed directly by application to
the analytical solution is shown in gray.
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submitted manuscript). Zero Neumann and Dirichlet boundary conditions are used on the external flow
and deformation boundaries, respectively.

As described in section 2.2.1, the fractures are assumed to be highly conductive relative to the solid, and
the pressure drop within the fracture is neglected. The solid is taken with a permeability of 10212 m2, and
with Lam�e parameters of 1 GPa. A steady state solution is then calculated based on the injection of 1023

m3/s of fluid into the fracture system, which is withdrawn from a well placed at the location (250 m).

The resulting solution is shown in Figure 6, which also illustrates the domain geometry and grid. Here the frac-
tures are shown in solid, bold lines. The pressure profile is illustrated in gray scale, while arrows indicate the
deformation of the solid. As expected, a smooth pressure field drives flow from the fracture to the production
well. The observed pressure variation between the fracture and the well is 6.4 MPa for this calculation. Simul-
taneously, the medium deforms in response to the injection. On the far side of the pumping well, relatively lit-
tle deformation is seen, while on the side of the pumping well the medium deforms toward the well, with a
concomitant opening of the fracture network. The maximum deformation observed in this example is 13 cm.

This example justifies the claim that the finite volume methodology adapts naturally to fractured porous
media, and emphasizes that no particular treatment is needed for intersecting fractures.

Figure 4. Illustration of the geometry for the loading and fracture problems for sections (left) 5.1 and (right) 5.3. Dark gray indicates the
harder material, arrow indicates region of loading, while the heavy straight line at the base of the figure indicates the side of the material
which is clamped. See text for details.
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Figure 5. Solution to loading problem. (left) The solution after 10 s, with pressure as gray scale (5.5 MPa maximum variation) and red arrows deformation (0.018 cm maximum deforma-
tion). The deformation arrows are given for only a subset of the grid cells. (right) The time evolution of the maximum deformation (top-left corner) and maximum pressure buildup are
shown. Note that units are chosen to make both graphs fit on the same axis.
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5.3. Fracturing of a Heterogeneous Material
This final example considers the evolution of a hydraulically stimulated fracture within a heterogeneous
rock. To stay within the framework of quasi-static poroelastic deformation, we will also assume that the frac-
ture evolves in a quasi-static sense [Davy et al., 2013]. Thus, we let the fluid pressure and mechanical
response equilibrate between each evolution step of the fracture. This is numerically advantageous, since
the explicit treatment of the fracture would otherwise impose a Courant-Friedrichs-Lewy (CFL)-type condi-
tion associated with the speed of the fracture propagation.

The model geometry is given in Figure 5 (right), and the material properties are identical to example in sec-
tion 5.1. However, in this case, there is no external mechanical loading. Instead the pressure boundary con-
ditions are linear in the y coordinate, varying by 1 MPa from top to bottom of the sample. The fracture is
seeded in the middle of the top boundary, and the pressure in the evolving fracture is set equal the pres-
sure at the top boundary, such that fluid enters the rock from the fracture.

The fracture evolves along the grid edges, and we evolve the fracture one edge at a time by converting the
internal edge with largest tensile force into a new fracture edge. This simplistic fracture evolution is meant
to illustrate the flexibility of the current discretization, more advanced fracture evolution models are possi-
ble [Boone et al., 1986]. As the fracture evolves, no new unknowns are needed, and no new connectivity
appears in the discrete equations—thus the data structure remains identical. Only the local discretization at
the fracture tip needs to be updated to account for the appearance of a new internal boundary. This has
significant advantages in terms of implementation and computation.

Due to the fractures being restricted to edges of the grid, the computation is prone to grid orientation
effects. To investigate this issue, we use two random grids as benchmarks (one unstructured and one a
Delaunay triangulation—see Figure 2), and compare the results to that obtained using a square lattice grid.
The comparison is presented in Figure 7, using between 30,000 and 45,000 degrees of freedom in the calcu-
lation. We see that the calculations on both triangular and unstructured grids predict that the fracture devi-
ates from a straight fracture as it approaches the heterogeneity, and after intersecting the relatively harder
material deviates toward the edge of the sample. As the setup is symmetric, it is arbitrary what side of the
sample the crack deviates toward, and the runs have been mirrored so that the crack always deviates
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Figure 6. Simulation on fractured domain. Note the two intersecting fractures in bold. Gray scale indicates pressure (6.4 MPa variation),
while the red arrows indicated deformation. The length of the arrows is proportional to the deformation, with the largest deformation
13 cm. To increase clarity, the deformation arrows are given for only a subset of the grid cells.
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toward the right boundary to facilitate comparison. The calculation on a uniform grid supports this general
description of the fracture evolution, although significantly stronger grid orientation effects are seen for this
grid. The calculations have been verified with several realizations of the grid, resulting in qualitatively similar
behavior. Note that with both the uniform grid as well as the unstructured grid, minor secondary fractures
are seen deviating from the main fracture path.
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Figure 7. Solution to the fracturing problem. The problem is represented on (left) randomized triangular, (middle) randomized unstructured, and (right) uniform Cartesian grids, respec-
tively. The grids have comparable diameters of the grid cells, with the two random grids have roughly 15,000 grid cells, while the uniform grid has 10,000 grid cells.
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5.4. Comments on Implementation and Computational Issues
The numerical examples have all been computed using a Matlab implementation of the equations given
above. As the governing partial differential equations (1–8) are linear, the only nonlinearity in the problem
enters for the case of an evolving fracture as discussed in section 5.3.

In order to keep the emphasis on the spatial discretization, we have kept the temporal integration as simple
as possible. To this end, we have employed a standard implicit (backward Euler) time discretization for the
time derivative in the mass conservation equation for section 5.1. Section 5.2 is a steady state calculation.
Finally, as noted in section 5.3, the fracture evolves in a quasi-static sense. This is realized by calculating the
equilibrium pressure and displacement field between each update of the fracture tip. It is not realistic to
evaluate the fracture evolution and the equilibrium fields in a coupled sense, since these are coupled
through the (changing) discretization itself. Thus for all three sections, a fully coupled hydromechanical sys-
tem needs to be solved for each time step. For the smaller examples, this system can be solved using a
direct solver. For larger examples, standard iterative approaches are efficient [Mikelic and Wheeler, 2012].
While we have not conducted a comparison to symmetric discretizations herein, our experience from other
work is that the nonsymmetric discretizations are mainly penalized due to the added memory usage of non-
linear iterative solvers.

The spatial discretization uses previous code for MPFA and MPSA discretizations on unstructured grids.
These codes have been modified to provide the coupling terms appearing on the right-hand side of equa-
tions (18) and (19). For the case of the evolving fracture, the equations are rediscretized only around the
fracture tip for each evolution of the fracture.

While it may not be appropriate to comment on computational performance of nonptimized research code,
we note that resolving the MPFA and MPSA discretizations involve a local linear system associated with
each vertex in the grid. This is in contrast to finite element methods where it is sufficient to evaluate a quad-
rature. In our implementation, calculating the discretization itself represents the main computational cost in
the above examples.

6. Conclusions

We present a novel cell-centered finite volume approach to discretizing coupled flow and deformation of
porous media. Through this contribution, we establish that it is possible to model hydromechanical cou-
pling consistently within a single unified finite volume approach. The methodology is particularly adapted
to problems where the flow is of primary importance, justifying the choice of finite volume methods for
both flow and deformation. The compatible choice of discretization has several advantages from a practical
perspective: (a) the data structures are equivalent for flow and deformation, simplifying the design of effi-
cient solvers. (b) The discretization can naturally be developed within a single software framework, enabling
fully coupled simulation. (c) Fractures aligned with cell boundaries can be naturally included through
boundary conditions on internal surfaces.
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