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Abstract

The North Atlantic common minke whale (Balaenoptera Acutorostrata) is an
abundant, top-level marine predator in the Nordic Seas and Barents Sea ecosys-
tems whose large-scale migratory and foraging behaviors are widely un-
known. Understanding these behaviors may offer important insight into their
life-history and management-unit structuring as defined by the International
Whaling Commission. Existing modeling do not incorporate spatially-explicit
movements of individual minkes, limiting our ability to investigate their large-
scale behaviors. In this study, an individual based model (IBM) for minke
whales is developed as an extension of the NORWECOM.E2E ecosystem model
to identify behaviors that may contribute to minke distribution in the Nordic
Seas. The energetic reward of both their use of migration within predominant
currents and four large-scale foraging strategies are investigated.

First, the effect on minke migration from ocean circulation and migration path
selection are tested by running simulations with variation in activation of cur-
rents and paths (into and out of the Nordic Seas) along the Norwegian coast,
the Norwegian Sea center, and the Greenland coast. Simulations are then run
with variation in foraging strategies: random-walk, migration only, and pe-
riodic searching for maximum prey density with either random-walk or mi-
gration along the route determined to be optimal. NORWECOM.E2E model
output of Norwegian spring-spawning herring, blue whiting, and mackerel
are used as prey-fields. The optimal migration route is found to be in along
the Norwegian coast and out through the Norwegian Sea center, with mean
migration durations of 24.611 4= 0.051d and 24.997 + 0.041 d. Foraging that in-
corporates migration and 10d periods of maximum prey density searching is
found to have the highest foraging efficiency index (2.381 + 0.435). Random-
walk movement with maximum prey density searching had similarly high in-
dex (2.256 £ 0.444), along with an increase in mean individual whale move-
ment of 14.159 km d ~'whale™!.

The development of a minke IBM is an important addition of a high-level
predator in Nordic Seas and Barents Sea modeling efforts, and the results from
this study could have implications for minke population structuring and suc-
cess in these areas. With migration throughout the Nordic Seas being ener-
getically viable, interaction between whales categorized as separate sub-stocks
could be possible. As an unvalidated model with key improvements neces-
sary, further development of individual based modeling of minkes with more
dynamic data is encouraged.
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Chapter 1

Introduction

1.1 Statement of Purpose

With an estimated population of 108140 whales (CV 0.23) in the Nordic Seas
and Barents Sea (Bethun et al., 2009), the North Atlantic common minke
whale (Balaenoptera Acutorostrata) plays an important role as a top-level marine
predator in its ecosystem. It has been estimated to consume approxiamately
1.8 x 10° tonnes to 2.2 x 10° tonnes (CI 95 %) of fish per annum based on previ-
ous population estimates (Folkow, 2000), and has a distribution throughout the
entire Nordic Seas and Barents Sea (Glover et al., 2010). Portions of this popu-
lation are known to be year-long residents while others are thought to perform
seasonal migrations into and out of the Nordic Seas to as far south as 10°09’N in
the North Atlantic (Folkow and Blix, 1991). It is has also been a target species
for whaling since the 1920s (Horwood, 1990), and it is currently commercially
hunted by Norway and Iceland. Despite its critical position in the ecosystem
and existing human interactions, little is known about the North Atlantic com-
mon minke whales” large-scale migratory and foraging behaviors - behaviors
that have been linked to reproduction and feeding success in whales (Bradford
et al., 2006; Whitehead, 1996).

Only relatively recently have spatially-explicit models been developed to study
such behavior for cetaceans at an individual level - most notably for endan-
gered species like the blue whale (Balaenoptera musculus; Bailey et al., 2009)
and the dusky dolphin (Lagenorhynchus obscurus; Srinivasan, 2009). Despite
such work, modeling efforts involving minkes have so far been limited to
small-scale foraging models (Smout and Lindstrom, 2007), area-structured
trophic-interaction models (such as MULTSPEC, Bogstad et al., 1997; ECO-
PATH, Song and Zhang, 2014; and Atlantis, Hansen, 2014), GAM distribution
models (Murase et al., 2006; Skern-Mauritzen et al., 2011), and abundance esti-
mation models (Bravington and Hedley, 2010; Bothun et al., 2009).
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Ecosystem models like ECOPATH and Atlantis, with a trophic mass-balance
focus (Fulton et al., 2004; Pauly et al., 2000), do not encompass the individual
movements of species within their defined habitat blocks and can therefore not
be used for analyzing the effect of movement processes on migration timing
and predator-prey interactions. Incorporating discrete movement in individ-
ual based models (IBM)s is an approach, as was implemented with grey seals
(Halichoerus grypus) by Austin et al. (2004), which provides quantitative meth-
ods for analyzing such processes.

The Norwegian Ecological Model System (NORWECOM) is an end-to-end
ecosystem model that includes coupling between physical processes (imple-
mented using the ROMS ocean model), chemical process, and biological in-
teractions (Aksnes et al., 1995; Skogen and Seiland, 1998; Skogen et al., 1995).
Higher trophic levels have been recently incorporated as IBM modules, such
as pelagic fish (Utne and Huse, 2012) and Calinus finnmarchicus (Hjollo et al.,
2012), each with discrete movement of the species and validated with field
data. The modeleling system is modularized, allowing flexible use of the
model’s components and varying grid systems. The newest developments of
NORWECOM.E2E uses a polar stereographic grid system, whereas the recent
study by Utne and Huse (2012), with validated pelagic fish IBMs, was de-
veloped on a rectagular grid system (Figure 1.1; red grid). The latest NOR-
WECOM.E2E modeling area spans the North Atlantic and arctic regions (Fig-
ure 1.1; blue grid), covering all potential summer migration and feeding ar-
eas of the North Atlantic common minke whale. Pelagic fish species within
the model are known prey species of the minke whale, including: Norwegian
spring spawning (NSS) herring (Clupea harengus; Haug et al., 2002), blue whit-
ing (Micromesistius poutassou; Vikingsson et al., 2014), and Northeast Atlantic
(NEA) mackerel (Scomber scombrus; Olsen and Holst, 2001). With these prey
tields, a minke IBM that quantifies individual movements of minkes can be de-
veloped to assess the effectiveness of prey strategies potentially used by them
during their summer feeding months and presumed summer migration.
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Figure 1.1: NORWECOM model grid areas. Rectangular NORWECOM.E2E grid area used
by Utne and Huse (2012) (red-hatched area) and NORWECOM.E2E polar stereographic grid
area used for recent developments (blue-hatched area).
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1.2 Overview

The Nordic Seas are characterized by strong surface current systems that move
large volumes of water - the most prominent being the East Greenland Cur-
rent (EGC) and the Norwegian Coastal Current (NCC) that is encompassed
in the Norwegian Atlantic Current (NWAC). The EGC transports roughly 3 Sv
in surface flows, originating along the northern coast of Greenland flowing
south with speeds between 20cms~! and 30cms™! through the Denmark
Strait (Foldvik et al., 1988). On the eastern boundary of the Nordic Seas, the
NCC transports 1.8 Sv northward along the Norwegian coast from the Atlantic
water introduced along the southern Norwegian coast and the Faroe-Shetland
ridge, moving at a mean annual speed of 34.1 cms™! in the surface layer (Sk-
agseth et al., 2011). West of the NCC, smaller mean annual velocities have
been observed in the NwAC, between 17.6cms™ ! and 23.2cms™! (Orvik et
al., 2001), moving predominantly northward. The entire current system of this
area can be see in Figure 1.2 from the modeling study of Skogen et al. (2007).
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Figure 1.2: NORWECOM modeled mean temperature and currents between December and
March, 1995 at a depth of 20 m (Skogen et al., 2007). This year experienced a high NAO index,
as was experienced in 1998.

In a study by Heide-Jorgensen et al. (2001), two minke whales were marked
with satellite tags for a combined total of 78 days. The maximum mean travel
speed for one whale was 3.2kmh~! (approximately 88.9 cm s 1), which is over
250 % of the annual mean velocity the NCC reported by Skagseth et al. (2011),
and it is nearly 300 % of the maximum velocity of the EGC (Foldvik et al.,
1988). This is approximately the same swimming speed found by Blix and
Folkow (1995) using radio transmitters and visual observations of dive times
to be metabolically optimal for minke whales.

While some minkes are believed to migrate, any migration paths that might
be used by them can only be inferred through knowledge of the above cur-
rent systems and static observations made by sightings. Management areas
determined by the International Whaling Commission, shown in Figure 1.3,
have been surveyed at regular intervals since 1993 (Bothun et al., 2009; Skaug
et al., 2004). These surveys have illustrated a wide pelagic distribution, apart
from aggregation at known feeding areas like fronts and shelf slopes (Doniol-
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Valcroze et al., 2007; Skern-Mauritzen et al., 2011). The timing of these possible
migrations is also unknown, but has been estimated to be approximately be-
tween April and October based on observations of increased stranding num-
bers in the British Isles (Evans, 1993; Pierce et al., 2004), which is assumed to be
the migration period in the bioenergetic study by Blix and Folkow (1995).
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Figure 1.3: Small Management Areas with subdivided block structure developed during the
2008-2013 Norwegian sightings survey cycle (Jien, 2013)

This pelagic distribution of minkes across the Nordic Seas could be the result
of migration, foraging, or some combination of the two. It is a common as-
sumption in modeling studies of marine predators that their movements are
some form of a random walk strategy, like Correlated Random Walk and Lévy
flight movements (Austin et al., 2004; Papastamatiou et al., 2013), but large
movements of whales to and from feeding areas are often direct with routes
exhibiting a consistent pattern (Horton et al., 2011; Silva et al., 2013).

However minkes arrive at feeding areas, localized foraging behavior of minkes
has been better observed. Piatt and Methven (1992) have described minke



whales in Witless Bay, Newfoundland, Canada to display a significant thresh-
old foraging response behavior when preying on capelin (Mallotus villosus),
abandoning their prey efforts when density of their prey fell below a thresh-
old level (proposed to be between 100 m to 1000 m by Friedlaender et al., 2009).
Known as predator-prey interaction stability, where preying pressure is equal
to prey availability, it is found to improve when prey densities are at levels
where the response of the predator is near its threshold of pursuing or leav-
ing its prey and when prey distribution is more aggregated (Hassell and May,
1974). This predictive behavior could potentially be used by minkes in combi-
nation with migratory movements to areas of higher productivity, as has been
seen in other baleen whales (Silva et al., 2013).

In this study, a minke IBM is developed to extend the NORWECOM.E2E model
with an important marine predator in the Nordic Seas and Barents Sea ecosys-
tems and to have a spatially-explicit IBM that may be used to investigate the
large-scale movement behaviors of minke whales, otherwise not possible with
a trophic mass-balance focussed ecosystem model. The questions that will be
investigated in this study include: (1) if migrating in the direction of predom-
inant ocean circulation patterns in the Nordic Seas is rewarding for the North
Atlantic common minke whale, and (2) if it is energetically advantageous for
minkes to combine migratory movement with periodic searches for highest
prey density compared to strategies that incorporate only random-walk for-
aging, strictly migratory movement, or random-walk movement with periodic
maximum prey density searching.



Chapter 2

Methodology

2.1 NORWECOM

The minke IBM is developed within the NORWECOM.E2E modularized model
framework. This IBM does not have feedback into NORWECOM.EZ2E via pre-
dation of whales on their prey field, as the only validated pelagic fish data are
available from a previous development of NORWECOM.E2E (Utne and Huse,
2012) and are loaded as static prey fields. These data are loaded after having
been re-gridded to the polar stereographic grid system (described below) used
by the current development of NORWECOM.E2E and the minke IBM devel-
oped in this study. The minke IBM performs movements of the whales with
each NORWECOM.E2e day-step after the physical forcing is loaded and the
chemical and lower-trophic biological modules have been run. Besides pro-
viding the framework to run the minke IBM, the only NORWECOM.E2E pro-
cess that affects minkes is their movement by ocean circulation at the end of
each day-step (Figure 2.1). The prey fishes reproduction, mortality, bioener-
getic processes, and movement by ocean circulation are reflected in their daily
change in biomass and position, which are output from the previous NORWE-
COM.E2E development simulation that incorporated these processes. For a
flowchart of module interactions in the NORWECOM.E2E framework, includ-
ing the minke IBM module, see Appendix 6.A.1.
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Figure 2.1: NORWECOM.E2E environment with minke IBM module and static prey field
loading (adapted from Hjollo et al., 2012)

2.2 Minke IBM

2.2.1 Assumptions

With the prey fields imported to NORWECOM.E2E and unable to be depleted,
the whales’ bioenergetic response to preying has been simplified by assuming
the same energetic requirement, consumption, and speed for the entire whale
population. The daily energetic requirement of minkes described by Blix and
Folkow (1995) of 80kJkg~!d~! is used, assuming a mean population weight
of 4000 kg whale™!. Stomach capacity of each whale is set to the mean capac-
ity of all age groups (189.1kg) reported by Tamura and Konishi (2014). The
point value for swimming speed of adult minkes of 2.7 km h~! is used for both
migratory and foraging swimming speeds, which is consistent with observa-
tions of minkes exhibiting both behaviors (Heide-Jorgensen et al., 2001). Mean
energy content of NSS herring (6.2 k] kg ~!) and blue whiting (4.2 k] kg~!) have
been taken from their seasonal energetic values reported by Pedersen and His-
lop (2001) for quarters 2, 3, and 4. With no energy content values available
in the literature for NEA mackerel, the value for herring is used. Whales are
assumed to move and feed at the surface (0 m). Competition between individ-
uals is ignored, as are the interactions of other high-level predators, which are
absent from the model.

2.2.2 Movement

For all simulations, whales enter and exit the model at a independently as-
signed dates, move within the grid area using a foraging strategy described
below while encountering prey. The only attributes differing between whales
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are their entry and exit dates (set at the start of the simulation), and the amount
of fish they encounter.

Entry dates and exit dates are randomly generated within 50 of a normally
distributed date range, centered at 15 April for entry dates and 15 September
for exit dates. The exit date is set one month earlier than their predicted exit
date from the Nordic seas to account for the approximate 1 month travel time
out of the model area (see section 1.2). Prior to each day-step, whales are
activated if their entry day into the model is greater than or equal to the active
simulation day, and they are deactivated if their return day has passed and
have reached their exit position. If the whale is activated, their position and
biomass of each prey encountered is written to file before the whales are moved
for the active simulation day. See Figure 2.2 for a diagram of the minke IBM’s
general sequence for one whale over a day-step and Appendix 6.A.1 for the
general movement routine that calls all foraging strategies.

ROMS ocean- data read

v

Fish data read

Model day >= whale-entry-day

Make active

Model day >= return-day
and active

Keep active

On model boundary

Make Inactive

Keep active

Whale active

Move whales Don't print position or data

2

Print position and data

Figure 2.2: General minke IBM model process flow-chart.
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For all strategies, whales are stepped in increments of 15km (Dstep) toward
their destination position until the maximum daily travel distance has been
reached. This distance is used to prevent issues with movement onto land and
out of the grid area by the whales, and it is set to be within the minimum
vertical and horizontal resolution of all grid-cells in the grid (approximately
16 km). All whales are initialized with the same speed and are thus assumed
to have the same maximum distance for movement in a 24 h day-step period
of 64km. For all simulations, this is the maximum distance the whales are
permitted to move in a single day-step (Djuax)-

The distance to the destination position (determined by the strategy in use) is
the magnitude of the vector between the current position and the destination
position, which is found by the difference in latitude and longitude between
the two positions. These differences are are converted to meters at the latitude
of the current position (Equation 2.1):

60/ 1852m
Qlat = (101‘”) ( s ) 2.1)
lat lat
60/ 1852m
Qlon = <1olon> ( 10 )COS (elat) (2-2)
lon lon

Qi+ Ratio of meters to 1°latitude (m1°lat_q)
Qron  Ratio of meters to 1°longitude (m1°lon_)
0;,+  Current latitude of whale (°lat)

Whales are moved incrementally by Dstep until Dy,ax is reached. The distance
to the destination position is checked before each step, and if less then the Dstep,
they are then moved the remaining distance to the destination. Randomness in
each movement is generated by adding a random distance component between
—15km and 15km (i.e. + Dgtep) multiplied by a factoring variable (Ry;00) used
to control the degree of randomness in the movement. An Ry, value of 0.0 re-
sults in direct movement between the origin and destination positions. With
increasing Ry,00, longitudinal and latitudinal variation around the destination
position is produced, which results in dispersion and movement distances that
may be less than D,;,y. The general movement calculation is shown in (Equa-
tion 2.3):
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ADjo, = QlonlLOnZ - LOTll‘ (2'3)
ADjqt = Qon|Laty — Lat]| (2.4)
Dgest = \/(ADlon)z + (ADlat)z (2.5)
. Diov
ADlon—mov - ADlon D + DygnaRmov (2-6)
dest
. Dov
ADlz/zi‘—mov - ADlat + DmndRmov (2-7)
D dest
AD;,, Longitudinal distance between current and destination position ()
ADj,; Latitudinal distance between current and destination position ()
Lony Longitude of current position (°/on)
Lony Longitude of destination position (°lon)
Latq Latitude of current position (°/at)
Laty Latitude of destination position (°/at)
D,and Randomly generated distance to move (m)
Rio0 Assigned randomness factor
Diov Movement step distance or distance remaining to destination ()
D jest Distance from origin to destination position ()

ADjoy—mov Longitudinal distance from current and next position (1)
ADjg_mov Latitudinal distance from current and next position (1)

The whales” destination positions are determined at the start of each day-step
by one of the foraging strategies described below. For each simulation, one
foraging strategy is assigned to the entire population. If moving to a randomly
selected position or maximum fish density position the whale stops once this
position is reached, whether or not D,;,y has been reached. At the end of the
whales movement, whales are moved by the modeled hydrography if it has
been enabled for that simulation.

Once a whale is at their destination position for the active day, the surface cur-
rent velocity from the grid-cell containing the their origin position is used to
move them via the currents. This is done through use of an existing NORWE-
COM routine. The biomass of any prey species present in the cell containing
the whale’s final position are recorded.

To avoid difficulties experienced with the movement of whales to a position
off the grid during a simulation, an offset buffer of 5 grid-cells set around the
perimeter of the grid is used to confine their movement (red dashed line shown
on Figure 2.3B).
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Figure 2.3: Minke IBM grid area and attributes. NORWECOM.E2E grid area (blue solid
line) with minke whale movement offset area (red dashed line), whale entry and exit area
(yellow solid line), IWC small management area for the Norwegian Sea (solid red polygon),
and Minke IBM migration paths: Norwegian Sea Center (NSC), Norwegian Coast (NC), and
Greenland Coast (GC).

2.2.2.1 Study Area

The modelling area is a truncation of the full NORWECOM.E2E polar stere-
ographic grid, covering approximately 8.4 x 10°km? of the Nordic Seas re-
gion including the northern North Sea, Norwegian Sea, Barents Sea, Green-
land Sea, Iceland Sea, and Irminger Sea (Figure 2.3). It ranges latitudinally be-
tween 86.84748°N and 55.29657°N and longitudinally between 31.77648°W and
109.93210°E. The grid corner-points are as follows: 109.93210°E, 83.64842°N;
31.77648°W, 62.55577°N; 60.26522°E, 65.71642°N; and 14.04101°E, 55.2966°N.
This model region covers the key areas known to encompass the summer dis-
tribution of North Atlantic common minke whales.
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2.2.2.2 Migration path selection

Three migratory paths are visually determined from the visualization of the
modeled Nordic Seas current system by Skogen et al. (2007) for the year 1996,
which has a similar North Altlantic Oscillation index (Rigor ef al., 2002) and can
be expected to have a similar seasonal current system (Skogen et al., 2007). The
paths selected for migration into and out of the model area are as follows: the
Norwegian Sea center (NSC), the Norwegian coast (NC), and the Greenland
coast (GC). An adequate number of geodesic positions are taken from areas
within these general regions to allow the path to lie within areas of highest
velocity having 1 and 6 waypoint positions (Figure 2.3B).

Unique positions for entering and exiting the grid areas are randomly gener-
ated for each whale at model runtime along the entry and exit boundary, be-
tween -6.5°W and -2.5°W, in the region of the Faroe-Shetland ridge boundary,
(Figure 2.3B). All in-migration paths terminate at the same arbitrarily chosen
position in the vicinity of known feeding areas around Bear Island, Spitsbergen
(76.10399277°N, 16.34683488°E), (Skaug et al., 2004).

2.2.2.3 Homing

While using the homing (HM) strategy whales are moved D,y along the mi-
gration path waypoints. With each step towards the destination position (i.e.
the next waypoint), the proximity of the whale’s present position is checked to
see if it is within 0.1 grid-cell-width (approximately 1.5m) of the destination
waypoint. If within this distance, the destination is updated to the next way-
point in the migration path array, and the whale’s movement is stopped for
that day-step.

If the simulation date is greater than or equal to a whale’s return date, the hom-
ing array is updated from in-path waypoints to out-path waypoints. The up-
dating of homing positions is performed at the start of each day-step regardless
of the foraging strategy, as all strategies will switch to homing once the whale’s
return date is reached in order to move them from the model area. If a whale’s
current position is south of the next return waypoint, its next homing position
is updated to the nearest waypoint position south of its current position. Figure
2.4 shows the sequence of model events for the HM strategy, with the model
code presented in Appendix 6.A.1.



15

Simulation day >=
return-day

Update to homing Keep homing positions
positions to return-path the same

\/

Homing movement

v

Move by steps to position

<>

Whales remain
at position

T~

Save prey found to whale

v

Save current position

Currents move whale

Figure 2.4: Homing (HM) strategy process flowchart.

2.2.2.4 Random-walk

The random-walk (RW) foraging routine selects a random destination posi-
tion at the start of each day-step for the whale to move towards, in the step
increments described above, until D,,,y is reached. From the whale’s origin
position, a position is randomly selected within 5 grid-cell positions from the
origin position. Once selected, the position is checked to be within the grid-
offset boundary. If it is not within the grid-offset, another position is selected
until a valid position is found.

Once the active simulation day is the randomly generated for a whales to begin
its return migration, the whales begins using the HM strategy and moves to-
ward their next out-path homing waypoint, with the final point being their exit
location. Figure 2.5 shows the sequence of model events for the RW strategy,
with the model code presented in Appendix 6.A.1.
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Figure 2.5: Random (RM) strategy process flowchart.

2.2.2.5 Maximum fish density searching

The maximum prey density search (MPDS) foraging strategy searches the
whales prey detection area (all adjacent cells within 1 grid-cell from the present
position) for the cell with the maximum biomass of their preferred prey, mov-
ing the whales toward the center of the grid-cell with the highest density. This
detection area is larger than the 1000 m detection radius suggested by Fried-
laender et al. (2009), as the grid resolution and prey biomass distribution, be-
ing evenly distributed over the grid-cell, do not allow for searching to be per-
formed within such a detection limit. The maximum number of feeding days of
the whales (d f,,4,) is parameterized to restrict them to a limited feeding period
before they travel via the RW or HM strategy.

At model run-time whales are initialized with a number of days they have been
on feeding (dy,.q) and a number of days they have traveled between feedings
(dtrav), both of which are initialized at model run-time to 0.0 for all whales in
the population. When prey is detected in a whale’s detection field, it moves
to the center of the grid-cell with the maximum prey-density, and dy, is in-
creased by one. Whales are moved to the maximum densities in the order of
preferred prey. For example, if all prey are detected in the detection area, the
whale is moved to the location of the first prey preference. If only the second
and third prey preferences are present, the whale will be moved to the second
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prey preference grid-cell-center. Once d ¢, maximum is reached, or there are
no fish found by the end of one day-step (and a series of movement-steps), the
whales move by the assigned movement routine for that simulation, and the
travel period value is increased by one.

The whales are considered to be “well fed” when d Fmax is reached and the d;;x
has not yet been reached. The MPDS density search movement first checks that
the whales are well fed at the start of each day-step. If well fed, the whale is
moves via RW or HM as described above. If not well fed, the detection area is
evaluated for presence of prey within its prey detection field.

While the whale is not well fed, and no prey is detected, the whale will be
stepped towards the randomly selected position or next homing position until
Dyax is reached. At the start of each step, the whale will search the detection
area for prey presence. Figure 6.1 shows the sequence of model events for the
MPDS-R and MPDS-H strategies, with the model code presented in Appendix
6.A.1.
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Figure 2.6: Maximum prey density search (MPDS) strategy process flowchart.
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2.3 Prey field pre-processing

The recent developments of the NSS herring, blue whiting, and NEA mackerel
IBMs have not been validated, so model output will be used from the study
by Utne and Huse (2012), which has been validated and used a rectangular
grid system. As the new development of NORWECOM.E2E uses a polar stere-
ographic grid system, this output will be re-gridded and used as static prey
tields, meaning there will be no effect of prey depletion from predation on the
prey field. The originating rectangular grid system has a horizontal resolution
that is much greater between latitudes (5km and 20 km, approximately) than
the newer polar stereographic grid system (between 16 km and 25 km, approxi-
mately), (Figure 2.3A). For each of prey species in the year 1998, the rectangular
gridded values of total number of fish per grid-cell are re-gridded to a corre-
sponding polar stereographic grid-cell with the smallest calculated distance
from the originating cell’s position. Distances are calculated using the inverse
transformation method of the pyproj.Geod library (version 1.9.3) (Whitaker,
2014).

These values of total fish per grid-cell (fish cell’) are then converted to units
of biomass per grid-cell (kg cell!). Biomass per unit area is derived by multi-
plying the fish number per unit area by the average weight for the fish species
and the ratio between the area of the originating grid-cell and the area of the
nearest polar stereographic grid-cell (Equation 2.8). Weighted averages of
adult size classes for the associated simulation year are used for NSS herring
(0.222171 kg), blue whiting (0.074574 kg), and NEA herring (0.233105kg) from
annual survey data by the Havforskningsinstittutet (herring and blue whiting,
ICES, 2007b; mackerel, ICES, 2007a).

A
Bepe = Nspecieswspecies (ﬁ()f()) (2.8)

B.oe NORWECOM.E2E gridded biomass (kgm?)

Nspecies  Number of fish per NORWECOM 2010 grid cell (fishnumber)
Wipecies  Weight of fish species being re-gridded (kg)

A Area of destination NORWECOM.EZ2E grid cell (m?)

Apolp  Area of origin NORWECOM 2010 grid cell (m?)
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The re-gridded data for all prey species vary temporally in their distribution
and density for the year 1998 (Figures 2.7- 2.9).

At the beginning of April, herring are distributed off the Norwegian coast
roughly between 60° N and 65° N, with an approximate longitudinal spread of
10°, and a maximum biomass-density of 1.02838 x 10° kgm~2 north of 65° N
and east of 10° W. The area of distribution extends in area in July (with density
decreasing) and position moving both northward and westward with a linear
boundary appearing at its northwestern border (approximately from 70° N to
80° N and 10° W to 10° E). Densities increased along this border in August, with
a large portion of the biomass returning to an overwintering location near the
Norwegian coast in September. By November, the distribution is contracting
tightly to coastal over wintering locations between 67° N and 70° N, approxi-
mately, with a maximum density of 2.834723 x 10° kg celll.

Blue whiting is more widely distributed than herring at the start of April, with
two large aggregations, spanning approximately from 60° to 70° N and 10° W
to 20° E, with a density of 2.1344 x 10* kg/m? at the most densely populated
cell. In May, the density aggregates are along a thin front in the southern region
of its April distribution, increasing in density to 4.8685 x 10* kg m~2. They ex-
pand again in June and July, with portions of the population beginning to ag-
gregate near the Norwegian coast. Densities begin increasing in September
at coastal overwintering locations near 65° N and 10° E, with a maximum of
9.5333 x 10* kg cell”! reached by November.

Mackerel are not distributed in the Nordic Seas until the beginning of July, cov-
ering a much smaller longitudinal area compared to herring and blue whiting,
from approximately 5° W to 5° E and 63° N to 67°, and they had a density max-
imum of 1.11230 x 10° kg cell’!. Their distribution extends to 70° N in August
before expanding and moving just north of 60°N in September. In October, the
distribution latitudinally flattened between, 60° N and 63° N, and it expands
between 20° W and 15° E, approximately. The maximum local density is seen
in October at 1.78458 kg cell L.

The overlap of the distributions (primarily herring and blue whiting) occurs
primarily between 0° longitude to 20° E and 65° N to 70°. From May to Septem-
ber, the distribution of herring extends exclusively beyond the overlap area to
the north and west and to the east along the southern Norwegian coast. Blue
whiting is distributed beyond the overlap area for the duration of the simula-
tion to the south and east from 0° longitude to the southern Icelandic coast.

With all fish distributions, the boundary areas of fish distributions appear scat-
tered with presence of fish transient and dispersed. Throughout the distribu-
tions, there are select cells that remain absent of fish for the duration of the
simulations at varying latitudes and longitudes (Figures 2.7- 2.10).
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Figure 2.7: Averge biomass densities of herring for the year 1998, reprojected from output of
the NORWECOM 2010 rectangulargrid to the NORWECOM.E2E polar sterographic grid.
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Figure 2.8: Averge biomass densities of blue whiting for the year 1998, reprojected from out-
put of the NORWECOM 2010 rectangulargrid to the NORWECOM.E2E polar sterographic
grid.
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Figure 2.9: Averge biomass densities of mackerel for the year 1998, reprojected from output
of the NORWECOM 2010 rectangulargrid to the NORWECOM.EZ2E polar sterographic grid.
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60° N

OO

Figure 2.10: Gridded herring and blue whiting distributions near the southern Norwegian
coast on 01 May, 1998. The light blue solid line marks the model grid area, with the red dashed
line marking the offset boundary containing the whale movement. The relative densities of
each species are shown in shades of red (herring) and blue (blue whiting).

2.4 Simulation data post-processing

2.41 Erroneous movement: Off-grid and landings

Without an intelligent path searching algorithm implemented to navigate
around bodies of land, along with the large distances minke whales are capa-
ble of moving in a single day, it is possible for whales to cross land. In addition,
the algorithms used in the NORWECOM.E2E model to transform geodesic co-
ordinates to grid coordinates sometimes result in incorrect grid coordinates (i.e.
off the model grid), causing a programmatic error. To prevent problems from
moving off grid or analysis errors with whales that have moved over land, a
flag is applied to each whale that experiences either, and it is removed from
the model or analysis. A total of whales from the population who have landed
or moved off-grid is recorded and is to be considered for interpretation of the
results.
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2.4.2 Migration-time, distance, and speed calculations

Individual whale migration times for each in-period and out-period are aver-
aged to obtain a mean travel time for the population. The in-period is deter-
mined for each whale as the time between the day they entered the model and
the day at which they have reached a position within 0.3° latitude and longi-
tude (or nearer) to the feeding location off Bear Island. The exit migration is
defined as being the period after a whale’s return migration date and it is lo-
cated 0.3° latitude and longitude (or further) away from the feeding location,
lasting until the day they reach their exit position on the model boundary.

Using daily whale position output, values for change in position between day-
steps are calculated for each whale, including movement by currents, using the
pyproj.Geod library (version 1.9.3) (Whitaker, 2014) as described in the software
documentation (Whitaker, 2006). Hourly speed of the whales (mh™1) is then
derived from this distance value by dividing the distance by 24 h. Daily speeds
of all whales are averaged across both in and out-migration periods to give a
mean speed of the population.
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2.4.3 Encounter rate and foraging efficiency calculations

A prey encounter is considered to be a non-zero biomass value in the grid-
cell containing each whale’s final position during a day-step. There is a max-
imum of three possible encounters per day per whale if all three prey species
are present in the cell containing their final position in a day-step. The sum
of all encounters for each prey species is made, and it is divided by the total
number of encounters to yield the percentage of total encounters for each of
the prey species. The number of encounters per whale (Ne whale™) is the ratio
of the total number of encounters and the number of whales simulated (i.e. not
landed or moved off-grid).

The foraging efficiency (Ef f) of minkes is determined to be the ratio of a de-
rived value of energy intake to an assumed daily expenditure of energy. Itis as-
sumed that the whales will consume their full consumption capacity (189.1 kg)
of their highest order preferred prey encountered. This weight is converted to
units of energy (kJ) using Equation 2.9 through multiplying it by the average
unit energy per unit weight of that species (k] kg~!). This value is then divided
by the product of their daily energetic requirement (80 k] kg~! d 1) and the as-
sumed average minke weight (4000 kg whale™) to yield the foraging efficiency
(Equation 2.9). The mean of all whales” Ef f values is taken to get the mean
daily efficiency of the population (Effpop). When Ef f,,, = 1, the populations
energetic intake is equal to its energy requirement.

Econs = thaleEpreprrey (2.9)
Ef futate = oo 2.10)
e (Erequhale)

Effwhalel + ot Effwhalen
n

Effpop = (2.11)

Econs Daily energy consumed by individual whale (k])

Viohate Volume of consumption per whale (kgwhale™!)

Eprey Energy content of prey (kJkg 1)

Worey Weight of whale (kg)

Ef fuwnaie Forgaing efficiency of individual whale

Ereq Daily energy expenditure by individual whale (kJwhale kg1
Wynae  Weight of whale (kg)

Effpop  Mean foraging efficiency of the population

n Number of whales in population
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2.5 Simulations

2.5.1 Overview

Simulations are performed using a representative population of 1000 whales
and performed over daily time-steps for the year 1998. Fish prey fields for NSS
herring, blue whiting, and NEA mackerel are pre-processed from the NORWE-
COM.EZE rectangular grid system to polar stereographic grid system on which
the minke IBM has been implemented (see section 2.3). Only one prey pref-
erence ordering is used for the scope of this study: (1) NSS herring, (2) blue
whiting, and (3) NEA mackerel. Herring is set to be the primary preferred prey
as it has been commonly found to be the primary preference of minkes (Olsen
and Holst, 2001). The ordering of blue whiting and herring is arbitrarily cho-
sen. Swimming speed of all whales is set to a constant 2.7kmh~! (see section
2.2.1).

The simulations are run in a sequence such that the results of each section are
used to inform the next. First a population adequate in size to produce the
smallest SEM for daily means of whale speed and foraging efficiency is de-
termined. The effect of currents is assessed by running a simulation with the
currents on and with the currents off. With the effect of currents decided, sim-
ulations with variations in the three pre-determined migration paths are run to
determine the most plausible and rewarding path for migration and foraging.
Then, simulations using the described foraging strategies are run, so that de-
rived values of foraging efficiency may be compared. For a detailed summary
of simulation parameterization, see Table 2.1.



Table 2.1: Simulation configurations. The following strategies are referred to: random-walk (RW), homing (HM), maximum prey density search with
random-walk (MPDS-R), and with homing (MPDS-H). Migration paths used are the Norwegian Sea center (NSC), the Norwegian coast (NC), and
the Greenland coast (GC). Ry is the randomness in movement between origin and destination positions, and d ¢4« is the maximum number of days

whales may feed before traveling

Simulation  Strategy = Population Inpath Outpath Currents Ruov  dfmax
(Ne whales) (days)

1 HM 100 NC NSC on 0.0 2
Population 2 HM 1000 NC NSC on 0.0 2
3 HM 10000 NC NSC on 0.0 2
Currents 2 HM 1000 NC NSC on 0.0 2
4 HM 1000 NC NSC off 0.0 2
5 HM 1000 NSC NSC on 0.0 2
6 HM 1000 NSC NC on 0.0 2
Migration 2 HM 1000 NC NSC on 0.0 2
7 HM 1000 NC GC on 0.0 2
8 HM 1000 GC NC on 0.0 2
9 RW1 1000 NC NSC on 0.0 2
10 RW2 1000 NC NSC on 0.9 2
2 HM1 1000 NC NSC on 0.0 2
11 HM2 1000 NC NSC on 0.9 2
12 MPDS-R1 1000 NC NSC on 0.0 2
13 MPDS-R2 1000 NC NSC on 0.9 2
14 MPDS-R3 1000 NC NSC on 1.8 2
Foraging 15 MPDS-R4 1000 NC NSC on 0.0 6
16 MPDS-R5 1000 NC NSC on 0.0 10

17 MPDS-R6 1000 NC NSC on 0.0 2000
18 MPDS-H1 1000 NC NSC on 0.0 2
19 MPDS-H2 1000 NC NSC on 0.9 2
20 MPDS-H3 1000 NC NSC on 1.8 2
21 MPDS-H4 1000 NC NSC on 0.0 6
22 MPDS-H5 1000 NC NSC on 0.0 10

23 MPDS-H6 1000 NC NSC on 0.0 2000
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2.5.2 Population size

For all simulations, the whales are configured to use the HM strategy with no
randomness in their movements (R;;0» = 0.0) between waypoints, and they are
arbitrarily configured to migrate in along the NC path and out along the NSC
path, as it is only the SEM of the population’s speed and foraging efficiency that
will be evaluated (Table 2.1). The maximum number of feeding days (d..,) is
set to 2 days, but it is not applicable to the HM strategy.

Simulations with four minke population sizes are run to find an adequate pop-
ulations size for SEM comparisons efficiency: 100, 1000, and 10000 (Table 2.1).
To properly compare the SEM of the different simulations, it is necessary for
the data to be normally distributed. This is determined using the scypi.stats
library (Jones et al., 2001), using multiple K-tests on a sample data-set for all
common probability distribution types as described by Dietrich (2012). With
normally distributed data confirmed, the smallest population simulated with
an adequately small standard error of the mean will be used for subsequent
simulations.

2.5.3 Currents

Two simulations are run for evaluating the effects of currents on the movement
of the whales following the same general configuration as the population size
simulations (i.e. NC as the in-path, NSC as the out-path, HM as the strategy,
and R;;00 = 0.0), along with using the optimal population size current config-
urations (Table 2.1). The first simulation is run with the currents activated,
altering the whales’ final positions for each day-step. Currents are then de-
activated for the second simulation, so the mean speed of the population may
be observed without the effect of the currents.
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2.5.4 Migration

With the population size determined, and the effect of currents known, vari-
ations in-migration path selection are tested with five permutations of path
configurations. All whales are configured to use homing destination selection
movement (HM) without randomness in their movements between positions
(Rimop = 0.0). The maximum number of feeding days (d f,4,) is set to 2 days for
all simulations, which does not have an effect in the homing strategy.

The following are the in-path and out-path configurations for of the migration
simulations (Table 2.4.2):

1. In: Norwegian Sea Center (NSC); Out: Norwegian Sea Center (NSC)
2. In: Norwegian Sea Center (NSC); Out: Norwegian Coast (NC)

3. In: Norwegian Coast (NC); Out: Norwegian Sea Center (NSC)

4. In: Norwegian Coast (NC); Out: Greenland Coast (GC)

5. In: Greenland Coast (GC); Out: Norwegian Coast (NC)

Mean migration times and speed of the population for in-periods and out-
periods along these path configurations are calculated for comparisons (see
section 2.4.2).

2.5.5 Foraging

The most rewarding migration configuration is used for foraging simulations
using various parameterizations of the previously defined strategies: RW, HM,
MPDS with random-walk, and MPDS with homing (Table 2.1).

Two simulations are run using the RW strategy and two using the HM. The
tirst simulation for both strategies is run with Ry, set to 0, and the second
simulations for both strategies is run with Ry, set to 0.9. For all simulations
the maximum number of feeding days (d ¢, is set to 2 days, which does not
have an effect with either strategy.

For both the MPDS-R foraging strategy, as well as the MPDS-H, there are six
simulations run with variations in Rypp and d fee4. The first three are run with
Rinov set to 0.0, 0.9, and 1.8, respectively, and with d s, set to 2days. The last
three simulations are run with Ry, set to 0.0, and with d Fmax Set to 2, 6, and
10, respectively. The maximum number of travel days, dtmay, is set to 2 days.
Varying values of Ryop and d ., are arbitrarily chosen to evaluate the effect
of these parameters on foraging efficiency. The diyqy value is chosen based
on observations with preliminary model runs where whales were observed to
travel too quickly to summer feeding regions with higher values (according to
the assumptions on migration previously stated). The Ry, values are chosen
arbitrarily due to there being no prior studies that give clear indication towards
the level of randomness in minke whale movement or duration of their feeding
periods.
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Results

3.1 Simulations

All standard error of the mean (SEM) values are reported with a confidence
interval (CI) of 95 %.

3.1.1 Population Size

The daily mean of population speed and foraging efficiency varied little, with
much higher variation in the SEM, highest between simulations with a popula-
tion of 100 and 1000 (Figure 3.1; Table 3.1). The mean speed of the population
during migration periods with SEM for populations of 100, 1000, and 10000
were: 3.08+£0.18kmh~1, 310 £ 0.05kmh~?, 3.07 £ 0.02kmh 1, respectively.
Mean values of foraging efficiency with SEMs were as follows: 2.04 £0.29,
2.03 £0.09, and 2.05 £ 0.03.

Computation time for processing datasets from simulations with a population
size of 10000 was found to be exceedingly high and prohibitive for the volume
of simulations necessary for the this study.

Whales flagged for moving beyond the model grid boundaries increased with
an increase in population size. There were 1.000 whales flagged as off-grid for
the population of 100, 13 for the population of 1000, and 151 for the population
of 10000.
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Figure 3.1: Daily mean speed and foraging efficiency with varying population sizes. A Daily
mean speed of population B Daily mean preying efficiency . Simulations are run with the
following population sizes: 100, 1000, and 10000 whales. Error bars indicate the range of
standard error of the mean (CI 95%).

3.1.2 Currents

The mean speed of the population was higher for the simulation
with currents activated 3.1954 0.028kmh~! than that with it deactivated
3.133 + 0.002kmh~!, and there is no overlap of the SEM between the two (Fig-
ure 3.2A; Table 3.1). Daily maximum speeds of individual whales within the
population with currents activated varied between approximately 5.5kmh~1
and 0kmh~! for both migration periods (Figure 3.8). When currents were
deactivated individual speeds varied between approximately 2.9kmh~! and
3.1kmh™! (Figure 3.4).

Travel-time differences were greatest for the in migration periods of the cur-
rent simulations, varying between 24.53 +-0.05kmh~! for the activated cur-
rent simulation and 26.78 + 0.05 km h~! for the deactivated simulation (Figure
3.2B). With about 2% change in mean population speed between the current
simulations, there is an approximate 8% decrease in travel-time during the in-
migration period (along the NC path) and an approximate 4% increase during
the out-migration period (along the NSC path).

There were 13 whales that experienced erroneous movement out of the model
grid boundaries for each of the simulations with currents activated.
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Figure 3.2: A Mean days to migrate and B mean migration speeds with variation in current
configuration. Error bars indicate the range of standard error of the mean (CI 95%). All sim-
ulations follow the NC into the model area and the NSC out of the model area. The first
simulation is run with currents activated ad no movement of whales to a layer identified as
having a current direction nearest to the movement of the whales. The second simulations is
run with currents deactivated.



Table 3.1: Mean migration periods and speed of the population with number of erroneous movements. The in and out-periods are the
number of days whales spend migrating to and from the Bear Island feeding location. Speed is the mean speed of the population over both
migration periods. Whales whose movemente went off the model grid are coundted as "off-grid", and whales whose movement crossed
land are counted as "landed". Whales are removed from all analysis if they experienced either erroneous movement.The standard error of
the mean (SEM) is presented with a CI of 95%.

Simulation  Strategy  In-path Out-path In-period SEM  Out-period = SEM Speed SEM Off-grid  Landed
(days) (days) (days) (days) (kmhr!) (kmhr!) (whales) (whales)

HM NC NSC 24.525 0.049 24.970 0.038 3.198 0.087 1 0
Population 2 HM NC NSC 24.611 0.051 24.997 0.041 3.195 0.028 13 0
3 HM NC NSC 24.589 0.052 24.949 0.042 3.199 0.009 151 0
Currents 2 HM NC NSC 24611 0.051 24.997 0.041 3.195 0.028 13 0
4 HM NC NSC 26.778 0.048 24.000 0.000 3.133 0.002 0 0
5 HM NSC NSC 22.363 0.032 24.929 0.041 3.160 0.019 0 0
6 HM NSC NC 22.363 0.032 29.734 0.057 3.024 0.028 0 0
Migration 2 HM NC NSC 24.611 0.051 24.997 0.041 3.195 0.028 13 0
7 HM NC GC 24.612 0.051 30.481 0.058 3.327 0.025 13 3
8 HM GC NC 33.285 0.044 29.760 0.055 2911 0.021 0 0

9 RW1 NC NSC 60.211 0.507 102.377 0.608 2.652 0.061 3 364

10 RW2 NC NSC 60.462 0.482 102.312 0.598 2.587 0.081 13 516
2 HM1 NC NSC 24611 0.051 24.997 0.041 3.195 0.028 13 0

11 HM2 NC NSC 25.672 0.098 25.755 0.102 3.201 0.057 66 11

12 MPDS-R1 NC NSC 60.941 0.539 99.322 0.529 1.721 0.148 91 676

13 MPDS-R2 NC NSC 59.902 0.476 97.865 0.546 1.730 0.197 146 742

14 MPDS-R3 NC NSC 59.970 0.537 99.576 0.540 1.874 0.410 460 594

Foraging 15 MPDS-R4 NC NSC 60.844 0.587 94.938 0.377 1.259 0.360 214 779

16 MPDS-R5 NC NSC 64.500 0.458 92.667 0.228 1.062 0.749 251 793

17 MPDS-R6 NC NSC 60.500 0.403 94.000 0.062 0.805 1.099 390 747

18 MPDS-H1 NC NSC 44.855 0.139 27.814 0.079 2.376 0.085 15 114

19 MPDS-H2 NC NSC 47.960 0.246 35.853 0.232 2271 0.103 120 181

20 MPDS-H3 NC NSC 58.961 0.467 90.529 0.467 2.061 0.275 337 561

21 MPDS-H4 NC NSC 59.852 0.459 68.965 0.852 1.611 0.127 14 560

22 MPDS-H5 NC NSC 66.875 0.069 105.646 0.355 1.284 0.365 16 936

23 MPDS-H6 NC NSC 54.365 0.277 92.397 0.492 0.697 0.155 53 892
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Figure 3.3: Daily mean speed of population with daily maximum and minimum individual
whale speeds (in-path: NC; out-path: NSC). The line above the red-shaded area is the speed
of the fastest individual in the population with the daily mean speed of population as the line
between the red and blue-shaded areas. The line below the blue-shaded area is the speed of
the slowest individual in the population. Position data within +0.3° longitude and latitude
of the summer feeding position have been filtered, so they do not affect mean values and to
improve visualization. Standard error of the mean (SEM) is presented (CI 95%)
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Figure 3.4: Daily mean speed of population with daily maximum and minimum individual
whale speeds (in-path: NC; out-path: NSC). The line above the red-shaded area is the speed
of the fastest individual in the population with the daily mean speed of population as the line
between the red and blue-shaded areas. The line below the blue-shaded area is the speed of
the slowest individual in the population. Position data within +0.3° longitude and latitude
of the summer feeding position have been filtered, so they do not affect mean values and to
improve visualization. Standard error of the mean (SEM) is presented (CI 95%)
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3.1.3 Migration

Migration durations varied with changes in migration paths and direction (in
or out of the model area along those paths) (Table 3.1). The configuration with
the shortest total migration periods were seen when whales migrated either in
or out along the Norwegian Sea Center (NSC) path, with a migration periods
of 22.363 4= 0.032 days and 24.929 4 0.041 days, respectively (Figure 3.5A). The
next shortest migration period to the NSC in-migration was the in-migration
along the NC (22.363 £ 0.032 days). The longest period occurred with migra-
tion along the GC (33.285 + 0.044 days), followed by the out-migration along
the GC (30.479 + 0.058 days).
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Figure 3.5: A Mean days to migrate and B mean daily migration speeds of populations along
varying migration paths. Error bars indicate the range of standard error of the mean (CI 95%).
Simulation migration paths are as follows: Norwegian Sea Center (NSC), Norwegian Coast
(NC), and Greenland Coast (GC).
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The mean daily speed of the population for in and out-migration periods
differed between all migration path configurations (Table 3.1). The fastest
mean speed (3.327 +0.025kmh~!) was seen with the NC for in-migration
and the GC for out-migration (Figure 3.5B). Conversely, the slowest speed
(2.911 +0.021kmh~!) occurred with the GC followed in and the NC out.
The second highest mean speed (3.195 £ 0.028 km h~!) was with the NC for
in-migration and the NSC followed out. The configuration with the fastest
migration periods used the NSC for in and out migration, had a speed of

3.160 + 0.019kmh—1.

Maximum and minimum speeds of individual whales, as well as the daily
mean speed of the population, were erratic for all simulations with occasional
large peaks in minima and maxima (Figures 3.6- 3.10). The maximum speeds
of individuals were greatest with migration in along the NC and out along the
GC (5.393kmh™1), (Figure 3.9), followed closely by that with migration in on
the NC and out through the NSC (5.363 km h=1), (Figures 3.8). The lowest

maximum individual whale speed was 4.287 km h~! with in-migration on the
GC and out along the NC (Figure 3.10). The maximum individual whale speed
(4.562kmh~!) was from the simulation having migration in and out through
the NSC (Figure 3.6).

Erroneous movement of whales out of the model grid-boundaries were expe-
rienced during the simulation with the NC as the in-path and NSC as the out-
path (13 off-grid) and the simulation with the NC as the in-path and the GC as
the out-path (13 off-grid and 3 landed), (Table 3.1).
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Figure 3.6: Daily mean speed of population with daily maximum and minimum individual
whale speeds (in-path: NSC; out-path: NSC). The line above the red-shaded area is the speed
of the fastest individual in the population with the daily mean speed of population as the line
between the red and blue-shaded areas. The line below the blue-shaded area is the speed of
the slowest individual in the population. Position data within +0.3° longitude and latitude
of the summer feeding position have been filtered, so they do not affect mean values and to
improve visualization. Standard error of the mean (SEM) is presented (CI 95%)
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Figure 3.7: Daily mean speed of population with daily maximum and minimum individual
whale speeds (in-path: NSC; out-path: NC). The line above the red-shaded area is the speed
of the fastest individual in the population with the daily mean speed of population as the line
between the red and blue-shaded areas. The line below the blue-shaded area is the speed of
the slowest individual in the population. Position data within +0.3° longitude and latitude
of the summer feeding position have been filtered, so they do not affect mean values and to
improve visualization. Standard error of the mean (SEM) is presented (CI 95%)
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Figure 3.8: Daily mean speed of population with daily maximum and minimum individual
whale speeds (in-path: NC; out-path: NSC). The line above the red-shaded area is the speed
of the fastest individual in the population with the daily mean speed of population as the line
between the red and blue-shaded areas. The line below the blue-shaded area is the speed of
the slowest individual in the population. Position data within +0.3° longitude and latitude
of the summer feeding position have been filtered, so they do not affect mean values and to
improve visualization. Standard error of the mean (SEM) is presented (CI 95%)
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Figure 3.9: Daily mean speed of population with daily maximum and minimum individual
whale speeds (in-path: NC; out-path: GC). The line above the red-shaded area is the speed of
the fastest individual in the population with the daily mean speed of population as the line
between the red and blue-shaded areas. The line below the blue-shaded area is the speed of
the slowest individual in the population. Position data within +0.3° longitude and latitude
of the summer feeding position have been filtered, so they do not affect mean values and to
improve visualization. Standard error of the mean (SEM) is presented (CI 95%)
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Figure 3.10: Daily mean speed of population with daily maximum and minimum individual
whale speeds (in-path: GC; out-path: NC). The line above the red-shaded area is the speed of
the fastest individual in the population with the daily mean speed of population as the line
between the red and blue-shaded areas. The line below the blue-shaded area is the speed of
the slowest individual in the population. Position data within +0.3° longitude and latitude
of the summer feeding position have been filtered, so they do not affect mean values and to
improve visualization. Standard error of the mean (SEM) is presented (CI 95%)
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3.1.4 Foraging

3.1.41 Foraging Efficiency

Foraging efficiency ranged between 0.586 = 0.312 (MPDS-H6) and 2.381 + 0.435
(MPDS-H5) for all simulations (Table 3.2). An increase in R, resulted in a
small decrease in efficiency for both RW and HM foraging strategies, while
relatively small increases in efficiency were seen with an increased Ry, for
MPDS strategies (Figure 3.11). Within each foraging strategy, the simulations
with variation in R0, had means with overlapping SEMs (Table 3.2; Figure
3.11).

Using the RW foraging strategy, the highest efficiency value (2.069 £ 0.117) oc-
curred with an Ry, of 0.0 (Table 3.2). Foraging efficiency of the population
does not drop below 1.000 for the duration of the simulation, with two ex-
tended periods below the mean efficiency occurring at the beginning of May
and in early October (Figure 3.12B).

The HW strategy also had a maximum foraging efficiency (0.652 & 0.081) with
an Ry,pp of 0.9, but much lower than both RW simulations (Table 3.2). While
HM foraging efficiency of the population is higher than RW in late April and
early October, there is a sharp decline in May with an extended period of zero
efficiency until a spike in late August followed by a steep incline in September
(Figure 3.15B).

For both MPDS strategies the MPDS-H5 strategy, with d,,,, set to 6 days, had
the highest foraging efficiency of the population (2.382 + 0.435), which was the
largest value for all simulations (Table 3.2). The maximum efficiency value
from the MPDS-R simulations (2.256 £ 0.444) was with MPDS-R3 having an
Ri00 of 1.8. The lowest value from each was with a d Fmax of 2000 (continuous
feeding): MPDS-R6 (0.934 + 1.830) and MPDS-H6 (0.586 + 0.312). The MPDS-
R3 strategy had a foraging efficiency continuously above an efficiency of 1.000
with more variability from April to July when compared to the latter half of the
teeding period (Figure 3.18B). In the MPDS-H5 simulation, there were peak
periods of foraging efficiency higher than seen with MPDS-H3 (e.g. 01 July to
01 August); though, there were also drop in efficiency below 1.000 in mid-May
and early September (Figure 3.21B).

3.1.4.2 Prey Encounter

The ratio between encounters for each prey species and the total number of
prey encounters was consistent for each foraging strategy (Table 3.2). For all
simulations, blue whiting had the highest rates of encounter, followed by her-
ring, then mackerel.

With the RW strategy, the percentage of total encounters for all prey species
varied less than 1% between both simulations, RW1 (R;,y = 0.0) and RW2
(Rmov = 0.9). The total encounters per whale were equal for both of the RW
foraging simulations (Table: 3.2). Blue whiting encounters begin early in the
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simulation, with encounters of herring offset by approximately one month,
and mackerel encounters beginning 01 June (Figure 3.12A). Herring encoun-
ters peak at the end of May, gradually decreasing until August, with another
small peak in September. Blue whiting encounters are consistent throughout
the feeding period, except for a small low in early May. Mackerel encounters
are low compared to blue whiting and herring, occurring between June and
October.

The HM strategy saw even less variation in the change of encounter compo-
sition with an increase in Ry from 0.0 to 0.9 having no more than £0.6%
change for each species. Though blue whiting encounters are less then 0.4%
different from the RW strategy for blue whiting encounter rates, there is a
decrease in mackerel encounters of approximately 6.5% and an equivalent in-
crease in herring encounter composition. Total encounters per whale decreased
by 0.49 encounters with the increase in R, (Table 3.2). The simulation
with the highest foraging efficiency, HM1, both herring and blue whiting have
peaks in their encounter rates at the end of April, steeply increasing before
and steeply decreasing after these peaks (Figure 3.15A). Two brief peaks of
herring encounters then occur in early July, followed by another two in mid-
August. After the last herring peek in August, there is a smaller and more
sustained herring encounter by the population, with a delay of several days
before a sustained encounter of blue whiting occurs of equal magnitude to the
encounter around May. Mackerel is encountered beginning mid September to
late November.

Encountered prey composition of the MPDS-R strategy varied within 2% in re-
sponse to changes in R0y, with larger increases in herring (0.39%, Ryp0i = 0.9)
and mackerel (0.44%, R;;00 = 1.8). The MPDS-R strategy experienced decreases
herring and mackerel encounters and an increase in blue whiting encounter
with increases in d Fimax- With an increase in Ry, the MPDS-H strategy had
a small decrease in herring encounters (0.11%, R0 = 0.9) and increase in
mackerel encounters (0.12%, R;;p = 0.9) followed by an increase in herring
(3.25%, Ry;00 = 1.8) and mackerel (0.05%, Ry;00 = 1.8). For both MPDS-R and
MPDS-H strategies, the number of encounters increase with and increase in
Rimop and decreased with an increase in d 4, (Table: 3.2). The monthly trend
in time-of-encounter for the three prey species is similar for the RW and MPDS-
R3 strategies with MPDS-R3 having more noise in the daily encounters (Figure
3.18A); whereas, the MPDS-H5 prey encounters were consistent throughout the
simulation, as compared to HM1 (Figure 3.21A). Blue whiting encounters peak
in approximate 10 day intervals through April and May, reaching a period of
sustained encounters from early June until early August. This is followed by
a low period with another smaller sustained period peaking in early October.
Herring encounters with the MPDS-R5 strategy begin mid-April with less pro-
nounced peaks across multiple days. The encounters with MPDS-R5 are con-
tinuous and have high daily-variability until decreasing in late August. The
lowest prey encounters for both MPDS strategies were with a d 7,4 0f 2000 (an

unlimited feeding maximum), with 54.50 encounters whale! (MPDS-R6) and
27.54 encounters whale! (MPDS-HS6).
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3.1.4.3 Distribution

The total spatial coverage of the population using the RW1 strategy extends
from the Norwegian coast to the Greenland Coast and arctic ice edge, with
track densities decreasing with distance away from the whale entry boundary
(Figure 3.13). The population is most densely aggregated immediately follow-
ing entry to the model (April to May) and the distribution gradually expands
with time in all directions from the entry boundary (Figure 3.14). Following
the return date of 15 September, the spatial distribution of the population re-
mains more widely distributed as the population begins exiting the model.

Track-lines from the HM1 strategy simulation are tightly grouped along the
NC path with whales dispersing between waypoints (Figure 3.16). Following
the return date, whales gradually distribute along the path, exiting across the
entire exit boundary. By 01 April, the first whale to enter the model is located at
approximately 66° N and 8° E, with the entire NC path distributed with whales
in tight groupings by early May (Figure 3.17). The entire population is located
at the Bear Island feeding location in early July and begin to migrate back out in
early September. Whales are extended across the entire NSC by early October.
In November, the entire population has exited the model area.

The MPDS-R3 strategy had densest coverage east of 8° W to the Norwegian
coast and from southern model boundary offset to 67° N (Figure 3.19). Sparse
tracks extended beyond this area up to 72° N and west to 20° west, with an
aggregation of movements west of Jan Mayen and some rounding the east
coast of Iceland. Whale distribution was most dense in early May, which then
dispersed in all directions in August, with few individuals in the Iceland and
Greenland Seas (Figure 3.20). By September, there are two whales that have
reached the western Barents Sea, with a distribution found along the entire
Norwegian coast, spreading throughout the Norwegian sea to the Iceland and
Greenland Seas. Some whales remained at 70° N at the start of October, and
most of the population was out of the model with the remainder occupying the
southern Norwegian Sea. All whales had exited by early November.

Whale tracks for the MPDS-H5 strategy resembled that of H1, covering the
same regions but with wider coverage along the NC in-migration path, par-
ticularly around 65° N and north of 70° N (Figure 3.23). Movements were
less sequential over-time for MPDS-H5 than compared to H1, with a large ag-
gregation collectively following the Norwegian coast, from early May to early
August (Figure 3.22). In early September, the population has begun reach-
ing the Bear Island feeding location, with a larger latitudinal spread and one
whale at approximately 62°N and 1° W. By early October, the bulk of the popu-
lation extends the entire NSC path from the Bear Island feeding location to the
exit boundary, with several whales still remaining in the easter Norwegian Sea
north of 35° N, and all whales exited by early November.
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Distributions of the least efficient MPDS strategies, MPDS-R6 and MPDS-HS6,
were both concentrated in a small region on the souther coast of Norway. The
MPDS-R6 distribution ranged between approximately 4.4° W and 5.2° E, and
did not move north of 62° N for the entire simulation (Figure 3.24A). The
MPDS-H6 distribution similarly ranged between approximately 4.5° W and
4.5° E, also remaining below 62° N (Figure 3.24B).
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Figure 3.11: Mean preying efficiency of simulations with changes in foraging strategy, ran-
domness in movement between daily destinations (R,), and number of days on feeding
between travelling (d eeq)-



Table 3.2: Percentage of total prey encounters by prey species, total prey encounters per whale, mean daily movement of whales, and mean
foraging efficiency of the population. Whales may have up to three encounters per day if all species are present. Total encounters are divided
by the final number of whales in the simulation after whales with erroneous movement are removed. Mean daily movement is the mean
distance moved by one whale in the population during a day-step. Ef fy,, is the mean foraging efficiency of the population. The standard
error of the mean (SEM) is presented with a CI of 95%

Simulation = Strategy =~ Herring Blue whiting Mackerel Encounters Movement SEM Effpop SEM
(%) (%) (%) (Newhale!)  (kmday?')  (km day™)
HM 39.75 58.97 1.27 50.82 76.743 2.078 0.650  0.256
Population 2 HM 39.73 59.07 1.20 50.94 76.671 0.664 0.652  0.081
3 HM 39.74 59.07 1.19 50.98 76.772 0.209 0.652  0.026
Currents 2 HM 39.73 59.07 1.20 50.94 76.671 0.664 0.652  0.081
HM 37.11 61.75 1.14 51.59 75.186 0.042 0.637  0.079
5 HM 33.68 64.81 1.52 38.93 75.837 0.467 0545  0.073
6 HM 32.38 65.81 1.81 47.50 72.577 0.664 0.616  0.076
Migration 2 HM 39.73 59.07 1.20 50.94 76.671 0.664 0.652  0.081
7 HM 46.78 52.94 0.29 39.48 79.859 0.591 0477  0.074
8 HM 27.24 69.98 2.78 30.51 69.861 0.507 0.410  0.063
9 RW1 33.28 59.03 7.69 158.23 63.652 1.454 2069 0117
10 RW2 33.73 58.17 8.10 158.23 62.100 1.952 2059 0137
2 HM1 39.73 59.07 1.20 50.94 76.671 0.664 0.652  0.081
11 HM2 39.14 59.45 1.41 50.45 76.827 1.371 0.646  0.083
12 MPDS-R1 23.36 67.99 8.65 159.58 41.300 3.542 2119  0.170
13 MPDS-R2 24.84 66.07 9.09 170.92 41.509 4731 2246 0222
14 MPDS-R3 24.45 64.58 10.96 176.33 44.983 9.829 2256  0.444
Foraging 15 MPDS-R4 2252 72.03 5.45 87.16 30.206 8.633 1363  0.500
16 MPDS-R5 21.70 74.45 3.85 60.67 25.485 17.980 0.995  1.089
17 MPDS-R6 17.43 80.73 1.83 54.50 19.309 26.373 0934  1.830
18 MPDS-H1 40.46 58.84 0.69 79.04 57.031 2.029 0.988  0.100
19 MPDS-H2 4035 58.84 0.81 82.27 54515 2.465 1.026  0.112
20 MPDS-H3 4371 55.55 0.74 104.43 49.466 6.604 1.300  0.316
21 MPDS-H4  47.06 52.58 0.37 147.90 38.656 3.053 1.888  0.160
22 MPDS-H5  47.58 52.18 0.24 190.56 30.824 8.758 2381 0435

23 MPDS-H6 59.25 39.19 1.56 27.54 16.734 3.731 0.586 0.312
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Figure 3.12: Daily prey encounter rates by prey type and daily energy efficiency of the pop-
ulation using the RW strategy; Ryop = 0.0; dfyar = 2. A Percent of daily prey encounters of
the population by type: herring (red line), blue whiting (blue line), and mackerel (green line).
B Daily mean energy efficiency of the population (Ef f,,p) with SEM (CI 95%). The solid red
line marks Ef f,,, = 1.000.
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Figure 3.13: Minke population track-lines for the simulation year 1998 using the RW strategy;
Rinov = 0.0; d finax = 2. The light blue solid line marks the model grid area, with the red dashed
line marking the offset boundary containing the whale movement. Dark blue lines are drawn
along tracklines of individual whales.
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Figure 3.14: Monthly distribution of simulated whales using the RW strategy; R0 = 0.0;
dfmax = 2. Whales shown as black triangles. Herring distribution is shown in shades of red,
blue whiting in shades of blue, and mackerel in shades of green. The model area is bound by
a solid blue line with the offset containing whale movement shown as a dashed red line.
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Figure 3.15: Daily prey encounter rates by prey type and daily energy efficiency of the pop-
ulation using the HM strategy; Ryop = 0.0; dfyax = 2. A Percent of daily prey encounters of
the population by type: herring (red line), blue whiting (blue line), and mackerel (green line).
B Daily mean energy efficiency of the population (Ef f,,p) with SEM (CI 95%). The solid red
line marks Ef f,, = 1.000.
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Figure 3.16: Minke population track-lines for the simulation year 1998 using the HM strategy;
Rinop = 0.0; d iyar = 2. The light blue solid line marks the model grid area, with the red dashed
line marking the offset boundary containing the whale movement. Dark blue lines are drawn
along tracklines of individual whales.
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Figure 3.17: Monthly distribution of simulated whales using the HM strategy; R00 = 0.0;
dfmax = 2. Whales shown as black triangles. Herring distribution is shown in shades of red,
blue whiting in shades of blue, and mackerel in shades of green. The model area is bound by
a solid blue line with the offset containing whale movement shown as a dashed red line.
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Figure 3.18: Daily prey encounter rates by prey type and daily energy efficiency of the popu-
lation using the MPDS-R strategy; Riov = 1.8; dfuax = 2. A Percent of daily prey encounters of
the population by type: herring (red line), blue whiting (blue line), and mackerel (green line).
B Daily mean energy efficiency of the population (Ef f,,p) with SEM (CI 95%). The solid red
line marks Ef f,, = 1.000.
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Figure 3.19: Minke population track-lines for the simulation year 1998 using the MPDS-R
strategy; Rioo = 1.8; dfyax = 2. The light blue solid line marks the model grid area, with the
red dashed line marking the offset boundary containing the whale movement. Dark blue lines
are drawn along tracklines of individual whales.
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Figure 3.20: Monthly distribution of simulated whales using the MPDS-R strategy; R0 = 1.8;
dfmax = 2. Whales shown as black triangles. Herring distribution is shown in shades of red,
blue whiting in shades of blue, and mackerel in shades of green. The model area is bound by
a solid blue line with the offset containing whale movement shown as a dashed red line.
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Figure 3.21: Daily prey encounter rates by prey type and daily energy efficiency of the popu-
lation using the MPDS-H strategy; Ry = 0.0; d 14, = 10. A Percent of daily prey encounters
of the population by type: herring (red line), blue whiting (blue line), and mackerel (green

line). B Daily mean energy efficiency of the population (Ef f,,) with SEM (CI 95%). The solid
red line marks Ef fo, = 1.000.
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Figure 3.22: Minke population track-lines for the simulation year 1998 using the MPDS-H
strategy; Rmoo = 0.0; d 0 = 10. The light blue solid line marks the model grid area, with the
red dashed line marking the offset boundary containing the whale movement. Dark blue lines
are drawn along tracklines of individual whales.
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Figure 3.23: Monthly distribution of simulated whales using the MPDS-H strategy; R, = 0.0;
dfmax = 10. Whales shown as black triangles. Herring distribution is shown in shades of red,
blue whiting in shades of blue, and mackerel in shades of green. The model area is bound by
a solid blue line with the offset containing whale movement shown as a dashed red line.
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Figure 3.24: Minke population track-lines for the simulation year 1998 using the A MPDS-
H5 and B MPDS-H6 strategies; R;00 = 0.0; d feed = 2000. The light blue solid line marks the
model grid area, with the red dashed line marking the offset boundary containing the whale
movement. Dark blue lines are drawn along tracklines of individual whales. Gridded fish
distributions are shown for 01 May, 1998. The species present on this day are herring (red
grid-cells) and blue whiting (blue grid-cells).
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Chapter 4

Discussion

4.1 Simulation evaluation

4.1.1 Currents

The effect of predominant currents on whale movement in the NC and NSC
corresponds to the relative difference in current magnitudes between these
two areas, as depicted by (Orvik et al., 2001; Skagseth et al., 2011). While
point values presented by Skagseth et al. (2011) and Orvik et al. (2001) de-
scribe the Norwegian Coastal Current as being roughly 1.5 to 2 times greater in
velocity than the Norwegian Atlantic Current, the mean speed of the whales
(3.195 £ 0.028 km h~! with currents on; Table 3.1) is large compared to the

speed of both currents (34.1cms™! or 1.23kmh~! for the NCC; Skagseth
et al., 2011), leaving the signal from currents in the whales’ speed less pro-
nounced.

With currents deactivated, the average speed of the population was consis-
tently higher than the parameterized speed (2.7kmh~!) (Figure 3.4). This
difference is thought to be the result of an inaccuracy in interpolation within
the NORWECOM.E2E routine used to transform geodesic whale coordinates
to grid coordinates for each movement. The variability in the population’s
mean speed during the in-migration period of the deactivated current simu-
lation is likely the combined result of this coordinate transformation error and
the method of waypoint selection (described in section 2.2.2.3). If some whales
are stopping short of their maximum daily travel distance, having reached a
waypoint, the daily minimum speed of the population will be consistently
lower, while the maximum daily individual speed should be constant along
a path with no intermediate waypoints such as the NSC.

4.1.2 Migration

The effect of current systems was most pronounced when alternating the di-
rection whale movement along the NC and GC paths (Table 3.1). With an
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estimated population of 108140 whales (Bothun et al., 2009), the approximate
8 day difference in travel days would amount to an additional expenditure of
2.768 x 101 K] for the population (based on the expenditure value from Blix
and Folkow, 1995) or an equivalent of 4.465 x 10*t of herring (using Equation

2.8 and the averaged energy value for herring derived from values presented
by Pedersen and Hislop, 2001).

Migration times to the feeding location off Bear Island are shorter along the
NSC path compared to the NC; however, daily individual speed maxima and
minima indicate a large degree of variability experienced due to currents along
the NC compared to the NSC (Figure 3.8). Despite paths being routed through
areas of highest current velocity, these are linear best-guesses, which do not re-
flect local variability in current speed and direction that could result in some
individuals occasionally moving through counter-productive eddies. If whales
were to use these systems to their benefit, they would presumably also avoid
localized flows that would not aid their movement. The maxima seen in daily
individual speed and mean speed of the population for the NC are much larger
than the NSC (as an in-path; Table 3.1). This could potentially be maintained
for the entire population if they were to navigate the current system more intel-
ligently. Given the mean population speed and patterns in individual speeds
from this path configuration, along with increased encounters of herring and
a higher foraging efficiency, the NC is expected to be the more rewarding in-
migration path for minkes.

While the GC may be the migration out-path yielding the highest travel speeds,
this path is mostly absent of prey species used in this study for the simulation
year (Figures 2.7- 2.9). Despite other prey known to minkes in this area (Neve,
2000), they could potentially still use this pathway without feeding if they were
to fast following their summer feeding similar to Humpback whales (Megaptera
novaeanglia), as observed by Bentley (1963).

Though a feasible migration path, the additional distance of the GC path, com-
pared to the direct NSC path, adds roughly 5.5d to the mean out-period for
the population. Humpbacks are also shown to follow direct routes to breed-
ing grounds during their migration after feeding (Paterson, 1991), which may
be expected with minkes. The NSC yielded the shortest migration-period of
all out-paths, which is the most direct path the whales could take to their exit
locations (Table 3.1).

41.3 Foraging

The RW strategy was the most rewarding strategy not incorporating maximum
density searching, and attained a mean efficiency higher than all MPDS-H and
simulations with the exception of MPDS-H5 (where d feed Was set to 10d). This
high efficiency, more than twice the level of balanced energy consumption and
use (i.e. Effpop = 1.000), appears to be due to the wide area coverage and a
dispersal timing that coincides with prey dispersed having higher concentra-
tions in the south from April to July, with wider distributions in August and
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September (Figure 3.14). The higher encounter rate of mackerel also suggests
this, as the distribution of mackerel did not extend as far north as both herring
and blue whiting.

Movement of the HM1 strategy population went very quickly to the presumed
feeding area and through the prey field, and it had the lowest prey encounters
and efficiency for all strategies (with the exception of MPDS-H6). The HM1
simulation population (with Ry, = 0) had direct movement at the maximum
travel distances for each day-step, gaining slightly higher efficiency by reach-
ing the herring distribution located nearer to shore and the NC path (Figure
3.17). Despite having more dispersed movement with a higher R0, the HM2
population traveled slower along the NC, and the portion of the population
migrating later experienced lower herring encounters and a lower efficiency
due to blue whiting having a lower energy content than herring (Pedersen
and Hislop, 2001).

The MPDS strategies both benefited from increases in Ry, resulting in more
dispersed distributions, and their populations remained in lower latitudes with
slower movement northward, yielding higher encounters. Whereas, the ef-
fect of increasing d 7,5, Was negatively rewarding for MPDS-R simulations and
positively rewarding for MPDS-H simulations. For MPDS-R simulations, in-
creases in d fmax caused larger numbers of the population to be restricted to
areas near the southern Norwegian coast with only their preferred prey of her-
ring present, which the maximum density searching had led them to follow
upon entering the model area. Increasing d ¢, in MPDS-H simulations from
2d to 6d and 10d allowed the population to follow prey densities after hav-
ing moved to higher latitudes, with each increase in feeding period yielding
higher encounters and efficiency. The MPDS-R6 and MPDS-H6 populations
(with d ¢, = 2000) followed herring towards the southern Norwegian coast
where only herring was present. As prey distribution is less homogeneous
in this area, the lack of other prey left less opportunity for encounters, with
herring only intermittently available. MPDS-R6 appears to be slightly more
efficient than MPDS-H6 due to more disperse movements in this area while
MPDS-H6 whales would aggregate into the same low-encounter region while

traveling towards a shared homing waypoint when no prey is present (Figures
3.24A and B).

Based on the above observations, a depleting prey field would likely pose a
greater reduction in efficiency for strategies that incorporate random-walk. De-
spite setting a threshold at which whales decide to abandon prey areas, both
MPDS-R and RW would be disadvantaged similarly in that the whales would
return to areas already visited. It has been shown with random-walk forag-
ing that prey decreases exponentially in areas where foragers return after prior
depletion without restriction (Schoener, 1971), while discriminating against ar-
eas previously foraged likely results in saved time and energy (Baum, 1987).
Though MPDS-R and MPDS-H strategies have the ability to follow a patch un-
til a threshold density is reached, MPDS-H would move the whales along a pre-
dicted path into new prey regions, where MPDS-R would allow the possibility
of revisiting previous foraged areas until an adequate density is found.
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Despite the efficiency of MPDS-5 being seemingly close to that of MPDS-R3,
there were extended periods of low efficiency for MPDS-H5 in May while mi-
grating along low fish density areas, and from August to October when por-
tions of the population were located at the Bear Island feeding location (Figure
3.21B). In addition, overall travel distances for MPDS-R were comparatively
higher than MPDS-H, which suggests that a more sophisticated bioenergetic
model, with a direct metabolic response to movement, would yield lower effi-
ciencies for MPDS-R. Both of these factors support MPDS-H5 as being the most
rewarding strategy.

Other studies have found marine predators to perform migratory movements
with periods of foraging where they seek density patches. In a study by Sims
et al. (2006), satellite tracked basking sharks were 90% more effective at finding
areas of high zooplankton concentration using directed movements and area
restricted search (ARS) when prey patches were found and then compared to
simulated sharks using a random-walk foraging strategy. The tagging study by
Silva et al. (2013) also identifies similar behavior in both blue and fin whales,
which are closely related members of minkes in the Balaenoptera family, who
perform large-scale migrations with periods of ARS at various intervals (Figure
4.1).
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Figure 4.1: Tracks derived from ARGOS satellite positions of blue and fin whales using a
hierarchical switching state-space model (Taken from Silva et al., 2013).
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4.1.4 Further improvements

Means of migration period, speed and efficiency are useful for comparisons
of migration and foraging strategies; however, the range of associated SEM
values are not sufficient to statistically differentiate them, which was a result
of insufficient an sample size. An additional reduction in sample size occurred
due to movement of whales off the model grid and over land, and in some
cases, nearly the entire population moved off-grid or over land (e.g. MPDS-R6
and MPDS-H6) reducing the sample size to a few individuals.

This erroneous movement could be addressed by implementing a method for
navigation around land obstacles and by working strictly within the grid coor-
dinate system, rather than performing transformations from geodesic coordi-
nates. A recent example of intelligent path searching is given by by Almeida
(2013), using Dijkstra’s algorithm (Dijkstra, 1959) to navigate simulated hump-
back migrations through a gridded current field to compare their movements
to tracks obtained from satellite-tagged humpbacks. Movements off the model
grid would not be possible if movement routines were to be based solely on
the grid coordinate system, which would avoid the need for interpolation until
output positions are generated. Combining these improvements with simula-
tions that have much larger population sizes (and computation times) would
allow for smaller error in the means to better differentiate the simulation suc-
cess.

Along with correcting these errors, general improvements to the model build
and optimization of the characterizations of minkes and their interaction with
the ecosystem are necessary. Calibration of resulting distributions to annual
sighting-surveys could be done to further determine if the model is simulating
minkes” movements realistically, for example, a root mean square deviation
(RMDS), which was used by Utne and Huse (2012) for validation of the fish
distributions used as prey fields in this study. A more advanced bioenergetic
model could be implemented that encompasses attributes of mortality, repro-
duction, sex, and maturity, as well as natural variability amongst all ascribed
attributes, rather than point values. Changes in Ry, and d Fimax feeding du-
ration had a notable effect on model results, but optimal values for these and
other parameters, such as d¢;,.x and order of prey preference could still be de-
termined.
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Chapter 5

Conclusion

The first spatially-explicit individual based model for minke whales was de-
veloped in this study and has been used to provide insight into the effect of
predominant circulation patterns on possible minke migrations, as well as the
energetic reward for minkes to use predictive foraging behavior. These large-
scale behaviors were tested in a series of simulations with variation in minke
migratory paths and foraging strategies. Migratory paths that followed areas of
maximum velocity and coincided with the direction of whale movement were
found to dramatically enhance the migration speed of minkes, and trends in
individual whale speeds and available prey suggest that migration into Nordic
seas seas along the Norwegian Coastal Current would be most rewarding with
the best exit-route directly through the central Norwegian sea. Using a sim-
plistic bioenergetic model, the foraging strategy incorporating migration and
allowing for periodic feedings of 10d was the most energetically rewarding.
From these findings, it is both (1) more rewarding for North Atlantic common
minke whales to migrate in the direction of predominant ocean circulation pat-
terns in the Nordic Seas, and (2) more energetically advantageous for minkes to
combine migratory movement with periodic searches for highest prey density
compared to random-walk foraging, strictly migratory movement, or random-
walk with periodic maximum prey density searching.

Understanding the movements of minkes in the Nordic Seas will assist in de-
termining existing stock-structure, important for selection of appropriate man-
agement units (Frank and Brickman, 2000). With sub-stock structure of minkes
remaining uncertain and disputed (Donovan, 1991), the results of this study
suggest that individuals migrating along the Norwegian coast, Spitsbergen,
and Barents Sea may energetically benefit from returning through the central
Norwegian Sea, an area thought by some to have a distinct sub-stock of minkes
found along the NC and Barents Sea (Andersen et al., 2003; Born et al., 2003),
which could allow for interaction between these sub-stock if they exist. Hump-
backs have been known to migrate directly against prevalent currents (Horton
et al., 2011), so it could not be considered unlikely for minkes given their com-
paratively high swimming efficiency (Blix and Folkow, 1995), which could
suggest more isolation between sub-stocks.

Random-walk foraging experienced similarly high foraging reward to MPDS
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strategies, which is in contradiction to previous studies on large marine preda-
tors. The non-depleting prey field used herein is expected to particularly in-
crease efficiency of these strategies, which could be further examined follow-
ing implementation of an intelligent path searching routine and optimization
of the model parameters. The success of predictive foraging with prey-density
searching foraging supports by the findings of Silva et al. (2013) who observed
both blue and fin whales following long migrations with periods of area re-
stricted search foraging.

Gathering more dynamic data would be immensely helpful for the further
investigation of minke movement and spatial distribution. Satellite tagging
studies of blue whales (Bailey et al., 2009) have yielded tracks lasting more
than 500d, and logging of interactions between individuals is now possible
through peer-to-peer tagging technology (Holland et al., 2009). Such position
data could be used to calibrate theoretical movements from the minke IBM to
modeled movements fit by tagging data as has been done in recent studies
(Bailey et al., 2009; Papastamatiou et al., 2013).

The minke IBM has provided a new method for investigating the movements of
North Atlantic common minke whales, and with it, useful methods for visual-
ization of spatial data have been developed to facilitate model development
and data interpretation (Appendix 6.B). In addition, this model can be ex-
tended to implement other cetacean species into the NORWECOM.E2E model,
and there is a broad range of applications to these tools may be applied. With
turther development and more dynamic data, great potential exists for answer-
ing difficult questions surrounding the life-history, management, and conser-
vation of minkes and other cetaceans.
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68 Appendices

Appendix 6.A Minke IBM Movement Routines

The minke module is composed of four Fortran modules called within NOR-
WECOM.E2E (Figure 6.1). All files total 1944 lines of Fortran code. Code from
the general movement routine was adapted from Kjell Utnes pelagic fish move-
ment routine Utne and Huse (2012).

i i fish_generic
herring_ibm mackerel_ibm _

blue_whiting_ibm

gridnr
minke_ibm

netcdf

my_netcdf

my_physics whale_generic

200_generic whale

my_bio
~ whale_tools

krill_mod

ehype_mod
my_grid
IBMnetcdf_classic

feltfil main

o

aciddif_mod y capelin_mod
my_mixing
my_setup tools

mod_IBMs
ladim

calhyp_mod calfin_mod

Figure 6.1: NORWECOM.E2E module environment with minke IBM (top-right)

6.A.1 Movement routines

subroutine move_whales (stock, ndate, hr, bw, mk)

! Movement routine for whales
! modified from ownmovfish() in fish generic.F90

use my_grid , only : latit,longit,parea, fsm,im, jm,depth_zz
use mod_gridint ! with update bilin inv routine

use my_physics, only : t

use minke

use ladim

implicit none
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! Whale class object
class (whale_ ibm),
! Iterators and numbers

integer :: 1 !
real random_num !
! Time parameters

integer :: daynr !
integer ndate (5) !
integer year !
integer month !
integer day !

! Prey data arrays

real, dimension (im, jm)
real, dimension (im, jm)
real, dimension (im, jm)

! Check land

integer ec (9) (/0,2
integer nc(9) = (/0,2
! Movement parameters

real dist_max !
real dlon_m !
real dlat_m !
real m_lon !
real m_lat !

! Position parameters

real curr_lon !
real curr_lat !
real lon !
real lat !
real curr_pos (2) !
real curr_xpos !
real curr_ypos !
real curr_zpos !
real last_xpos !
real last_ypos !
real new_lon !
real new_lat !
real new_pos(2) !
real new_xpos !
real new_ypos !
real rand_xpos !
real rand_ypos !
real dest_xpos !
real dest_ypos !
real hom_xpos !
real :: hom_ypos !
integer hom_idx !

! Random-walk

real random_angle !
! Prey search

logical prey_found !
logical well_fed !
real pl_zpos !
real P2_zpos !
real p3_zpos !
logical pl_inrange !
logical p2_inrange !

logical p3_inrange !

intent (inout)

stock ! whale stock class instance
whale individual iterator

temp random number variable

current integer day of 365 day year
current integer date array
current
current

integer year
integer month

current integer day

bw ! grid biomass - blue whiting
hr ! grid biomass - herring

mk ! grid biomass — mackerel
0,0,-2,-2,-2, 0,0/) ! TODO

0,2, 2, 0,-2,-2,0/) !

Max daily swimming dist based on speed
change in lon/ypos 1in meters

change in lat/xpos 1in meters

meters in one degree longitude

meters in one degree latitude

decimal longitude position - current
decimal latitude position - current
current check 1lon
current check lat

grid index position output from 112grd()

decimal grid index position — current
decimal grid index position — current
decimal grid index position — current
decimal grid index position — current
decimal grid index position - current
decimal longitude position — current
decimal latitude position - current
decimal grid index of new position
decimal grid index position — new

decimal grid index position - new

decimal grid index position - random-walk
decimal grid index position - random-walk
decimal grid index position — destination
decimal grid index position — destination
decimal grid index position - homing
decimal grid index position - homing

homing array index position

random walk heading

bool - .true. = prey found via prey search
bool - .true. = max feeding reached
decimal grid index position — current
decimal grid index position — current
decimal grid index position — current

bool - .true. = in feeding range

bool - .true. = in feeding range

bool - .true. = in feeding range
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real pl_thresh ! biomass threshold to enter feeding movement
real p2_thresh ! biomass threshold to enter feeding movement
real p3_thresh ! biomass threshold to enter feeding movement
real :: fishmax idx(2) ! grid index position of max fish density - 112grd()
integer x_min ! xpos of prey detection range to west
integer X_max ! xpos of prey detection range to east
integer y_min ! ypos of prey detection range to north
integer y_max ! ypos of prey detection range to south
integer di ! index distance in 1 (y) dir for prey search
integer dj ! index distance in j (x) dir for prey search
print %, ’'move whales’
! Assign integer date values from ndate
year = ndate(1l)
month = ndate (2)
day = ndate (3)
daynr = daynumber (year, month, day)

! Prey preference and strategy configuration

! pl,p2,p3 arrays allocat

select case (pl_id)
case (0)
pl = hr
pl_zpos = hr_zpos
pl_thresh = hr_thresh
case (1)
pl = bw
pl_zpos = bw_zpos
pl_thresh = bw_thresh
case (2)
pl = mk
pl_zpos = mk_zpos
pl_thresh = mk_thresh
endselect

select case (p2_id)

case (0)

p2 = hr

p2_zpos = hr_zpos

p2_thresh = hr_thresh
case (1)

P2 = bw

P2_zpos = bw_zpos

p2_thresh = bw_thresh
case (2)

P2 = mk

P2_zpos = mk_zpos

p2_thresh = mk_thresh

endselect

select case (p3_id)

case (0)
p3 = hr
p3_zpos = hr_zpos
p3_thresh = hr_thresh

case (1)

ed in whale.F90>whale ibm
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p3 = bw

p3_zpos = bw_zpos

p3_thresh = bw_thresh

case (2)

p3 = mk

p3_zpos = mk_zpos

p3_thresh = mk_thresh
endselect

! Start movement routine

print *, ’'Start movement routines’

! Loop through populations to move

do i=1, stock%pop

I Get decimal grid index position of whale

curr_xpos = stock%whale (1) %$xpos
curr_ypos = stock%whale (1) %ypos

Ccurr_zpos

if (stock%whale (i) %active.eq..true.)

! Convert decimal grid index positions to lon/lat
curr_lon = grd2ll (longit,curr_xpos,curr_ypos)
curr_lat = grd2ll(latit,curr_xpos,curr_ypos)

! change migration course by date and position
stock%whale (i) $migday?2

if (feed_only_on == .true.)

if (daynr >= stock%whale (i) %$migday2
stock%whale (i) $goinghome ==

call update_homing (stock,
endif

hom_xpos = stock%$whale (i) %hom_idx

! Determine max meters whale can swim in 24hrs
dist_max = stock%whale (i) $sspeed*24.

I Set distance whales may move each iteration until max daily dist
dist_step = 15000.0 ! just below minimum vert/horiz grid resolution

! Set distance traveled and prey encountered to zero

stock%whale (i) %dist_trav = 0
dist_trav = 0
pl_found = 0
p2_found = 0
p3_found = 0
stock%whale (i) $pl_found = 0
stock%whale (i) $p2_found = 0
stock%whale (1) $p3_found = 0

! Random walk
if (prey_strategy.eq.0) then

last_xpos = curr_xpos

stock%whale (i) $zpos

! speed(m/hr) «hrs/day
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last_ypos = curr_ypos

Islice must be larger than dist_step, else big loop
if (daynr < stock%whale (i) %$migday2) then

call move_random(new_Xxpos, nNew_ypos, CUrr_xXpos,CUrr_ypos)
rand_Xpos = new_Xpos
rand_ypos = new_ypos

do while (dist_trav <= dist_max)

! Check if at new position
if (newpos_exit (curr_xpos, curr_ypos, &
rand_xpos, rand_ypos) == .true.) exit

call move_newpos (rand_xpos, rand_ypos, CUrr_Xpos, CUrr_ypos, &
dist_trav, &!dist_step, &
pl_found, p2_found, p3_found, stock, i)

if (curr_xpos < grid_offset .or. &
curr_ypos < grid_offset .or. &
curr_xpos > im-grid_offset .or. &
curr_ypos > jm-grid_offset) then

curr_xpos = last_xpos
curr_ypos = last_ypos
exit

endif

! TODO call check_land(curr_xpos, CUrr_ypos)
enddo ! dist stepping

elseif (daynr >= stock%whale (i) %migday2) then
do while (dist_trav <= dist_max)
! Move to next homing position 1if homing reached
! return path used should only have exit position (all -999)

call next_homing(stock%whale (i) $hom_xpos, &
stock%whale (i) $hom_ypos, &
stock%$whale (i) $hom_idx, &
Curr_Xxpos, CUurr_ypos)

%
%

new_xpos = stock%whale (i) %$hom_xpos (stock%whale (i) $hom_idx)
new_ypos = stock%$whale (i) %hom_ypos (stock%whale (i) %$hom_idx)

! Check if at new position and at end of homing path
if (homing_exit (stock, 1, curr_xpos, curr_ypos, &
new_xpos, new_ypos) == .true.) exit

if (curr_xpos < grid_offset .or. &
curr_ypos < grid_offset .or. &
curr_xpos > im-grid_offset .or. &
curr_ypos > jm-grid_offset) then
i

stock%whale (i) $active = .false.
exit
endif

call move_newpos (new_xpos, new_ypos, CUrr_xpos, CUrr_ypos, &
dist_trav, &!/dist_step, &
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pl_found, p2_found, p3_found, stock, 1)
! TODO call check_land(curr_xpos, CUrr_ypos)
enddo ! dist stepping

if (opt_depth_on == .true.) then
call optimal_uv_current (depth_max, stock%whale (i) %$xpos, &
stock%whale (i) $ypos, &
CUrr_xpos, Curr_ypos, CUrr_zpos, &
idx_tmp)
else
curr_zpos = hom_zpos
endif

endif

if (currents_on.eq..true.) then
! Move whale via currents at optimal depth at final position
call hormov_whale (curr_xpos, CUrr_ypos, Curr_zpos)

endif

lendif

endif ! random-walk only

! Homing only

if (prey_strategy.eq.l) then
!print %, ’“homing strategy’
do while (dist_trav <= dist_max)

! Move to next homing position if homing reached

call next_homing(stock%whale (i) $hom_xpos, &
stock%whale (i) $hom_ypos, &
stock%whale (i) $hom_idx, curr_xpos, CuUurr_ypos)

new_xpos = stock%$whale (i) %hom_xpos (stock%$whale (i) %$hom_idx)
new_ypos = stock%$whale (i) $hom_ypos (stock%whale (i) $hom_idx)

! Check if at new position and at end of homing path
if (homing_exit (stock, 1, curr_xpos, curr_ypos, &
new_xpos, new_ypos) == .true.) exit

! Returns position ‘dist_max' distance towards homing position
call move_newpos (new_xpos, New_ypos, CUrr_xpos, CUrr_ypos, &
dist_trav, &!/dist_step, &
pl_found, p2_found, p3_found, stock, 1)
enddo ! dist stepping

! Find index for depth with optimal current speed for movement
if (opt_depth_on == .true.) then
call optimal_uv_current (depth_max, stock%whale (i) %$xpos, &
stock%whale (i) $ypos, &
cCurr_xpos, Curr_ypos, Ccurr_zpos, &
idx_tmp)
else
curr_zpos

hom_zpos
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endif

if (currents_on.eq..true.) then
! Move whale via currents at optimal depth at final position
call hormov_whale (curr_xpos,curr_ypos, CUrr_zpos)

endif

if (curr_check.eq..true. .and. i==5) then
lon = grd2ll(longit, curr_xpos, CUurr_ypos)
lat = grd2ll(latit, curr_xpos, curr_ypos)

endif

endif ! homing only

! Maximum prey density (+ random walk & + homing)

if (mov_feed_on == .true.) then
if (stock%whale (i) %days_feeding >= feeding_max .and. &
stock%whale (i) $days_travel >= travel_max) then

well fed = .false.
stock%whale (i) %days_feeding = 0
stock%whale (i) $days_travel = 0
elseif (stock%whale (i) %days_feeding >= feeding max .and. &
stock%whale (i) $days_travel < travel_max) then
well_ fed = .true.

elseif (stock%whale (i)%days_feeding < feeding max .and. &
stock%whale (i) $days_travel < travel_max) then
well fed = .false.
elseif (stock%$whale (i)%days_feeding < feeding _max .and. &
stock%whale (i) $days_travel >= travel_max) then

well fed = .false.
endif
else
well fed = .false.
endif

! Set destination position when no fish are present
! Max Density Prey Search + Random walk
if (prey_strategy.eq.2) then
call move_random(rand_xpos, rand_ypos, CUrr_XposS,CUrr_ypos)

! Max Density Prey Search + homing
elseif (prey_strategy.eq.3) then

! TODO just a placeholder for reference, pos would be set later
! again along with a next homing pos check

new_xpos = stock%$whale (i) %$hom_xpos (stock%whale (i) %$hom_idx)
new_ypos = stock%whale (i) %hom_ypos (stock%whale (i) $hom_idx)

endif ! homing / random-walk
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pl_inrange = .false.
p2_inrange = .false.
p3_inrange .false.

! Move whales step-wise until desitnation position

do while (dist_trav <= dist_max .and. pl_inrange==.false. &

.and. p2_inrange==.false. &
.and. p3_inrange==.false. )

! If whales are under feeding requirement, look for prey

if (well_fed == .false. .and. daynr < stock%whale (i) %migday2) then

! whale search radius
di = 1
dj =1

call slice_idxs(curr_xpos, curr_ypos, di, dj, x_max, x_min, &
y_max, y_min, &
grid_offset)

! Determine if which prey species are in prey detection range
if (maxval (pl(x_min:x_max,y_min:y_max)).gt.pl_thresh) then

pl_inrange = .true.

endif

if (maxval (p2(x_min:x_max,y_min:y_max)) .gt.p2_thresh) then
p2_inrange = .true.

endif

if (maxval (p3 (x_min:x_max,y_min:y_max)).gt.p3_thresh) then
p3_inrange = .true.

endif

endif ! well fed
! Choose destination based on location

if (pl_inrange == .true. .or. p2_inrange == .true. &
.or. p3_inrange == .true. ) then

! Set index of new pos depending on presence of prefered prey
if (pl_inrange.eq..true.) then
print %, ’'max density - pl’

I Set depth to pl avg depth
curr_zpos = pl_zpos

fishmax_idx = maxloc(pl(x_min:x_max, y_min:y_max))
new_xpos = fishmax_idx (1) + x_min ! new lon position index
new_ypos = fishmax_idx(2) + y_min ! new lat position index
prey_found = .true.

elseif (p2_inrange.eq..true.) then
print x, ’'max density - p2’

! Set depth to p2 avg depth
curr_zpos = p2_zpos
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fishmax_idx = maxloc(pl(x_min:x_max, y_min:y_max))
new_xpos = fishmax_idx(l) + x_min ! new lon position index
new_ypos = fishmax_idx(2) + y_min ! new lat position index
prey_found = .true.

elseif (p3_inrange.eq..true.) then
print %, 'max density - p3’

! Set depth to p3 avg depth

curr_zpos = p3_zpos
fishmax_idx = maxloc(pl(x_min:x_max, y_min:y_max))
new_xpos = fishmax_idx(l) + x_min ! new lon position index
new_ypos = fishmax_idx(2) + y_min ! new lat position index
prey_found = .true.

endif ! end prey-preference/homing selection

! Check if at new position
if (newpos_exit (curr_xpos, curr_ypos, &
new_xpos, new_ypos) == .true.) exit

call move_newpos (new_xpos, new_ypos, CUrr_XxXpos,Ccurr_ypos, &
dist_trav, &!dist_step, &
pl_found, p2_found, p3_found, stock, 1)

else ! prey not in range (or well fed)
! Use Random-walk destination

if (prey_strategy.eq.2 .and. daynr < stock%whale (i) %migday2) then

last_xpos = curr_xpos
last_ypos = curr_ypos

! TODO call random pos selector above to not pick new
! random pos with each dist-step iterations

new_xpos = rand_XxXpos

new_ypos = rand_ypos

! Check if at new position
if (newpos_exit (curr_xpos, curr_ypos, &
new_xpos, new_ypos) == .true.) exit

call move_newpos (new_xpos, new_ypos, CUrr_Xpos,Curr_ypos, &
dist_trav, &!/dist_step, &
pl_found, p2_found, p3_found, stock, 1)

if (curr_xpos < grid_offset .or. curr_ypos < grid_offset .or.

curr_xpos > im-grid_offset .or. curr_ypos > Jm-grid_offset)

curr_xpos = last_xpos
curr_ypos = last_ypos
Istock%whale (i) %active = .false.
exit

endif

! Use homing destination
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else!if (prey_strategy.eq.3) then
I Move to next homing position i1f homing reached
call next_homing(stock%whale (i) $hom_xpos, &
stock%whale (i) $hom_ypos, &

stock%whale (i) $hom_idx, curr_xpos, curr_ypos)

new_xpos = stock%whale (i) $hom_xpos (stock%whale (i) $hom_idx)
new_ypos = stock%whale (i) %$hom_ypos (stock%whale (i) $hom_idx)

! Check if at new position and at end of homing path

if (homing_exit (stock, 1, curr_xpos, curr_ypos, &
new_xpos, new_ypos) == .true.)

if (curr_xpos < grid_offset .or. curr_ypos < grid_offset

exit
.or. &

curr_xpos > im-grid_offset .or. curr_ypos > jm-grid_offset) then

stock%whale (i) %active = .false.
exit

endif

! Homing

if (opt_depth_on == .true.) then

! Find index for depth with optimal current speed for movement

call optimal_uv_current (depth_max, stock%whale (i) %$xpos,
stock%whale (i) $ypos, &

curr_xpos, CUurr_ypos, CUurr_zpos,

idx_tmp)
else
curr_zpos = hom_zpos
endif
call move_newpos (new_xpos, New_ypos, CUrr_xXpos,CUrr_ypos,
dist_trav, &!/dist_step, &
pl_found, p2_found, p3_found, stock, 1)
endif ! homing or random selection
endif ! move-to-fish or homing/random selection
enddo ! dist stepping prey search
! Move whales with currents
if (currents_on.eq..true.) then
! Move whale via currents at optimal depth at final position
call hormov_whale (curr_xpos,curr_ypos,Ccurr_zpos)
endif

! Set feeding, and travel between feeding counts

if (prey_found == .false.) then

stock%whale (i) $days_travel = stock$%$whale (i)%days_travel + 1
elseif (prey_found == .true.) then

stock%whale (i) $days_feeding = stock%whale (i) %days_feeding + 1
endif

endif ! end max prey density + homing

! Finished moving, assign values to whale

&

&

&
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stock%whale (1) $xpos = curr_xpos
stock%whale (1) $ypos = curr_ypos

Q

stock%whale (i) $zpos

curr_zpos

! Add encountered fish and distance traveled to whale object

stock%whale (i) $pl_found = pl_found
stock%whale (1) $p2_found = p2_found
stock%whale (i) $p3_found p3_found

stock%$whale (1) $dist_trav = dist_trav
endif ! if check for whale active status
enddo ! Loop through populations to move

endsubroutine move_whales

subroutine move_random (new_Xpos,new_ypos, CUrr_Xpos, Curr_ypos)

use minke

logical :: valid_position ! true = new_xpos/ypos on grid

real I CUrr_xpos ! decimal grid index position — current
real I Ccurr_ypos ! decimal grid index position - current
real : ! new_xpos ! decimal grid index position — new
real :: new_ypos ! decimal grid index position — new
real :: random_num ! decimal random number from 0-1
integer :: x_min ! xpos of range to west

integer :: x_max ! xpos of range to east

integer :: y_min ! ypos of range to north

integer :: y_max ! ypos of range to south

integer :: di ! index distance in i (y)

integer :: dj ! index distance in j (x)

! Bounding cells around position to search for new position
di =5
dj = 5

call slice_idxs (curr_xpos, curr_ypos, di, dj, x_max, x_min, &
y_max, y_min, &
grid_offset)

! Calculate new random position until it is off-land/on-grid
valid_position = .false.

do while (valid_position.eq..false.)
! Get new random xpos < 1 grid cell away
call random number (random_num)
new_xpos = ((x_max—x_min)*random_num) +x_min

! Get new random ypos < 1 grid cell away
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call random_number (random_num)
new_ypos = ((y_max-y_min)xrandom_num) +y_min

' 1f resulting indices are not -999.0 or on land, proceed to move
! othewise, loop is performed until reasonable heading is picked
if (new_xpos < grid_offset .or. new_ypos < grid_offset .or. &
new_xpos > im-grid_offset .or. new_ypos > jm-grid_offset .or. &
fsm(nint (new_xpos),nint (new_ypos)) < 0.5) then
valid_position = .false.
else
valid_position = .true.
endif
enddo ! end valid position

endsubroutine move_random

subroutine move_newpos (dest_xpos, dest_ypos, curr_xpos, CUrr_ypos, &
dist_trav, &!dist_mov, &
pl_found, p2_found, p3_found, stock, iter)

use my_grid , only : latit,longit,im, jm

use mod_gridint ! with updated bilin inv routine

class (whale_ibm), intent (inout) :: stock ! whale stock class instance
integer :: iter

real :: random_num ! temp random number variable

real :: dlon_m ! change in lon/ypos in meters

real :: dlat_m ! change in lon/ypos in meters

real :: m_lon ! meters in one degree longitude

real :: m_lat ! meters in one degree latitude

real :: ve ! difference between homing pos and pos in m
real :: vn ! difference between homing pos and pos in m
real :: scalar ! scalar of homing diff (ie. dist/vector)

real :: dest_lon ! decimal lon of destination position

real :: dest_lat ! decimal lat of destination position

real :: dest_xpos ! decimal grid index of destination position — lon
real :: dest_ypos ! decimal grid index of destination position - lat
real :: curr_lon ! decimal lon position — current

real :: curr_lat ! decimal lat position — current

real :: curr_xpos ! decimal grid index of current position — lon
real :: curr_ypos ! decimal grid index of current position - lat
real :: new_lon ! decimal lon position — new

real :: new_lat ! decimal lat position — new

real :: new_xpos ! decimal grid index of current position — lon
real :: new_ypos ! decimal grid index of current position - lat
real :: new_pos(2) ! decimal grid index of new position

real :: dist_dest ! distance from current to destination position
real :: dist_mov ! Max daily swimming dist based on speed

real :: dist_trav ! total distance traveled in daystep
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! Cacluate current lat/lon position of individual
dest_lon = grd21ll(longit, dest_xpos, dest_ypos)
dest_1lat grd2ll(latit, dest_xpos, dest_ypos)

! Cacluate current lat/lon position of individual
curr_lon = grd2ll(longit, curr_xpos, CUrr_ypos)
curr_lat = grd2ll(latit, curr_xpos, cCurr_ypos)

! Calculate meters per degree lat/lon for current position

m_lat = 60 x 1852 ! meters / degree latitude

m_lon = 60 % 1852 * cosd(curr_lat) ! meters / degree longitude

80 Appendices
real :: pl_found ! sum of preyl biomass encountered
real :: p2_found ! sum of prey2 biomass encountered
real :: p3_found ! sum of prey3 biomass encountered
logical :: valid_pos ! boolean to shorten distance
real :: t4,tda,tdb

! Calculate distance between homing position and current position

ve = abs(dest_lon-curr_lon) * m_lon ! meters

vn = abs(dest_lat-curr_lat) » m_lat ! meters

dist_dest = geodist (curr_lon, curr_lat, dest_lon, dest_lat)
dist_mov = dist_step

! Set scalar = 1 if dist traveled eq or gt total dist to homing pos

if (dist_mov.lt.dist_dest) then
scalar = dist_mov/dist_dest
else
scalar = 1.
dist_mov = dist_dest
endif

call random_number (random_num)
if (curr_lon.gt.dest_lon) then
dlon_m = —(ve * scalar) + &
((random_num-0.5) =« (random_mov+2+dist_mov) )
else
dlon_m = (ve x scalar) + &
((random_num—-0.5) * (random_mov*2+dist_mov))
endif

! Calculate latitudinal change towards homing position
call random_number (random_num)
if (curr_lat.gt.dest_lat) then
dlat_m = —(vn * scalar) + &
((random_num—-0.5) * (random_mov+*2+dist_mov))
else
dlat_m = (vn » scalar) + &
((random_num-0.5) * (random_mov*2+dist_mov) )
endif

lendsubroutine calc_lonlat_delta

! Update position for movement towards homing position
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! convert dlon_m to deg from meters
new_lon = curr_lon + (dlon_m/m_lon)
! convert dlat_m to deg from meters
new_lat = curr_lat + (dlat_m/m_lat)

new_pos = ll2grd(new_lon, new_lat, longit, latit, im, Jjm)
new_xpos = new_pos (1)
new_ypos = new_pos (2)

! 1f new position is off-grid move to nearest gridcell+offset
if (new_xpos < grid_offset .or. &
new_ypos < grid_offset .or. &
new_xpos > im-grid_offset .or. &
>

new_ypos Jjm-grid_offset) then
valid _pos = .false.
else
valid_pos = .true.
if (fsm(nint (new_xpos),nint (new_ypos)) < 0.5) then
stock%whale (iter) $active = .false.
endif
endif
CUrr_Xpos = new_xpos
CUrr_ypos = new_ypos

! Sum distance traveled before next iteration,

! as displacement may be lower

pl_found pl_found + pl (nint (curr_xpos),nint (curr_ypos))
p2_found = p2_found + p2(nint (curr_xpos),nint (curr_ypos))
p3_found p3_found + p3(nint (curr_xpos),nint (curr_ypos))

dist_trav = dist_trav + dist_mov

endsubroutine move_newpos
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82 Appendices

Appendix 6.B Python Video Visualization

The following routine was developed to visualize the movement of whales on
the model grid in relation to the movement of prey species, which was criti-
cal to the model’s development. It uses the python Animate library from the
matplotlib in combination with the cartographic plotting library Basemap and
the pcolormesh() method from the matplotlib library to do this. Many of the
data management and plotting tools developed for this project took compara-
ble amounts of time and were comparably innovative, but this was by far the
most helpful for coding the model. A total of 7042 lines of Python (for post-
processing and visualization) were written, and while not a very descriptive
metric, speaks to the amount of work involved.

def plot_norwecom(fig, ax, map_prop, plt_prop, plt_ext, g2_plons, g2_plats,
sa_plons=None, sa_plats=None, plot_data=False, res="1"):
77’/Plots the model study area with polygons and animated data’”’’

class UpdateMapData (object) :

def _ init_ (self, ax, map_object, grid_lons, grid_lats,
pt_data, pt_dates, pt_num):

self.ax = ax

self.m = map_object
self.lons = grid_lons
self.lats = grid_lats

self.pt_data = pt_data
self.pt_dates_str = pt_dates

if pts_on == False:
t0 = datetime.datetime (plt_year, 01, 01)
self.dates = np.empty (365, dtype=object)
for i in range (365):
self.dates[i] = t0 + datetime.timedelta (days=1i)
elif pts_on == True:
self.dates = np.empty(len(self.pt_dates_str), dtype=object)

for i in range(len(self.pt_dates_str)):

self.dates[1] = datetime.datetime.strptime (self.pt_dates_str([i],

7 5Y-%m-%d’ )

self.pt_num = pt_num

# create image artist object for animation
X,y = self.m(0,0)

# animation point global 1ist
self.pts_dots = [[] for i in range (pt_num) ]

for z in range(self.pt_num):
self.pts_dots[z] = m.plot(x,y, 'ro’, markersize=2,
markeredgewidth=0.0) [0]

self.f_num = len(self.dates)
self.a_range = 500
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self.date_label = "7

"norwecom_fish-output/herring’)

bw_dir = (’/home/ryan/Desktop/edu/mareclim/01_thesis/data/’
"norwecom_fish-output/bluewhiting’)

mk_dir = (’/home/ryan/Desktop/edu/mareclim/01_thesis/data/’
"norwecom_fish-output/mackerel’)

# Get arrays of data min,max,avg and total biomass values
t0 = self.dates[0]
tl = self.dates[-1]

hr min = 0.0001
hr_max = np.amax (hr_data_yr[’data’])
bw_min = 0.0001
bw_max = np.amax (bw_data_yr[’data’])
mk_min = 0.0001
mk_max = np.amax (mk_data_yr([’data’])

# Calculate plotting levels by bin size

hr _levels = MaxNLocator (nbins=30) .tick_values (hr_min, hr_max)
bw_levels MaxNLocator (nbins=30) .tick_values (bw_min, bw_max)
mk_levels = MaxNLocator (nbins=30) .tick_values (mk_min,mk_max)

# Create custom colormaps

hr_cmap = col.LinearSegmentedColormap.from_list ('hr_cmap’,
["#fcd4040",
"#7c0000717)

bw_cmap = col.LinearSegmentedColormap.from_ list ('bw_cmap’,
[”#00b0fc’,
"#000040" 1)

mk_cmap = col.LinearSegmentedColormap.from_list ('mk_cmap’,
["#5cfc00’,
"$#004000" 1)

hr_norm = col.Normalize (vmin=hr_min, vmax=hr_max)

bw_norm = col.Normalize (vmin=bw_min, vmax=bw_max)

mk_norm = col.Normalize (vmin=mk_min, vmax=mk_max)

# Get grid psi coordinates (bounding coords to data field)

lons_psi, lats_psi = norwecom_tools.calc_psi_coords( \
self.lons, self.lats)
psi_x, psi_y = self.m(lons_psi, lats_psi)

# Create data to initiate pcolormesh arrays
psi_ydim, psi_xdim = lons_psi.shape
self.fill_data = np.zeros((psi_ydim-1, psi_xdim-1))

9)

self.date_label = self.ax.text (self.m.xmaxx0.05, self.m.ymax*0.90,
rs
4
backgroundcolor="white’, zorder =
if quads_on == True:
hr_dir = (’/home/ryan/Desktop/edu/mareclim/01_thesis/data/’

self.hr _quad = self.ax.pcolormesh(psi_x, psi_y, self.fill_data,

alpha=0.6,
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def

norm=hr_norm, cmap = hr_cmap,

edgecolor='None’)

self.bw_guad
alpha=0.6,

norm=bw_norm, cmap = bw_cmap,

edgecolor='None’)

self.mk_quad = self.ax.pcolormesh(psi_x, psi_y, self.fill data,

alpha=0.6,

norm=mk_norm, cmap = mk_cmap,

edgecolor='None’)
if barbs_on == True:
ydim, xdim = self.lons.shape
self.uv_fill = np.zeros ((ydim,xdim))
x, y = self.m(self.lons, self.lats)
self.barbs = m.quiver(x,y,self.uv_fill,self.uv_fill,
cmap=plt.cm. jet)

init (self):
7/ ’erases previously animated data in last step’’’

if pts_on == True:
# Init whale position points
for z in range(self.pt_num):
self.pts_dots[z].set_data([]l, [])
#self.pts_imgs[z].xytext = (0, 0)

# Init date label
self.date_label.set_text (')

if quads_on == True:
# Init fish pcolormesh data
self.hr_qgquad.set_array(np.array([]))
self.bw_qguad.set_array(np.array([]))
self.mk_qguad.set_array(np.asarray ([]))

if barbs_on == True:
# Init UV barbs
self.barbs.set_UVC(np.array ([]),np.array([]))

# return elements to be removed from plot with each frame
if (pts_on == True) & (quads_on == True) & (barbs_on == True):
return self.pts_dots, self.date_label, self.bw_quad, \
self.hr_qgquad, self.mk_quad, self.barbs,

elif (pts_on == True) & (quads_on == False) & (barbs_on == True):
return self.pts_dots, self.date_label, self.barbs,
elif (pts_on == True) & (quads_on == True) & (barbs_on == False):

return self.pts_dots, self.date_label, self.bw_quad, \
self.hr_quad, self.mk_quad

elif (pts_on == True) & (quads_on == False) & (barbs_on == False):
return self.pts_dots, self.date_label,

elif (pts_on == False) & (quads_on == False) & (barbs_on == True):
return self.date_label, self.barbs,

elif (pts_on == False) & (quads_on == True) & (barbs_on == False):

return self.date_label, self.bw_quad, self.hr_quad, \
self.mk_qguad

self.ax.pcolormesh(psi_x, psi_y, self.fill data,
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def _ call_ (self,

i)

’77’sets new values to animate with each step’’’

print ’“animatio

if pts_on == Tr
lonlat_idx

pt_lats

n frame: {0:3d}’.format (i,)

ue:

= self.pt_data.date==self.pt_dates_str[i]
pt_lons = self.pt_data.lons[lonlat_idx].values

# Set position data for points
for z in range(len(pt_lons)):

self.m(pt_lons[z],pt_lats[z])
self.pts_dots[z].set_data(x, V)

X, Y =

for z in range(len(pt_lons),

self.pts_dots[z].set_data([], [1)

# Create date string and set label data
yday = self.dates[i].timetuple() .tm_yday

date_str = self.dates[i].strftime (' %Y, %b
print_str = '%s (%3d)’ % (date_str, yday)

self.date_label.set_text (print_str)

if quads_on ==

True:

# Set data for pcolormesh () arrays

date = self

hr_data = hr_data_yr[’data’] [hr_data_yr[’date’ ]==self.dates[i]]
bw_data = bw_data_yr[’data’] [bw_data_yr[’date’ ]==self.dates[i]]
mk_data = mk_data_yr[’data’] [mk_data_yr[’date’ ]==self.dates[1i]]

.dates[1i]

self.pt_data.lats[lonlat_idx].values

self.pt_num,1):

sd’)

# Mask zero values and ravel to 1d array
hr_data = np.ma.masked_array (hr_data,
bw_data = np.ma.masked_array (bw_data,

mk_data

np.ma.masked_array (mk_data,

# Set data array to quad objects
self.hr quad.set_array(hr_data)
self.bw_qgquad.set_array (bw_data)
self.mk_qgquad.set_array (mk_data)

if barbs_on ==
# Barbs

True:

hr_data<l) .ravel ()
bw_data<l) .ravel ()
mk_data<l) .ravel ()

u,v = get_uv(self.dates[i].strftime (' $Y-%m-%d’), barb_depth)
self.barbs.set_UVC (u, v)

if save_frames == True:
year = self.dates[i].year
save_date = datetime.datetime (year,9,1)
curr_date = self.dates[i]
if save_date == curr_date:
save_figs(fig, plt_prop, plt_ext, meta, i)
if (pts_on == True) & (quads_on == True) & (barbs_on ==
return self.pts_dots, self.date_label, self.bw_quad, \
self.hr_qgquad, self.mk_qguad, self.barbs,

elif (pts_on ==
return self

True) & (quads_on == False)

.pts_dots,

self.date_label,

& (barbs_on
self.barbs,

True) :

True) :
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elif (pts_on == True) & (quads_on == True) (barbs_on == False):

return self.pts_dots, self.date_label, self.bw_quad, \
self.hr_quad, self.mk_quad

elif (pts_on == True) & (quads_on == False) & (barbs_on == False):
return self.pts_dots, self.date_label,

elif (pts_on == False) & (quads_on == False) & (barbs_on == True):
return self.date_label, self.barbs,

elif (pts_on == False) & (quads_on == True) & (barbs_on == False):

return self.date_label, self.bw_quad,

# Define ellipsoid object for distance measurements

self.hr_quad,

# NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
g = pyproj.Geod(ellps="WGS84’) # Use WGS84 ellipsoid
r_equator = g.a # earth’s radius at equator

r_poles = g.b # earth’s radius through poles

# Map dimensions

# NNNNNNNNNNNNNNNN

# Whole Norwecom Area
lon0O = 10.0

lat0 = 73.5
map_width = 4200000
map_height = 4200000
# Study Area

lon0 = -1.0

lat0 = 69.5
map_width = 2200000
map_height = 2700000

# Basemap projection

B e

m =
rsphere= (r_equator, r_poles),\
resolution=res, projection=’laea’,\
lat_ts=map_prop[’/lat0’],\

lat_O=map_prop[’lat0’],lon_O=map_propl[’

# Draw parallels and meridians

m.drawparallels (np.arange(-80.,81.,5.)

14
linewidth=0.5, dashes=(None,None),

m.drawmeridians (np.arange (-180.,181.,10.),
linewidth=0.5, dashes=(None,None),

m.drawmapboundary (fill_color=map_colors[’water’])
m.fillcontinents (color=map_colors|[’land’],
# Print Plot Information

print ’'\nPlot Information’

print '"-——f-—1—+1-+"1-1-——H—"1"-=-—-"—-">"--""""-">-"—-""-"-""-"-"-"—-
print "Map lat/lon center: ",lat0O,lonO

print "Map height/width: ",map_width,map_height

# Animate Data

labels=[1,0,0,07,

labels=[0,0,0,17,

Basemap (width=map_prop[’width’ ], height=map_prop[’height’],

lon0"1, ax=ax)

fontsize=10,
color='#d6d6d6’)

fontsize=10,
color='"4#d6d6d6")

lake_color=map_colors[’land’])

self.mk_qguad
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if plot_data == True:
print ’\nBegin processing data animation...’
ud = UpdateMapData (ax, m, g2_lons, g2_lats, whale_data,
pt_dates, whale_num)

anim = animation.FuncAnimation(fig, ud, init_func=ud.init,
frames=ud.f_num, blit=False)
if quads_on == True:
print ’'colorbars off’

# Draw Polygons

draw_g2_poly(ax, m, g2_lons, g2_lats, grid_lines=False, hatch_on=False)
plot_tools.plot_buffer(ax, m, g2_lons, g2_lats, 'red’, g2_offset)

# Save animation if present

if plot_data == True:
out_date = meta[’date_run’].strftime (' $Y-%m—-%d_%SH%M%S’)
out_dir = ’./figures/videos/’
minke_outfile = "minke _movement '+ out_date + \

' svn’+metal[’svn’ ]+ \
! _pop’+metal’population’ 1+ \
’ _spd’+metal’ speed’ ]+ \
' _in’+metal’in_path’ 1+ \
’_out’+metal[’out_path’]1+ \

[

4 4

_str’+meta[’strategy’ ]+ \

" . mp4’
fig.set_size_inches (4,4)
dpi = 600
writer = animation.writers[’ ffmpeg’] (fps=5)

anim.save (out_dir+minke_outfile, writer=writer, dpi=dpi)
plt.show ()

return
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