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Abstract 

A core promoter is a minimal region sufficient to direct the accurate initiation of 

transcription. Various core promoter elements have been discovered that recruit and 

position transcriptional machinery, which then initiates transcription at individual 

transcription start sites (TSS); however, no universal promoter code has been 

established. The methods and results presented in this thesis focus on innovative 

analysis of precise transcription initiation data to reveal sequence and chromatin 

features underlying core promoters and their dynamic usage in development and 

differentiation. 

Cap analysis of gene expression (CAGE) provides a single base-pair resolution map 

of TSSs and their relative usage, and it is a powerful tool for studying promoter 

structure and function. It has led to the discovery of major promoter classes that 

differ in transcription initiation patterns: “sharp” promoters in which the majority of 

transcription starts at one clearly dominant TSS, and “broad” promoters with 

multiple equally used TSS positions distributed along a wider region. By applying 

CAGE to a developmental time-course of zebrafish (Danio rerio) we created a first 

comprehensive map of transcription initiation during vertebrate embryogenesis and 

revealed widespread dynamics in promoter usage at all levels, from alternative 

promoters to individual TSSs. We found that thousands of promoters are utilized 

differently by the oocyte and the embryo, uncovering two independent codes that 

drive dynamic changes in TSS usage and promoter shape. Maternal TSS selection is 

guided by an A/T-rich W-box motif positioned at a fixed spacing from the TSS 

producing a sharp promoter architecture, whereas zygotic selection is restricted by 

the position of the first downstream nucleosome and produces broad promoter 

architecture with the dominant TSS aligned to inter- and intranucleosomal sequence 

positioning signals. The two grammars co-exist in close proximity or in physical 

overlap at promoters genome-wide. 

We further showed that a tight association between dominant TSS in broad 

promoters and nucleosome positioning exists in human and mouse transcription. 



Alignment of the intranucleosomal dinucleotide frequency patterns downstream of 

the TSS revealed that a well-positioned +1 nucleosome is a key determinant of TSS 

preference in broad promoters. Its presence in both zebrafish and mammals suggests 

the evolutionary conservation of the underlying nucleosome-associated TSS 

selection mechanism. 

Precise TSS localisation is crucial for promoter-centred analyses of any genome-

wide data. To facilitate the reuse of high-resolution and context-specific TSSs 

derived from a growing resource of CAGE data, we developed CAGEr, an 

R/Bioconductor software package for promoterome mining. CAGEr provides easy 

access to the majority of published CAGE datasets and presents a comprehensive 

workflow for processing, visualisation and analysis of precise promoter data, and 

allows its integration with other genome data types. 

Taken together, the work presented in this thesis reveals unexpected dynamics in 

core promoter usage at TSS level and demonstrates that promoter type is not an 

inherent property of the genomic locus, but is rather dependent on the regulatory 

context. The existence of overlapping transcription initiation codes has important 

implications for future analyses of promoter content and function. 
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1 Introduction 

1.1 Transcriptional regulation of gene expression 

1.1.1 DNA, genes and the transmission of genetic information 

Living organisms encode the instructions for the development of their body plan 

and interaction with the environment in deoxyribonucleic acid (DNA), a double-

stranded polymeric molecule that consists of four kinds of nitrogenous bases 

sequentially ordered on a sugar-phosphate backbone. The total DNA sequence of an 

organism is referred to as its genome. In eukaryotic organisms, each cell contains in 

its nucleus a copy of the genome, with individual DNA molecules wrapped around 

histone proteins and organized into chromosomes. The structure and organisation 

of DNA enables efficient storage, replication and transmission of the information for 

creating an entire multicellular organism from a single cell. Discrete segments of the 

genome that encode for functional products are known as genes. They serve as 

templates for production of ribonucleic acid (RNA) molecules, many of which act as 

messengers transmitting information for the production of proteins, the principal 

functional entities in the cell. However, RNAs themselves can be final products 

performing structural, catalytic or regulatory functions.  

1.1.2 Genes and gene expression 

In the broadest sense, a gene is a region of the genome that encodes for a functional 

protein or RNA molecule [1].  In both cases the DNA sequence information is first 

converted into RNA in the process known as transcription [2]. If the gene is protein-

coding, the transcribed RNA is called messenger RNA (mRNA) [3], and is further 

converted in the process of translation into a sequence of amino acids, which folds 

into a functional protein. Non-protein-coding genes give rise to non-coding RNAs 

(ncRNA), which are never translated, but carry out various functions in the cell. 

These include ribosomal RNAs (rRNA), the structural components of ribosomes 



believed to catalyse mRNA translation [4], transport RNAs (tRNA), which serve as 

adaptor molecules carrying amino acids and specifying which sequence in the 

mRNA corresponds to which amino acid during translation [5, 6], and finally 

various classes of ncRNAs with regulatory functions, such as micro RNAs [7, 8], 

short interfering RNAs [9] and long non-coding RNAs (lncRNA) [10-12]. 

The entire process of converting sequence information encoded within a gene into a 

precise amount of functional product is referred to as gene expression. This process 

is influenced by both internal and external stimuli and is tightly regulated by various 

mechanisms, acting at different levels from transcriptional to post-translational 

control, to ensure the correct amount of gene product is present in a particular cell 

at a particular point in time. 

 

1.1.3 Transcriptional machinery and core promoters 

Protein-coding genes and several classes of ncRNA genes in eukaryotes are 

transcribed by RNA polymerase II (RNAPII), a large multi-subunit enzyme that uses 

DNA as a template to produce complementary RNA molecule [13, 14]. RNAPII 

initiates transcription at individual nucleotides at the beginning of the gene called 

transcription start sites (TSS). The region surrounding a TSS is known as the core 

promoter and it is defined as a minimal region that is sufficient to direct the accurate 

initiation of transcription. A eukaryotic core promoter typically extends ~40 bp 

upstream and downstream of the TSS, and it is a place of the assembly of the 

transcriptional machinery [15]. This process requires general transcription factors 

(GTFs), which recognize and bind core promoter elements and recruit RNAPII.  

There are six general transcription factors: TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and 

TFIIH, which assemble on the core promoter in a stepwise manner and form the 

pre-initiation complex (PIC) [13, 16]. TFIID plays a central role in recognising and 

binding specific core promoter elements and creates an environment that facilitates 

transcription initiation [17]. Various core promoter elements have been identified in 

eukaryotic promoters and include a TATA-box, an Initiator (Inr), a Downstream 

Promoter Element (DPE), a Downstream Core Element (DCE), a TFIIB-Recognition 



Element (BRE), and a Motif Ten Element (MTE) [18]. However, none of these 

elements are universal, since they are found only in a fraction of core promoters in 

various combinations and there are many promoters that lack any of these elements 

[19]. In addition, some core promoter elements are associated with specific 

biological functions, for instance the TCT motif, which is found exclusively in 

promoters of genes that encode the components of translational machinery [20]. 

Many core promoters in vertebrates overlap with CpG islands (CGI), which are 

genomic regions characterised by elevated C+G content and frequency of CG 

dinucleotides compared to the bulk genome [21, 22]. The current estimate is that 

~70% of human promoters are associated with a CGI [23], with similar percentages 

observed for mouse and chicken [24]. The proportion of CGI-overlapping 

promoters seems substantially lower in amphibians and fish [24]. However, this is 

likely due to the fact that the definition of the CpG island relies on arbitrary 

thresholds set upon C+G content, observed over expected ratio of CpG dinucleotide 

counts and region length [25], which have been optimised for mammalian genomes 

and do not perform well for genomes with very different nucleotide composition. 

Nevertheless, association with CpG islands distinguishes two main classes of 

vertebrate promoters, high-CpG promoters and low-CpG promoters [23, 26], which 

are additionally characterised by distinct promoter features and functions of 

associated genes [26]. 

The complexity of the core promoter is further seen in the relation among specificity 

of expression, transcription initiation patterns, motif composition and the 

organization of the chromatin structure in the promoter region, as discussed further 

below. All this suggests that core promoters are not passive elements that serve only 

to direct the proper placement of the RNA polymerase II transcriptional machinery. 

They receive and integrate various regulatory inputs and convert them into the rate 

of transcription initiation. Core promoter elements can determine the 

responsiveness of the promoter to transcriptional regulation by cis-regulatory 

elements and trans-acting factors [27], and are hence central, active components of 

transcriptional regulation. 

  



1.1.4 Cis-regulatory elements and trans-acting factors 

The formation of the PIC and recruitment of RNAPII can direct only low levels of 

transcription, known as basal transcription [28]. In contrast, gene expression is 

characterised by a high dynamic range and is often context-specific. This is achieved 

by modulating the basal level of transcription by the action of cis-regulatory 

elements and trans-acting factors. 

Transcriptional activity is greatly stimulated by factors known as activators, which 

are sequence-specific DNA-binding proteins that recognise and bind sites often 

located upstream of the core promoter [29]. There are many classes of activators 

characterised by different DNA-binding domains, each associating with their own 

class of specific DNA sequences [30]. They interact with components of the basal 

transcription machinery via their activation domain and stimulate PIC assembly 

[29]. Activators also function by recruiting transcriptional co-activators, a diverse 

class of non-DNA-binding factors, which act either directly or indirectly to regulate 

the activity of the RNAPII transcriptional machinery [31]. Transcriptional co-

activators can serve as bridging molecules between activators and GTFs directly 

enhancing activator-facilitated entry of RNAPII to the PIC [13, 31]. On the other 

hand, the chromatin-related co-regulators affect transcription indirectly by 

remodelling nucleosomes or by covalent modifications of histones, creating a 

chromatin environment that facilitates GTF binding [32]. 

Transcription can also be inhibited by various mechanisms. Trans-acting repressors 

bind directly or indirectly to DNA and negatively regulate transcription by 

interacting with the components of the basal transcription machinery, by blocking 

transcriptional activation mediated by activators or by disrupting communication 

between promoters and distal regulatory elements [33]. They can also act by directly 

influencing chromatin structure or by recruiting chromatin-remodelling co-

repressor complexes to establish repressive environment at specific loci [34]. In 

addition, lncRNAs have also been shown to act in trans to repress transcription from 

specific loci [35] and to mediate X chromosome inactivation in mammals [36]. 



Both transcriptional activators and repressors bind to cis-regulatory elements, which 

can be located proximally to, or at a distance from, the core promoter. These include 

proximal promoters, locus control regions (LCRs), enhancers, silencers and 

insulators (Figure 1), which all harbour specific sequence motifs known as 

transcription factor binding sites (TFBSs).  

 

 

Figure 1. Cis-regulatory elements in eukaryotic genome. Typical localisation of each 
type of regulatory element is shown relative to TSS (arrow). Various transcription 
factors bind to DNA binding sites within proximal and distal elements and regulate 
the activity of transcriptional machinery through interactions with co-regulatory 
complexes. The figure is adapted from [37]. 

 

The proximal promoter is a region located immediately upstream of the core 

promoter and typically spans up to 250 bp upstream of the TSS [38]. It contains 

sequence motifs for binding of transcriptional activators and repressors, which are 

often organised into cis-regulatory modules (CRMs) [39]. Activating TFBSs tend to 

be located closer to TSS than repressing TFBSs [40, 41], and at least some of them 

seem to be positionally constrained with respect to the TSS [42] or to each other 

[43]. The combinatorial effect of transcription factor binding allows the proximal 

promoter to integrate the activity of multiple TFs and mediate context-specific gene 



expression [44]. Genes that contain proximal promoter motifs in a position-specific 

or distance-specific manner are often related, both in function and/or in expression 

pattern [43]. 

Enhancers and silencers are regulatory sequences located further away at a variable 

distance from the promoter; the distance can range from several hundred bp to one 

megabase [45]. Unlike the proximal promoter, which is positionally restricted with 

respect to the core promoter and TSS, these distal regulatory elements can be found 

upstream, within or downstream of the target gene [45, 46] and their activity seems 

to be independent of their orientation [47]. Enhancers have been identified by their 

ability to drive expression from a minimal promoter in transgenic assays [47-49]. 

They activate transcription, often in a temporally and spatially restricted manner, 

driving specific expression patterns during development and differentiation. 

Enhancer activity is mediated by interactions between sequence-specific DNA-

binding proteins and sequence elements, which tend to cluster within the enhancer 

region forming CRMs [50]. In contrast, silencers are negative regulatory elements 

composed of binding sites for various factors that act collectively to establish a 

repressive higher-order chromatin structure at distal target promoters [51].  

DNA elements that restrict long-range interactions between neighbouring genome 

domains are called insulators. They can be located between the distant regulatory 

element, such as an enhancer or silencer, and the target promoter, where they act by 

disrupting their communication and preventing the promoter from receiving 

regulatory input [52]. This direction-dependent enhancer-blocking activity requires 

binding of the ubiquitously expressed and highly conserved DNA-binding protein 

CTCF [53]. Another type of insulator acts through the formation of a barrier that 

prevents the spread of heterochromatin, thus restricting repressive chromatin 

environment to specific loci [52]. The demarcation of active and repressive domains 

is also dependent on CTCF binding [54], further confirming the tight relationship 

between insulator activity and CTCF. 

Locus control regions (LCR) are clusters of cis-regulatory elements involved in 

transcriptional regulation of a specific genomic locus containing one or a set of 



related genes. An LCR can comprise various distal regulatory elements including 

enhancers, silencers and insulators, and is composed of arrays of multiple ubiquitous 

and lineage-specific TFBSs, which mediate tissue-specific expression of linked genes 

[55]. Studies on the well-characterised human β–globin LCR demonstrated that its 

activity is position-independent but orientation-dependent [56], distinguishing 

LCRs from simple enhancers. 

 

1.1.5 Enhancers and long-range gene regulation 

Most of the regulatory content of a metazoan genome lies outside of proximal 

promoters [57] and tends to be contained within enhancers, which seem to be a 

predominant type of functional elements in the non-coding portion of the genome. 

They are characterised by clusters of binding sites for many different TFs and 

chromatin regulators [49, 58]. The level of restriction on the arrangement of TFBSs 

distinguishes different types of enhancer architectures [50]. The enhanceosome is 

characterised by extensive overlap of individual TFBSs creating a composite element 

that operates as a single unit of regulation [59]. Cooperative interactions, both 

between neighbouring TFs and the bound chromatin, are essential for the activity of 

such enhancers. When an appropriate occupancy of TFBSs is achieved, recruitment 

of transcriptional co-activators and chromatin-remodelling proteins occurs and the 

formed complex promotes promoter-mediated gene activation [60]. Such enhancers 

seem to receive inputs from multiple activators and repressors and resolve them into 

a single output, thus operating as on/off switches for transcriptional activation [61]. 

On the other hand, the billboard model of enhancer function suggests independent 

recruitment of TFs, which does not require strict spacing and orientation of TFBSs 

within the enhancer [62]. This arrangement allows the enhancer to display both the 

active and repressed states, which are then interpreted by the transcriptional 

machinery at the target promoter through multiple interactions with the enhancer 

[62]. 

Transcriptional activation by enhancers is temporally and spatially restricted and 

can produce highly specific expression patterns during development. Many genes 



involved in development and establishment of the metazoan body plan are regulated 

by complex arrays of enhancers, each driving distinct aspects of the final expression 

pattern [63]. Mutations in distal-acting enhancers were shown to cause serious 

developmental defects [45], implicating the importance of long-range regulation in 

human disease [64]. 

Although it is generally thought that enhancers are located outside of the gene 

promoter region, a recent study has shown that regulatory elements within a 

promoter of one gene can act as enhancers to activate transcription from a remote 

promoter through long-range regulation [65]. Considering the fact that enhancers 

do not necessarily act on the closest promoter but can bypass neighbouring genes to 

regulate genes located more distantly along a chromosome, this further increases the 

complexity of the distal regulatory interactions within the genome. 

Many non-coding sequences that are highly conserved between different vertebrate 

and mammalian species were found to be enriched for enhancers [49]. These highly 

conserved non-coding elements (HCNEs) are non-randomly distributed through the 

genome and tend to cluster around developmental regulator genes [66, 67] 

suggesting their involvement in complex regulation of those genes. Their functional 

relevance is further corroborated by the constraints imposed on the organisation 

and evolution of the genome, which seem to keep those arrays of regulatory 

elements in synteny with their respective target [68]. The genomic-regulatory block 

(GRB) model was proposed to explain such arrangements in the genome, where a 

single target gene is flanked by HCNEs scattered around the locus, which is often a 

gene desert or sometimes contains other genes not responsive to regulation by 

HCNEs [69]. In many cases these bystander genes are also kept in synteny because 

regulatory elements important for regulation of the target gene are embedded within 

their introns [69, 70] or even overlap their functional parts [71]. 

In addition to HCNEs, some protein-coding exons have also been shown to act as 

enhancers for neighbouring genes [72]. Although evolutionary sequence 

conservation has proved to be useful for the identification of enhancers [49, 73], 

there are also functional enhancers that do not seem to be conserved at sequence 



level [74, 75], and some of them have been shown to drive similar expression 

patterns in different species, suggesting functional conservation without sequence 

conservation [76]. 

Despite the advances in detecting active enhancers genome-wide [77, 78] and 

dissecting their regulatory content [79-81], there are still fundamental questions that 

need be addressed. How do enhancers work across such large distances and how is 

the specificity between an enhancer and its target promoter achieved? Several 

models have been proposed to describe how enhancers may communicate with their 

target gene promoter [82]. Currently the most plausible model supported by both 

theoretical [83] and experimental [84, 85] observations is the “looping” model in 

which the remote enhancer “loops out” the intervening DNA to reach the target 

promoter. It was shown that the formation of these chromatin loops depends on 

sequence-specific TFs bound to the enhancer and the promoter [85]. Furthermore, it 

appears that the enhancer loops form prior to gene activation and stably associate 

with paused RNAPII at promoters, keeping this loop topology ready for rapid 

activation of transcription by recruitment of additional factors [86]. The formation 

of chromatin loops brings the enhancer and its target promoter into close physical 

proximity in the nucleus and this feature is utilised by chromatin conformation 

capture experimental approaches [87] to detect long-range interactions genome-

wide [88] and to identify target promoters of specific regulatory elements. However, 

the knowledge about the specificity of promoter-enhancer interactions is still very 

limited. There is evidence that the features of the target promoter determine its 

responsiveness to distal regulatory elements within accessible chromosomal domain. 

For instance, it was shown that the presence of specific core promoter elements in 

Drosophila makes promoters responsive to distinct enhancers [89]. Furthermore, the 

target genes of GRBs in vertebrates were shown to differ in various sequence, 

chromatin and transcriptional promoter features from non-responsive bystander 

genes, which likely specify them as a target of regulation by surrounding HCNEs 

[90]. These observations highlight the important functional role of the core 

promoter as an active participant in the long-range gene regulation. 

 



1.1.6 Chromatin structure and epigenetic modifications 

Genetic information is encoded in DNA in a linear fashion. However, to enable 

efficient storage, organisation and control of the large amount of DNA within the 

nucleus, the linear DNA molecules are coupled with histone and other non-histone 

proteins into a macromolecular complex known as chromatin. Two copies of each of 

the core histones H2A, H2B, H3 and H4 assemble into a histone octamer, which is 

then wound by approximately 147 bp of DNA forming a nucleosome [91]. 

Nucleosomes are arranged as a linear array along the DNA polymer creating a 

“beads on a string” structure. The packaging of DNA creates both a problem and an 

opportunity, since wrapping of DNA around histones potentially obstructs access to 

functional elements in DNA. However, the ubiquity of nucleosomes at all regions of 

chromosomal DNA can be exploited to direct the enzymes that read, replicate and 

repair DNA to the appropriate entry sites. 

Nucleosome positioning was most extensively studied in the compact yeast genome, 

and the first genome-wide mapping of nucleosome positions at high resolution 

showed that the nucleosomes at most genes are generally organized in the same way 

[92]. Around the beginning of a gene there is a nucleosome-free region (NFR) 

flanked by two well-positioned nucleosomes (the –1 and +1 nucleosomes), which is 

followed by an array of nucleosomes that package the gene body (Figure 2). The first, 

+1 nucleosome, displays the tightest positioning and is subject to various histone 

protein variants and modifications, implicating its involvement in regulation of gene 

transcription. Further downstream nucleosomes exhibit lower levels of phasing. This 

basic pattern was later shown to be present in metazoan genomes as well [93-95]. 

In contrast, the vast majority of nucleosomes throughout the rest of the genome 

seem to be statistically positioned and form arrays of phased nucleosomes mostly 

around barriers imposed by DNA binding proteins or the minority of well-

positioned nucleosomes [95-98]. Despite controversy around the degree to which 

primary sequence determines nucleosome positioning in vivo [99-102], it is clear 

that nucleosomes have certain sequence preference for their positioning. The region 

occupied by the centre of the nucleosome both in vivo and in vitro was shown to 



exhibit a significant increase in G/C usage, whereas A/T usage increases towards the 

nucleosome flanking regions [97]. Elements with such nucleotide composition were 

proposed to act as “container” sites able to produce a strongly positioned 

nucleosome [97], which then serves as a barrier for phasing of adjacent nucleosomes. 

On the other hand, a finer-scale 10 bp periodicity in A/T and G/C containing 

dinucleotides was found along the nucleosome-bound DNA and was proposed to 

contribute to precise positioning and/or rotational setting of DNA on nucleosomes 

[99, 103]. 

 

 

Figure 2. Nucleosomal landscape around yeast genes showing nucleosome-free 
region (NFR) upstream of the transcription start site (arrow) and downstream of 
transcription termination site. Array of well-positioned nucleosomes is present 
downstream of the TSS. The figure is adapted from [91]. 

 

How the nucleosome positioning pattern found around gene promoters is 

established and whether it requires active transcription by RNAPII machinery is still 

debated. There is evidence for both transcription-independent DNA sequence-

driven [104], and transcriptional activity-aided nucleosome organisation [97], 

suggesting that there might not be a single mechanism responsible for nucleosome 

positioning at all promoters, but that the mechanism might be dependent on the 

type of the promoter itself. 

Nucleosome positioning and formation of the “beads on the string” structure is just 

the first level of chromatin compaction. Further successive folding events lead to a 

higher level of organisation and formation of specific chromatin domains, involved 

in activation or repression of gene transcription [105, 106]. The organisation of the 

genome in the nucleus establishes the localisation of genes within those domains and 



also determines which parts of the genome will be in close proximity and potentially 

able to interact. Thus, dynamics at the chromatin level is an important factor in gene 

regulation. 

Within the scope of gene regulation, the term epigenetics refers to functionally 

relevant changes to the genome or the chromatin that influence gene expression 

without altering the underlying DNA sequence (genetic information). These can be 

chemical modifications to either DNA or histone proteins, which mediate both 

heritable changes in gene activity and long-term alterations in the transcriptional 

potential that are not necessarily heritable. 

The best-studied epigenetic modification acting directly on DNA is methylation of 

cytosine, which in vertebrates occurs mainly in the CpG dinucleotide context. DNA 

methylation is essential for normal development and is involved in several key 

processes including X-chromosome inactivation, genomic imprinting and 

suppression of repetitive elements [107]. De novo methylation occurs mainly during 

embryonic development, but it can also happen in adult cells due to aging or 

carcinogenesis. The majority of CpG dinucleotides in vertebrate genomes are 

methylated, except those located within CGIs. A small proportion of CGIs become 

methylated during development, causing permanent silencing of associated 

promoters and ensuring lineage-specific expression of developmental regulatory 

genes [108]. There are several mechanisms by which CpG methylation mediates 

gene silencing: 1) methylated cytosines can alter binding sites for transcriptional 

activators and exclude them from binding [109], 2) mCpG can serve as a marker for 

methyl-cytosine binding domain proteins, which recruit co-repressor protein 

complexes that induce chromatin compaction [110] and 3) methylation directly 

increases affinity of certain sequences for histone octamer, thus increasing 

nucleosome occupancy and stability at promoters [111]. 

Unlike DNA, histones are subject to hundreds of covalent modifications, including 

acetylation, methylation, phosphorylation, and ubiquitination. These occur 

primarily at specific positions within the amino-terminal histone “tails”, which 

emanate from the nucleosome core. Among various modifications, lysine acetylation 



and methylation are the most studied and best understood. Lysine acetylation almost 

always correlates with chromatin accessibility and transcriptional activity, and 

histone H3 lysine 27 acetylation (H3K27ac) was shown to mark active promoters 

and distal regulatory elements [112, 113]. Tri-methylation of histone H3 lysine 4 

(H3K4me3) and H3 lysine 36 (H3K36me3) are both associated with transcribed 

chromatin; however, H3K4me3 marks promoter regions, whereas H3K36me3 is 

found along the body of transcribed genes [93, 114]. Unlike promoters, which are 

tri-methylated at H3 lysine 4, enhancers were shown to be mono-methylated [112, 

115]. In contrast to these active marks, tri-methylation of H3 lysine 9 (H3K9me3), 

H3 lysine 27 (H3K27me3) and H4 lysine 20 (H4K20me3) generally correlate with 

repression. H3K9me3 and H4K20me3 are marks of constitutive heterochromatin, a 

tightly packed repressive form of chromatin at repetitive portions of chromosomes 

[114, 116]. Broad domains of H3K27me3 coincide with Polycomb-repressive 

complex 2 (PRC2), indicating the sites of Polycomb-mediated repression [117]. 

They mark loci of transcriptionally silent developmental regulator genes in 

embryonic stem cells (ESC) [118]. The same loci were shown to contain punctuated 

H3K4me3 marks localised at promoters even though they were not transcribed [118, 

119], suggesting that these “bivalent” domains silence developmental genes in ESCs 

while keeping them poised for activation. 

Even from the very limited set of modifications described above, it is evident that the 

possibilities of marking genomic loci with various histone modifications and their 

combinations are enormous. It was proposed that specific combinations of 

modifications at given locus form a so called “histone code”, which is read by other 

proteins to bring about distinct downstream events [120, 121]. High-resolution 

mapping of numerous histone modifications in multiple cell types contributed to 

detection of most common combinations and associated functional genomic 

elements [122-124] and allowed segmentation of the genome into distinct domains 

based on the levels of various modifications [122, 123, 125, 126]. Although specific 

histone modification combinations generally reflect the identity of the underlying 

DNA element, a recent study has shown that actual levels of modification do not 

necessarily reflect the predicted regulatory activity [127]. 



1.2 Mapping genome-wide transcription start sites 

1.2.1 Functional annotation of the genome in post-genomic era 

The completion of the reference human genome sequence [128-130], as well as 

genomes of many other model organisms [131-134], together with the advancement 

in high-throughput sequencing technologies, opened the possibility to study 

transcription on a genome-wide scale. In this post-genomic era, the functional 

annotation of the genome proceeded through two complementary approaches. 

Experimental techniques relying on high-throughput sequencing technologies to 

map the transcriptome and regulatory elements have been developed. The most 

widely used techniques include RNA-sequencing (RNA-seq) for genome-wide 

quantitative mapping of transcribed regions [135, 136], chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) for mapping transcription 

factor binding and histone modifications [93, 114, 137], and mapping of DNase I 

hypersensitive sites (DNase-seq) for identification of open chromatin and regulatory 

regions [138]. These sequencing-based technologies were preceded by their 

counterparts that utilised hybridisation to genome-wide tiling arrays [139-141]. On 

the other hand, computational approaches are used directly on genomic sequence to 

predict and model transcribed regions (e.g. open reading frames and coding 

sequences [142, 143]) and regulatory elements [37]. (e.g. transcription factor binding 

sites [144]). 

 

1.2.2 Identification of transcriptional promoters 

Mapping promoters genome-wide is the first step in deciphering the mechanisms of 

transcriptional regulation and different approaches have been used to detect 

promoters along the genome experimentally. The first kind of experiments uses 

features of active promoters such as presence of the PIC, various promoter-

associated histone marks and accessible and open chromatin to localise promoters. 

For instance, Kim et al. [145] used ChIP with an antibody recognising a specific 



component of the PIC to produce the first genome-wide map of human promoters. 

Their results have shown widespread use of alternative promoters for many known 

genes and identified a substantial proportion of promoters that did not map to 

known genes, suggesting novel transcriptional units [145]. The same study also 

showed that promoters are associated with the H3K4me3 mark, which was 

subsequently confirmed in several other studies [93, 114], and that a large 

proportion of human promoters overlap with CpG islands, whereas other core 

promoter elements occur much more rarely [145]. However, these approaches can 

only identify loci that serve as promoters, but cannot map precise transcription start 

sites or quantify the level of transcription from the detected promoters. 

Since RNA transcripts are produced from transcriptionally active promoters, an 

alternative approach is to use the RNA sequence data to derive positions of the 

promoters. However, the majority of the transcriptomic data maps transcribed 

portions of the genome but does not precisely reflect gene boundaries. For instance, 

a typical expressed sequence tag represents only a random short subsequence of the 

full complementary DNA (cDNA). Furthermore, RNA-seq, which is the most 

common technique for quantitative transcriptome profiling, produces uneven 

coverage of sequenced tags along the transcript, often not covering the 5’ end [146]. 

In order to precisely map promoters, 5’ end complete cDNAs are essential. The first 

genome-wide sequencing and annotation of full-length cDNAs was done for mouse 

by the FANTOM Consortium [147] and this collection was subsequently used to 

determined exact TSSs and characterise adjacent putative promoter regions [148]. 

Similarly, full-length human cDNAs were used to annotate and functionally analyse 

human promoters [149, 150]. More recently, several techniques that sequence short 

tags from the 5’ end of cDNAs have been developed including 5’ serial analysis of 

gene expression (5’ SAGE) [151], oligo-capping [152, 153], cap analysis of gene 

expression (CAGE) [154] and paired-end ditag technology (PET) [155], which when 

combined with high-throughput sequencing achieve higher coverage producing 

more reliable and quantitative mapping of 5’ ends. These techniques allow genome-

wide precise TSS mapping at single nucleotide resolution and provide the means for 

analysing promoter-associated features at high resolution. 



Different approaches for promoter mapping provide information on distinct aspects 

of promoter structure and function, making the integration of various datasets 

essential for understanding transcriptional regulation at promoter level. 

 

1.2.3 Cap Analysis of Gene Expression (CAGE) 

CAGE is a high-throughput method for transcriptome analysis [154] that utilizes 

“cap-trapping” [156], a technique based on the biotinylation of the 7-

methylguanosine cap characteristic for RNAPII transcripts. After the biotinylated 

RNA is reverse transcribed, the resulting RNA/DNA heteroduplex is treated with 

RNase I to ensure that only 5’-complete cDNAs stay associated with the biotin tag, 

and pulled down by streptavidin-coated beads. A linker sequence containing a 

recognition site for a type III restriction endonuclease is ligated to the 5' end of the 

captured cDNA and the corresponding restriction enzyme is used to cleave off a 

short fragment (typically 27 bp) from the 5' end [157]. The resulting fragments are 

then amplified and sequenced using massive parallel high-throughput sequencing 

technology, which results in a large number of short sequenced tags that can be 

mapped back to the reference genome to infer the exact position of the TSSs used to 

initiate transcription of captured RNAs (Figure 3). The number of CAGE tags 

supporting each CAGE-detected TSS (CTSS) at a particular nucleotide position in 

the genome gives the information on the relative frequency of its usage and can be 

used as a measure of expression from that specific TSS [158]. Thus, CAGE provides 

information on two aspects of the capped transcriptome: 1) a genome-wide single 

base-pair resolution map of transcription start sites, and 2) relative levels of 

transcripts initiated at each CTSS. This information can be used for various analyses, 

from 5' end centred expression profiling [159, 160] to studying promoter 

architecture [26, 161]. 

 

 

 



 

 

Figure 3. Schematic procedure of the CAGE experimental protocol for mapping 
transcription start sites at single bp resolution. The figure is redrawn based on [154] 
and [157]. 
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Quantitative nature of CAGE has been used to model expression dynamics and to 

reconstruct the regulatory networks driving the differentiation [159] and 

maintaining identity of numerous human and mouse cell and tissue types (Paper 

III), by identifying key transcription factors binding at promoters. Moreover, CAGE 

signal has been shown to be enriched at enhancers [165] and has recently been used 

to construct an atlas of active enhancers over cells and tissues across the whole 

human body [166]. Thus, in addition to providing a valuable resource of genome-

wide cell type-specific TSSs, which are a more precise alternative to TSS positions 

available in annotation databases, CAGE is also a powerful approach for studying 

various aspects of gene regulation. 

However, not all genomic positions detected by CAGE seem to correspond to 

genuine RNAPII transcription initiation sites, as many CTSSs were found within 

internal exons with CAGE tags spanning exon-exon junctions [26]. A study profiling 

small RNAs and comparing them to distribution of CAGE tags concluded that 

processed coding and non-coding RNAs are metabolized into short RNAs that likely 

bear cap-like structures at their 5’ ends and are captured by CAGE tags [167]. The 

function of these short and CAGE sensitive RNAs mapping to internal exons is still a 

mystery. However, these RNA species arise only from a discrete subset of genes and 

their abundance often does not correlate with the expression of the host gene, 

arguing against them being merely degradation intermediates [167]. 

1.2.4 Pervasive transcription and the landscape of transcription initiation 

It is evident from a number of studies that the majority of the genome is transcribed 

in Metazoa [162, 165, 168-171]. A large number of non-coding transcripts arise from 

intronic and intergenic regions [162, 169] raising the questions of how and from 

which promoter they are expressed. In addition, many ncRNAs align with protein 

coding genes, either in the same orientation (sense) or in the opposite orientation 

(antisense) to the coding transcript [162, 172], further increasing the transcriptional 

complexity and providing regulatory potential. Recent studies have also identified a 

variety of ncRNAs transcribed from regulatory elements, such as promoter-



associated RNAs [170] and enhancer RNAs [173]. The biological significance of this 

pervasive transcription and the function of various classes of ncRNAs are still largely 

unclear and controversial. 

All of the above observations suggest that the current view of the genomic 

organisation into distinct gene units and associated regulatory elements that drive its 

expression might not account for the observed transcriptional complexity. Instead of 

being a product of regulation, the pervasive transcriptional activity itself might have 

a regulatory function [174], creating a complex transcription initiation landscape 

that yet remains to be deciphered. 

 

1.3 Promoter structure and function 

1.3.1 Core promoter elements and TSS selection 

The “textbook” model of an RNAPII promoter has an A/T-rich DNA sequence (the 

TATA-box) approximately 30 bp upstream of the TSS, which in turn overlaps an 

initiator sequence (Inr) (Figure 4). The assembly of a PIC at such promoters is 

initiated by TFIID binding to the TATA-box, Inr sequence and/or other sites [15]. 

TFIID is a multi-protein complex comprising the TATA-box binding protein (TBP) 

and more than 10 distinct TBP-associated factors (TAFs) [13]. TBP is a crucial 

component that recognises and binds the TATA-box motif [175], initiating 

subsequent PIC assembly and RNAPII recruitment. Once the PIC has assembled, the 

region around the TSS melts to provide a template strand for RNAPII, which occurs 

25–30 bp downstream of the TATA-box in all eukaryotes, except in budding yeast, 

where this distance can vary [176, 177]. Where present, the TATA-box seems to be 

the main determinant of the TSS, and initiation will occur at the suitable initiator-

like sequence at an appropriate distance from the TATA-box [178]. 

 



 

Figure 4. Metazoan core promoter elements. Position relative to TSS, human 
consensus sequence and transcription factors that bind each element are shown. The 
downstream core element (DCE) is shown on a separate promoter for illustration 
purpose only, although it can be present together with TATA-box and/or initiator 
element. A particular core promoter may contain some, all, or none of these 
elements. BRE: TFIIB-recognition element, Inr: initiator element, MTE: motif ten 
element, DPE: downstream promoter element, DCE: downstream core element. The 
figure is adapted from [18].

 

Although the TATA-box is a well known core promoter motif, it is present only in 

the minority (<15%) of mammalian promoters of protein-coding genes [19, 26, 41, 

145]. A recent study mapped PIC components at high resolution in human genome 

and suggested that the TATA-box motif is more prevalent than previously thought 

and concluded that it is a general feature present in core promoters of both coding 

and non-coding transcripts [179]. However, analyses that led to this conclusion were 

not correctly designed and the prevalence of core promoter elements was not 

statistically validated [180], which led to the retraction of the reported results [181]. 

A more abundant, yet also not universal, metazoan core promoter element is the 

initiator (Inr), which directly overlaps the TSS [182]. The consensus sequence of 

Drosophila and mammalian Inr differs to some extent, however it is bound by the 

homologous TAFs within the TFIID complex, which include TAF1 and TAF2 [15]. 

The common characteristic of the Inr element is the pyrimidine (C or T) / purine (A 

or G) motif positioned -1/+1 bp relative to the TSS, so that the purine is the first 

transcribed nucleotide [15, 26]. In Drosophila the Inr element often occurs in 



combination with either a TATA-box [183], or with another core promoter element 

located downstream of the TSS, the downstream promoter element (DPE) [184]. 

They act synergistically to increase the efficiency of transcription by providing 

additional recognition sites for TFIID components and allowing cooperative TFIID 

binding. 

The DPE was discovered in the analysis of TATA-less promoters in Drosophila [184] 

and was suggested to be conserved in humans [185]; however, its presence in 

mammalian genomes was never supported by high-resolution CAGE data. This 

element acts in conjunction with the Inr, and the core sequence of the DPE is located 

at precisely +28 to +32 bp relative to the +1 nucleotide in the Inr motif [186]. This 

strict requirement for Inr–DPE spacing is essential for cooperative binding of 

TFIID, thus DPE and Inr function together as a single core promoter unit. 

Transcription initiation from DPE-containing promoters is dependent on TAFs, 

specifically TAF6 and TAF9, which were shown to bind the DPE [13, 185]. 

The TFIIB recognition element (BRE) is the only well-characterized core promoter 

motif bound by a factor other than TFIID. It was initially identified as a sequence 

immediately upstream of a subset of TATA-box elements [187]; however, an 

additional TFIIB recognition site, the downstream BRE, was found immediately 

downstream of the TATA box [188]. Several studies have shown that TFIIB plays a 

central role in transcription start site selection in both yeast and human [189]. 

Multiple mutations in TFIIB were found to cause a shift in the TSS selection, 

suggesting its role in the precise positioning of RNAPII catalytic site at some core 

promoters [190]. BRE elements often occur in conjunction with the TATA-box and 

the observed spacing between TATA-box and TSS is a result of interaction between 

TBP, TFIIB and RNAPII, where TFIIB plays a central role in determining the 

spacing. 

Despite the prevalence of CpG island-associated promoters, the precise mechanisms 

of their core promoter function are not well understood. One common feature of 

CGIs is the presence of multiple potential binding sites for transcription factor Sp1 

[191]. Sp1 contributes to the maintenance of the hypomethylated state of CGIs and 



may work in concert with the general transcription machinery to support nucleation 

of the PIC [191]. TSSs are often located 40–80 bp downstream of the Sp1 sites, which 

suggests that Sp1 may direct the basal machinery to form a PIC within a loosely 

defined downstream window [192]. One possibility is that TFIID subunits capable of 

core promoter recognition then interact with the sequences within that window that 

are most compatible with their DNA recognition motifs, such as an Inr element, to 

specify the exact TSS. 

Initial studies suggested that the basal transcription machinery is largely invariant 

across different cell types and conditions. However, an increasing number of tissue-

specific isoforms of TAFs as well as additional members of the TBP protein family 

such as TBP-related factors (TRFs) have been identified in Metazoa and found to 

form distinct TFIID-related complexes that can function at distinct core promoters 

[193]. Interestingly, many of these factors are involved in germ cell development 

[194, 195]. The variability in basal transcription machinery composition might 

require different mechanisms for core promoter recognition leading to distinct 

patterns of TSS selection. 

 

1.3.2 Nucleosome positioning and epigenetic features of promoters 

Distinct chromatin structure and histone modifications have been associated with 

active promoters. Both in yeast and Metazoa, the region immediately upstream of 

the TSS is marked as a DNase I hypersensitive site, suggesting that it is a region of 

open chromatin depleted of nucleosomes [57, 196]. This nucleosome-free region 

makes core promoter elements more accessible and facilitates PIC assembly and 

RNAPII recruitment. The accessibility of the promoter was shown to correlate with 

mRNA abundance [196].  

The NFR is flanked by two nucleosomes, the first upstream or -1 nucleosome and 

the first downstream or +1 nucleosome, whose positioning can be more or less 

precise depending on the type of the promoter [164, 197]. How the transcription 

initiation machinery contends with the +1 nucleosome seems to be different across 



different types of promoters. Precise mapping of PIC components in yeast showed 

that TFIID–TAF complex engages and is positioned by the +1 nucleosome at 

TATA-less promoters, whereas TATA-box containing promoters are largely 

depleted of TAFs and mediate PIC positioning through TBP and TFIIB interactions 

with the DNA [177]. Thus, in TATA-box promoters the +1 nucleosome can often 

overlap the TSS. Similarly, it was shown that at many promoters in Drosophila the 

+1 nucleosome resides >50 bp downstream of the TSS, where it engages with the 

paused RNAPII [94], further suggesting active role of the +1 nucleosome in 

transcriptional machinery positioning and RNAPII pausing. 

Another important feature of nucleosomes flanking the TSS is the presence of 

specific histone variants. The H2A.Z variant was shown to be associated with 

promoters in both yeast and Metazoa [93, 94, 198]; however, in yeast both -1 and +1 

nucleosomes incorporate H2A.Z, whereas in Drosophila this variant is found 

exclusively in the +1 and additional downstream nucleosomes [94]. Histone variant 

H3.3 was also found to be enriched at promoters, where it was present almost 

exclusively together with H2A.Z. These H3.3/H2A.Z double variant–containing 

nucleosomes mark promoters and other regulatory regions and are surprisingly 

found within NFRs [199], which should by definition be devoid of nucleosomes. 

However, it seems that they are very unstable and thus not detected under the 

conditions normally used in nucleosome preparation [199]. This instability might 

facilitate the access of transcription factors to promoters and other regulatory sites in 

vivo. 

Promoter-associated nucleosomes are also subject to various histone modifications 

that were shown to correlate with promoter activity [93, 114, 122, 123]. The best-

studied modifications associated with active promoters are H3K4me3 and H3K27ac, 

where H3K27ac level seems to be positively correlated with the level of expression, 

whereas H3K4me3 can be present on promoters that are not actively transcribing, 

but are poised for activation [118, 122, 123]. It was shown that basal transcription 

factor TFIID directly binds to the H3K4me3 mark via a specific domain of TAF3 

[200], which suggests that H3K4me3 might play an important role in defining core 

promoters. TAF3-mediated binding of TFIID to H3K4me3-marked nucleosomes 



could serve either to anchor TFIID to already activated promoters or to recruit 

TFIID during promoter activation. Interestingly, TAF3-H3K4me3 interaction seems 

to be more important for activation of TATA-less promoters, implying the 

importance of this mechanism for activation of promoters lacking canonical core 

promoter DNA elements [200]. 

Because many PIC components, including TFIID, have nucleosome-binding 

subunits, positioned nucleosomes might define the location of the TSS by 

positioning the PIC. The conventional view is that most genes contain a 

predominant TSS, the location of which is defined by core promoter elements [28]. 

However, many promoters lack any of the known core promoter elements and the 

question remains how the transcription machinery establishes the location of the 

TSS at those promoters. A model has been proposed in which the TFIID complex 

binds to methylated (and acetylated) nucleosomes and recruits TBP to promoters 

[91]. TBP in turn binds TFIIB and places it immediately downstream towards the 

TSS. Since TFIIB was shown to dictate TSS selection [189], this model would explain 

how TSS positioning could be directed in part by TFIID bound to nucleosomes. 

 

1.3.3 Promoter classes and modes of regulation 

Early studies on individual promoters that had led to the discovery of various core 

promoter elements already suggested substantial promoter heterogeneity. Some 

combinations of core promoter elements were observed more often than others, 

defining different structural and functional types of promoters. For instance, the 

TATA-box and DPE are rarely found together, but each of them is often associated 

with an Inr element [19, 184, 186]. Furthermore, the TATA-box containing 

promoters appear to be functionally different from the DPE containing ones, and to 

respond to distinct distal regulatory elements [89]. 

Genome-wide mapping of promoters and promoter-associated features allowed 

comprehensive analysis of promoter structure and function and their classification 

based on underlying sequence, chromatin, transcription initiation and expression 



specificity characteristics. The underlying sequence composition analysis revealed 

that mammalian promoters segregate naturally into two classes by CpG dinucleotide 

content: high-CpG and low-CpG promoters [23]. The former class is characterised 

by the overlap with CpG islands, thus they are also referred to as CGI-associated 

promoters. High resolution mapping of TSSs by CAGE distinguished two major 

classes of promoters based on the TSS distribution [26]. “Sharp” (or “focused”) 

promoters have a single well-defined TSS and are often associated with a TATA-box 

precisely positioned ~30 bp upstream of the TSS [26, 178]. These classical “textbook” 

promoters represent only a minority of mammalian promoters and are commonly 

associated with tissue-specific genes and high conservation across species. Many TFs 

show distinct spatial biases with respect to TSS location and seem to be important 

contributors to the accurate prediction of single-peak TSSs [201]. The majority of 

mammalian promoters, however, comprise a second class of “broad” or “dispersed” 

promoters, characterised by multiple equally used TSSs distributed across a broader 

region [26], challenging the traditional definition of a gene and its precisely defined 

TSS. This class is strongly associated with CpG islands and ubiquitously expressed 

genes, however promoters of key developmental regulators were also found to 

belong to this class [90]. 

High resolution TSS mapping by PET in Drosophila revealed analogous 

transcription initiation patterns [202], separating promoters into “sharp” and 

“broad” classes. Unlike mammalian genomes, the fly genome does not contain CpG 

islands; however, the two promoter classes were shown to be associated with distinct 

core promoter elements. The positionally restricted canonical core promoter 

elements, including the TATA-box, Inr, DPE and MTE, were specifically enriched in 

sharp promoters [202, 203]. When comparing across other Drosophila genomes, 

elements in broad promoters had lower levels of conservation than those in sharp 

promoters [203]. Furthermore, the distinct promoter classes in fly were associated 

with the same functional categories of genes and showed similar expression 

specificity patterns as in mammals [26, 202, 203]. Together, this suggests functional 

conservation of the observed promoter classes across Metazoa. 



Genome-wide analyses of various promoter-associated features provided further 

insight into structural and functional differences between CpG and non-CpG 

promoters in mammals. In pluripotent ES cells, a vast majority of CpG promoters 

are associated with H3K4me3 enrichment [114], suggesting that they are targets of 

trithorax-group proteins, which catalyse the deposition of this mark. These 

promoters have a potential to drive transcription, unless they are actively repressed 

by Polycomb group proteins (PcG), which deposits the repressive H3K27me3 mark 

and creates bivalent domains at key developmental genes and poises them for 

activation [118, 204]. The ones that are not repressed tend to be ubiquitously 

expressed. In contrast, CpG-poor promoters seem to be inactive by default, 

independent of repression by PcG proteins, and may instead be selectively activated 

by cell-type- or tissue-specific factors [114]. This is further corroborated by the 

observation that CpG promoters are associated with RNAPII across multiple cell 

types, whereas non-CpG promoters acquire active chromatin marks and RNAPII 

binding in a tissue-dependent way [205]. The two promoter classes also differ in 

nucleosome occupancy and the requirement for nucleosome remodelling complexes 

for their activation upon various external stimuli [206]. Taken together, this strongly 

suggests that CpG and non-CpG promoters in mammals are subject to distinct 

modes of regulation. 

Unlike CpG and non-CpG promoter classification, which is vertebrate-specific, the 

corresponding sharp and broad promoter classes defined based on transcription 

initiation patterns are conserved across Metazoa [26, 202, 203]. These promoter 

classes are significantly differentiated by nucleosome organization and chromatin 

structure in both fly and mammals. Broad promoters display closer association with 

well-positioned nucleosomes and activating histone marks downstream of the TSS 

and have a more clearly defined NFR upstream, while sharp promoters have a less 

organized nucleosome structure and higher RNAPII presence [197]. 

Based on the configuration of promoter signals, TSS patterns, nucleosome positions 

and their epigenetic marks, and function of the associated gene, a unifying 

classification of metazoan promoters into three main classes was proposed  

(Figure 5) [164].  



 

Figure 5. Transcriptional and chromatin features of the three main functional 
classes of metazoan promoters. Horizontal red lines represent 5’ ends of transcripts 
reflecting the transcription initiation pattern. Nucleosomes are represented by red 
circles and the “fuzziness” reflects the precision of nucleosome positioning. The 
figure is adapted from [164]. 

 

Type I promoters are most often used for genes that are specifically expressed in 

terminally differentiated peripheral tissues of an adult. They are characterised by a 

sharp transcription initiation pattern and are often associated with a TATA-box or 

other core promoter elements positionally restricted to the well-defined TSS in both 

mammals and fly. In mammals they are characterised by low CpG content and tend 

to have key regulatory inputs close to their promoters [207]. At the chromatin level, 

Type I promoters are characterised by less-ordered nucleosomes [197], which can 

often cover the TSS; with H3K4me3 generally present downstream of the TSS when 

they are active and no RNAPII binding when they are not active [205]. Type II 

promoters are associated with ubiquitously active “housekeeping” genes and have 

broad promoter architecture with multiple TSSs spread across a wide region. In 

mammals, they tend to have a single CpG island covering the transcription initiation 

region, whereas in Drosophila they are associated with a distinct set of weaker core 

promoter elements [208]. The TSSs are located within a NFR and are flanked by two 

well-positioned nucleosomes that harbour active histone marks in all cell and tissue 

types. Type III promoters are characteristic of genes with expression that is 

developmentally regulated and coordinated across multiple cells. They share several 



characteristics with type II promoters, including a broad transcription initiation 

pattern and a well-defined NFR with positioned flanking nucleosomes, but also 

exhibit systematic differences that set them apart from the ubiquitously expressed 

class. The width of their transcription start region tends to be even broader than in 

Type II promoters [161]. Although their association with CGIs in mammals is 

similar to type II promoters, developmental genes have longer or multiple CGIs that 

often extend into the gene body [90]. The most prominent differences between type 

III and type II promoters are observed at the chromatin level. Developmental genes 

have a number of features that are associated with repression by PcG proteins, 

including wide distribution of PcG protein binding and both H3K27me3 and 

H3K4me3 marks, which create bivalent domains in ESCs [118]. Type III promoters 

are responsive to long-range regulation and can receive and integrate regulatory 

input from distal enhancers. They are often surrounded by arrays of HCNEs that act 

as enhancers ensuring precise spatial and temporal expression of those key 

developmental regulators [90]. 

1.3.4 Promoter usage dynamics 

The traditional view of a gene with its precisely defined and fixed TSS has been first 

challenged by the findings that many genes can be transcribed from multiple 

promoters (alternative promoters) producing functionally diverse transcripts [209, 

210]. Differential utilization of alternative promoters plays a critical role in 

regulating gene expression in a spatial, temporal or lineage-specific manner. This 

can be achieved by use of a distinct combination of core promoter elements in the 

alternative promoters [211, 212]. Moreover, studying 5’ ends of individual mRNAs 

by oligo-capping [152] and more recently genome-wide by CAGE, revealed that the 

transcription can start at multiple closely spaced TSSs within a single “broad” 

promoter [26], further increasing the diversity of produced transcripts. The closely 

spaced individual start sites can be associated with different core promoter elements 

and their activation can be dependent on distinct GTFs [213].   



The complexity of transcription initiation in eukaryotic genomes is also seen in the 

bidirectional promoter arrangements, which in the human genome comprise more 

than 10% of promoters [214]. Bidirectional promoters are associated with broad 

transcription start regions overlapping a CGI and display a mirror sequence 

composition [215]. The transcription from bidirectional promoters can be 

differentially regulated in the two directions [177], suggesting that the promoter 

elements and features can overlap in the same locus and be differentially interpreted 

by the RNAPII complexes transcribing independently in the opposite directions. 

Thus, bidirectional promoters are a good example of overlapping transcription 

initiation codes, which are differentially interpreted in different regulatory contexts. 

Differential utilisation of promoter types has been observed across various contexts. 

For instance, in Drosophila embryonic development promoters of maternally 

inherited transcripts showed differences in motif composition compared to 

zygotically active promoters [203]. In addition, many genes with maternally 

inherited transcripts were found to have alternative promoters utilized later in the 

development [203]. High-resolution quantitative mapping of TSSs across multiple 

human and mouse tissue types revealed substantial dynamics even at the level of 

individual TSSs within the same core promoter [216]. TSS selection within many 

CGI-associated broad promoters varies among tissues producing positional or 

regional bias in promoter usage [216]. This fine-scale regulation of transcription 

initiation events at the base pair level is likely related to epigenetic transcriptional 

regulation.  



2 Aims of the study 

The main aim of this thesis was to study the patterns of transcription initiation at 

high resolution, along the following principles: 

• construct a genome-wide map of transcription initiation at single base-pair 

resolution during vertebrate embryogenesis using zebrafish (Danio rerio) as a 

model organism 

• characterise the zebrafish maternal and embryonic promoterome in terms of 

different types of utilised promoters and associated promoter elements 

• analyse dynamic changes in promoter usage throughout embryogenesis 

• monitor the changes in promoter-associated nucleosome positioning and 

transcription-associated histone modifications during development 

• infer the logic of transcription start site choice in maternal and zygotic 

transcription 

• reveal sequence signals and nucleosome positioning underlying TSS choice at 

different promoters and in distinct regulatory environments 

• expand the study of precise TSS-related sequence and nucleosome signals to 

mammalian genomes (human and mouse) 

• develop a resource and tool for mining and visualisation of high-resolution 

TSSs derived from CAGE data, to facilitate the use of this precise and 

context-specific data in promoter-centred integrative analyses 

• introduce CAGE data as a more precise and functionally relevant resource of 

TSSs than currently more widely used static TSS annotations available in 

common databases. 

To address the listed points I have used computational and statistical approaches to 

analyse various types of genome-wide data produced experimentally by our 



collaborators. Since the publications included in this thesis are a result of 

collaborations and contain contributions from both experimental and 

computational collaborators, the following sections summarise the results to which I 

have contributed the most. 

  



3 Summary of the results 

3.1 Single nucleotide resolution map of transcription initiation 

during zebrafish embryogenesis (Paper I) 

To characterise the promoter repertoire and its dynamic use during the development 

of a vertebrate embryo, we mapped transcription initiation events at single 

nucleotide resolution by CAGE in 12 stages of zebrafish (Danio rerio) development, 

spanning from unfertilised egg to 33 hours past fertilisation (hpf). This period 

includes the maternal to zygotic transition at mid-blastula transition (MBT), which 

represents the most dramatic change in transcription programme in vertebrate life 

cycle. Before the MBT, there is no transcriptional activity and the transcriptome of 

the early embryo reflects the transcriptional programme of the oocyte. During MBT, 

activation of the zygotic genome occurs in parallel with maternal mRNA 

degradation and the newly synthesised transcripts replace the inherited ones [217].  

As expected, the majority of CAGE tag clusters (TC) were located in the vicinity of 

the 5’ ends of annotated genes. However, there was a substantial proportion of both 

inter- and intragenic CAGE signal, indicating potential unannotated promoters and 

post-transcriptionally processed RNA products, respectively. We discovered many 

novel and alternative promoters and showed that they are indeed functional by their 

association with activating H3K4me3 histone mark and downstream RNA-seq 

signal. A small subset was also tested in transgenic assay and shown to drive 

transcription. 

High-resolution transcription initiation patterns derived from CAGE revealed the 

dichotomy of promoter width in zebrafish, separating sharp and broad promoter 

architectures, previously characterised in mammals [26] and fly [161]. This further 

corroborated the conservation of observed promoter classes across Metazoa. 

Maternal stages were characterised by a significantly higher proportion of sharp 

promoters compared to zygotic stages, whereas the usage of broad promoters 

increased after zygotic genome activation. We also detected widespread usage of 



multiple TCs within promoter regions in maternal stages, followed by a noticeable 

reduction during zygotic stages. In contrast, genes active in the embryo were more 

often associated with more than one promoter than those active in the oocyte, 

indicating prevalent usage of alternative promoters in the zygotic transcriptome. 

To characterise non-promoter CAGE signal, we analysed the dynamics of exonic 

and intronic TCs separately. We provide several lines of evidence that exonic CAGE-

detected RNAs are of post-transcriptional origin and not initiated from intragenic 

promoters. The exonic RNAs appear before zygotic genome activation and CAGE 

tags supporting them often map across splice junctions. Finally, the sequences 

underlying exonic TCs do not drive expression in transgenic assays. In contrast, 

intronic TCs are developmentally regulated and many of them suggest splice site-

associated RNAs [218] arising during zygotic transcription. Interestingly, we found 

them to be enriched in introns of splicing-associated genes in both zebrafish and 

human, suggesting a potential mechanisms linking splicing activity with the 

regulation of expression of the splicing machinery. Both exonic and intronic TCs 

showed no sequence signatures found in conventional promoters and were not 

associated with H3K4me3, suggesting that they are not used as promoters. The 

associated RNAs are likely generated by post-transcriptional processing of full-

length RNAs, which seems to utilise different mechanism for exonic and intronic 

RNAs. 

We complemented the zebrafish promoter map with the first CAGE promoter map 

of Tetraodon nigroviridis, another teleost fish species, which allowed identification of 

conserved promoter features. We identified a novel GAAG core promoter motif that 

is used as an initiator by a small set of orthologous genes involved in vesicle 

transport and membrane-associated functions, and confirmed its presence and 

association with the same functional group of genes in human. 

  



3.2 Overlapping transcription initiation codes drive dynamic 

promoter usage in zebrafish development (Paper II) 

The high-resolution map of transcription initiation in zebrafish generated by CAGE 

(Paper I) gave us an opportunity to study developmental dynamics at individual TSS 

level. Expression profiling of individual TSSs revealed expected expression patterns, 

separating TSSs of inherited maternal transcripts that follow previously observed 

degradation pattern [217] from the TSSs of newly synthesised zygotic transcripts, 

which accumulate after MBT. Surprisingly, the two types of TSSs with antagonistic 

expression dynamics were often present within the same promoter region, creating a 

shifting pattern of promoter usage throughout development. Guided by this 

observation, we developed a novel method to systematically capture promoters with 

such shifting patterns, which we named “shifting” promoters. These promoters are 

expressed in both maternal and zygotic stages, keeping the expression of the 

associated genes constant; however, the differing expression dynamics and 

separation of individual TSSs within them allowed us to distinguish maternally 

inherited from newly synthesised transcripts initiated from the same promoter. 

Using the defined set of shifting promoters, we further studied the sequence features 

underlying maternal and zygotic TSS selection. We found a sharp enrichment of TA, 

AT, AA and TT dinucleotides (WW dinucleotides) aligned precisely ~30 bp 

upstream of maternal TSS, indicating a presence of a functional TATA-box [178]. 

However, motif discovery de novo revealed a weaker and more degenerate motif 

than the canonical TATA-box, which we termed W-box. We also discovered a novel 

promoter architecture characteristic for maternal transcriptome, the multiple sharp 

architecture, in which every sharp TSS sub-cluster was associated with a W-box at 

the appropriate upstream position. Thus, the TSS selection in the oocyte seemed to 

be dependent on a precisely positioned W-box motif. We functionally validated this 

hypothesis in stable transgenic zebrafish lines carrying mutations in the W-box 

motifs, which disrupted the usage of associated downstream positions as TSSs. 



In contrast, the zygotic TSS did not align with the observed W-box motif, but was 

characterised by a broader band of GC/CG dinucleotide enrichment around the TSS 

(mirrored by WW dinucleotide depletion) forming a sharp boundary ~50 bp 

downstream of the TSS. The boundary was followed by additional downstream 

alternating bands of GC/CG depletion and enrichment, which were exactly wide 

enough to accommodate a single nucleosome. This suggested that zygotic TSS 

selection is independent of the W-box motif and might be associated with 

nucleosome positioning. We expanded our analysis to the entire set of throughout-

expressed promoters, including the ones that did not exhibit spatial separation in 

TSS usage, but rather had maternal and zygotic TSSs intertwined in the same region, 

and showed that preferred maternal and zygotic TSSs in all promoters follow the 

observed dinucleotide patterns. This confirmed a promoterome-wide distinction 

between determinants that govern TSS selection in the oocyte and the embryo and 

drive dynamic changes in promoter shape during development. 

To study promoter-associated nucleosome positioning and its dynamics throughout 

the development, we mapped the positions of H3K4me3-marked nucleosomes by 

ChIP-seq coupled with micrococcal nuclease digestion in 4 developmental stages, 

both before and after MBT. This revealed precise positioning of H3K4me3-marked 

nucleosomes starting ~50 bp downstream of the zygotic TSS and aligning with 

dinucleotide enrichment patterns. In addition to broad bands of dinucleotide 

enrichments, we were able to detect the 10 bp periodicity in AA/TT dinucleotide 

frequency starting ~50 bp downstream of the TSS, which provides the 

intranucleosomal positioning signal [103] for the +1 nucleosome. Even before MBT, 

nucleosomes were roughly aligned with the zygotic TSSs that are yet to be activated, 

which together with the tight association between the TSS and nucleosome 

positioning signal suggests that +1 nucleosome guides TSS selection in the zygotic 

transcriptome. Furthermore, we provided several lines of evidence that H3K4me3-

marked nucleosomes acquire their mark before zygotic genome activation and upon 

activation assume their final sequence-guided position downstream of the zygotic 

TSS independent of the transcriptional activity.  



Our work revealed two independent codes guiding TSS selection in the oocyte and 

the developing embryo, and demonstrated that complex TSS patterns in 

constitutively expressed promoters represent readouts of two independent 

grammars intertwined in the same core promoter region. 

3.3 Precise TSSs reveal underlying sequence and nucleosome 

positioning signals in mammalian promoters (Paper III) 

As a member of the FANTOM consortium, a large collaborative initiative aimed at 

creating a comprehensive overview of mammalian gene expression at a promoter 

level, I was involved in analysis of CAGE datasets derived from numerous human 

and mouse primary cells, cell lines and tissues produced within FANTOM5 project. 

My work was focused on characterising high-resolution TSS patterns and promoter 

architectures, and their associated sequence and chromatin configuration features. 

Analysis of TSS distribution and promoter width confirmed the previously 

established separation into sharp and broad promoter architectures [26], which was 

detected across all cell and tissue types in both human and mouse. The number of 

various cell and tissue types allowed us to address the difference in the global 

expression specificity between the two promoter types. Sharp promoters were shown 

to have more restricted expression patterns, in line with the observation that they are 

more often associated with tissue-specific genes.  A similar difference in expression 

specificity was observed for non-CpG versus CpG promoters. 

The sequence underlying sharp and broad promoters displayed very different 

nucleotide patterns. Sharp promoters were associated with a narrow peak of WW 

dinucleotide enrichment positioned precisely ~30 bp upstream of the TSS, indicting 

the presence of a functional TATA-box or a TATA-like signal. In contrast, the 

dominant TSS in broad promoters aligned with the 10 bp periodic pattern in WW 

dinucleotide frequency starting ~50 bp downstream of the TSS. This precise phasing 

that provides intranucleosomal positioning signal [103] was shown to coincide 

perfectly with the position of the H2A.Z and H3K4me3-marked first downstream 



nucleosome in two different cell types. The tight association between dominant TSS 

in broad promoters and the nucleosome positioning signal indicated that the 

positioned +1 nucleosome is a key determinant of TSS preference in broad 

promoters. Finally, the presence of this association in both zebrafish (Paper II) and 

mammals suggests the evolutionary conservation of the underlying nucleosome-

associated TSS selection mechanism. 

3.4 Resource and tool for high resolution promoterome mining for 

integrative analyses (Paper IV) 

All promoter-centred analyses of genome-wide data rely on TSS annotation and 

currently the widely used approach is to use static TSS annotations available in 

common databases such as RefSeq [219] and Ensembl [220]. Cap analysis of gene 

expression (CAGE) provides context-specific TSSs at single base-pair resolution. 

Despite their superior resolution and functional significance, published CAGE data 

are still underused in promoter analysis due to lack of tools that would enable easy 

access to available published datasets and its processing and integration with other 

genome-wide data. To address this, I developed CAGEr, a Bioconductor-compliant 

[221] software package for R statistical and computing environment [222]. 

The CAGEr package provides direct access to majority of published CAGE datasets 

including the large collection of ENCODE cell lines [165] and the recently published 

FANTOM5 collection for human and mouse primary cells and tissues (Paper III). It 

allows users to import and manipulate single bp resolution TSSs, cluster them into a 

context-specific promoterome and obtain various associated information such as 

position of the dominant TSS, promoter width and expression pattern across 

multiple contexts. This information provides additional layers in promoter-centred 

analyses of other types of genomic data, enabling separation of different classes of 

promoters. I have also implemented our novel method for detection of shifting 

promoter patterns (Paper II) alongside with the state-of-the-art methods for CAGE 

signal normalisation, TSS clustering and assessment of promoter width. Informative 



graphical outputs and track files for visualisation in the genome browser can be 

exported. All functionality is provided through well-documented high-level 

commands, which are organised into a comprehensive workflow and are accessible 

to users with no previous experience in CAGE data analysis. 

We demonstrate the CAGEr workflow by applying it to a previously uncharacterised 

CAGE time-course of mouse testis development produced within FANTOM5 

project (Paper III). The analysis revealed widespread differential TSS usage and 

promoter shifting between mouse embryonic and adult testis, suggesting significant 

changes in regulatory environment underlying mouse spermatogenesis, which drive 

differential TSS choice. 

  



4 Discussion and perspectives 

In Paper I we have provided the first quantitative mapping of single nucleotide 

resolution TSSs in zebrafish, an important vertebrate model organism [223]. This 

TSS data complements mammalian cell culture-based [165] and non-vertebrate 

animal models [161], and provides the first description of core promoter dynamics 

during vertebrate embryogenesis. Our results demonstrate global and pervasive 

changes in promoter utilisation during maternal to zygotic transition, which is 

characterised by a complete turnover of the transcriptome in the early stages of 

embryonic development. Widespread usage of alternative promoters during 

development suggest variability in transcripts 5’ sequences and has implications for 

various aspects of genetic manipulations in zebrafish, from designing translation 

blocking knock-down reagents, such as morpholino antisense nucleotides, to 

introducing site-specific mutations. 

Zebrafish is also an important system for transgenic assays designed to control cell-

type specific expression or to detect and functionally characterise cis-regulatory 

elements (e.g. enhancer testing) [224]. Understanding core promoter architecture 

and regulation is essential in choosing appropriate core promoter sequences for 

transgenic assays; thus, the high-resolution TSS map and associated developmental 

dynamics provided in Paper I represent a valuable resource of relevant promoter 

information. Apart form being a significant contribution to characterising zebrafish 

as a model organism, the data presented in Paper I provides an opportunity for 

comparative analyses of transcription initiation during development and elucidation 

of features and mechanisms underlying transcription initiation dynamics. 

Different TSS selection grammars deployed at separate promoters have been 

associated with different types of genes [177, 197], and only a handful of promoters 

were shown to switch between TATA-dependent and -independent initiation [225, 

226]. In Paper II, we show for the first time that the two grammars co-exist in close 

proximity or physically overlap genome-wide, and are differentially used at 



thousands of promoters active in both the oocyte and the embryo. Our findings raise 

several important questions that provide directions for future studies. 

Activation of the zygotic genome during MBT is characterised by the switch form 

maternal W-box guided TSS selection happening in the oocyte, to zygotic TSS 

selection, which is restricted by the position of the first downstream nucleosome and 

aligns dominant TSS with inter- and intranucleosomal positioning signals. However, 

the question remains: Why does the switch happen and when does the switch back 

occur? At some point during female germline development, the zygotic mode of 

transcription needs to be replaced by the maternal mode to produce the observed 

transcriptome of the differentiated oocyte. Germ-cell determinants are deposited 

early in zebrafish embryognesis and by the 24 hpf the primordial germ cells (PGC) 

have already migrated to their final location [227]. It is possible that these cells 

already utilise maternal mode of TSS selection, however our whole embryo data at 

differentiated stages inevitably masks cell type-specific promoter usage. Studies 

focusing on the promoterome of PGCs and its dynamics during female germline 

development are necessary to address this question. 

Germline development in vertebrates is characterised by epigenetic reprogramming, 

including the demethylation of vast majority of CpG sites [228]. Since zygotic TSS 

selection is closely linked to CpG dinucleotide enrichment patterns and is likely 

promoted by the demethylated state of CpGs within CGIs, this mode of 

transcription initiation might be incompatible with the demethylated oocyte 

genome. Thus, the switch to maternal TSS selection, which is guided by the precisely 

positioned W-box motif, might be a mechanism to prevent unwanted transcription 

initiation at demethylated CpG sites throughout the genome during epigenetic 

reprogramming. 

In our work, we have revealed and functionally validated two overlapping 

transcription initiation grammars. Further studies focusing on transcriptional 

machinery in the embryonic development and its interaction with uncovered 

sequence and chromatin features of core promoters should shed more light on how 

TSS selection in the two regulatory environments is mediated. Given the observation 



that the composition of the transcription machinery can be cell-type specific and is 

able to actively contribute to gene regulation [229, 230], one plausible mechanism 

involves oocyte- and early embryo-specific components of the basal transcription 

machinery. For instance, the TBP2 factor, a vertebrate-specific member of the TBP 

family, was shown to be a substitute for TBP in oocytes and is essential for germline 

development in mouse [231] and frog [195]. TBP2 is also highly expressed in 

zebrafish oocytes [232] and could mediate the observed maternal TSS selection 

through W-box binding. In contrast, the transcription machinery in the early 

embryo might preferentially interact with nucleosomes and mediate zygotic 

nucleosome-guided TSS selection through motif-independent TFIID recruitment by 

H3K4me3–TAF3 interactions [200]. 

The results presented in Paper II, including tight association of nucleosome 

positioning signal and dominant TSS, strongly suggest that precisely positioned +1 

nucleosome plays a central role in TSS selection in the embryo. The absence of a 

nucleosome-positioning sequence signature, as well as of precise nucleosome 

positioning at promoters with a canonical TATA- box in other systems [197, 233], 

together with sharp promoter architecture, argues in favour of the W-box as the 

overriding determinant of maternal TSS selection. However, to validate the 

independence of maternal TSS selection on nucleosome positioning, it is necessary 

to map nucleosome positions in the oocyte, which is currently not plausible due to 

technical limitations on the number of cells required for a ChIP-seq experiment. 

Finally, the extent of functional consequences of the switch in TSS selection remains 

to be addressed. Although the shift in TSS positions between maternal and zygotic 

transcriptome is restricted to a narrow region of several dozen bp and happens in 

both upstream and downstream direction, it still creates variability in the 5’ end 

sequences of produced transcripts. This variability does not impact the coding 

portion of the transcript and likely does not have a global functional effect on the 

transcriptome; however, it might interfere with the sequences in the 5’ untranslated 

region (UTR), such as micro RNA target sites or mRNA localisation signals in 

specific transcripts. Identification of such cases might shed light on how specific 



regulatory mechanisms interact within the global change in transcription initiation 

mode. 

Overlapping transcription initiation codes and differential promoter usage might 

not be limited to embryonic development, and are possibly a widespread 

phenomenon occurring in other contexts, such as terminal differentiation. For 

instance, we have detected a large group of promoters with differential TSS usage 

during mouse testis development and maturation (Paper IV). Although not 

necessarily genome-wide and mediated by the switch in the basal transcription 

machinery, the differential usage of a specific group of promoters important in a 

certain system might be driven by overlapping codes, which enable their expression 

in very different regulatory environments. Regulatory contexts are defined by the 

availability of specific transcription factors and activation of distal-acting enhancers, 

and are highly dynamic during development and differentiation. Thus, core 

promoters might need to contain multiple independent determinants that allow 

them to remain active in the changing regulatory conditions. 

The results presented in Papers II and III relied heavily on precisely defined TSSs. 

Mapping of TSSs at single bp resolution is essential for determining major promoter 

types, such as sharp and broad promoter architectures, in order to study their 

sequence and epigenetic features. For instance, precise quantitative mapping of 

transcription initiation events in Paper III revealed the tight association between 

dominant TSS in broad promoters and subtle dinucleotide frequency pattern 

providing the nucleosome positioning signal. Due to a lower resolution, this pattern 

is not visible using the 5’ end positions available in annotation databases (Paper IV). 

In Paper II we have shown that promoter usage can be highly dynamic at the TSS 

level and that promoter width and type is not an inherent property of a genomic 

locus, but rather a feature that depends on the regulatory context. This further 

emphasises the importance of using context-specific TSS information in analyses of 

genome-wide data. To address this, in Paper IV we introduced CAGEr, a resource 

and tool for precise TSS data mining and construction of context-specific 

promoteromes. It is aimed at facilitating the reuse of CAGE data and introducing it 



as a more precise and functionally relevant alternative to TSSs from annotation 

databases. CAGEr provides easy access to comprehensive TSS collections for 

majority of common model systems (cell lines [165] and organisms [161, 162]), 

directly from within R/Bioconductor environment [221], which is currently the most 

heavily used platform for genomic data analysis. This enables integration of precise 

TSS data with other genome-wide data types for promoter-centred analyses. In 

addition to high-resolution promoter positions, analyses performed with CAGEr 

provide additional layers of promoter-associated information, including promoter 

width and dynamics, which allow separation of different functional classes of 

promoters. The application of CAGEr is not limited to CAGE, but can be used with 

single bp resolution quantitative TSS data derived from other high-throughput 

technologies, such as oligo-capping or PET. The presented tool and resource should 

lead to widespread use of precise TSS data in regulatory genomics and help 

supersede the RefSeq- and Ensembl-based static 5’ end definitions. 
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