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Abstract A remarkable number of different numerical algorithms can be understood
and analyzed using the concepts of symmetric spaces and Lie triple systems, which
are well known in differential geometry from the study of spaces of constant curvature
and their tangents. This theory can be used to unify a range of different topics, such
as polar-type matrix decompositions, splitting methods for computation of the matrix
exponential, composition of selfadjoint numerical integrators and dynamical systems
with symmetries and reversing symmetries. The thread of this paper is the following:
involutive automorphisms on groups induce a factorization at a group level, and a
splitting at the algebra level. In this paper we will give an introduction to the math-
ematical theory behind these constructions, and review recent results. Furthermore,
we present a new Yoshida-like technique, for self-adjoint numerical schemes, that
allows to increase the order of preservation of symmetries by two units. The proposed
techniques has the property that all the time-steps are positive.
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258 H. Z. Munthe-Kaas et al.

1 Introduction

In numerical analysis there exist numerous examples of objects forming a group, i.e.
objects that compose in an associative manner, have an inverse and identity element.
Typical examples are the group of orthogonal matrices or the group of Runge—Kutta
methods. Semigroups, sets of objects closed under composition but not inversion, like
for instance the set of all square matrices and explicit Runge—Kutta methods, are also
well studied in literature.

However, there are important examples of objects that are neither a group nor a
semigroup. One important case is the class of objects closed under a ‘sandwich-type’
product, (a, b) +— aba. For example, the collection of all symmetric positive definite
matrices and all selfadjoint Runge—Kutta methods. The sandwich-type composition
aba for numerical integrators was studied at length in [19] and references therein.
However, if inverses are well defined, we may wish to replace the sandwich product
with the algebraically nicer symmetric product (a, b) — ab™'a. Spaces closed under
such products are called symmetric spaces and are the objects of study in this paper.
There is a parallel between the theory of Lie groups and that of symmetric spaces.
For Lie groups, fundamental tools are the Lie algebra (tangent space at the identity,
closed under commutation) and the exponential map from the Lie algebra to the Lie
group. In the theory of symmetric spaces there is a similar notion of tangent space.
The resulting object is called a Lie triple system (LTS), and is closed under double
commutators, [ X, [Y, Z]]. Also in this case, the exponential maps the LTS into the
symmetric space.

An important decomposition theorem is associated with symmetric spaces and Lie
triple systems: Lie algebras can be decomposed into a direct sum of a LTS and a
subalgebra. The well known splitting of a matrix as a sum of a symmetric and a skew
symmetric matrix is an example of such a decomposition, the skew symmetric matrices
are closed under commutators, while the symmetric matrices are closed under double
commutators. Similarly, at the group level, there are decompositions of Lie groups into
a product of a symmetric space and a Lie subgroup. The matrix polar decomposition,
where a matrix is written as the product of a symmetric positive definite matrix and
an orthogonal matrix is one example.

In this paper, we are concerned with the application of such structures to the numer-
ical analysis of differential equations of evolution. The paper is organised as follows:
in Sect. 2 we review some general theory of symmetric spaces and Lie triple systems.
Applications of this theory in numerical analysis of differential equations are discussed
in Sect.3, which, in turn, can be divided into two parts. In the first (Sects. 3.1-3.4),
we review and discuss the case of differential equations on matrix groups. The prop-
erties of these decompositions and numerical algorithms based on them are studied
in a series of papers. Polar-type decompositions are studied in detail in [23], with
special emphasis on optimal approximation results. The paper [36] is concerned with
important recurrence relations for polar-type decompositions, similar to the Baker—
Campbell-Hausdorff formula for Lie groups, while [12,14] employ this theory to
reduce the implementation costs of numerical methods on Lie groups [11,22]. We
mention that polar-type decompositions are also closely related to the more special
root-space decomposition employed in numerical integrators for differential equations
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on Lie groups in [25]. In [15] it is shown that the generalized polar decompositions
can be employed in cases where the theory of [25] cannot be used.

In the second part of Sect. 3 (Sect. 3.4 and beyond), we will consider the application
of this theory to numerical methods for the solution of differential equations with sym-
metries and reversing symmetries. By backward error analysis, numerical methods can
be thought of as exact flows of nearby vector fields. The main goal is then to remove
from the numerical method the undesired part of the error (either the one destroying
the symmetry or the reversing symmetry). These error terms in the modified vector
field generally consist of complicated derivatives of the vector field itself and are not
explicitly calculated, they are just used formally for analysis of the method. In this con-
text, the main tools are compositions at the group level, using the flow of the numerical
method and the symmetries/reversing symmetries, together with their inverses. There
is a substantial difference between preserving reversing symmetries and symmetries
for a numerical method: the first can be always be attained by a finite (2 steps) compo-
sition (Scovel projection [29]), the second requires in general an infinite composition.
Thus symmetries are generally more difficult to retain than reversing symmetries. For
the retention of symmetry, we review the Thue—Morse symmetrization technique for
arbitrary methods and present a new Yoshida-like symmetry retention technique for
self-adjoint methods. The latter has always positive intermediate step sizes and can be
of interest in the context of problems which require step size restrictions. We illustrate
the use of these symmetrisation methods by some numerical experiments.

Finally, Sect. 4 is devoted to some concluding remarks.

2 General theory of symmetric spaces and Lie triple systems

In this section we present some background theory for symmetric spaces and Lie triple
systems. We expect the reader to be familiar with some basic concepts of differential
geometry, like manifolds, vector fields, etc. For a more detailed treatment of symmetric
spaces we refer the reader to [6] and [16] which also constitute the main reference of
the material presented in this section.

We shall also follow (unless otherwise mentioned) the notational convention of [6]:
in particular, M is a set (manifold), the letter G is reserved for groups and Lie groups,
gothic letters denote Lie algebras and Lie triple systems, latin lowercase letters denote
Lie-group elements and latin uppercase letters denote Lie-algebra elements. The iden-
tity element of a group will usually be denoted by e and the identity mapping by id.

2.1 Symmetric spaces

Definition 2.1 (See [16]) A symmetric space is a manifold M with a differentiable
symmetric product - obeying the following conditions:
(i) x-x=x,
(i) x - (x-y) =y,
(i) x-(y-2)=(x-y)-(x-2),
and moreover
(iv) every x has a neighbourhood U such that for all y in U x - y = y implies y = x.
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The latter condition is relevant in the case of manifolds M with open set topology (as
in the case of Lie groups) and can be disregarded for sets M with discrete topology:
a discrete set M endowed with a multiplication obeying (i)—(iii) will be also called a
symmetric space.

A pointed symmetric space is a pair (M, o) consisting of a symmetric space M and
a point o called base point. Note that when M is a Lie group, it is usual to set 0 = e.
Moreover, if the group is a matrix group with the usual matrix multiplication, it is
usual to set e = [ (identity matrix).

The left multiplication with an element x € M is denoted by Sy,

Sx)’:x')’v VyeMv (21)

and is called symmetry around x. Note that S,x = x because of (i), hence x is fixed
point of Sy and it is isolated because of (iv). Furthermore, (ii) implies that S, is an
involutive automorphism of M, i.e. S% =id.

Symmetric spaces can be constructed in several different ways, the following are
important examples:

1. Manifolds with an intrinsically defined symmetric product. As an example, consider
the n-sphere as the set of unit vectors in R"*!. The product

x-y=Sy=Qxx" —1I)y

turns this into a symmetric space. The above operation is the reflection of points
on a sphere. This can be generalized to m-dimensional subspaces in R” (m < n) in
the following manner: Assume that x = [x1, ..., x;;] is a full rank matrix. Define
P, the orthogonal projection operator onto the range of x, P, = x(x7x)'x”.
Consider the reflection Ry = 2P, — I. Define x - y = R, y. This operation obeys
the conditions (i)—(vi) whenever x, y, z are m x n full rank matrices. In particular,
note that (i) is equivalent to R% = 1, i.e. the reflection is an involutive matrix.

2. Subsets of a continuous (or discrete) group G that are closed under the composition
x -y = xy_'x, where xy is the usual multiplication in G. Groups themselves,
continuous, as in the case of Lie groups, or discrete, are thus particular instances of
symmetric spaces. As another example, consider the set of all symmetric positive
definite matrices as a subset of all nonsingular matrices, which forms a symmetric
space with the product

a-b=abla.
3. Symmetric elements of automorphisms on a group. An automorphism on a group
Gisamapo : G — G satisfying o (ab) = o(a)o (b). The symmetric elements
are defined as

A ={geCG :o(g=g"}

It is easily verified that .o/ obeys (i)—(iv) when endowed with the multi-
plication x - y = xy~'x, hence it is a symmetric space. As an example,
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symmetric matrices are symmetric elements under the matrix automorphism
o@=aT.

4. Homogeneous manifolds. Given a Lie group G and a subgroup H, a homogeneous
manifold M = G/H is the set of all left cosets of H in G. Not every homogeneous
manifold possesses a product turning it into a symmetric space, however, we will
see in Theorem 2.1 that any connected symmetric space arises in a natural manner
as a homogeneous manifold.

5. Jordan algebras. Let a be a finite-dimensional vector space with a bilinear multi-

plication! x % y such that
X*xy=1y%x, x*(xz*y)zxz*(x*y)

(powers defined in the usual way, x”* = x * x™=1), with unit element e. Define
L,(y) =x*yandset Py = 2Li — L ,>. Then, the set of invertible elements of a
is a symmetric space with the product

x-y=PGh.

In the context of symmetric matrices, take x %y = %(xy + yx), where xy denotes
the usual matrix multiplication. After some algebraic manipulations, one can verify
that the product x - y = Px(y_l) = 2x % (x * y_l) — (x *Xx)* y_1 = xy_lx as in
example 2.

Let G be aconnected Lie group and let o be an analytic involutive automorphism, i.e.
o #idand o2 = id. Let G° denote fixc = {g € G : o(g) = g}, G¢ its connected
component including the base point, in this case the identity element ¢ and finally let
K be a closed subgroup such that G C K C G?.SetG, ={x € G:0(x) = x~ 1.

Theorem 2.1 [16] The homogeneous space M = G /K is a symmetric space with the
product xK - yK = xo (x)" o (y)K and G, is a symmetric space with the product
x-y = xy~ 'x. The space of symmetric elements G, is isomorphic to the homogeneous
space G/ G°. Moreover, every connected symmetric space is of the type G /K and also
of the type G.

The interesting consequence of the above theorem is that every connected sym-
metric space is also a homogeneous space, which implies a factorization: as coset
representatives for G/G? one may choose elements of G, thus any x € G can be
decomposed in a product x = pk, where p € G, and k € G?. In other words,

x = pk, oky=k, o(p)= p_l, (group factorization). 2.2)

The matrix polar decomposition is a particular example, discussed in Sect. 3.1.

The automorphism o on G induces an automorphism on the Lie algebra g and
also a canonical decomposition of g. Let g and ¢ denote the Lie algebras of G and K
respectively and denote by do the differential of o at e,

1 Typically non-associative.
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d
do(X) = P tzoo(exp(tX)), VX €g. 2.3)

Note that do is an involutive automorphism of g and has eigenvalues 4-1. Moreover,
X € timplies do(X) = X.Setp ={X € g: do(X) = —X}. Then,

g=pat, 2.4
[6]. It is easily verified that

[(t.e]lCE [tplCp, [pplCE 2.5

that is, € is a subalgebra of g while p is an ideal in €. Given X € g, its canonical
decompositionp @ tis X = P+ K,with P e pand K € ¢,

X=P+K, do(K) =K, do(P)=-—P, (algebra splitting). (2.6)

We have already observed that there is close connection between projection matri-
ces, reflections (involutive matrices) and hence symmetric spaces. In a linear algebra
context, this statement can be formalized as follows. Recall that a matrix IT is a pro-
jection if T1? = TI.

Lemma 2.1 To any projection matrix I1 there corresponds an involutive matrix
S = I — 2I1. Conversely, to any involutive matrix S there correspond two projection
matrices [1g = %(1 —S8) and Hj{ = %(I—i—S). These projections satisfy Tlg + H;r =1
and TTg Hj{ = H;HE = 0, moreover Sl'[? = =£Ilg, i.e. the projection l'[? projects
onto the 1 eigenspace of S.

Note thatif S is involutive, so is —S, which corresponds to the opposite identification of
the =1 eigenspaces. A matrix K, whose columns are in the span of the +1 eigenspace
is said to be block-diagonal with respect to the automorphism, while a matrix P, whose
columns are in the span of the —1 eigenspace, is said to be 2-cyclic.

In the context of Lemma 2.1, we recognize that P € p is the 2-cyclic partand K € ¢
is the block-diagonal part. Namely, if X is represented by a matrix, then

X~ X *
X = (X* X**)’

where X/ = TT XTI} restricted to the appropriate subspaces. Then, X~ and X+
correspond to the block-diagonal part K and X ~F, X1~ corresponding to the 2-cyclic
part P.

In passing, we mention that the decomposition (2.5) is called a Cartan decompo-
sition whenever the Cartan—Killing form B(X, Y) = tr(adyady) is nondegenerate,
hence it can be used to introduce a positive bilinear form B4, = —B(X, do(Y)). If
this is the case, the linear subspaces &, p are orthogonal.

The involutive automorphism o need not be defined at the group level G and there-
after lifted to the algebra by (2.3). It is possible to proceed the other way around: an
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involutive algebra automorphism do on g, which automatically produces a decompo-
sition (2.4)—(2.5), can be used to induce a group automorphism o by the relation

o(x) = exp(do(logx)), 2.7

and a corresponding group factorization (2.2). Thus, we have an “upstairs-downstairs”
viewpoint: the group involutive automorphisms generate corresponding algebra auto-
morphisms and vice versa. This “upstairs-downstairs” view is useful: in some cases,
the group factorization (2.2) is difficult to compute starting from x and o, while the
splitting at the algebra level might be easy to compute from X and do. In other cases,
it might be the other way around.

2.2 Lie triple systems

In Lie group theory Lie algebras are important since they describe infinitesimally the
structure of the tangent space at the identity. Similarly, Lie triple systems give the
structure of the tangent space of a symmetric space.

Definition 2.2 [16] A vector space with a trilinear composition [X, Y, Z] is called a
Lie triple system (LTS) if the following identities are satisfied:

1 [X,X,X]=0,
) [X,Y, Z1+ 1Y, Z, X1+ [Z,X, Y] =0,
Gi) [X, Y, [U,V,Wll=I[X,Y,U],V,WI+[U,[X,Y, V], WI+[U, V, [X, Y, W]I.

A typical way to construct a LTS is by means of an involutive automorphism of a
Lie algebra g. With the same notation as above, the set p is a LTS with the composition

[X,Y, Z] =[[X, Y], Z].
Vice versa, for every finite dimensional LTS there exists a Lie algebra & and an
involutive automorphism o such that the given LTS corresponds to p. The algebra &
is called standard embedding of the LTS. In general, any subset of g that is closed

under the operator
Tx(-) = adi () = [X, [X, -] 2.8)

is a Lie triple system. It can be shown that being closed under Ty guarantees being
closed under the triple commutator.

3 Application of symmetric spaces in numerical analysis

3.1 The classical polar decomposition of matrices

Let GL(N) be the group of N x N invertible matrices. Consider the map
ox)=x"T,  xeGL(N). 3.1

It is clear that o is an involutive automorphism of GL(NV). Then, according to The-
orem 2.1, the set of symmetric elements G, = {x € GL(N) : 0(x) = x " !}isa
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symmetric space. We observe that G is the set of invertible symmetric matrices. The
symmetric space G, is disconnected and particular mention deserves its connected
component containing the identity matrix /, since it reduces to the set of symmet-
ric positive definite matrices. The subgroup G consists of all orthogonal matrices.
The decomposition (2.2) is the classical polar decomposition, any nonsingular matrix
can be written as a product of a symmetric matrix and an orthogonal matrix. If we
restrict the symmetric matrix to the symmetric positive definite (spd) matrices, then
the decomposition is unique. In standard notation, p is denoted by s (spd matrix),
while k is denoted by ¢ (orthogonal matrix).> At the algebra level, the corresponding
splittingis g = p D€, where £ = {X € gl(N) : do(X) = X} = so(N), is the classical
algebra of skew-symmetric matrices, while p = {X € gl(N) : do(X) = —X} is the
classical set of symmetric matrices. The latter is not a subalgebra of gl(/N) but is closed
under Ty, hence is a Lie triple system. The decomposition (2.6) is nothing else than
the canonical decomposition of a matrix into its skew-symmetric and symmetric part,
X=P+K=3X-do(X)++(X+do(X) =3X - XD+ 35X +XT). 1t
is well known that the polar decomposition x = sq can be characterized in terms of
best approximation properties. The orthogonal part g is the best orthogonal approx-
imation of x in any orthogonally invariant norm (e.g. 2-norm and Frobenius norm).
Other classical polar decompositions x = sq, with s Hermitian and ¢ unitary, or with
s real and ¢ coinvolutory (i.e. gg = I), can also be fitted in this framework [3] with
the choice of automorphisms o (x) = x~* = %~ T (Hermitian adjoint), and o (x) = x
respectively (where x denotes the complex conjugate of x).

The group decomposition x = sg can also be studied via the algebra decomposition.

3.2 Generalized polar decompositions
In [23] such decompositions are generalized to arbitrary involutive automorphisms,
and best approximation properties are established for the general case.

In [36] an explicit recurrence is given, if exp(X) = exp(P + K) = x, exp(S) = s

and exp(Q) = g then S and Q can be expressed in terms of commutators of P and
K. The first terms in the expansions of S and Q are

1 1
1 1
+ﬁ[P’ [P, [P, K]l — ﬂ[K’ (K. [P, K]]I
1
+(K, [P, [P, [P, K]l — E[K, [K,[K,[P, K]l
1
_ﬁ[[P’ KL[P, [P, K]l +---,
1 1
0=K- E[P’ [P, K]l+ E[P’ [P, [P, [P, K]III

1 1
+%[K, (K, [P, [P, K]I]] - m[[l’, KL [K, [P, KIN+---. (32

2 Usually, matrices are denoted by upper case letters. Here we hold on the convention described in Sect. 2.
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Clearly, also other types of automorphisms can be considered, generalizing the
group factorization (2.2) and the algebra splitting (2.6). For instance, there is a large
source of involutive automorphisms in the set of involutive inner automorphisms

o(x) = rxr, do(X) =rXr, (3.3)

that can be applied to subgroups of G = GL(n) to obtain a number of interesting
factorizations. The matrix r has to be involutive, r2 = I, but it need not be in the
group: the factorization makes sense as long as o (x) is in the group (resp. do (X) isin
the algebra). As an example, let G = SO (n) be the group of orthogonal matrices, and
letr =[—ej,e2,...,e,]=1— 2elelT, where ¢; denotes the ith canonical unit vector
in R”. Obviously, r & SO(n), as detr = —1; nevertheless, we have (rxr)’ (rxr) =
rTxTrTrxr =1, aslong as x € SO(n), since r'r = I, thus o (x) = rxr € SO(n).
It is straightforward to verify that the subgroup G° of Theorem 2.1 consists of all
orthogonal n x n matrices of the form

_ (1 o’ )
1 0 gn1)’
where g,—1 € SO(n — 1). Thus the corresponding symmetric space is G/G° =
SO (n)/SO(n — 1). Matrices belong to the same coset if their first column coincide,

thus the symmetric space can be identified with the (n — 1)-sphere S" .
The corresponding splitting of a skew-symmetric matrix V € g = so(n) is

0 —T 0 —oT 0 O
v=(00) =0 )+ (6 )),) —rrreree

Thus any orthogonal matrix can be expressed as the product of the exponen-
tial of a matrix in p and one in €. The space p can be identified with the tan-
gent space to the sphere in the point (1,0,...,0)7. Different choices of r give
different interesting algebra splittings and corresponding group factorizations. For
instance, by choosing r to be the anti-identity, r = [e,, €4—1, ..., 1], one obtains
an algebra splitting in persymmetric and perskew-symmetric matrices. The choice
r=[—ei, e, ...,ey, —€ntl,ent2 - .., er,] for symplectic matrices, gives the split-
ting in lower-dimensional symplectic matrices forming a sub-algebra and a Lie-triple
system, and so on. In [12,38], such splittings are used for the efficient approximation
of the exponential of skew-symmetric, symplectic and zero-trace matrices. In [14]
similar ideas are used to construct computationally effective numerical integrators for
differential equations on Stiefel and Grassman manifolds.

3.3 Generalized polar coordinates on Lie groups

A similar framework can be used to obtain coordinates on Lie groups [15], which are
of interest when solving differential equations of the type

x = X(t, x)x, x(0) =e,
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by reducing the problem recursively to spaces of smaller dimension. Recall that x (1) =
exp(£2(¢)) where Q2 obeys the differential equation 2 = dexp§1 X, where dexpgl =

Z;io %adi, B being the jth Bernoulli number, see [11].

Decomposing X = 17X + HjX € p @ ¢, where l'lffX = %(X + do (X)), the
solution can be factorized as

x(1) = exp(P (1)) exp(K (1)),

where

o0
B . . B .

— X — + 2 oo adH I Lo 22
P=TI"X—[P I X]+;2 cjad/II7X, o) = Gl (3.4)
o0 . .

K =dexpy! [MTHX =2 2% — Deyjady "'Mx | . (3.5)
j=1

Note that (3.5) depends on P, however, it is possible to formulate it solely in terms of
K, TI™ X and IT" X, but the expression becomes less neat. In block form:

P\ (I © veoshy — _y\ (1-7
K] \0 dexp}1 1;;(})18511 1 n+tz

where v = adp. The above formula paves the road for a recursive decomposition,
by recognizing that dexpg1 is the dexp~! function on the restricted sub-algebra ¢. By
introducing a sequence of involutive automorphisms o;, one induces a sequence of
subalgebras, g = go D g1 D g2 D ..., of decreasing dimension, g, 1 = Range(l’lji).
Note also that the functions appearing in the above formulation are all analytic func-
tions of the ad-operator, and are either odd or even functions, therefore they can be
expressed as functions of ad® on p. In particular, this means that, as long as we can com-
pute analytic functions of the ad® operator, the above decomposition is computable.

Thus, the problem is reduced to the computation of analytic functions of the
2-cyclic part P as well as analytic functions of ad p (trivialized tangent maps and their
inverse). The following theorem addresses the computation of such functions using
the same framework of Lemma 2.1.

Theorem 3.1 [15] Let P be the 2-cyclic part of X = P + (X — P) with respect to
the involution S, i.e. SPS = —P. Let ® = PZHE. For any analytic function  (s),
we have

Y (P) =Y (O) +¥1(O)P + PY1(O) + PYn(©)P + y2(0)0,  (3.6)
where 1(s) = 5= (W (V5) = (=v/5)) and Ya(s) = 2; (Y (V5)+1 (=/5) =24/ (0)).
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A similar result holds for ad p, see [15]. It is interesting to remark that if

0 BT
r=(1 %)

2 (BTA O o (viBTA) 0
®—P1'IS—(0 0), w@)—( 0 wi(O)I)’

then

where V1, ¥» as above. In particular, the problem is reduced to computing analytic
functions of the principal square root of a matrix [9]: numerical methods that compute
these quantities accurately and efficiently are very important for competitive numerical
algorithms. Typically, ® is a low-rank matrix, hence computations can be done using
eigenvalues and eigenfunctions of the ad operator restricted to the appropriate space,
see [14,15]. In particular, if A, B are vectors, then BT A is a scalar and the formulas
become particularly simple.

These coordinates have interesting applications in control theory. Some early use
of these generalized Cartan decompositions (2.4)—(2.5) (which the author calls Z;-
grading) to problems with nonholonomic constraints can be found in [1]. In [13],
the authors embrace the formalism of symmetric spaces and use orthogonal (Cartan)
decompositions with applications to NMR spectroscopy and quantum computing,
using adjoint orbits as main tool. Generally, these decompositions can be found in the
literature, but have been applied mostly to the cases when [£, €] = {0} or [p, p] = {0},
or both, as (3.4)—(3.5) become very simple and the infinite sums reduce to one or two
terms. The main contribution of [15] is the derivation of such differential equations
and the evidence that such equations can be solved efficiently using linear algebra
tools. See also [37] for some applications to control theory.

3.4 Symmetries and reversing symmetries of differential equations

Let Diff (M) be the group of diffeomorphisms of a manifold M onto itself. We say
that a map ¢ € Diff (M) has a symmetry .7 : M — M if

SIS V=g

(the multiplication indicating the usual composition of maps, i.e. 9192 = @1 o ¢2),
while if

%(ﬂ%il — (pfl,

we say that & is a reversing symmetry of ¢ [19]. Without further ado, we restrict
ourselves to involutory symmetries, the main subject of this paper. Symmetries and
reversing symmetries are very important in the context of dynamical systems and their
numerical integration. For instance, nongeneric bifurcations can become generic in
the presence of symmetries and vice versa. Thus, when using the integration time-step
as a bifurcation parameter, it is vitally important to remain within the smallest possible
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class of systems. Reversing symmetries, on the other hand, give rise to the existence
of invariant tori and invariant cylinders [21,27,30,31].

It is a classical result that the set of symmetries possess the structure of a
group—they behave like automorphisms and fixed sets of automorphisms. The group
structure, however, does not extend to reversing symmetries and fixed points of
anti-automorphisms, and in the last few years the set of reversing symmetries has
received the attention of numerous numerical analysts. In [19] it was observed that
the set of fixed points of an involutive anti-automorphism <7 was closed under the
operation

@1 -2 = p1291 € fixd_, Vou, ¢ € fixa,

that McLachlan et al. called “sandwich product”.? Indeed, our initial goal was to
understand such structures and investigate how they could be used to devise new
numerical integrators for differential equations with some special geometric properties.
We recognise, cf. Sect. 2.1, that the set of fixed points of an anti-automorphism is a
symmetric space. Conversely, any connected space of invertible elements closed under
the “sandwich product”, is the set of the fixed points of an involutive automorphism
(cf. Theorem 2.1) and has associated to it a LTS. To show this, consider the well known
symmetric BCH formula,

exp(Z) = exp(X) exp(Y) exp(X)

Z=2X+Y+éTy(X)—éTX(Y)+37E ,%(Y)—;ET,%X+-~- 3.7
[28], which is used extensively in the context of splitting methods [18]. Because of the
sandwich-type composition (symmetric space structure), the corresponding Z must
be in the LTS space, and this explains why it can be written as powers of the double
commutator operators Ty = adi, Ty = ad% applied to X and Y. A natural question
to ask is: what is the automorphism o having such sandwich-type composition as anti-
fixed points? As fixe7_ = {z]|o(z) = z !}, we see that, by writing z = exp(Z), we
have o (exp(Z)) = (exp(Z))~! = exp(—Z). In the context of numerical integrators,
the automorphism o consists in changing the time ¢ to —¢. This will be proved in
Sect. 3.5.

If M is a finite dimensional smooth compact manifold, the infinite dimensional
group Diff (M) of smooth diffeomorphisms M — M does not have, strictly speaking,
the structure of a Lie group, but the more complex structure of a Frechét Lie group
[24]. In Frechét spaces, basic theorems of differential calculus, like the inverse function
theorem, do not hold. In the specific case of Diff (M), the exponential map from the
set of vector fields on M, Vect(M), to Diff (M) is not a one-to-one map not even in
the neighbourhood the identity element, hence there exist diffeomorphisms arbitrarily
close to the identity which are not on any one-parameter subgroup and others which are
on many. However, these regions become smaller and smaller the closer we approach

3 The authors called the set of vector fields closed under the sandwich product @1 - 92 = @1p2¢] a
pseudogroup.
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the identity [24,26], and, for our purpose, we can disregard these regions and assume
that Diff (M) is a Lie group with Lie algebra Vect(M).

There are two different settings that we can consider in this context. The first is to
analyze the set of differentiable maps that possess a certain symmetry (or a discrete
set of symmetries). The second is to consider the structure of the set of symmetries of
a fixed diffeomorphism. The first has a continuous-type structure while the second is
more often a discrete type symmetric space.

Proposition 3.1 The set of diffeomorphisms ¢ that possess % as an (involutive) revers-
ing symmetry is a symmetric space of the type G4.

Proof Denote
o(p) = RBoR~".
It is clear that o acts as an automorphism,

o(p192) = o (p1)o (¢2),

moreover, if Z is an involution then so is also o . Note that the set of diffeomorphisms ¢
that possess Z as a reversing symmetry is the space of symmetric elements G, defined
by the automorphism o (cf. Sect. 2). Hence the result follows from Theorem 2.1. O

Proposition 3.2 The set of reversing symmetries acting on a diffeomorphism ¢ is a
symmetric space with the composition ) - #» = H1 Ky L%,.

Proof If Z is a reversing symmetry of ¢, i.e. Zp#~! = ¢~ !, then itis easily verified
that Z~'¢~'% = ¢, hence Z#~! is a reversing symmetry of ¢~!. Next, we observe
that if 77| and %, are two reversing symmetries of ¢ then so is also %%, 1%, since

B\ Ky (T By BT = %y T IR = ey = o

It follows that the composition % - %> = %1%, 1%, is an internal operation on
the set of reversing symmetries of a diffeomorphism ¢.

With the above multiplication, the conditions (i)—(iii) of Definition 2.1 are easily
verified. This proves the assertion in the case when ¢ has a discrete set of reversing
symmetries. If such a set is continuous and # is differentiable, the condition iv) follows
from the properties of Diff (M) and we have again a symmetric space of the type G,
choosing o (#Z) = ¢_1%_1¢_1 (note that ¢ needs not be an involution). O

In what follows, we assume that .7 € Diff(M) is differentiable and involutory

(T ' =), thuso(p) = TeT.
Acting on ¢ = exp(rX), we have

d
do X = P t:()a exp(tX) = %X T,
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where .7 is the tangent map of 7. The pullback is natural with respect to the Jacobi
bracket,

(ZX T, TY T = ZX, Y17,

for all vector fields X, Y. Hence the map do is an involutory algebra automorphism.
Let €, and p be the eigenspaces of do in g = diff (M). Then

g=t@p,
where
E={X: ZX=X7T}
is the Lie algebra of vector fields that have .7 as a symmetry and
p={X:7%X=-X7T}

is the Lie triple system, vector fields corresponding to maps that have .7 as a reversing
symmetry. Thus, as is the case for matrices, every vector field X can be split into two
parts,

X:%@+ﬂmxﬂ+%@—dmm)zak+zxy)+aX—zxy)

having .7 as a symmetry and reversing symmetry respectively.
In the context of ordinary differential equation, let us consider

d
Tf = F(y), yeRY. (3.8)

Given an arbitrary involutive function .7, the vector field F can always be canonically
split into two components, having .7 as a symmetry and reversing symmetry respec-
tively. However, if one of these components equals zero, then the system (3.8) has .7
as a symmetry or a reversing symmetry.

3.5 Selfadjoint numerical schemes as a symmetric space
Let us consider the ODE (3.8), whose exact flow will be denoted as ¢ = exp(tF).
Backward error analysis for ODEs implies that a (consistent) numerical method for
the integration of (3.8) can be interpreted as the sampling at ¢ = & of the flow ¢ (¢)
of a vector field F}, (the so called modified vector field) which is close to F,

on(t) =exp(tFy), Fp=F+hE, +h"E,y+-- o,

where p is the order of the method (note that setting t = A, the local truncation error
is of order #”T1). The series equalities for modified flows and vector fields must be
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intended in a formal sense, i.e. the infinite series may not converge, see [4]. Typically,
a truncated k-terms series approximation has smaller and smaller error as k increases,
but, after a certain optimal index ko, the error increases. However, such a kg is larger
than the range that is of interest in our analysis.

Consider next the map o on the set of flows depending on the parameter & defined
as

o (n(1) = @-p(=1), (3.9

where ¢_, (1) = exp(t F_p), with F_, = F + (=h)PE, + (=0)PT E 1 + -+

The map o is involutive, since 0> = id, and it is easily verified by means of the BCH
formula that o (@1 ,¢2.1) = 0 (¢1.1)0 (¢2.1), hence o is an automorphism. Consider
next

Go = {on :o(en) = ¢; '),

Then ¢, € G, ifand only if p_j(—t) = gp,?l (1), namely the method ¢y, is selfadjoint.

Proposition 3.3 The set of one-parameter, consistent, selfadjoint numerical schemes
is a symmetric space in the sense of Theorem 2.1, generated by o as in (3.9).

Next, we perform the decomposition (2.4). We deduce from (3.9) that

d
do(Fi) = | _ o@pUF)) ==(F + EN'Ey+ W Ep) 4= Fo,

hence,
t={F,: do(Fp) = Fp} = {Fyp : —F_j = Fp},
is the subalgebra of vector fields that are odd in 4, and
p={Fy:do(Fp) = —Fp} ={Fn: F-p = Fp},

is the LTS of vector fields that possess only even powers of /. Thus, if F}, is the modified
vector field of a numerical integrator ¢y, its canonical decomposition in € @ p is

1 1
Fp = E(Fh + do (Fp)) + E(Fh — do(Fp))

1 < kypk 1 .~ kypk
=5 | F+ 220 - DO E ) + 5 [ F+ 20+ (DO E
k=p k=p
the first term containing only odd powers of & and the second only even powers. Then,
if the numerical method ¢}, (%) is selfadjoint, it contains only odd powers of & locally

(in perfect agreement with classical results on selfadjoint methods [5]).
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3.6 Connections with the generalized Scovel projection for differential equations
with reversing symmetries

In [23] it has been shown that it is possible to generalize the polar decomposition of
matrices to Lie groups endowed with an involutive automorphism: every Lie group
element z sufficiently close to the identity can be decomposed as z = xy where
x € G, the space of symmetric elements of o, and y € G?, the subgroup of G of
elements fixed under o. Furthermore, setting z = exp(¢Z) and y = exp(Y (¢)), one
has that Y (¢) is an odd function of ¢ and it is a best approximant to z in G° in G°
right-invariant norms constructed by means of the Cartan—Killing form, provided that
G is semisimple and that the decomposition g = p & £ is a Cartan decomposition.

Assume that @, the exact flow of the differential equation (3.8), has # as a reversing
symmetry (i.e. F € p,, where o (¢) = Zp%#~"), while its approximation ¢;, has not.
We perform the polar decomposition

on=Yuxn, oW =¥, ol = xn (3.10)

i.e. Y, has Z as a reversing symmetry, while x; has & as a symmetry. Since the
original flow has Z# as a reversing symmetry (and not symmetry), xj is the factor
that we wish to eliminate. We have w,% = (pho((ph)’l. Hence the method obtained
composing ¢, with o (¢5) ! has the reversing symmetry % every other step. To obtain
Y, we need to extract the square root of the flow <pha(<ph)_1. Now, if ¢(t) is a flow,
then its square root is simply ¢(¢/2). However, if ¢, (¢) is the flow of a consistent
numerical method (p > 1), namely the numerical integrator corresponds to ¢y, (h), it
is not possible to evaluate the square root ¢y (h/2) by simple means as it is not the
same as the numerical method with half the stepsize, ¢p,/2(h/2). The latter, however,
offers an approximation to the square root: note that

(e () -snora(2) 5

an expansion which, compared with ¢, (1), reveals that the error in approximating the
square root with the numerical method with half the stepsize is of the order of

E WPl g
20 P

a term that is subsumed in the local truncation error. The choice

2

U = onpo (o) = <ﬂh/20(<ﬂh_/12) (3.11)

as an approximation to ¥, (we stress that each flow is now evaluated at t = h/2),
yields a map that has the reversing symmetry % at each step by design, since

o () = 0 (pn20 (9)) = 0 (P2 @, p =V, -
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Note that &h = @h/zo(w,f/lz), where w,f/lz(t) = gofh/z(—t) is the inverse (or adjoint)
method of ;2. If o is given by (3.9), then a(goh_/lz) = <,0;lk /2(}1 /2) and this algorithm
is precisely the Scovel projection [29] originally proposed to generate selfadjoint
numerical schemes from an arbitrary integrator, and then generalized to the context
of reversing symmetries [19].

Proposition 3.4 The generalized Scovel projection is equivalent to choosing the G-
factor in the polar decomposition of a flow ¢y under the involutive automorphism
(@) = ReR~", whereby square roots of flows are approximated by numerical
methods with half the stepsize.

3.7 Connection with the Thue—Morse sequence and differential equations
with symmetries

Another algorithm that can be related to the generalized polar decomposition of flows is
the application of the Thue—Morse sequence to improve the preservation of symmetries
by means of a numerical integrator [10]. Given an involutive automorphism ¢ and a
numerical method ¢, in a group G of numerical integrators, Iserles et al. [ 10] construct
the sequence of methods

PO =gy, o= Mgy k=0,1,2,.... (3.12)
Since gl = 0¥ it is easily observed that the kth method corresponds to com-
posing 0%kl and o' ¢!*! according to the kth Thue-Morse sequence 01101001 .. .,
as displayed below in Table 1 (see [20,32]). Iserles et al. [10] showed, by a recursive
use of the BCH formula, that each iteration improves by one order the preservation of
the symmetry . by a consistent numerical method, where .# is the involutive auto-
morphism such that o (¢) = .#¢.%~!. The main argument of the proof is that if the
method ¢*] has a given symmetry error, the symmetry error of o (¢!¥1) has the oppo-
site sign. Hence the two leading symmetry errors cancel and ¢**11 has a symmetry
error of one order higher. In other words, if the method ¢, preserves . to order p,
then ¢l¥! preserves the symmetry .7 to order p + k every 2% steps. As o changes the
sign of the symmetry error only, if a method ¢;, has a given approximation order p, so
does o (¢p). Thus ¢[0] = o (¢y,) can be used as initial condition in (3.12), obtaining

the conjugate Thue—Morse sequence 10010110 .. .. By a similar argument, also
1 =gnor =), (=0 M, k=012, @13

generate sequences with increasing order of preservation of symmetry.

Table 1 Thue—Morse iterations k]
k o

for the method (p[k] Sequence
0 o%p O
1 o%p)ol (e 01’
2 0%t @el @) 0110’
3 0% (9o (9)a(@)o ! (9)a(9)c(p)a ! (p)  “01101001°
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Example 3.1 As an illustration of the technique, consider the spatial PDE u; = u, +
uy+ f(u), where f is analytic in u. Let the PDE be defined over the domain [—L, L] x
[—L, L] with periodic boundary conditions and initial value ug. If ug is symmetric
on the domain, i.e. ug(y, x) = ug(x, y), so is the solution for all 7. The symmetry
iso(u(t,x,y)) =u(t,y, x). Now, assume that we solve the equation by the method
of alternating directions, where the method ¢ corresponds to solving with respect to
the x variable keeping y fixed, while o (¢) with respect to the y variable keeping
x fixed. The symmetry will typically be broken at the first step. Nevertheless, we
can get a much more symmetric solution if the sequence of the directions obeys the
Thue—Morse sequence (iteration ¢!¥1) or the equivalent sequence given by iteration
x 1. This example is illustrated in Figs. 1, 2 for a basic method using the Forward
Euler and Heun’s method respectively. The time integration interval is [0, 10]. The
differential operators 0y, d, are implemented using second order central differences.

0

o aaammaasaw 10
107 rgamaaammm&mmmmmmuaaw
5 10 0 5 10
0000... 01010101...
10° 10°
—10 -10
10 Egamamama'mmmasamaaammw 10
J Waggaaamaaammmmmmﬁ?

0 5 10 0 5 10
01100110... 01101001...

10 10

10
[pmnanmt S S
0 5 10 0 5 10
0110100110010110... 011010011001011010010110...
Sampling every X steps, X = ) B A S S o5

Fig. 1 “Modes” of the symmetry error e = maxy,,y; lug (x;, ;) — ug(yj, x;)| versus time #; = kh for

the method of alternating directions for the PDE u; = uy +uy +2 x 10_3u2, on a square (L = 1), with

. .. —x2_y2 . . L ..
initial condition ug = e~* 7", isotropic mesh and periodic boundary conditions. See Example 3.1 for

details. The integration is performed using the Forward Euler as a basic method. The order of the overall
approximation is the same as the original method (first order only), the only difference is the order of the
directions, chosen according to the Thue-Morse sequence. The different symbols correspond to different
sampling rates: every step, every second step, fourth, eight, .... From top left to bottom right: sequences
‘07, ‘01, ‘01107, “01101001°, etc.
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10
- © - Global Err 01
-+ -Symm Err 01
107 || —e—Global Err 0110 .
=+ =Symm Err 0110
N | h? reference
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—"
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10 + _-=" b
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a
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10_14 2 ‘ 1 0
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Fig. 2 Global error and symmetry error ey = maxy; y; lug (xi, yj) — up(yj, x;)| versus step size h for
the method of alternating directions for the PDE u; = uy +uy + 2 x 10_3142, as in Example 3.1. The
basic method ¢ (method “0”) is now a symmetric composition with the Heun method: half step in the x
direction, full step in the y direction, half step in the x direction, all of them performed with the Heun method
(improved Euler). It is immediately observed that the symmetry error is improved by choosing the directions
according to the Thue—-Morse sequence. The order of the method (global error) remains unchanged (order
two).

The experiments are performed with constant stepsize # = 10~2 and uniform spatial
discretization Ax = Ay = 1071

Example 3.2 A generic GR method for finding the eigenvalues of a square matrix A
(for simplicity, assume it has distinct real eigenvalues) consists in the iteration of two
simple steps: compute a matrix factorization Ay = Gy Ry and then construct the update
Ak+1 = RiGy. The matrix Ay is similar to Ag as Agy1 = ReAgR; . The itera-
tions are then repeated until the matrix Ay eventually converges to an upper triangular
matrix so that the eigenvalues can be read off the diagonal. The most famous method
in this class is the QR method for eigenvalues, but other many other variants exist, see
[33] for an extended discussion. These methods can be related to isospectral flows,
i.e. matrix differential equations that preserve the eigenvalues, and can be interpreted
as discrete time sampling of the matrix flow. Disregarding stability issues, consider
a GR method using a simple LU factorization, Ay = LiU, Apy+1 = UrLg. It is
soon observed that, given a symmetric initial matrix Ao, the subsequent iteration pro-
duce a non-symmetric matrix. However, A1 can be thought as a step of a consisten
numerical method applied to the differential equation, therefore we might decrease the
symmetry error using the Thue—Morse sequence. The ‘1’ step is the application of the
factorization to AT, rather than to Ay, to produce A,{ 41~ Typically the ‘01" sequence
has the most significant effect. The other sequences ‘0110, ‘01101001°, ..., might dis-
play a more erratic behaviour, as the analysis of is valid in the asymptotic limit 4 — 0,
whereas the step size of the discrete sampling might be too large for the analysis to be
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Fig. 3 Symmetry error ¢y = max; ; [(Ag); ;j — (Ag);,i| for a GR method for eigenvalues. The basic
method is Ay = LyUy, Ag4+1 = UgLy (method “0”). The method “1” consists of applying the same
algorithm to AZ rather than Aj. The symmetry error is reduced by the Thue—Morse sequence because the
basic method can be interpreted as a discrete-time flow of a matrix differential equation. However, since
the discrete time-step might be too large with respect to the asymptotic regime in which the Thue—Morse
analysis is valid, the longer sequences might display a more erratic behaviour (right plot)

valid. Figure 3 shows the symmetry error of the Thue—Morse technique applied to two
different symmetric, positive definite, initial conditions A¢ with the same set of eigen-
values. We have used Ag = QA QT , where Q is obtained as the orthogonal factor in the
QR factorization of a random matrix of dimension five and A = diag([1, 2, 3, 4, 5]).
The factorization Ay = LUy is computed using the Matlab 1u command.

3.8 Connections with a Yoshida-type composition and differential equations
with symmetries

In a famous paper that appeared in 1990 [34] Yoshida showed how to construct high
order time-symmetric integrators starting from lower order time-symmetric symplectic
ones. Yoshida showed that, if ¢ is a selfadjoint numerical integrator of order 2p,
then

Qan(@t)pn(Bt)@an(at)

is a selfadjoint numerical method of order 2 p + 2 provided that the coefficients & and
B satisfy the condition

24 p=1
20201 4 gt =,

whose only real solution is

1

=y ey

g=1-"2a. (3.14)

In the formalism of this paper, time-symmetric methods correspond to G -type ele-
ments with o as in (3.9) and it is clearly seen that the Yoshida technique can be used
in general to improve the order of approximation of G,-type elements.
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A similar procedure can be applied to improve the order of the retention of sym-
metries and not just reversing symmetries. To be more specific, let . be a symmetry
of the given differential equation, namely .7 F = F.#, with . # id, .~ ! = .7,
% denoting the pullback of . to g = Vect(M) (see Sect. 3.4). Here, the involutive
automorphism is given by

opp(t) = Lont)S,
so that
p={P: %P =-P}, t={K:%K=KY}

Proposition 3.5 Assume that ¢ (t) is the flow of a self-adjoint numerical method
of order 2p, ¢y(t) = exp(tFy), Fy = F + h*PEy, + h*PF2Ey 0 + - -+, where
E;=P;+Kj, Piep,K; € tand F has 7 as a symmetry. The composition

o) (1) = an(at)o (@ (1)) gan(at), (3.15)
with

1

a:m, b=1—2a,

has symmetry error 2p +?2 att = h.

Proof Write (3.15) as
01!\ (1) = exp(at Fup) exp(bt do (Fyy)) exp(at Fap).

Application of the symmetric BCH formula, together with the fact that do acts by
changing the signs on the p-components only, allows us to write the relation (3.15) as

ol (1) = exp((2a+b)t F+(2(at)(ah)* + (bt) (bh)*P) K2,
+(2at (ah)?? — bz(bh)ZP)Pz,,+ﬁ(th2P+2) +ﬁ(t3hzl’) o), (3.16)

where the 0 (th2p+2) comes from the E3j > term and the & (t3h21’ ) from the com-
mutation of the F and E3 ), terms (recall that no first order commutator appears in the
symmetric BCH formula). The numerical method is obtained letting ¢t = k. We require
2a + b = 1 for consistency, and 2a%r+1 — p2Ptl — 0 to annihilate the coefficient of
P, p, the lowest order p-term. The resulting method <p,[11](t) retains the symmetry ./
to order 2p + 2, as the first leading symmetry error is a & (h2p+3 ) term. O

The procedure described in Proposition 3.5 allows us to gain two extra degrees in
the retention of symmetry per iteration, provided that the underlying method is self-
adjoint, compared with the Thue—Morse sequence of [10] that yields one extra degree
in symmetry per iteration but does not require selfadjointness. As for the Yoshida
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technique, the composition (3.15) can be iterated k times to obtain a time-symmetric
method of order 2p that retains symmetry to order 2(p + k). The disadvantage of
(3.15), with respect to the classical Yoshida approach is the fact that the order of the
method is retained (and does not increase by 2 units as the symmetry error). The main
advantage is that all the steps are positive, in particular the second step, b, whereas
in (3.14) is always negative for p > 3 and typically larger than «, requiring step-size
restrictions. In the limit, when p — oo, a,b — 1/3, i.e. the step lengths become
equal.

Example 3.3 Consider the PDE u, = V2y —u(u— 1)2, defined on the square [—1, 1] x
[—1, 1], with a Gaussian initial condition, u(0) = e_9x2_9»"2, and periodic boundary
conditions. The problem is semi-discretized on a coarse uniform and isotropic mesh
with spacing § = 0.1 and is reduced to the set of ODEs 1t = (Dyx + Dy))u+ f(u) =
F(u), where Dyy = I ® Dy and Dy, = D> ® I, D, being the circulant matrix of
the standard second order divided differences, with stencil 5%[1, —2, 1]. For the time
integration, we consider the splitting F = F| + F>, where F| = Dy, + % f and

F> = Dy, + % f and the second order self-adjoint method:*
_ BE BE FE FE
@ —‘/’%’Fl O‘P%,onﬁf’%fzo(ﬁh . (3.17)

We display the global error and the symmetry error for time-integration step sizes
h =3hyx[1, %, - 6l4], where the parameter /4 is chosen to be the largest step size
for which the basic method ¢ in (3.17) is stable. The factor 3 comes from the fact that
both the Yoshida and our symmetrization method (3.15) require three sub-steps of the
basic method. So, one step of the Yoshida and our symmetrising composition can be
expected to cost the same as the basic method (3.17).

As we can see in Fig. 4, the Yoshida technique, with « = 1/(2 — 21/ 3) and
B = 1 — 2a, does the job of increasing the order of accuracy of the method from
two to four, and so does the symmetry error. However, since o < 1/2, the B-step is
negative, and, as a consequence, it is observed that the method fails to converge for
the two largest values of the step size. Conversely, our symmetrization method (3.15)
hasa = 1/(2 + 21/ 3) and b = 1 — 2a, with b positive, and the method converges
for all the time-integration steps. As expected, the order is not improved, but the sym-
metry order is improved by two units. The symmetry o is applied by transposing
the matrix representation ux ~ u(, x;, y;) of the solution at (x;, y;) = (i, jé),
before and after the intermediate b-step. Otherwise, the two implementations are
identical.

The result yields in the non-stiff regime, i.e. when the Taylor expansion is a good
approximation to the exact solution. Such problems, with coarse or even fixed space
discretization arise, for instance, in the image processing applications, like image
impainting [2]. For problems requiring finer space discretizations, the PDE becomes
stiff and other methods might be more appropriate.

4 We have simply split the nonlinear term in two equal parts. Surely, it can be treated in many different
ways, but that is besides the illustrative scope of the example.
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-4 | —e—Global error -4 | —e—Global error
10 —+— Symm. error 10 —+— Symm. error
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—— h? reference 1 — —— h* reference

Fig. 4 Error versus step size for the Yoshida technique (leff) and the symmetrization technique (3.15)
(right) for the basic self-adjoint method (3.17) applied to a semidiscretization of u; = v2u — u(u — 1)2.
The order with the Yoshida technique increases by two units, but the method does not converge for the two
largest values of the step size. Our symmetrization technique improves by two units the order of retention of
symmetry (but not global error). Due to the positive step-sizes, it converges also for the two largest values
of the step size. See text for details.

Example 3.4 We consider a continuous equivalent of the GR eigenvalue problem
described in Example 3.2. Let the matrix A(z) be the solution of the differential
equation él—tA = [B(A), A], with initial condition Ay, where B(A) = Ar — Ay,
A = AL + Ap + Ay being the decomposition of a matrix in strictly lower triangular
part, diagonal and strictly upper triangular part. Introducing a new matrix L, where
%L = B(LAoL™")L = F(L), L(0) = I, it can be easily verified that A = LAqL ™!
is a solution of the original problem and the similarity transformation that defines
the change of variables is an isospectral transformation. Thus isospectrality can be
preserved by solving for L and using similarity transformations. If the matrix A is
symmetric then L is an orthogonal matrix and A will remain symmetric for all time.
When numerically solving for L, the orthogonality will be lost whenever we use a
simple method like Forward Euler, and, in general, any method that does not preserve
orthogonality. The spectrum will still be retained as long as we use the similarity
transformation to update A [35]. Consider the following basic method

Ly = ¢nrlo= ¢]§FF ° ¢Z]’EFL0, A = gnAo = Ly ALy, (3.18)

which is selfadjoint of order two. The symmetry is given by o(A) = AT. Again
we apply both the Yoshida method and the method of Prop. 3.5. The results, shown
in Fig. 5, are very similar to those presented in Example 3.3 and we see that (3.15)
behaves better for larger step sizes, whereas the Yoshida technique fails in providing
converging solutions for the implicit iterations. Again, the symmetry is applied by
transposing the matrix A before and after the b step. Otherwise, the implementations
are identical. The stepsizes are h = [1, % R 61—4] and the initial condition is the same
for both experiments and computed as in Example 3.2.
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Fig.5 Global and symmetry error versus step size & for the Yoshida technique (/eft) and the symmetrization
technique (3.15) (right) for the basic self-adjoint method (3.18) when applied to the isospectral problem
described in Example 3.4 solved in the interval [0, T'], T = 10. See text for details

4 Conclusions and remarks

In this paper we have shown that the algebraic structure of Lie triple systems and the
factorization properties of symmetric spaces can be used as a tool to: (1) understand
and provide a unifying approach to the analysis of a number of different algorithms;
and (2) devise new algorithms with special symmetry/reversing symmetry properties
in the context of the numerical solution of differential equations. In particular, we
have seen that symmetries are more difficult to retain (to date, we are not aware of
methods that can retain a generic involutive symmetry in a finite number of steps),
while the situation is simpler for reversing symmetries, which can be achieved in a finite
number of steps using the Scovel composition. So far, we have considered the most
generic setting where the only allowed operations are non-commutative compositions
of maps (the map ¢, its transformed, o (¢), and their inverses). If the underlying
space is linear and so is the symmetry, i.e. o (¢1 + ¢2) = o(¢1) + o(¢2), the map
on = %@h) obviously satisfies the symmetry o, as o (@) = ¢p,. Because of the
linearity and the vector-space property, we can use the same operation as in the tangent
space, namely we identify o and do. This is in fact the most common symmetrization
procedure for linear symmetries in linear spaces. For instance, in the context of the
alternating-direction examples, a common way to resolve the symmetry issue is to
first solve, say, the x and the y direction, solve the y and the x direction with the same
initial condition, and then average the two results. However, in the context eigenvalue
problems, the underlying space is not linear: the average of two matrices with the same
eigenvalues does not yield a matrix with the same eigenvalues. Averaging destroys the
preservation of the spectrum, a property that is fundamental for GR-type eigenvalue
algorithms.

In this paper we did not mention the use and the development of similar concepts in a
more strict linear algebra setting.’ Some recent works deal with the further understand-

5 It seems that numerical linear algebra authors prefer to work with Jordan algebras (see Sect. 2), rather
than Lie triple systems. We believe that the LTS description is natural in the context of differential equations
and vector fields because it fits very well with the Lie algebra structure of vector fields.
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ing of scalar products and structured factorizations, and more general computation of
matrix functions preserving group structures, see for instance [7,8,17] and references
therein. Some of these topics are covered by other contributions in the present BIT
issue, which we strongly encourage the reader to read to get a more complete picture
of the topic and its applications.
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