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SUMMARY

The development of cell-centered finite volume discretizations for deformation is motivated by the desire
for a compatible approach with the discretization of fluid flow in deformable porous media. We express the
conservation of momentum in the finite volume sense, and introduce three approximations methods for the
cell-face stresses. The discretization method is developed for general grids in one to three spatial dimensions,
and leads to a global discrete system of equations for the displacement vector in each cell, after which the
stresses are calculated based on a local expression. The method allows for anisotropic, heterogeneous and
discontinuous coefficients.

The novel finite volume discretization is justified through numerical validation tests, designed to
investigate classical challenges in discretization of mechanical equations. In particular our examples explore
the stability with respect to the Poisson ratio and spatial discontinuities in the material parameters. For
applications, logically Cartesian grids are prevailing, and we also explore the performance on perturbations
on such grids, as well as on unstructured grids. For reference, comparison is made in all cases with the
lowest-order Lagrangian finite elements, and the finite volume methods proposed herein is comparable for
approximating displacement, and is superior for approximating stresses. © 2014 The Authors. International
Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Coupling of fluid flow and mechanical deformation within a porous media is an important physical
aspect of several surface and subsurface applications. Of particular interest for this presentation
are engineered subsurface systems, such as CO2 storage, oil- and gas production, and geothermal
energy recovery. As concrete examples, the uplift at the In Salah storage site has potential to be an
important monitoring mechanism [1], producing oil fields have experienced costly subsidence [2],
and the long term poro-mechanical evolution, particularly with respect to fracture aperture changes,
is critical for assessment of marginal geothermal resources [3].

Common simulation strategies for coupled fluid-mechanical systems rely to a large extent on
specialized numerical discretization methods for the two individual problems of Darcy flow and
mechanical deformation. The flow problem is most commonly treated by cell-centered finite
volume methods (see e.g. [4] or [5]), and is implemented as such in the industry standard
simulation software Eclipse by Schlumberger and Stars by CMG. In contrast the mechanical sys-
tem is most commonly treated by finite element discretizations or with vertex-centered finite
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volume/finite difference methods are used [6]. Industrial software tools based on these approaches
are e.g. Comsol Multiphysics and FLAC3D by Itasca. While both the flow and mechanics pack-
ages may allow for some coupled simulation with the other physical phenomena, problems with
full physical complexity are commonly discretized in the separate software packages as indicated
above, relying on relatively simple coupling schemes for the combined problem (see e.g. [7] for a
recent analysis of coupling schemes).

In geological applications, the physical parameters governing flow and deformation are strongly
linked to the rock facies, such that the heterogeneities in e.g. permeability and elastic moduli coin-
cide. This argues for a common simulation grid for flow and mechanics. This has been recognized
previously, and recent work has considered coupled (mixed and continuous) finite-element based
approaches [8].

Given the prevailing use of cell-centerd finite volumes for multi-phase flow in porous media,
we propose an alternative strategy based on consistent cell-centered finite volume methods for
flow and deformation. This requires developing accurate cell-centered finite volume discretiza-
tions for geomechanics. In particular, we generalize an established finite volume method for
the flow equations to linear elasticity. This leads to a method which has cell-centered values
of deformation as the only primary unknowns, explicitly honors material discontinuities and
anisotropy, and is applicable to grids commonly employed in geophysical simulations. By exploiting
the same grid and variable structures as are commonly employed for the Darcy flow problem,
we thus envision the possibility for fully coupled finite volume simulation of poro-mechanical
systems [9].

Cell-centered finite volume approximations have not been applied widely for elasticity. We spec-
ulate that this may in part be due to a lack of good approximations of the cell-face stresses. Jasak and
Weller introduce a finite volume approximation where the displacement gradients are approximated
through a quadratic best fit to nearby grid cells [10]. While second-order accurate in displacement
on homogeneous problems, this approach is not natural for materials with discontinuous proper-
ties, as the displacement gradients lose continuity in this case. The finite volume finite element
method, wherein finite element basis functions are used to approximate the stress-strain law, can
also be applied to linear elasticity [11]. However, this approach requires material discontinuities to
be aligned with the dual grid, not the primal grid, which is unnatural for the flow problem. Fur-
thermore, enhanced finite volume methods have also been considered wherein additional degrees of
freedom are included to accurately handle rigid body motions [12, 13]. These approaches are as yet
limited to triangles in two dimensions. Simpler finite-volume methods have also been considered
in the petroleum industry, which rely on finite differences on a staggered grid when approximating
the stresses [14]. However, this approach does not generalize to non-orthogonal grids or anisotropic
constitutive relationships (see [15] for a discussion of the scalar case).

Our approach is a generalization of the multi-point flux approximation (MPFA) for the scalar
conservation equation (see e.g. [16] and references therein), which has proved to be a successful
way to implement finite volume methods for flow problems in heterogeneous and anisotropic
materials (for a comprehensive comparison study, confer [17]). By generalizing this approach to
mechanical deformation, we retain the same data structures as for the flow problem. Furthermore,
as the approach is explicitly designed to handle discontinuous materials, we alleviate the problems
highlighted in the previous paragraph.

We note that while cell-centered finite volume methods have received little attention in the context
of mechanical deformation, vertex (or node)- centered finite volume methods have been extensively
developed. These vertex-centered methods have been applied convincingly to deformation problems
(see e.g. [18–20]). Furthermore, vertex-centered finite volume methods adapt well to problems of
fluid-structure interaction (FSI), wherein the fluid and solid domain are coupled over a (possibly
solution-dependent) internal interface (see e.g. [21, 22]). In this context, it may be advantageous
to have the unknowns defined at the vertexes of the grid, as these can easily be aligned with the
internal boundary of the domain, although cell-centered finite volume methods have been employed
in this context [23]. While FSI is not a primary motivation for the development of cell-centered
finite volume methods as proposed in this manuscript, we will consider a simplified FSI application
in the numerical results section.
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The remainder of the paper is structured as follows. In the next section, we give the governing
equations, the general cell-centered finite-volume framework, and discuss in detail the properties of
various stress approximations. In section 3 we detail the construction of three different local stress
approximations. The quantitative and computational aspects of the discretization are summarized in
section 4, whereas comprehensive numerical examples are reported in section 5. The paper is then
concluded in the final section.

2. FINITE VOLUME FRAMEWORK

In the most fundamental form, general equations of momentum balance are stated as conservation
of momentum over an (arbitrary) volume. In Lagrangian coordinates this volume ! is considered
fixed in space, and momentum conservation reads (see e.g. [24] for a clear introduction)

@2

@t2

Z
!

DdV D

Z
@!

T .n/dAC

Z
!

f dV (1)

Here D is the displacement from the initial state, T .n/ is the forces on the surface of !, identified
by the outward normal vector n, and f are body forces acting on the material. The forces T .n/
may be referred to as surface traction or simply (surface) stress. In general the stress will be a
non-linear function of the displacement, but for small deformations a linear approximation can be
introduced. This linearization coincides with the symmetric Cauchy stress tensor � , and we are
therefore interested in the problem where

T .n/ D � � n (2)

The linearized strain is defined as the symmetric part of the deformation gradient, " D�
rD C .rD/T

�
=2 For a general material, the Cauchy stress tensor can be related to the strain

through a fourth order tensor C through Hooke’s law

� D C W " (3)

While potentially spatially discontinuous, the constitutive tensor functions C cannot be considered
arbitrary, as they must satisfy certain symmetry and positive definiteness properties for the problem
to be well posed. We will henceforth assume that the constitutive tensor satisfies the necessary
conditions.

Of special importance is the isotropic case, where the constitutive tensor has only two free
parameters, and can be expressed as

� D C W" D 2�"C � .tr "/ I (4)

Here the material coefficients � and � are known as the Lamé coefficients, and represent resistance
to shear and compression, respectively.

Most computational approaches to solving equations (1-3) or (1,2,4) involve first writing the
integral balance equations (1-2) on a differential form by applying Gauss’ theorem to the surface
integral and subsequently noting that the integrands must satisfy (given sufficient regularity)

@2

@t2
D D r � � C f (5)

The equation satisfies causality in time, and the temporal dimension can be discretized using a
variety of standard methods, including an implicit Euler approach or Newmark time integration.
Furthermore, in porous media applications the material inertia is usually negligible on the time-scale
of fluid flow. In the remainder, we will therefore focus on the discretization of the spatial terms in
equations (1) and (5).

From the differential form given in equation (5), finite element approximations can be
obtained by writing the equations on a weak form. Standard finite element approximations for
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the spatial terms in equations (4-5) are well established, and are the method of choice for most
mechanical problems [25]. We will therefore use finite element approximations as benchmarks in
our numerical comparisons.

Our goal is in contrast to construct a finite volume discretization. By discretizing the integral
equation (1) directly, we construct a method that exactly preserves the momentum balance.
Such methods are known as finite volume, conservative finite difference, or control volume methods.
Furthermore, by introducing a local (in space) approximation of equation (3), we obtain a method
for which the stresses can be explicitly written in terms of displacements, such that the global system
only has displacement as primary variable. This implies that we have only one degree of freedom
per dimension per cell. We will term our local stress expression a multi-point stress approxima-
tion (MPSA), and construct the MPSA such that it is second-order consistent for general material
properties and grids. The resulting method is directly applicable to non-isotropic and heterogeneous
stress-strain relationships C , and is for range of problems second-order accurate for both displace-
ment and stress. The method is applicable to both two and three spatial dimensions, structured and
unstructured grids.

Finite volume approximations thus mimic the two components in the governing equations, in that
they consider separately the momentum conservation and the constitutive law. Consequently, we
will describe these two aspects in separate subsections.

2.1. Discrete momentum conservation

We partition the domain into a finite number of non-overlapping cells !i . In a practice, this partition
will in geological applications resolve the material discontinuities. For two cells i and j sharing
a boundary, we denote the shared boundary ei;j . We are only interested in shared boundaries of
dimension N � 1, e.g. surfaces in 3D and lines in 2D, and consider ei;j as empty otherwise. Fur-
thermore, keeping the 3D case in mind, we will refer to the shared boundaries in the following as
cell faces. We are now equipped with the notation to write Equation (2) for each cell as

@2

@t2

Z
!i

DdV D
X

j

Z
ei;j

T .n/ dAC

Z
!i

f dV (6)

By identifyingDi and f i as the volume averaged displacement and force over the cell !i and T i;j
as the surface average stress over face ei;j , equation (6) can equivalently be written as

@2

@t2
Di D
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j!i j

X
j

ˇ̌
ei;j

ˇ̌
T i;j C f i (7)

We note that imposing a finite number of conservation volumes is the only approximation thus far,
and that equation (7) is still algebraically equivalent to equation (1). In particular, if the right hand
side is computed exactly for average surface and body forces, equation (7) exactly expresses the
evolution of the average displacement of the grid cells.

2.2. Discrete stress

The finite volume method is completed through the choice of a discrete expression for the stress on
cell faces. This mimics the physical modeling where the governing equations are closed through a
constitutive rheology such as Hooke’s law.

Finite volume methods are commonly employed in subsurface simulation of flow, where the
underlying constitutive rheology is Darcy’s law, which gives the fluid flux. We will briefly review
the qualitative aspects of various discrete flux expressions, and motivate the suitable framework to
generalize to obtain an expression of discrete stress.

(1) Piece-wise polynomial interpolation. This approach considers a piece-wise polynomial inter-
polation (most commonly with a finite element basis) of the cell-centered displacement
values. Consequently, it is known in various versions as the finite-element finite volume
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method, box method [26], and control-volume finite elements [11]. Using this interpola-
tion, the continuous constitutive law, equations (2-3) are applied to obtain the stresses at
cell boundaries. However, this approach requires that the material coefficients (e.g. C/ are
continuous over cell boundaries for the stress to be uniquely defined. However, in applica-
tions, the conservation grid is typically aligned such that discontinuities coincide with the
cell boundaries.

(3) Two-point approximations. On sufficiently regular grids, with isotropic material coefficients,
it is sufficient to use the two neighboring cells to approximate the flux [4]. This leads to
finite-volume/finite difference methods, see e.g. [14]. While this approach overcomes the
problem of discontinuous coefficients, this approach fails to converge even in the scalar case
in the presence of general grids or anisotropy [15].

(3) Multi-point approximations. More complex approaches to calculating local flux approxi-
mations are commonly referred to as multi-point approximations. In general, a separate
expression is calculated for flux over each cell face, typically by considering subdivisions of
the face [16]. While more expensive and complicated to implement, these flux approxima-
tions are known to be convergent for a wide range of grids, also when considering materials
with large jumps in coefficients.

The two first approaches described above have previously been applied to mechanical deforma-
tion [11, 14]. However, the multi-point approximations have to our knowledge not previously
been extended beyond scalar equations, where they are known as multi-point flux approximations
(MPFA). Given their superior qualitative properties, we seek to make such an extension herein
termed multi-point stress approximation (MPSA).

In the scalar setting, there are three main types of MPFA methods. They are known by letters
which mimic the connectivity of their approximation stencils O-, U- and L-methods. The three
variants possess different qualities, and we will extend all three to mechanical problems. As such,
we will define the MPSA O-, U- and L-methods below. Key references in the scalar case are [15]
and [27] for the O-method, [15] for the U-method, and [28] for the L-method.

3. MULTI-POINT STRESS APPROXIMATIONS

Equation (7) is common for all finite volume methods, and the key aspect of a successful
finite volume discretization lies in constructing an equivalent discrete constitutive relationship to
equations (2-3).

It follows from the continuous constitutive laws that we seek to express the surface stress T i;j
as a linear function of the displacements Di . For the approximation to preserve the conservation
property (7), we furthermore require that T i;j D �T j;i , thus each face must have a unique, linear
expression for the average stress, which we write explicitly as

T i;j D
X

k
ti;j;kDk (8)

where ti;j;k D �tj;i;k are referred to as stress weight tensors. A discrete stress-strain law on the
form (8) is referred to as local if ti;j;k is non-zero only for cells k which are in some sense near
neighbors to the face ei;j .

As discussed in section 2.2, we will give the construction of the stress weights for what we term
the MPSA. Here, multi-point emphasizes that the stress weights tensors depend on more than the
two neighbor cells of the face (e.g. ti;j;k is non-zero for more than just k 2 i; j /. This is necessary
in order to consistently approximate tangential derivatives to the face.

3.1. Geometry

The calculation of the stress weight tensors ti;j;k for face ei;j is split into several smaller calculations
by partitioning the face into an equal number of subfaces to the number of corners on the face.

© 2014 The Authors. International Journal for Numerical
Methods in Engineering published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2014; 100:399–418
DOI: 10.1002/nme



404 J. M. NORDBOTTEN

Figure 1. The figures illustrate conservation cells with black lines, with cell centers marked by dots and
grey lines delineating the subcells. The grey lines also partition the faces into subfaces. The three figures
illustrate the grid structure for logically Cartesian (a), triangle (b) and unstructured grids (c). We will refer
to unstructured grids such as the one illustrated, where no corner of the grid has coordination number
(e.g. number of connected edges) higher than three, as dual-triangle grids, despite the dual grid not being
strictly triangular. In the figures typical interaction regions are shaded (L-method, O- and U-methods, and

all methods, respectively).

In 2D, this implies that every face is split into two subfaces, while in 3D the number of subfaces
depends on the geometry and may in general change from face to face. The volume associated with
corner l and the cell i will be termed a subcell, and denoted Q!i;l see figures 1 for 2D examples.
For concreteness, we say that the face is split such that the subface corners align with the centers of
the face and edges. We will refer to the subfaces as Qei;j;l , where l is the cell corner associated with
the subface, and hence a common corner of cells i and j The stress weights for subface Qei;j;l are
denoted Qti;j;l;k , and for consistency

ti;j;k D
X

l
Qti;j;l;k (9)

Considering a corner l and an adjacent subface Qei;j;l we construct three local volumes, which will
be of interest to the three different stress approximations, respectively. The local volumes will in
general be referred to as the interaction regions.

Definitions, interaction regions: The interaction regions for the methods are defined as follows

� For the MPSA O-method, let the interaction region consist of all subfaces and all subcells
adjacent to the corner l (see upper shaded area in figure 1b).
� For the MPSA U-method, let the interaction region for subface Qei;j;l , consist of the subset of

the MPSA O-interaction region which is neighbors or neighbors-neighbors to subface Qei;j;l
(see lower shaded area in middle figure 1b).
� For the MPSA L-method, let the interaction region for subface Qei;j;l , consist of the subset of the

MPSA U-interaction region retaining only the N C 1 closest subcells, where N is the physical
dimension of the problem (see figure 1a).

The interaction regions are illustrated in figures 1. Notice that for dual-triangle grids, the inter-
action regions for the three methods become identical, as seen in figure 1c). For general 2D
grids, the interaction region for the O-method will be the dual cells, while the interaction regions
of the U-method and L-method form stylized “U” and “L” shapes straddling the subface, hence
the names.

For the MPSA L-method, the notion of “closest subcells” must be made more precise, herein
we use the simple Eucledian distance weighted by the square root of the second Lamé coefficient,
which is the natural extension of the scalar selection criteria [28].

We will construct the subface stress weights Qti;j;l;k within each interaction region, which together
with equations (7-9) will define the discretization method. We can already see that the interaction
region thus defines the size of the support of the discretization stencil, thus in terms of Equation (8),
we see that each full stress weight ti;j;k will be zero unless cell k shares at least a corner with face
ei;j . Our discretization thus has local stress weight tensors.
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3.2. Calculation of stress weights

The stress weights for each subface Qei;j;l are in principle calculated separately. For the calculation
of the stress weights for subface Qei;j;l , consider a linear approximation to displacement within each
subcell. Then within each subcell Q!i;l we approximate each component of displacement by a multi-
linear function of the spatial coordinates, such that

D � Di CG i;l � .x � xi / for xi 2 Q!i;l (10)

Here we recall thatDi is the cell-average displacement, which we associate in the linear expansion
with the cell center xi . We constrain the degrees of freedom in the interaction region by two forms
of continuity.

Continuity of surface stresses:
Since G i;l is constant within each subcell, the stress tensor calculated from Equation (3) will

also be constant within each sub-cell. For planar subfaces, we thus impose pointwise continuity
of surface stress, while for non-planar subfaces, as can result when 3D faces have more than
three corners, we impose only integral continuity of surface stress. In either case, the continuity
of stress can be expressed as

h
Ci W

�
G i;lCG

T
i;l

�i
� Nni;m;l �

h
Cj W

�
Gj;lCG

T
j;l

�i
� Nni;m;lD0 if Qei;m;l is in the interaction region of Qei;j;l

(11)
Here Nni;m;l is the average normal vector for the sub face Qei;m;l .

Continuity of displacement:
Full continuity of both surface stress and displacement will in general lead to an over-

determined system for linear approximations such as given in Equation (10). Instead, we will
require continuity of displacement only for specific points Qxi;m;l;n on Qei;m;l :

G i;l �
�
Qxi;m;l;n � xi

�
�G j;l �

�
Qxi;m;l;n � xj

�
D Dj �Di (12)

If a single continuity point Qxi;m;l;1 on the subface Qei;j;l is chosen, we refer to this constraint as
weak continuity of displacement. IfN points Qxi;m;l;n, for n D 1 : : : N , are chosen on the subface
Qei;j;l , we refer to this constraint as strong continuity of displacement. For subfaces with a weak
constraint, the location of continuity point may impact the method, (see [27, 29] and [30] for
discussions of this issue in the scalar case).

The above definition of interaction regions and constraints allow us to define the various MPSA
methods.

Definition, MPSA L-method: The MPSA L-method is obtained by constraining the degrees of
freedom of Equation (10) by requiring stress continuity and full displacement continuity over all
subfaces in the interaction region of subface Qei;j;l .

Definition, MPSA U-method: The MPSA U-method is obtained by constraining the degrees
of freedom of Equation (10) by requiring stress continuity over all subfaces in the interaction
region of subface Qei;j;l . Furthermore, weak continuity of displacement is imposed over subface
Qei;j;l itself, while strong continuity of displacement is imposed over the remaining subfaces in
the interaction region.

Definition, MPSA O-method (simplexes): The MPSA O-method on simplexes is obtained by
constraining the degrees of freedom of Equation (10) by requiring stress continuity and weak
displacement continuity over all subfaces in the interaction region for subface Qei;j;l .
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In total, the above constructions yield linear systems for the unknown gradients G j;l within
the interaction region for edge Qei;j;l The local stress weights are defined from the gradients G j;l

using either term in equation (11).
These local linear systems have equal number of constraints as degrees of freedom, and in

general they are thus solvable. However, in certain special cases of practical importance, some
constraints may become redundant, rendering the local systems without a unique solution. We
note the following such counter-examples: A) The L- and U- method leads to underconstrained
systems if the cell-centers align on a hyperplane (line in 2D or surface in 3D). B) The O-method
leads to an under-constrained system if the primal grid has orthogonal grid lines relative to
the anisotropy imposed by the constitutive tensor C . These counter-examples have important
practical consequences. In particular, counter-example A) renders the U- and L- methods largely
unsuitable for triangular grids, where it is common that cell centers are close to aligning. In
contrast, the O-method is applicable for (strict) Delauney triangulations, but requires stabi-
lization for logically Cartesian grids which frequently contain 90ı angles. We provide this
stabilization here.

Definition, MPSA O-method (general): The MPSA O-method for general grids is obtained
by constraining the degrees of freedom of Equation (10) by requiring stress continuity over all
subfaces in the interaction region for subface Qei;j;l . The remaining degrees of freedom are defined
by the weighted least squares deviation from strong displacement continuity over all subfaces
in the interaction region, where the weights are chosen as the harmonic mean of the largest
eigenvalue of C of the adjacent cells.

We close this section by commenting on the choice of continuity points where weak continuity
is imposed. In particular, it is known from the scalar case that for simplex grids in 2D and 3D, the
MPFA O-method is symmetric if Qxi;m;l;1 is located 1/3 of the distance from the face center to the
corner, as the effective part of the subcells then becomes parallelograms and parallelepipeds [30].
The same property holds for MPSA O-method, and for simplex grids we therefore prefer this version
of the MPSA O-method over the general form. For the MPSA U-method, the choice of continuity
point is less critical, but our numerical investigations have indicated that locating Qxi;m;l;1 at the face
center provides the more robust results.

3.3. Boundary conditions

Implementation of periodic, Neumann, or Dirichlet boundary conditions is straight forward. If Qei;j;l
is a on the domain boundary, the corresponding lines in equations (11) and (12) are replaced by the
given boundary conditions. If any other subface Qei;m;l is on the boundary .m ¤ j /, then again the
corresponding lines in equations (11) and (12) are replaced by the given boundary conditions, noting
only that for Dirichlet boundary conditions, only weak displacement continuity can be enforced to
avoid an over-determined system.

4. PROPERTIES OF THE MPSA METHODS

Herein we discuss a priori properties of the MPSA methods that can be deduced from their construc-
tion. In particular, we consider the computational cost in terms of both determining the discretization
stencils as well as for the global system. Furthermore, we discuss the relative merits of node-centered
vs. cell-centered variables.

4.1. Computational cost

The computational cost of the MPSA methods is in general dependent on two factors. The local
systems in the interaction regions are of finite size and parallelize trivially, while the global system
is relatively large with less possibilities for parallelization. We discuss these two issues below.

© 2014 The Authors. International Journal for Numerical
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The MPSA U- and L- methods require one local calculation for each subface. The MPSA O-
method will have an identical local system for each subface in an interaction region, and thus
requires only one local calculation for each cell in the dual grid. Let K be the number of subcells
in the interaction region, and L the average coordination number for each corner of the grid. In 2D,
K D 3;min.L; 4/; L for the L-, U-, and O-methods. The computational cost of the local solves
depends on a linear system proportional to K, which needs to be solved for N � K right-hand side
for each of the L subfaces (for the L- and U- methods). Assuming an efficient solver with linear
scalability, and recalling from equation (10) that there are N 2 unknowns in each subcell, we can
calculate the relative computational cost of the local calculations per grid cell. In 2D, these are of
order N 3 �K2 � L for the L- and U- method and N 3 � L2 for the O-method.

The computational cost of the MPSA stress weights should be compared to the inner products
for finite elements. For finite elements, no local systems need to be solved, and instead the inner
products involving transformation matrices typically need to be evaluated at a small number of
quadrature points within each element.

The second aspect of the computational cost relates to the global linear system. The MPSA meth-
ods lead to the smallest global linear system possible for a given grid, with one vector variable per
cell. This is typically important in geological porous media where a large grid is specified to account
for the domain size and material heterogeneity. Furthermore, the bandwidth of the system matrix
is restricted to cells that share an interaction region. However, it is well known that finite volume
methods typically do not lead to symmetric linear systems, since the displacement changes do not
a priori need to yield reciprocal effects on the stresses on the (in some sense arbitrary) faces of the
grid. Thus for large linear systems recursive iterative solvers such as CG have to be replaced by
more expensive and memory consuming solvers such as GMRES. This loss is to a large extent mit-
igated for coupled problems, where a choice of finite volume discretization of the flow equations
will lead to a non-symmetric component.

The exception is the MPSA O-method for triangular grids, which leads to a symmetric system
matrix when the continuity point of displacement is chosen as described in section 3.2. Finite ele-
ment discretizations also lead to symmetric linear systems, and the lowest-order finite elements have
a comparable number of degrees of freedom to the finite volume methods.

4.2. Cell-centered variables

Common node-centered finite volume methods and finite element methods compute node-centered
values of displacement. In contrast, the finite-volume approach advocated herein has cell-centered
variables that are appropriately interpreted as the average displacement of the grid cell. It is
worthwhile to briefly address the relative merits.

The node-centered variables, together with the function-space framework of finite elements, pro-
vide a natural point-wise interpolation of the solution vector from the nodal points to the full physical
domain. In particular, this interpolation leads to continuous displacement, and a stress tensor that is
uniquely defined almost everywhere, with the exception of cell faces.

In contrast the cell-centered variables, do not have a native interpolation, and represent the
average displacement of the cell. This is sensible from a conservation-law point of view, but pro-
vides a weaker notion of the point-wise solution. Similarly, only the surface stress is recovered,
defined on cell faces. This sparser set of information does come with advantages, in that it is typi-
cally exactly at the cell faces, aligned with material contrasts, where the aligned surface stress may
be of greatest interest.

For both the node-centered and cell-centered variables, the deficiencies mentioned above can
largely be rectified through post-processing. The main advantage of the cell-centered variables thus
remains that the data structure coincides with the data structure typically used for the fluid flow
equations in geological media. In many applications, the flow is of primary importance (e.g. oil
recovery, CO2 storage, or geothermal heat extraction), and the development of integrated codes for
flow and deformation will therefore be facilitated by allowing for the deformation to be described
on the flow grid.
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4.3. Divergence of displacement

We note that it is straight forward to obtain a local stencil for the divergence of displacement based
on the local calculations in Section 3.2. Indeed, the local calculations are conducted for each subface,
and give approximations to the gradient of displacement in each of the two adjacent subcells. For the
MPSA O-method, this is sufficient to obtain the approximation to the divergence of displacement.

For the MPSA U- and L- methods, the each subcell will have contributions from N subfaces
that arise from different local calculations. Thus each subface calculation will only contribute to the
divergence of displacement proportional to the triangle (pyramid in 3D) connecting the cell center
and the subface.

5. NUMERICAL RESULTS

Our numerical examples aim at providing an assessment of the performance of the three MPSA
methods in terms of heterogeneous coefficients and varying Poisson ratios on challenging structured
and unstructured grids. As a benchmark, we will use the lowest-order Lagrange finite elements,
chosen based on comparable computational cost and complexity.

We structure the presentation of the space of test problems around the following four axes. First,
we consider the sensitivity to jump in material properties. Secondly, we consider the sensitivity of
the methods to the Poisson ratio. Thirdly, we explore the robustness with respect to different classes
of irregular grids. The first three sections are all conducted on logically Cartesian grids, and we
finally make a comparison also on unstructured grids.

For all numerical tests, we consider the unit square or unit cube with zero Dirichlet boundary
conditions (no displacement, or “clamped” boundary conditions) and choose the parameters and
load functions such that the solution is a known analytically. We mention three error measures of
relevance for applications. First, we consider the error in the displacement. Secondly, the divergence
of displacement is the key coupling term between flow and deformation in the Biot equations for
deformable porous media, and we therefore also monitor this measure. Finally, the stress acting
on internal surfaces is important from the perspective of material fracturing, which is common in
geological porous media, and we therefore also consider the error in the stress on all internal cell
faces. For all examples considered herein, the stress and divergence of displacement are qualitatively
and quantitatively similar, and in the interest of space only the stress will be reported in the figures.

For all MPSA cases, the displacement error of the discrete solution Dh is taken as the relative
weighted error measured in the discreteL2 norm as compared against the cell centered displacement
Di � D .xi /:

�D D

�P
i j!i j

ˇ̌
Di �Dh;i

ˇ̌2�1=2
�P

i j!i j jDi j
2
�1=2 (13)

The error in the discrete divergence is calculated analogously. Similarly, the error in the discrete
stress T h is again measured as the relative weighted error in the discrete L2 norm as compared to
the stress at the face center T i;j � � �ni;j

ˇ̌
xi;j

:

�T D

�P
i;j

ˇ̌
@!i;j

ˇ̌ ˇ̌
T i;j � T h;i;j

ˇ̌2�1=2
�P

i;j

ˇ̌
@!i;j

ˇ̌ ˇ̌
T i;j

ˇ̌2�1=2 (14)

For the finite element calculations, the displacement variable is weighted by the volume of the dual
grid, while the full stress tensor at the cell center, weighted by the cell volume, is used in lieu of a
natural surface stress variable.

All numerical experiments in section 5.1-5.3 are based on grids ranging from 3x3 to 96x96 cells.
A 3x3 grid was chosen as basis for refinement to align with the material coefficients in Section 5.1
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and to resolve the structure of the Kershaw grid in Section 5.3. For the comparison to the finite ele-
ment method (FEM), a subdivision of the square cells into triangles was introduced according to
the shortest diagonal. For the numerical examples herein, the generalization of the MPFA O-method
calculates the largest eigenvalue of C based on the Lamé coefficients. The implementation is in Mat-
lab, and uses the standard sparse libraries and the direct solvers provided therein. Furthermore, the
FEM discretization used for comparison purposes is implemented using the Matlab PDE toolbox.
All calculations are performed on a standard laptop.

5.1. Jump in material properties

As discussed in section 2.2, the MPSA approach is expected to accurately honor discontinuities in
material properties. We investigate the properties of the proposed method in this respect.

Let the function � .x/ indicate a heterogeneity in the “middle” block of a three-by-three
partitioning of the unit square, e.g.

� .x/ D

²
1 if min .x1; x2/ > 1

3
and max .x1; x2/ < 2

3
0 otherwise

Then for a material with discontinuity characterized by the constant �, we choose to consider Lamé
coefficients with the structure

� D .1 � �/C �� and � D �

For this material, we consider the solution which honors the zero Dirichlet boundary conditions

D D

�
1

1

�
sin .3�x1/ sin .3�x2/ =Œ.1 � �/C ��� (15)

as illustrated in Figure 2. This solution is continuous, with continuous stresses. In particular, we note
that the stresses are independent of �. We find the body force by taking the divergence of the stress,
and solve the problem with the various discretizations. The accuracy of the method is assessed while
varying � from 10�6 to 106, including the homogeneous case where � D 1. For this example, we
have considered grid with uniform squares for the MPSA methods.

A subset of the results are shown in Figures 3. We have omitted plots showing intermediate values
of � as these show features not displayed by the end-point values we considered. Note that the

Figure 2. The solution vectors defined by Equation (15) is given in the left panel. The associated forcing
function, for the homogeneous case � D 1, is given in the right panel.
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Figure 3. Convergence of the displacement vector (�D shown in the left column) and stress (�T shown in
the right column) for the test case with discontinuous coefficients. The rows show � D

®
10�6; 1; 106 . In all

figures, the x-axis is the square root of degrees of freedom (a proxy for number of cells in each dimension, or
equivalently, the inverse grid diameter), while the y-axis is the relative errors. Black solid, dashed and dotted
lines represent the MPSA O-, L- and U-methods, respectively, while the grey solid line is the benchmark

calculated with finite elements.

second line is the homogeneous case and can be considered the benchmark for the first and third
lines of figures.

We see that all methods converge as second order for displacement independent of the disconti-
nuity in displacement. The MPSA L-method appears to converge asymptotically only as first order
for all cases, including the homogeneous case, this is due to the indeterminacy in the local stencil
for perfectly symmetrical grids such as the square lattice chosen here (see also next section). The
first data point for the FEM is missing for the displacement error as the analytical solution is zero
in the quadrature points for the coarsest grid, and the relative error is therefore undefined. In terms
of absolute values of relative error in displacement, the finite volume methods appear to marginally
outperform the finite element method for this example.

For stresses (and also divergence of displacement), the MPSA U- and O-methods are second order
convergent, while the MPSA L-method and FEM are first order convergent. Again, all results are
independent of material contrast. We note that the second-order convergence rate in stress enjoyed
by the MPSA U- and O-methods is only possible when the continuous solution has sufficient
regularity, such as in this example.
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5.2. Poisson ratio

Numerical methods for deformation on quadrilateral grids may suffer from a locking of the degrees
of freedom in the limit of incompressible media (see e.g. [31] for a recent study). This is commonly
expressed in terms of the Poisson ratio

	 D
�

2.�C �/

This ratio is physically bounded above by 0.5, although most geophysical materials have a Poisson
ratio between 0.06 (marble and granite) and 0.48 (soft clay). Nevertheless, it is also of importance
to consider the limit as the Poisson ratio approaches 0.5, as non-linear models for deformation are
incompressible in the failure limit [32].

In order to avoid the blow-up of the right-hand side as �!1, we will in this section consider a
divergence-free displacement field

D D

�
.cos .2�x1/ � 1/ sin .2�x2/
sin .2�x1/ .1 � cos .2�x2//

�
(16)

These solution vectors and associated forcing functions are shown in figure 4.
We consider a material with unit shear modulus of � D 1, and explore the accuracy and con-

vergence of the methods for varying Poisson ratio by varying the second Lamé coefficient � For
this example, we have used a curvilinear grid as prototype of deformed reservoir models away from
faults For all methods we use the smooth grid sequence given as sequence B in section 5.3.

Figure 5 shows a representative sample of results for this test case. The first row represents the
homogeneous case with unit Lamé coefficients, while the second and third rows have the second
Lamé coefficient equal to � D 10 and � D 103, respectively. This is equivalent to Poisson ratios of
	 D ¹0:25; 0:45; 0:4995º, respectively. We see that the performance of all methods is more sensitive
to the Poisson ratio than to material contrasts. The methods were also tested for lower (and negative)
Poisson ratios, but the performance was similar to that for the Poisson ratio equal to 0.25.

For the error in the displacement, all methods ultimately approach an asymptotic convergence
rate of second order. However, only the MPSA O-method remains unaffected by the Poisson ratio.
We note that already for the homogeneous case, the MPSA U-method suffers from the relatively
skewed grids of this example (see figure 6a), however the MPSA L-method performs better on
these grids than on the square lattice used in the previous section. As the Poisson ratio increases,
the MPSA O-method retains second order convergence for all grids, while the remaining MPSA
methods and the finite element method all experience a plateau of reduced convergence rates. This

Figure 4. The solution vectors defined by Equation (16) are shown in the left panel. The associated forcing
function, for the case � D � D 1, is shown in the right panel.
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Figure 5. Convergence data for the stress for a test case with increasing Poisson ratios. Rows show results
for 	 D ¹0:25; 0:45; 0:4995º. See caption of Figure 3 for interpretation of figures and axes.

Figure 6. Illustration of grid sequences B, C, and D used in this section. Grid sequence A is the square
lattice, and is not illustrated.

plateau can be inferred from the second row where 	 D 0:45, and becomes evident for 	 D 0:4995.
For even higher Poisson ratios, the behavior of methods becomes further emphasized. In terms of
absolute value of the displacement error, the methods are comparable for low Poisson ratios, and
in the asymptotically convergent regime, while for high Poisson ratios the plateau in convergence
appears at a lower accuracy for the finite element methods.

The convergence results for stresses follow the same pattern as displacement, with the stresses
from the MPSA O-method being the only robust stresses for high Poisson ratio.
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5.3. Robustness on challenging grids

The previous two sections have considered regular square lattice grids and smooth grids. In this
section we explore the suitability of the method on more general grids, obtained from transforming
the original grids. Thus we only consider grids that retain the logically Cartesian structure, but we
allow for arbitrary quadrilateral grids.

We consider four grid sequences, as illustrated in figure 6 at refinement level 3 (12x12 grid cells).
Grid sequence A is chosen for reference as the standard square lattice.
Grid sequence B is a smooth transformation of the square lattice grid, using the transformation

.x; y/! .x C 0:5x .1 � x/ sin 2�y;y C 0:5y.1 � y/ sin 2�x/

While highly idealized, this grid sequence mimics the grids associated with geological porous media
that historically have undergone continuous deformation.

Grid sequence C is non-smooth transformation (Kershaw-type grid [33]), and is
defined by dividing the unit square by a piece-wise linear function through the points
.0; 0:2/; .1=6; 0:2/; .1=3; 0:8/; .2=3; 0:2/; .5=6; 0:8/, and .1; 0:8/. The area above and below
this function are sub-divided equidistantly. While the Kershaw grid was originally motivated by
unstable flow fields, we consider it as an example of highly skewed, contrasting, grid cells.

Grid sequence D is obtained by randomly perturbing the square lattice grid. The perturbation of
each coordinate of each corner is a uniformly distributed number between˙
x=2. This guarantees
no non-convex grid cells. The grid sequence is chosen to highlight the robustness of the methods,
emphasizing the convergence properties when the shape factors of the grids to not improve with grid
refinement (e.g. when the refined grids do not converge to parallelograms). This notion of rough
grids is of relevance in applications where grid refinement cannot be afforded [34].

For all grids, we use the intermediate Poisson ratio of 	 D 0:45. To ensure that the results are
not artificially impacted by using pure sine and cosine solutions, we modify equation (14) by a
polynomial coefficient:

D D

�
x1 .1 � x1/ sin .2�x2/
sin .2�x1/ sin .2�x2/

�
(17)

The results are shown in Figure 7, where we have shown the results for grids A, C, and D (grid B is
identified as the second row of Figure 5).

All methods are convergent in displacement for all grids. Note that the decrease in accuracy on
the Kershaw grid is due to that the coarsest grid, with only 3x3 cells, does not fully resolve the saw-
tooth pattern, and thus the refined grid (6x6) is more challenging. In terms of convergence rates,
only the MPSA O-method retains full second order convergence for all grids. The MPSA L-method
again suffers on the square lattice, and also for the highly skewed grid cells of the Kershaw grid,
and only converges as first order for these grids. The MPSA U-method and the FEM perform very
similarly on grids A, C, and D, with both struggling to obtain full second order convergence on the
Kershaw grid, but otherwise showing robust qualities.

In terms of stresses and the divergence of displacement, the story is similar to displacement. On
grids A and B, the methods perform as expected from sections 5.1 and 5.2. The MPSA O-method is
the only method to retain second order convergence in stress on the Kershaw grid, while the MPSA
L-method is not convergent. Finally, the randomly perturbed grid shows the challenge it poses with
persistent lack of shape regularity, in that no method attains more than first order convergence rates
in stress on this grid, although absolute value of the error appears smaller for the FV methods than
the FEM method on this grid.

5.4. Extension to general grids

The FV-MPSA methodology presented herein is applicable to arbitrary grids. As pointed out in
Sections 3 and 4, the three MPSA methods have identical interaction regions, and largely coincide
for unstructured grids where the dual grid contains three cells. In contrast, for triangular grids the
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Figure 7. Convergence data for the displacement and stress for test cases with various logically Cartesian
grids. Rows show results for grid types A, C, and D, while the results for grid types B are shown in the

second row of Figure 6. See caption of Figure 3 for interpretation of figures and axes.

L- and U- methods are unsuited due to the degeneracy of the local systems. For these triangular
grids, the O-method is still applicable as it leads to a symmetric system matrix which has favorable
stability properties.

We will verify these assertions here. For ease of comparison to the results on square grids, we
return to grid sequence B from sections 5.2 and 5.3, and keep the same analytical solution as above.
To obtain a triangular grid, we use the same approach as for the finite element method comparisons
of the previous sections, and subdivide each grid cell along its shortest diagonal. To obtain unstruc-
tured grids with triangular dual-grids, we invert the dual and primal configurations of the triangular
grids. The resulting grid structures are illustrated for grid refinement 1 in figures 1. For consistency
we use the MPSA O-method on all grids.

The results are shown in Figures 8. The grid types represent grids varying number of subcells
in the cells of the dual grid, where the triangular grid has the most and the dual-triangular grid the
least. The complexity of the method (and also the size of the discretization stencil) increases with
the number of subcells in the interaction regions.

The MPSA O-method is convergent in both displacement and stress for all the grid types con-
sidered. However, the method performs better for grids with simpler interaction regions, i.e. the
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Figure 8. Convergence data for the displacement and stress for non-Cartesian grids, using the MPSA O-
method. Here, the dotted lines represent the solution quadrilateral grids, the dashed lines on triangular grids,
and the solid lines on “dual-triangular” grids, while finally the grey solid lines are the FEM solution. See

caption of Figure 3 for interpretation of figure axes.

dual-triangular and quadrilateral grids. For the triangular grids, the convergence rate is reduced and
only first order convergence is observed for displacements.

We infer from these studies that the MPSA methods in general are more robust and favorable on
grids with few subcells in the in the cells of the dual grid. Notably, this implies that it is advantageous
to consider grids with low coordination numbers.

5.5. Computation of a solution with singularity

As a final validation, we consider a grid with a crack entering the domain. In particular, we are
interested in the geological setting with fluid-filled fractures, thus internal to the crack we will assign
Neumann boundary conditions mimicking a fluid of fixed pressure acting on the rock. For simplicity,
we take all the Lamé parameters � D � D 1

This is implemented by considering the rectangle .�3; 3/ � .�1; 1/, where the boundary also
extends into the domain on the line segment which forms the negative x-axis, e.g. .�3; 0/ to .0; 0/.
Thus the domain has essentially a U-shape. The solution on such domains will have a singularity
at the origin [35]. For this case we assign zero Dirichlet (clamped) boundary conditions on the
three sides without a crack, and zero Neumann (no stress) boundary conditions on the boundary of
the rectangle where boundary enters the domain. On the boundary that enters the domain, we have
chosen Neumann boundary conditions with T � n D �1, where n is the outer normal vector to the
domain. We thus expect the crack to open. The computed solution is shown in Figure 9, based on
both uniform Cartesian grids and a Cartesian grid with cubic increasing grid spacing around the
origin. We identify three characteristics of the solution: As emphasized by the logarithmic plot, the
crack tip is consistent with the asymptotic .�x/1=2scaling which is known for this problem [36].
Away from the tip the crack width reaches a plateau value of 1=3, which is consistent with the
analytical solution to 1D compression with the prescribed boundary conditions. Finally, towards the
boundary of the domain there is an influence of the no-stress boundary condition.

5.6. Limitations

The results presented in the preceding four sections document that the proposed FV-MPSA method-
ology is applicable for general grids on in the presence of both material contrasts and moderately
high Poisson ratios. For the experiments considered, the finite volume methods were competitive,
or better, than the finite element method of comparable complexity except on the triangular grids.
Furthermore, the results show that while the convergence rates deteriorate in some cases, the new
methods are in general robust for a wide variety of grids, Poisson ratios and heterogeneity con-
trast. To complement these studies, we document in this section limitations we expect from the new
method, which were not seen in the above studies.
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Figure 9. Solution to crack problem. The left figure is a grey-scale plot of the y-component of the deforma-
tion vector (the y-component) on a 32 by 32 grid. The middle figure shows the crack width on the finest 128
by 128 grid (solid line). For comparison, we include the crack width as calculated on a grid with cubic grid
refinement around the crack tip (dashed line), and the asymptotic .�x/1=2 scaling (dotted line). The same
data is plotted on a log-log plot in the right-most figure. The color scale of the greyscale plot can be inferred

from the right-hand side figure.

It is known in the scalar case that the FV methods suffer from oscillations highly skewed par-
allelogram grids [29]. In the scalar case, this is a fundamental limitation of the methodology, and
we expect this limitation to also be present for the extension to elasticity. This may explain the
poor results for the MPSA L-method on the Kershaw grids. For problems with either a very strong
anisotropy, or significantly more skewed grids than those investigated in section 5.3, we expect also
the other MPSA methods to suffer.

It is also known from a degree-of-freedom counting argument that the finite element method locks
on triangles, as was observed in section 5.2 [32]. Conversely, the MPSA methods (including the
O-method) are expected to lock for high Poisson ratios when the dual grids are logically triangles
(grid type C in Figure 1). This was not revealed by the preceding numerical examples, but has been
verified in separate test cases.

While we have strived to put the novel FV-MPSA methods for material calculations through
a rigorous set of tests, numerical experiments will never be exhaustive. Due to the difficulty in
establishing general frameworks, convergence proofs for finite volume methods in the scalar case
are typically restricted in validity. For the scalar MPFA methods convergence proofs typically rely
on analogies to either mixed finite element methods [34], or mimetic finite difference methods [37].
However, convergence proofs have also been established in the finite volume setting directly [38].
With the understanding gained from the numerical investigations herein, selecting the appropriate
setting in which to develop a convergence theory for the MPSA methods will be an ongoing topic
of research.

While we have shown no results for 3D, the method has been implemented and tested for
Cartesian grids also in this setting. Preliminary testing indicates that the 2D results are representative
for the performance of the method in 3D.

6. CONCLUSIONS

A novel set of cell-centered finite volume discretizations for the equations for deformation in the
limit of linear elasticity has been presented. By construction, the MPSA methods are locally con-
servative in terms of the momentum conservation law. The methods are distinguished by their
approximation of the stress on cell faces. The approach herein generalizes the approach for scalar
conservation equations, and adopts the terminology of O-, U- and L-method approximations.

The methods contain the minimum of one degree of freedom per component of displacement per
grid cell. This is similar to lowest-order finite elements, and numerical results show comparable
accuracy for the displacement variable and superior accuracy in stress for a wide range of problems.
The numerical examples emphasize the robustness of the method with respect to both jumps in mate-
rial coefficients, and with respect to variations in the Lamé parameters. Structured and unstructured
grids have been investigated, including cases with challenging grids.
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The three variants of the method presented herein have different characteristics. From our numer-
ical examples, the O-method performs best overall, and also relies on only a single calculation per
interaction region. The U-method appears to be also generally applicable, but locks for high Poisson
ratios. While the L-method has the advantage of the simplest discrete stencil, it is both less accurate
and less robust than the two other variants.

The MPSA methods are all formulated for general grids, both in 2 and 3 dimensions, and as
such are directly applicable to a wide range of problems. In particular, due to its cell-centered finite
volume structure, we expect the method to be particularly attractive for problems involving coupled
flow and deformation in deformable porous media.
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