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PhD5,6; Øivind Midttun, PhD7; Klaus Meyer, PhD7; Arve Ulvik, PhD7; and Simone J.P.M. Eussen, PhD1,2,8

Background: It has been reported that interferon-g (IFN-g)–induced inflammatory markers, such as circulating neopterin and

kynurenine-to-tryptophan ratio (KTR), are increased in patients with cancer and are also a predictor of poor prognosis. However,

whether baseline levels of these makers are associated with subsequent cancer risk in the general population remains unknown.

Methods: We conducted a prospective analysis of the Hordaland Health Study in 6594 adults without known cancer at baseline who

were enrolled between April 1998 and June 1999. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using multi-

variate Cox proportional hazards regression models adjusted for sex, age, body mass index, smoking status, and renal function.

Results: A total of 971 incident cancer cases (507 men and 464 women) were identified over a median follow-up time of 12 years.

Baseline plasma neopterin, KTR and C-reactive protein (CRP) were significantly associated with an increased risk of overall cancer in

models adjusted for covariates (P for trend across quartiles 5 .006 for neopterin, .022 for KTR, and .005 for CRP). The multivariate-

adjusted HR (95% CI) per SD increment in similar models were 1.09 (1.03-1.16) for neopterin, 1.07 (1.01-1.14) for KTR, and 1.04 (0.98-

1.10) for CRP. The associations between the inflammatory markers and risk of major specific cancer types were also provided.

Conclusions: Our findings indicate that plasma neopterin, KTR, and CRP are associated with a significantly increased risk of overall cancer.

Our study revealed novel evidence regarding the role of IFN-g–induced inflammation in human carcinogenesis. Cancer 2014;120:3370-7. VC
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Chronic inflammation is perceived to predispose to different forms of cancer1 and impacts each stage of tumorigenesis,
from initiation, promotion, and malignant conversion to invasion and metastasis.2

C-reactive protein (CRP) is a commonly used nonspecific biomarker of systemic inflammation. Evidence on the
association between CRP and cancer risk is currently inconsistent. A recent meta-analysis found elevated levels of CRP to
be associated with an increased risk of overall cancer, lung cancer, and possibly breast, prostate, and colorectal cancer.3

However, results from Mendelian randomization studies suggest that elevated CRP levels are unlikely to cause cancer.4

Neopterin is a metabolite of guanosine triphosphate and is synthesized by activated macrophages upon stimulation
with proinflammatory cytokines, particularly interferon-g (IFN-g). Therefore, elevated concentrations of neopterin in
body fluids reflect cellular immune activation involving T cells and an endogenous release of INF-g.5 Studies have
observed increased levels of neopterin in patients with malignant diseases such as lung,6 breast,7 and pancreatic cancer.8

The extent of neopterin elevation depends on tumor type and stage,9 and neopterin has been proposed as a potential bio-
marker of cancer diagnosis and prognosis.8,10 Whether prediagnostic neopterin is associated with future cancer risk is,
however, unknown.

IFN-g can also up-regulate enzymatic activity of indoleamine 2,3-dioxygenase (IDO), which catalyzes the conver-
sion of tryptophan to kynurenine followed by further metabolism via the kynurenine pathway.11,12 As a result, the plasma
kynurenine-to-tryptophan ratio (KTR) increases during inflammation. Several studies have demonstrated IDO
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activation, increased tryptophan degradation, and subse-
quently elevated level of KTR in established cancer, and
these indices also predict poor prognosis in patients with
cancer such as lung cancer,13,14 gynecological cancer,15

and malignant melanoma.16 It has been postulated that
IDO plays a critical role in cancer immunosurveillance.17

Results from in vitro experiments indicate that IDO over-
expression by colorectal tumor cells is significantly corre-
lated with the quantity of tumor-infiltrating T cells.18

Based on the role of IDO in immunosuppression and
immune escape, selective IDO inhibitors (eg, 1-methyl-
tryptophan) have been developed and tested as an adju-
vant chemotherapeutic agent in vitro in animal studies
and phase 1 trials.19-22

Previous publications from human studies on the
relation between neopterin, KTR, and cancer have focused
on patients with existing disease. However, whether levels
of these inflammatory makers, particularly neopterin and
KTR, are associated with subsequent cancer risk among
apparently healthy individuals remains unknown. The
purpose of this cohort study, therefore, was to examine
the associations of the systemic inflammatory markers
including neopterin, KTR, and CRP with overall cancer
risk among community-dwelling men and women.

MATERIALS AND METHODS

Study Design and Cohort

The Hordaland Health Study is a community-based study
that was conducted jointly by the University of Bergen,
the National Institute of Public Health, and the Munici-
pal Health Service in Hordaland. The study participants
consisted of men and women born during the periods
1925-1927 and 1950-1951 in Hordaland County in
western Norway. The individuals in these two specific age
groups originated from an earlier study called the Horda-
land Homocysteine Study conducted in 1992-1993,23

which was established to examine the determinants of ho-
mocysteine and homocysteine as a risk factor for disease.
To be able to examine age effects on homocysteine as well
as homocysteine as a risk factor for age-related conditions,
such as cardiovascular disease and cancer, the middle-aged
cohort was expanded to also include the older cohort,
which has a much higher prevalence of disease. Details of
the study design have been published elsewhere.24 The
initial study cohort included 7051 participants who were
enrolled between April 1998 and June 1999. Data were
collected via self-administered questionnaires, anthropo-
metric assessment, and blood analyses. The study protocol
was approved by the Regional Committee for Medical

Research Ethics and the Norwegian Data Inspectorate. All
participants provided written informed consent.

Of the 7051 participants, we excluded 426 partici-
pants who were diagnosed with cancer (other than nonme-
lanoma skin cancer) before enrollment. Participants with
missing data on blood measurements (neopterin, kynuren-
ine, tryptophan, and CRP) (n 5 31) were also excluded. A
total of 6594 participants (2958 men and 3636 women)
were therefore included in the final analysis.

Biochemical Analyses

Nonfasting blood samples were collected at baseline. Ali-
quots of serum and plasma were frozen at 280�C until
analyses. Plasma neopterin, kynurenine, tryptophan, and se-
rum creatinine were measured by liquid chromatography-
tandem mass spectrometry.25,26 Plasma high-sensitive CRP
was determined by a novel immuno-MALDI-MS method
(unpublished data). All biochemical analyses were per-
formed at Bevital A/S (www.bevital.no). Within-day coeffi-
cients of variation for neopterin, kynurenine, and
tryptophan were 2.5%-4.7%, and between-day coefficients
of variation were 5.7%-10.0%.25

Outcome Assessment

Cancer cases were ascertained through linkage with the
Cancer Registry of Norway. Cancer incidence diagnoses
were coded according to the 3rd edition of the Interna-
tional Classification of Diseases for Oncology (ICD-O-
3)27 and the 10th revision of the International Statistical
Classification of Diseases, Injuries and Causes of Death
(ICD-10) (http://apps.who.int/classifications/icd10/browse/
2010/en). Only the first primary neoplasm was included in
the analysis. Mortality data were collected from the Cause of
Death Registry at Statistics Norway and coded according to
ICD-10.

Additional Data

Self-administered questionnaires provided information on
sociodemographic data, health status, and lifestyle factors.
Information on smoking (never, former, or current smok-
ers) was coded as categorical variables. Height and weight
were measured following standard protocols. Body mass
index (BMI) was calculated as kg/m2 and categorized as
normal (BMI <25 kg/m2), overweight (25 kg/m2

�BMI< 30 kg/m2), and obese (BMI�30 kg/m2) accord-
ing to the World Health Organization’s recommendation.
Renal function was assessed using an estimated glomerular
filtration rate (eGFR) based on serum creatinine levels.28

Statistical Analysis

Continuous variables are presented as medians (interquartile
ranges) due to skewed distributions; categorical variables are
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given as counts (percentages). Wilcoxon–Mann–Whitney
tests were used to compare differences between groups for
continuous variables. For each participant, person-years of
follow-up were calculated from the date of entry until the
date of cancer diagnosis, death, emigration, or the end of
follow-up (December 31, 2010), whichever came first.

The association of plasma neopterin, KTR, and CRP
with risk of overall cancer was evaluated using Cox propor-
tional hazards regression models with person-years as the
underlying time metric. Proportionality was verified using
analysis of residuals. Hazard ratios (HR) and 95% confi-
dence intervals (CI) are reported. Models were fitted with
neopterin, KTR, and CRP as continuous variables (per SD
increment) and as sex-specific quartiles based on the distri-
bution of the study population. Linear trends were tested
across increasing quartiles by modeling quartile categories as
a continuous variable in the regression models. Multivari-
able models included the following covariates: age (46-49
years vs 70-74 years), sex, BMI (normal, overweight, and
obese), smoking status (never, former, or current smokers)
and renal function (normal, eGFR> 60 mL/min/1.73 m2

or impaired, 1< eGFR� 60 mL/min/1.73 m2). Risk esti-
mates did not change materially by additional adjustment
for physical activity, which therefore was not included in
final models. Kaplan-Meier plots were made for cumulative
cancer incidence according to neopterin, KTR, and CRP
quartiles, and the corresponding P values of the log-rank
test for possible trends across quartiles are presented.

Multivariable adjusted dose-response relations
between inflammatory marker levels and cancer risk were
also visualized by generalized additive regression plots.29

In these plots, biomarker values were fitted with smooth-
ing spline in Cox proportional hazard models including
the same covariates as described above.

Interaction analysis was performed between the
three markers and sex/age/BMI/smoking status/renal
function for cancer risk by including product terms in the
regression models. In addition, we also conducted a lag
analysis by excluding the first 1 year of follow-up to test
for the possibility of reverse causality.

All statistical tests were 2-sided and were considered
statistically significant at P< 0.05. All statistical analyses
were conducted using the SAS (version 9.2, SAS Institute
Inc, Cary, NC) and figures generated using R (version
2.15 for Windows).

RESULTS

Population Characteristics

Baseline characteristics of the participants are presented in
Table 1. Plasma neopterin concentration was significantly

higher in women, in the older age group, in participants
with higher BMI, and in those with impaired renal func-
tion (P<.01). Plasma concentrations of KTR and CRP
were significantly higher in participants in the older age
group, in participants with high BMI, and in participants
with impaired renal function (P<.01), whereas no signifi-
cant sex differences were observed with regard to KTR or
CRP levels. Plasma neopterin and KTR were lower, and
CRP levels higher in current smokers as compared with
former and never smokers (P<.01). Additional details
regarding the distribution of neopterin and KTR are
described elsewhere.30 The three markers were intercorre-
lated (Spearman correlation coefficients were 0.56, 0.27,
and 0.24 [P<.001] for the pairs neopterin/KTR, CRP/
KTR, and CRP/neopterin, respectively).

Classical Risk Factors And Future Cancer Risk

A total of 971 incident cancer cases (507 men and 464
women) among the 6594 participants were identified over
a median follow-up time of 12 years.

Age as a categorical variable was positively associated
with overall cancer risk (adjusted HR, 4.18; 95% CI, 3.60-
4.86). Women had a lower risk than men (adjusted HR,
0.71; 95% CI, 0.62-0.82). Compared with never smokers,
the adjusted HR (95% CI) were 1.35 (1.16-1.58) for for-
mer smokers and 1.62 (1.36-1.93) for current smokers.
BMI and renal function, assessed by eGFR, were not signif-
icantly associated with cancer risk (data not shown).

Inflammatory Markers at Baseline and Future
Cancer Risk

Figure 1 shows the cumulative incidence of overall cancer
according to quartiles of neopterin, KTR, and CRP levels,
respectively. The unadjusted cancer risk increased signifi-
cantly in higher quartiles for each of the inflammatory
markers (P<.001). For instance, the cumulative hazard of
overall cancer increased much more rapidly over follow-
up time in the fourth quartile of neopterin compared with
the first quartile (left panel).

The results from multivariate Cox models are shown
in Table 2. Baseline neopterin, KTR, and CRP were asso-
ciated with an increased risk of overall cancer both in
unadjusted analyses and analyses adjusted for age, sex,
BMI, smoking status, and renal function (P for trend
across quartiles 5 .006 for neopterin, .022 for KTR and
.005 for CRP). The multivariate-adjusted HR (95% CI)
per SD increment in similar models were 1.09 (1.03-
1.16) for neopterin, 1.07 (1.01-1.14) for KTR, and 1.04
(0.98-1.10) for CRP. As shown in Figure 2, positive dose-
response relations were observed between neopterin, KTR
and CRP and cancer risk.
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There were no interactions between the three
markers and age, BMI, smoking status, or renal function
in association with cancer risk. However, significant inter-
actions were found between the markers and sex (P inter-
action 5 0.011, 0.002, and 0.063 for neopterin, KTR,
and CRP, respectively). Stratified analysis by sex showed

consistently stronger associations in men than in women
(data not shown).

Results from lag analyses for the associations of neo-
pterin (HR, 1.09; 95% CI, 1.02-1.16), KTR (HR, 1.07;
95% CI, 1.01-1.14), and CRP (HR, 1.04; 95% CI, 0.98-
1.11) with overall cancer risk excluding the first 1 year of

Figure 1. Kaplan-Meier survival curves for cumulative incidence of overall cancer according to sex-specific quartiles of neopterin,
kynurenine-to-tryptophan ratio (KTR), and C-reactive protein (CRP) levels.

Figure 2. Dose–response relations between inflammatory marker levels and cancer risk by generalized additive regression. Mod-
els were adjusted for age, sex, body mass index, smoking status, and renal function. The solid lines represent hazard ratios; the
shaded areas represent 95% confidence intervals. Density plots show the distribution of biomarkers, and white vertical lines
denote the 25th, 50th, and 75th percentiles.

Inflammatory Markers and Cancer Risk/Zuo et al

Cancer November 1, 2014 3373



follow-up were not materially different from those includ-
ing the whole follow-up period.

We conducted secondary analyses on major specific
cancer types (ie, colorectal cancer [n 5 175], prostate can-
cer [n 5 140], breast cancer [n 5 108] and lung cancer
[n 5 88], as shown in Figure 3. Neopterin and KTR were
positively associated with risk of colorectal cancer (HR
per SD increment [95% CI]: 1.16 [1.02-1.32] for neo-
pterin, 1.15 [1.04-1.28] for KTR), whereas CRP was
found to be associated with an increased risk of lung can-
cer (HR per SD increment [95% CI]: 1.15 [1.06-1.25]).

DISCUSSION

Principal Findings

In this prospective cohort study, we observed a positive
association of IFN-g–induced inflammatory markers
(neopterin and KTR) and CRP with risk of overall cancer
among 6594 adults followed for a median of 12 years.
These associations were largely unaffected by adjustment
for sociodemographic and lifestyle factors, including
smoking.

Inflammatory Markers and Incident Cancer Risk

Prospective studies on the association between IFN-g–
induced inflammatory markers and incident cancer risk
have not been reported previously, except for a recent
study focusing on KTR and lung cancer risk.31 Reported

associations between CRP and cancer risk in prospective
cohort studies are inconsistent.32-34 Although having sub-
stantial heterogeneity, a recent meta-analysis3 including
11 prospective cohort studies reported that the pooled
HR (95% CI) per natural log unit change in CRP was
1.11 (1.03-1.18) for overall cancer, 1.31 (1.10-1.52) for
lung cancer, 1.04 (0.91-1.17) for breast cancer, 1.06
(0.97-1.16) for prostate cancer, and 1.06 (0.93-1.18) for
colorectal cancer. Our results support positive associations
of circulating CRP levels with risk of overall cancer and
lung cancer. More importantly, our study goes beyond
this commonly used nonspecific inflammatory parameter
by addressing systemic inflammatory markers reflecting
IFN-g–mediated immune activation with regard to can-
cer risk. We report that elevated baseline levels of neo-
pterin and KTR were both significantly associated with an
increased risk of overall cancer and colorectal cancer.

Possible Mechanisms

Chronic inflammation due to infections, autoimmune
disease, environmental irritants, or obesity plays a crucial
role in each step of tumorigenesis4 through induction of
oncogenic mutations, genomic instability, early tumor
promotion, and enhanced angiogenesis.2

As a classic acute-phase protein, CRP levels are mod-
erately elevated in response to chronic inflammation.4

Precise mechanisms binding the association of CRP with
cancer risk remain uncertain. The association between
CRP and cancer incidence may reflect the production of
various cytokines and chemokines by occult tumor cells
that attract leukocytes. Some cancerous cells express CRP
and secrete interleukin-6 and interleukin-8, which stimu-
late CRP production in the liver.32 From the available
data, it is not possible to elucidate whether elevated
CRP is a marker of occult cancer or is causative in
carcinogenesis.3,32

Neopterin is produced by oxidation of 7,8-dihydro-
neopterin, and the amounts of neopterin produced by
activated macrophages not only reflect IFN-g activity but
also correlate with their capacity to form and release reac-
tive oxygen species. Neopterin can enhance the toxic
effects induced by reactive oxygen species during cell-
mediated immune response.9,35 In addition, epidemio-
logical studies show that elevation of neopterin produc-
tion correlates with increasing age in healthy individuals.9

Furthermore, plasma neopterin and KTR have been posi-
tively associated with risk of coronary events in an appa-
rently healthy population36 and mortality in patients with
stable coronary artery disease.37 Taken together, these
findings suggest that the pathological process associated

Figure 3. Forest plot showing risk of different cancer types
(colorectal cancer [n 5 175], prostate cancer [n 5 140], breast
cancer [n 5 108], and lung cancer [n 5 88]) according to
plasma inflammatory markers. The blue squares represent
hazard ratios (HR); the horizontal bars represent 95% confi-
dence intervals (95% CI). The Cox models were adjusted for
age, sex, body mass index, and renal function.
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with immune activation may precede the appearance of
clinical disease.

Malignant tumors emerge partly because early
cancer cells escape from immunosurveillance.19 IDO and

tryptophan-2,3-dioxygenase (TDO) catabolize the essential
amino acid tryptophan, which promotes selective apoptosis
of T lymphocytes38 and suppress antitumor immune
responses.39 This has been attributed to tryptophan depletion

TABLE 1. Baseline Characteristics of the Study Participants in the Hordaland Health Study

No. (%)

Median (IQR)

Neopterin (nmol/L) KTR (nmol/mmol) CRP (mg/L)

Overall 6594 (100.0) 7.6 (6.3-9.2) 22.4 (18.4-27.7) 1.6 (0.7-3.6)

Sex

Men 2958 (44.9) 7.4 (6.2-9.0) 22.4 (18.6-27.5) 1.6 (0.7-3.5)

Women 3636 (55.1) 7.7 (6.4-9.4)a 22.4 (18.2-27.8) 1.5 (0.6-3.6)

Age, y

46-49 3632 (55.1) 6.9 (5.9-8.2) 20.0 (17.1-23.7) 1.1 (0.5-2.6)

70-74 2962 (44.9) 8.6 (7.3-10.5)a 26.1 (21.8-31.7)a 2.2 (1.1-4.4)a

BMI

Normal 2976 (45.2) 7.5 (6.3-9.1) 21.4 (17.9-26.5) 1.1 (0.5-2.4)

Overweight 2809 (42.7) 7.6 (6.4-9.3) 22.9 (18.6-28.1) 1.8 (0.9-3.8)

Obese 797 (12.1) 7.8 (6.4-9.7)a 25.0 (19.9-30.4)a 3.3 (1.7-6.6)a

Smoking

Never smoker 2597 (40.6) 7.7 (6.5-9.4) 22.6 (18.3-28.0) 1.4 (0.6-3.2)

Former smoker 2131 (33.3) 7.9 (6.6-9.6) 23.4 (19.3-29.0) 1.6 (0.7-3.6)

Current smoker 1668 (26.1) 7.1 (5.9-8.6)a 21.0 (17.5-25.4)a 1.9 (0.8-4.0)a

Renal function

Normal 6000 (91.0) 7.4 (6.3-8.9) 21.8 (18.1-26.6) 1.5 (0.6-3.4)

Impaired 594 (9.0) 10.1 (8.5-12.6)a 31.4 (25.3-38.4)a 2.6 (1.2-5.4)a

Abbreviations: BMI, body mass index; CRP, C-reactive protein; IQR, interquartile range; KTR, kynurenine-to-tryptophan ratio.

Not all sums are equal to the total number of the participants due to missing values.
a P<.01 for difference between groups.

TABLE 2. HRs and 95% CIs for Incident Cancer in the Hordaland Health Study (n56594)

Unadjusted Sex, age-adjusted Multivariate-adjusteda

HR (95% CI) P trend HR (95% CI) P trend HR (95% CI) P trend

Neopterin (mmol/L)

Quartile 1 1.00 (ref.) <.001 1.00 (ref.) .012 1.00 (ref.) .006

Quartile 2 1.24 (1.01-1.52) 0.97 (0.79-1.19) 1.01 (0.82-1.25)

Quartile 3 1.67 (1.37-2.03) 1.08 (0.88-1.32) 1.11 (0.90-1.36)

Quartile 4 2.33 (1.94-2.81) 1.23 (1.01-1.50) 1.29 (1.05-1.59)

Continuousa 1.21 (1.16-1.27) <.001 1.07 (1.01-1.14) .024 1.09 (1.03-1.16) .007

KTR (nmol/mmol)

Quartile 1 1.00 (ref.) <.001 1.00 (ref.) .044 1.00 (ref.) .022

Quartile 2 1.42 (1.15-1.75) 1.17 (0.95-1.45) 1.17 (0.94-1.45)

Quartile 3 1.92 (1.57-2.34) 1.24 (1.01-1.53) 1.25 (1.01-1.54)

Quartile 4 2.51 (2.07-3.04) 1.25 (1.02-1.54) 1.29 (1.04-1.60)

Continuous 1.17 (1.13-1.20) <.001 1.05 (0.99-1.11) .142 1.07 (1.01-1.14) .037

CRP (mg/L)

Quartile 1 1.00 (ref.) <.001 1.00 (ref.) <.001 1.00 (ref.) .005

Quartile 2 1.36 (1.10-1.68) 1.01 (0.82-1.24) 0.98 (0.80-1.22)

Quartile 3 2.04 (1.68-2.48) 1.34 (1.09-1.63) 1.31 (1.07-1.61)

Quartile 4 2.10 (1.73-2.55) 1.31 (1.07-1.60) 1.25 (1.01-1.53)

Continuous 1.10 (1.05-1.14) <.001 1.06 (1.00-1.12) .041 1.04 (0.98-1.10) .164

Abbreviations: CI, confidence interval; CRP, C-reactive protein; HR, hazard ratio; KTR, kynurenine to tryptophan ratio.

Adjusted for sex, age (46-49 years vs 70-74 years), body mass index (normal, overweight, or obese), smoking (never, former, or current smoker), and renal

function (normal or impaired).
a Biomarkers as continuous variables (per SD increment).
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and/or formation of immunomodulating kynurenines.39

TDO is activated in tumor cells and has a similar effect of
nonspecific immunosuppression.40 Plasma KTR reflects the
activities of IDO and TDO, both of which may indirectly
reflect the antitumor capability of the body.39

Methodological Considerations

The risk estimates in the current study were not affected
by excluding the first year of follow-up, which suggests
that reverse causality (changes in levels of inflammatory
markers due to an undetected cancer) was unlikely. Dose–
response relationships between all 3 markers and cancer
risk further indicated the robustness of the results. How-
ever, when specifying cancer types as outcomes, we found
similar results in some but not all cancer types, which may
be due to reduced sample size and number of cancer cases.

Smoking was a risk factor of cancer as consistently
demonstrated by others41, but stratified analysis by smok-
ing status indicated that smoking status was not a signifi-
cant effect modifier, demonstrating that the associations
between inflammatory markers and cancer risk did not
depend on the smoking status of the participants. The
effects of cigarette smoking on host immunity are com-
plex, and its net effect on immunity depends on many var-
iables, including dose and type of tobacco, mode of
exposure, and the presence of other inflammatory media-
tors.42-44 Smoking has both proinflammatory and sup-
pressive effects and may impair host immune responses
and thereby promote cancer.45

Strengths and Limitations

This is the first prospective community-based study evalu-
ating IFN-g–induced inflammatory markers, neopterin,
and KTR, and the risk of overall cancer. The main
strengths of the current study are the large sample size,
complete and long-term follow-up, and different markers
reflecting inflammatory status.

When examining the associations, we adjusted for
important confounding factors, including age, sex, BMI,
smoking status, and renal function. Such adjustment was
undertaken because these factors affect cancer risk, and
also because a previous study in the same population
showed associations between systemic inflammatory
markers and these potential confounders.30

This study also has several limitations. The study
population was drawn from a small geographic region,
representing two narrow age ranges, which may poten-
tially limit generalizability. Furthermore, within-subject
reproducibility of the systemic inflammatory markers to-
gether with other lifestyle factors over the follow-up pe-

riod was not considered. This is important because single
time point assessment of biomarker status may lead to
regression dilution bias, which may attenuate “true” asso-
ciations.46 However, we have assessed within-subject
reproducibility over 3.5 years for neopterin and KTR in
another population. The observed intraclass correlation
coefficients were 0.67 and 0.74, respectively, indicating
fair to good reproducibility.47

In conclusion, elevated plasma neopterin, KTR, and
CRP are associated with a significantly higher risk of
developing cancer. The current study reveals novel evi-
dence regarding the role of IFN-g–induced inflammation
in human carcinogenesis. These inflammatory markers
may assist as early predictors of cancer risk in the general
population.
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