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Chapter 1: Introduction  

This chapter introduces some basics related to gas hydrate and its occurrence in nature with 

focus on the aspects that are relevant to this PhD work.  A brief overview of important 

historical milestones in hydrate knowledge development is presented in section 1.1. The 

structures and some properties of hydrates are presented in section 1.2. A brief overview of 

hydrate and climate issues is given in subsection 1.3.1. The effect of hydrates dissociation 

on the geomechanical stability of gas hydrate deposits is discussed in subsection 1.3.2. The 

availability of hydrates and its potential energy resource is presented in subsection 1.3.3.  

1.1 Hydrate knowledge development  

Hydrate knowledge development can be divided into three periods. The first period started 

when Joseph Priestly (1733 - 1804) produced gas hydrate in laboratory by bubbling 

through water at C and atmospheric pressure [1]. He was then followed by Sir Davy 

Humphrey who obtained the crystals of aqueous chlorine in laboratory and called it 

Hydrates. Gas hydrates were also documented by Sir Humphrey, his experiments with 

chlorine was done at temperatures above the water freezing point, by this way he is 

considered to be the first to discover ‘warm ice’ [2]. Faraday (1823) confirmed the 

existence of this crystalline solid and suggested that its composition was almost 1 part of 

chlorine and 10 parts of water [3]. The studies of hydrates did not gain serious attention 

prior until 1934. 

The second period started in 1934, often called the industrial hydrate period, when 

Hamershmidt  noticed during the inspection of gas pipelines, the existence of ice solid plugs 

in the winter time [4]. The laboratory studies showed that plugs consisted of hydrate of the 

transported gas. This discovery caused more interest in investigation of the conditions of 

formation of gas hydrate and how to find an effective means of preventing hydrate plugs 

from forming in pipelines. During this period, most of the researches in gas hydrate 

considered it as a problem for oil and gas industry. Many researchers like Hamershmidt 

(1939), Deaton and Frost (1946) and Woolfolk (1952) investigated the effect of inhibitors in 

hydrate to prevent blocking of pipelines due to hydrate plugs [2]. In the early of 1950s von

Stackelberg studied the structure of hydrates by using X-ray diffraction which helped Van 
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der walls and Platteeuw (1959) to develop the statistical thermodynamic model of the 

hydrate.  

The third period started in the 1960s and is related to the discovery of gas hydrate in nature. 

The existence of natural gas hydrate was proven after drilling Markhinskaya well in 

Yakutia in 1963. A section of rock was revealed at  temperature at 1450  depth. 

Comparing the conditions of that section of rock, Makogon confirmed in 1966 the existence 

of natural gas hydrate when he succeeded to form it in porous media and in real cores 

samples. Thereafter in  1970 a group of geologists founded the first gas hydrate deposit in 

the Massayokhah field in the permafrost regions [1, 2] .The Massayokhah field  estimated 

to have one third of all gas reserves in the word. It was also recognized in the 1970s that gas 

hydrates occur naturally both in polar continental regions and in deep water sediments of 

oceanic regions at outer continental margins [5]. 

1.2 Hydrate structure and property  

Gas clathrates (commonly called hydrate) are crystalline water based on solids which looks 

macroscopically like ice (figure 1). Clathrates occur (clathrate is derived from Greek 

klathron which means closure) when water forms a lattice which can host smaller 

molecules typically a gas or liquid.  

Figure 1 the gas (large ball) is enclosed in a cage formed by water molecules  

Gas hydrates are not chemical compounds because there is no chemical bonding between 

the host water and the enclosed guest molecules whose molecular diameter is less than the 

diameter of the cavity. Many gases can be guest molecules such as methane, ethane, 

propane, Carbon dioxide and hydrogen sulfide depending on the diameters of the guest 

molecule and cavity, figure 2 shows the five most common cavities. 
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Figure 2 Geometry of cavities 

: means that there are 12 structures that have 5 sides. 

: means that there are 12 structures that have 5 sides and 2 structures that have 6 sides. 

: means that there are 12 structures that have 5 sides and 4 structures that have 6 sides. 

: means that there are 12 structures that have 5 sides and 8 structures that have 6 sides. 

: means that there are 3 structures that have 4 sides, 6 structures that have 5 sides 

and 3 structures that have 6 sides. 

Natural gas hydrates crystallize mostly in two cubic structures ( ,  and one hexagonal 

structure  ( ) [2].  consists of  .  stabilizes by guest molecules 

having diameter between 4.2 Å and 6.0 Å. The cage  can host methane, carbon dioxide, 

ethane and hydrogen sulfide and  can host all  members plus Ethane. 

 consists of .  stabilizes by guest molecules having diameter less 

than 4.2 Å and diameters between 6 and 7 Å. The cage  can host all the  members plus 
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2 2 at normal pressures and 2 2 at high pressure. The cage  can host 

all  members plus C2, C3, C4 families. 

 consists of . stabilizes with larger guest 

molecules like iso-pentane (7Å < diameter < 9Å) when it accompanied by smaller 

molecules such as nitrogen, methane or hydrogen sulfide 
Table 1 Characteristics of different structures of gas hydrates [2] 

Hydrate crystal structure Structure I ( ) Structure II ( ) Structure H ( ) 
Cavity                           
Radius Å 3.91                       

4.33 
3.902                    
4.608 

3.91      4.96  
5.71 

Number of cavity/Unit cell  2                        6        16                     8    3              2                1  
Description Small               Large   Small           Large    Small Medium Large    
Number of water 
molecules/unit cell 

46 136 34 

The guest molecule stabilizes the hydrogen bonded cage by repulsion; this causes the 

stabilization of hydrate molecule. The larger size is more stable due to the absence of 

columbic effect. The addition of a second guest molecule contributes to the stabilization of 

hydrate of large molecules.  

Hydrates have many similarities to ice because they contain almost 85% of water. The 

hydrogen bonds are only  longer than those in ice. The O-O-O angles differ from those 

in ice by  in structure  and by  in structure   

Some important differences from ice are as follows:  

Thermal conductivity: Is much lower than ice. The water molecules are restricted from 

translation and rotation. The trapped guest molecules vibrate anharmonically. The 

anharmonicity provides a mechanism for scattering the incoming thermal energy as 

phonons. 

Thermal expansion: is significantly higher than ice. The hydrogen bonds are weaker due to 

collision of the guest molecules with the cage wall

Dielectric constant: is significantly lower than water because of lower density of hydrogen 

bounded H2O and the reorientation of H2O molecules are slower.   
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Yield strength: The guest molecules provide support to hydrates molecules so hydrates are 

more resistant to crush than ice. 

1.3 Natural gas hydrates in nature 

While industrial problems related to processing and transport of hydrocarbons was a 

substantial motivation for hydrate research for several decades, the focus has shifted much 

more over to different aspects of hydrates in nature in the last three decades. As is discussed 

in more detail elsewhere in this thesis and the enclosed journal papers, hydrates in nature 

are not able to reach thermodynamic equilibrium. They will rather adjust to different 

degrees of stationary situations depending on sealing structures (shale, clay), flow, influx of 

hydrocarbons, leakage pathways etc. Leakage pathways that support methane to the oceans 

gives additional fluxes to the carbon cycle in the oceans and potentially through to the air. 

Direct fluxes of methane from dissociating hydrates in regions of permafrost give rise to an 

additional increase in greenhouse gases in the air.  

Hydrates that dissociate will give rise to compaction and may lead to possible 

geomechanical instabilities. Dissociation can be caused by increased temperatures or by 

contact with under-saturated water. This can happen during direct contact with the ocean, or 

through fracture systems connecting the hydrate to under-saturated water.  

1.3.1 Climate issue 

Hydrates in porous media are generally exposed to at least surrounding aqueous phase and 

mineral surfaces but also sometimes free gas phase. Hydrate saturation varies substantially, 

depending on local fluid flows, fracture/fault systems which brings hydrate in contact with 

groundwater that leads to local hydrate dissociation.  

Hydrate reservoirs are then in a situation depending on fluid flow and they cannot be able to 

reach thermodynamic equilibrium (see chapter 5 about non equilibrium). Many geologists 

now admit that catastrophic climate warming have occurred several times in the past as a 

result of hydrate dissociation. As a consequence of these climate changes many species 

disappeared. For almost 55.5 million years, the  in the ocean and in land decreased by 

 on a time scale less than 10000 years, the decrease of   is an indication of 

methane release [6]. The most recent event occurred when hydrate released 
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 of carbon at the PETM (Paleocene/Eocene thermal maximum;  55.5 

Ma). Moreover, sudden deep-ocean warming (the mechanism for the PETM release [7]) 

may be stochastic and difficult to predict throughout Earth’s history [8]. Climate change 

was global, fast (1 000 to 10 000 years to appear) and correlated with high extinction of 

benthic foraminifera and extraordinary diversification of terrestrial mammals. 

Methane is less abundant in the atmosphere than but its greenhouse effect is 20–30 

times more powerful [9]. The release of the methane directly from the hydrate reservoir 

within a relative short time could increase the methane concentration in the atmosphere by a 

factor of 1000 times over pre – anthropogenic values. The methane hydrate reservoir has 

the potential to warm earth’s climate to PETM conditions within just few years and some 

studies suggest according to the stocktaking of hydrate that a global  warming could 

release up to 940 GTC which could lead to an additional  to global warming [10]. 

Fortunately, most of the hydrate reservoirs seem insulated from the climate of the Earth’s 

surface, so that any melting response will take place on time scales of millennia or longer 

[6].  

Figure 3 Increase in the average temperature of the earth (source Nasa)1

Significant number of researchers within the scientific international community claims that 

the main cause of global warming is the rise of the concentration of  in the atmosphere. 

                                              

1 http://www.nasa.gov/centers/goddard/news/topstory/2008/earth_temp.html  
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One of the techniques used to reduce the accumulation of in the atmosphere is the 

concept of capture and storage of (CCS).  

There are several ways to sequester in geological media: geologic disposal into coal 

seams, depleted oil/gas reservoirs, salt caverns, and deep oceans.  

It is preferable to store  into deep-sea sediments because  stored in terrestrial sites is 

buoyant. The water pressure and dilution by oceanic water prevent direct emission of 

into the air. Some relevant reservoirs are located in regions with temperature and pressure 

suitable for hydrate formation (Snøhvit: offshore Norway reservoir is cold enough in the 

upper hundreds of meters below seafloor for  hydrate to form).  

Several studies ([11];[12];[13]) suggest that injection of  should be below the hydrate 

stability zone in deep-water sediments or in sub permafrost sediments. At deep sea 

sediments the  can reside in its liquid phase and can be denser than the overlying pore 

fluid causing the injected  to be gravitationally stable. Additionally, hydrate may start 

to form when the  reach the hydrate stability zone. This will lead to cementation of 

sediments by newly formed hydrate phase which will serve as a second cap in the system 

[13]. This cementation will facilitate underground geological  sequestration  [14].   

A promising new technology used to reduce the carbon content in the atmosphere is the 

subsurface  storage through clathrate hydrate formation. hydrate is more stable than 

hydrate for substantial regions of pressure and temperature. And a mixed hydrate in 

which  dominates filling of the large cavities and   dominates filling of the small 

cavities is more stable than hydrate over all regions of pressure and temperature. 

Injection of  as a liquid converts methane hydrate into carbon-dioxide dominated 

hydrate while at the same time releasing the trapped natural gas [15].    
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Figure 4 Seafloor CH4-hydrate (red) and CO2-hydrate (green) stability zone; 
within the overlapping shaded area both phases exist; at pressures equivalent to 
800-1000 m water depth spontaneous exchange of CO2 for CH4 takes place [16] 

1.3.2 Geo-hazards  

Global warming can affect the stability of gas hydrate deposits, which can cause serious geo 

hazards in the near future [10].  

Geomechanical instability can be caused by local changes in temperature, but also can be 

triggered by many years of hydrate dissociation towards under-saturated seawater or 

groundwater. Seawater which is under-saturated can penetrate horizontally into the porous 

media and cause hydrate dissociation which over the years can lead to instability of 

unconsolidated sediments. But it can also penetrate vertically downwards through 

sediments by diffusions and capillary driven transport in water wetting sediments. More 

massive contact between seawater and hydrate through systems of fractures and faults gives 

rise to fluxes of releasing methane which can be quite massive and appear as bubbling 

columns. 

Gas hydrates may contribute to a serious geo-hazard in the future because of the 

unfavorable effects of climate change on the stability of gas hydrate deposits both in 

permafrost and ocean sediments.  

The structure of ice sheets due to regional warming may also lead to the destabilization of 

gas hydrates. As ice sheets shrink, the weight removed allows the coastal region and the 
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adjacent continental slope to rise through isostasy. This suppression of hydrostatic pressure 

could destabilize gas hydrates and leads to slope failure [10]. Many examples of the 

connection between submarine failure and dissociation of gas hydrate are discussed in open 

publications. Surficial slides and slumps on the continental slope and rise of West Africa; 

slumps and collapse features on the U.S; Atlantic continental slope; large submarine slides 

on the Norwegian continental margin [17] are some few examples. 

The stability of the sea floor where there is an active search for conventional hydrocarbon 

deposits is of crucial importance. The possibility of hydrate dissociation in oceanic 

sediments due to heat transfer during oil production can cause to sediment failure and 

collapse of platforms [18].  

The permeability of the sediment to gases and liquids decreases when gas hydrates form. 

The most part of the sediment, where the hydrate is stable, will be occupied by the gas 

hydrate. This leads to continuous sedimentation as well as more burial of gas hydrate.  

Deeper burial of gas hydrate will lead to an increase of the temperature in the lower part of 

the hydrate zone, the hydrate will not be longer stable. The gas start to release, leading to a 

zone of weakness (low shear strength) where failure could be triggered by gravitational 

loading or seismic disturbances, and submarine landslides result [19, 20]. 

Hydrate stability zone depends on temperature and pressure. This zone is sensitive to 

changes in both temperature and sea level. Changes in climate and sea level lead to 

instability of hydrate turning it into gas. 
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Figure 5 Diagram showing the effects of dissociation of gas hydrate and the 
resulting subsea slope failure  

This process may weaken sediments and trigger landslides, from which methane might 

escape into the oceans and atmosphere. A significant quantity of methane released into the 

atmosphere can lead to important implications for Earth’s climate [21].  

The methane released from the hydrate reservoir into the water column and eventually into 

the atmosphere could contribute to further climate change. The global warming can lead to 

lowering of sea level which will reduce the pressure on the sediment causing gas hydrate to 

become unstable and turn to gas. This mechanism can trigger submarine landslides (figure 

6). 

Figure 6 The sea level change can affect gas hydrate stability and can launch 
submarine landslides 
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There exists many examples of connection between submarine failure and dissociation of 

gas hydrate [17]. The most known example of submarine landslides in which gas hydrates 

are implicated, the Storegga slide situated on the passive Norwegian margin, is known as 

one of the world's biggest underwater slides and has been proposed as a significant source 

of past methane release into the atmosphere  [22, 23]. Storegga slide refers to the enormous 

retrogressive and multi-phase slide dated at  and has a known volume of 3000 

[24].    

Instability also due to contact with under-saturated water which dissociates hydrate, like 

hydrate zones facing seawater influx that dissociates hydrate as mentioned above. 

In the case of offshore hydrate’s deficiencies in sealing above the hydrate layers in the form 

of fractures and faults will lead to contact between hydrate and groundwater. The result is 

dissociating hydrate and methane seepage to the ocean above. Since methane is a more 

aggressive greenhouse gas than 2, the global methane fluxes from hydrates and free 

methane are global environmental concern. In the long run these leakage situations may 

lead to dement instabilities and in the worst case cause landslides. In some permafrost 

regions the ice above is the only trap for the gas hydrate. Decreasing permafrost ice is 

therefore a global concern. 

1.3.3 Gas hydrate as energy resource  

Gas hydrates occur generally in two regions, permafrost and deep oceanic, at subsurface 

depth ranging from about  to  and below the seafloor at depth ranging from 

about  to   respectevily [25].  

The worldwide amount of hydrate is estimated to be (  [26]. Kvenvolden et 

al. [27] estimated that over 99% of natural gas hydrates has methane as a guest molecule. A 

few hydrate deposits contain heavier hydrocarbons, ,and   [26]. A 15% production 

of this amount will provide 200 years of energy for the whole world at the current level of 

energy consumption [28]. 
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Figure 7 Proportional volumetric relationship between hydrate, water and gas: 
One m3 of gas hydrate yields 164 m3 of gas and 0.8 m3 of water at standard 

temperature and pressure (Modified from [29]). 

 of fully saturated methane hydrate contains about of methane at standard 

pressure and temperature and   of water [2, 30]. Gas hydrate may present an 

important potential future source of hydrocarbon fuel, but the recovery of gas from hydrate 

deposits seems to be difficult and costly ; even menacing the global climate.  To date, only 

one field (Messoyakha gas field) was exploited commercially by recovering the gas from 

the field through depressurization.  

A promising new technology has been developed by Bjørn Kvamme and Arne Graue at the 

University of Bergen. This technology consists of injecting into hydrate and extracting 

by direct exchange [15]2,3

                                              

2 http://www.vg.no/nyheter/innenriks/artikkel.php?artid=184534

3 http://www.netl.doe.gov/research/oil-and-gas/methane-hydrates/co2_ch4exchange    
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Chapter 2: Characteristics of Gas hydrates in 
reservoirs 

Natural gas that supports hydrate growth is either from biogenic decomposition of organic 

material in the upper depth levels, or from deeper sources through thermogenic 

decomposition. A brief overview of the source of hydrates is given in section 2.1. The 

natural gas hydrate deposits vary substantially but from a production perspective, the most 

important resources can be classified in some few classes as described in section 2.2. Some 

characteristics of hydrates in reservoirs, also from a production perspective are summarized 

in section 2.3. Important aspects related to production from different classes of hydrate 

deposits listed in section 2.2 is described in section 2.4. A brief review of reported hydrate 

production studies from open literature is given in section 2.5. 

2.1 Source of hydrates 

Methane which is the main gas component in in situ hydrates is generated by two processes 

either biological processes of organical material in the upper few hundred of meters 

(biogenic natural gas) or by thermal cracking of organic material in deep sediments 

(thermogenic natural gas). 

Most of the natural gas hydrate is attributed to biogenic methane. Biogenic gases are often 

formed at temperatures that are within the stability zone for hydrate in terms of temperature 

and pressure. Thermogenic gases are produced at temperatures outside the hydrate stability 

zone at high temperatures. This gas migrates (usually through faults or channels) to connect 

with groundwater at conditions of temperature and pressure within hydrate stability zone. 

Thermogenic gas is formed deep in the Earth at temperature ranged from . In 

this process large molecules in deposits of organic materials known as kerogen (as 

precursor to oil) are cracked to a smaller molecules. During this process high concentrations 

of hydrocarbons such as methane, ethane and propane are formed. 

It is possible to distinguish if hydrate is coming from biogenic or thermogenic gases by 

looking at the ratio of 13C / 12C  and /or the mole fraction of propane: 
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The ratio 13Cδ  in biogenic gas (  to ) is less than the ratio 13Cδ in 

thermogenic gas (  to ) [2]. For biogenic gases, the mole fraction of propane 

is almost  however a high molar fraction of propane (  to ) is indicative of 

thermogenic gas.  

2.2 Classification of hydrate deposits 

Hydrate can exist in two types of deposits: permafrost deposits and ocean deposits. These 

deposits can be divided into 4 main classes [31, 32].  Classes 1, 2 and 3 are characterized by 

high intrinsic permeability while class 4 deposits are characterized by low intrinsic 

permeability.  

Class 1 comprises two zones: a well-defined gas hydrate bearing layer and an underlying 

two- phase fluid zone that contains free gas and liquid water. This class deposit is at the 

base of the gas hydrate stability zone (GHSZ).  

Class 2 is composed of two zones: a hydrate bearing layer and an underlying layer with 

water mobile zone with no free gas (e.g., aquifer). This class of deposits is at the base of, or 

within, the GHSZ  when gas charged is limited [33].  

Class 3 consists of a single zone hydrate layer with absence of underlying zone with mobile 

fluids. 

Class 4 is characterized with low hydrate saturation (less than 10%) and low intrinsic 

permeability. This class of deposits is associated with fine-grained marine sediments in 

which gas hydrate occurs primarily at the base of CHSZ [34]. Class 4 is generally related to 

oceanic accumulations. 

Each class includes subclasses named C, F, M and R [35, 36]. These sub-classes are 

described as confined or unconfined deposits. 

Type C is hydrate deposits with relatively unconsolidated coarser-grained sediments. This 

type of reservoirs has a high intrinsic permeability. Type C is generally characterized with 
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high hydrate saturation (more than 50%). This type of reservoirs occurs in permafrost but in 

a smaller proportion of marine settings and is the most favorable type of potential energy 

production.  

Type F is characterized by unconsolidated, fine-grained, low permeability sediments. Type 

F accumulations may be possible as a potential energy production. This type of sediments 

has low mechanical strength and may have profound implications for natural environmental 

change over long time-frames [34, 36].  

Type M occurs on the sea-floor and/or in very shallow sediments in association with cold 

seeps. This type is not hosted in sediments. The amount of methane is small in them and 

would tend to exclude commercial activity [35].  

Type R refers to unique instances where gas hydrate occurs within rocks. The Messoyakha 

field is an example of fields of type R. 

It should be noted that this classification of hydrate deposits should be considered as guides 

rather than strict rules [37].  

2.3 Characteristics of hydrates in reservoirs and the 
difference from hydrates produced in laboratory and 
hydrates as plugs in pipelines. 

From a thermodynamic point of view the combination of mass conservations and conditions 

of equilibrium defines minimum criteria of possibility to reach equilibrium, most often 

known as a Gibbs phase rule.   

Gibbs Phase rule is simply the conservation of mass under the constraints of equilibrium. 

Mathematically this phase rule ends up to be the number of components that can be 

distributed among the phases minus the number of phases plus two, which is then the 

number of thermodynamic independent variables that must be defined if equilibrium can be 

established. If the temperature and pressure are defined in a local point of the reservoir at a 

given time the system reaches equilibrium when the degree of freedom of the system is two. 

If we consider a system consisting of three phases (aqueous, gas and hydrate) and if in 

addition the system is inside the hydrate stability zone, the degrees of freedom will be one 

and the system is thermodynamically over-determined. The system will tend towards 
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minimum free energy for the whole system under the constraints of the total mass and 

distribution of this into all the possible phases and a system in a reservoir cannot reach 

equilibrium. Practically there will always also be fluid phase(s) in the system due to the 

facts that hydrates in nature are open systems. No hydrate reservoir reaches infinite in any 

direction. There is an absolute bottom line at which hydrate is in contact with fluids and/or 

clay at a temperature for given depth where hydrate cannot be stable. In the horizontal 

directions, the hydrate reservoir may enter fracture systems that bring the hydrate in contact 

with groundwater that dissociates hydrate and/or other boundaries where fracture systems 

bring fresh hydrocarbon feed into the hydrate zones. In summary, this implies that all 

hydrate reservoirs are open systems. Natural hydrate resources are not even close to 

in hydrate saturation. It should also be noted that Gibbs phase rule is a minimum criteria for 

equilibrium and that the number of phases that can co-exist also depends on free energy 

level of the different phases since the masses in the system will distribute in a way so as to 

minimize total free energy. If some of the theoretical phases cannot exist, these are 

excluded and a new analysis is conducted. In addition, if one or more phases are consumed 

a new Gibbs free analysis have to be conducted along with a subsequent analysis of free 

energy levels of the remaining phases.  

The hydrates formed in PVT-cell are close to  in hydrate saturation since this system 

is closed (limited impact of solid walls and symmetric stirring). Hydrates produced in the 

PVT-cell have a large degree of uncertainties in solid phase homogeneity but equilibrium 

constants are more “predictable”.   

Hydrate plugs in pipelines are the result of abnormal flow. When water falls out from a gas 

stream, it can be adsorbed on the walls of the pipe itself. The water will wet the surface and 

the adsorbed water acts like heterogeneous nucleation site. Hydrate form at the walls of the 

pipe. The pipe wall has the lowest temperature and encourages deposits. The hydrate will 

grow further and narrows the flow channel. The deposit becomes irregular and the pressure 

drop increases. 

2.4 Gas production from different classes deposits 

The main known methods of gas production from hydrate are depressurization, thermal 

stimulation and use of inhibitors. The depressurization involves shifting of hydrate stability 
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condition by lowering to a pressure below the equilibrium pressure. Heat for dissociation 

will be supported from the surroundings due to the imposed temperature gradient and due to 

pressure reduction. Thermal stimulation consists of introducing heat in the hydrate bearing 

sediments in order to increase the surrounding temperature above the stability temperature 

of the hydrate which causes gas release. This method is considered expensive because of 

the huge amount of energy waste to the surroundings which calls for careful planning and 

engineering to reduce heat losses.  

Inhibitors such as methanol or glycol are used to decrease the hydrate stability conditions. 

Although this method is technically feasible, the large use of chemicals like methanol is 

costly from economic and environmental point of view [25].  

A new promising method consists of injecting 2 into the methane hydrate reservoirs; with 

this concept molecule is replaced by 2 molecule. The main replacement is 4 in 

large cavities, in which 2 has substantial benefits in terms of stabilization over . 2

can enter the small cavity of structure I ( ). This method has several benefits compared 

with the previously mentioned methods: (a) the heat of formation of 2 is larger than the 

heat of dissociation of  hydrate. (b) 2 hydrate is more stable than hydrate over 

substantial regions of pressure and temperature and mixed hydrate in which  occupies 

portions of large cavities is more stable than  hydrate over all regions of pressure and 

temperature. (c) During the production, the exchange of 2 with  will maintain 

mechanical stability of the hydrate bearing formations. (d) A substantial reduction of the 

accumulation of 2 in the atmosphere is required in order to avoid a situation of 

irreversible global heating. The process of sequestration of 2 as clathrate hydrates is 

environmental friendly; 2 will be removed from the atmosphere while simultaneously 

releasing methane gas. The exchange process consists of two mechanisms in which the 

fastest one is the creation of new 2 hydrates from free water between hydrate and 

minerals and associated dissociation of the in situ CH4 hydrate due to heat release from 2

hydrate formation. The second mechanism is a slower solid-state exchange [38-40]. 

The depressurization method is often used for gas production from Class 1. The existence 

of a free gas zone provides a significant economic advantage because it guarantees the gas 

production even where hydrate contribution is small [32].  
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In case of Class 2 deposits, the depressurization method appears theoretically more 

effective than in Class 1 because the disturbance of pressure is stronger and is usually 

detected by a large area of the interface water-hydrate [31]. In addition, the water located in 

the underlying layer faciliates the endothermic dissociation reaction due to its heat capacity. 

Although of favorable depressurization conditions, the gas production is disserved by low 

relative permeability conditions which hinder the  maintenance  of  gas phase in a 

previously water saturated zone. The gas production is accompanied by water production 

which represent 98 % of the total mass produced. The production of such volume of water 

can have serious  complications related to the environmentally sensitive area, in addition to 

economic considerations in relation with the pumping of large volumes of water [41].  

The depressurization technique  seems to be not favorable for Class 3 hydrate deposits 

because this class of hydrate accumulations has  a high hydrate concentration which reduces 

the effective permeability of reservoir fluids. Additionally, if the intrinsic permeability of 

the medium is low, the flow through the hydrate becomes difficult. Contrary to Class 1 and 

2 deposits, Class 3 hydrates are characterized with a lack of permeable zones which are in 

direct contact with the hydrate layer. A combination of thermal stimulation and 

depressurization production methods might be more productive in Class 3 deposits [42].  

Moridis and Sloan [43] evaluated the gas production potential of Class 4 deposits subject to 

depressurization-induced dissociation over a 10-year production period by using numerical 

simulation study. They concluded that gas production is very limited, never exceeding a 

few thousand cubic meters of gas during the 10-year production period. Their results 

indicate very low gas production volumes accompanied with huge amount of water 

production. Their overall conclusion is that such hydrate deposits are not promising targets 

for gas production. 

2.5 Theoretical modeling of hydrate production and 
hydrate dynamics in porous media based on open 
publications 

Simulators play an important role in estimating the potential production of natural gas from 

gas hydrate reservoirs.  Nowadays, the simulation is the main method used to decide about 

gas production’s scenarios from gas hydrate bearing sediments. The Simulator of gas 

hydrates differs from a classical simulator of reservoir of oil and gas by the governing 
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equations of flow of fluids in porous media. These equations must be coupled to the kinetic 

and thermodynamic equations governing the attitude of hydrates [37].  

A Limited review of the past studies of hydrate exploration with the approach of modeling 

and simulation is presented below. As there are commercial interests behind some of the 

simulators there are lack of details as well as fairly few studies reported in open 

publications.   

In the earlier studies, hydrate dissociation was treated in terms of boundary displacement by 

using the classical Steffan’s problem for melting and by assuming the dissociation process 

to be isothermal. Holder [44] built a 3D model for studying hydrate dissociation effect on 

gas production due to depressurization. Several assumptions were made to simplify the 

calculations. They considered the dissociation to happen only at the interface between 

hydrate and gas phase and only conduction was considered to find temperature distribution 

in the gas phase. Burshears et al. [45] developed a two-phase model consisted of water and 

methane. They considered radial flow and equilibrium conditions in the gas hydrate 

interface. Yousif [46] developed a one dimensional model to simulate isothermal 

depressurization of hydrate in Berea sandstone samples. The model considered three phases 

of water, gas and hydrate and used kinetics model of Kim and Bishnoi [47] for dissociation 

of hydrate. Swinkels and Drenth  [48] used a 3D thermal reservoir simulator. They 

represented the reservoir fluid by a gaseous, a hydrate and an aqueous phase. The hydrate 

phase is assumed immobile over the full saturation range. Measurements of the relative 

permeability of gas and water in the presence of hydrates were not available. Their system 

consisted of three components including two hydrocarbons and a water component. The 

heat was considered as an extra component for all phases internally in the simulator. 

Nazridoust and Ahmadi [49] developed the hydrate simulator FLUENT to study hydrate 

dissociation in an axisymmetric model of the core. This core was developed and solved for 

multiphase flows during the hydrate dissociation. The core model contained three separate 

phases: methane hydrate, methane gas, and liquid water. They used kinetics rate of 

dissociation proposed by Kim and Bishnoi [47] and they used Corey’s model for relative 

permeability variation.  

Moridis [50] has proposed a new module for TOUGH2 ( a descendent of the TOUGH 

family (Transport Of Groundwater and Heat)) simulator named EOSHYDR2. This 

simulator is designed to model hydrate behavior in both sediments and laboratory 
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conditions. It includes both equilibrium and kinetic models for hydrate formation and 

dissociation. It uses hydrate reaction model of Kim and Bishnoi [47] for kinetic studies. He 

has used just equilibrium approach due to lack of enough suitable data necessary for the 

parameters of the kinetic model while he mentioned that slower processes such as 

depressurization follow kinetic dissociation. 

Some simulators from TOUGH+ family (TOUGH-Fx/HYDRATE, TOUGH+HYDRATE, 

HydrateResSim, MH-21 HYDRES, STOMP-HYD) and CMG STARS (Computer 

Modeling Groups Steam, Thermal and Advanced Process Reservoir Simulator) are 

designed for handling the reactions of methane hydrates. CMG STARS is an oil reservoir 

simulator adapted to handle hydrate reservoirs and is modified (with TOUGH+HYDRATE, 

HydrateResSim, STOMP-HYD) to handle both  and  reactions.  

TOUGH+HYDRATE was developed at LBNL (Lawrence Barkley National Laboratory), is 

a descendent of TOUGH family and was the first reservoir simulator designed to study 

hydrate reservoirs. TOUGH+HYDRATE can contain up to four components (hydrate, 

water, methane and inhibitors) and four phases (hydrate, water, ice and gas). This simulator 

couples mass and energy balances in order to model the non-isothermal dissociation of 

hydrates [51]. 

CMG- STARS, which is originally designed to study oil reservoirs, handles reservoir as an 

oil phase. This phase, when the thermodynamic conditions are favorable, can dissociate into 

methane and water. This simulator uses the kinetic model based on the model of Kim and 

Bishnoi [47]. The hydrate phase is represented as a solid due to the high viscosity given to it 

[37]. The National Institute of Advanced Industrial Science and Technology, Japan Oil 

Engineering Co., Ltd. developed MH-21 Hydrate Reservoir Simulator (also known MH21 

HYDRES). It has been designated to investigate the key factors for the success of 

depressurization – induced method for gas production. With the simulation results, it has 

been concluded that the gas productivity was affected by the initial effective permeability 

and hydrate-bearing sediments should have an effective permeability greater than the actual 

threshold value [52]. STOMP-HYD is a reservoir simulator developed at the Petroleum 

Engineering Department at the University of Alaska. This simulator was used to reproduce 

numerically and demonstrate the feasibility of producing natural gas and sequestering 

using the direct exchange technology in geologic media [53].  
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Most of these developed gas hydrate reservoir simulators consider the solid phases to be 

rigid and no deformation is assumed in most of them. 

To represent multicomponent flow, geological heterogeneities on different scales, there is a 

need for up to millions of grid blocks. However, due to the complexity of phase changes 

and subsurface flow, most of the simulators are limited to systems of up to several thousand 

grid blocks [54].  

As mentioned above, it is clear that in most of the reservoir simulators the hydrate phase 

transition process are treated as an equilibrium reaction and in fewer cases as kinetics based 

on the kinetic model of Kim and Bishnoi [47].  The use of this model for fitting laboratory 

experiments from PVT cell and then using these data for a reservoir situation might be more 

questionable since it has never been proven that these data are transformable to real 

situation of hydrate phase transition in nature. 

Most of hydrate simulators use the classical method of calculation of absolute and relative 

permeability. The absolute permeability of porous media is calculated as a function of 

hydrate saturation and relative permeability functions are calculated based on a combined 

equation of Genuchten capillary pressure function and Mualem porosity distribution 

function [55].  

The use of more recent techniques for prediction of permeability such as those proposed by 

Sugita et al. and  Hirabayashi et al. [56, 57] are more appropriate . The advantage of this 

method is the possibility to combine the experimental CT scan images with models of fluid 

transport and fracture rocks such as Navier-Stokes equation or Lattice Boltzman method. 

This method allows the interfacial tensions between fluid and hydration as well as fluid and 

other minerals to be considered. It is also possible to account for the geometry of the system 

more accurately than classical methods of permeability calculation. 
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Chapter 3: Motivation for PhD study reported in 
this thesis 

Present levels of evaluation of hydrate dynamics in porous media and corresponding models 

range from very empirical concepts and models to the more recent development of hydrate 

reservoir simulators. They are all very oversimplified and assumption of local equilibrium 

in pressure and temperature projections is a very common approximation. None of the 

simulators mentioned in this chapter, as well as in other chapters of this thesis and enclosed 

papers includes a proper description of phase transition since the thermodynamic variable 

dependency also includes all concentrations in all phases in co-existence with the hydrate. 

This also includes adsorbed phases on mineral surfaces and hydrate surfaces. 

One aspect of this study is to develop an approach according to the non-equilibrium nature 

of hydrate phase transitions 

Another aspect that motivated this study was the lack of geomechanical description in the 

simulators, which is obviously important in natural gas hydrate systems as illustrated in 

subsection 1.3.2 above.  

A very brief review of some previous studies which contain these limitations of equilibrium 

in pressure and temperature is given in section 3.1 below. 

Development of stresses during dynamic flow is implicitly linked to flow of mass and 

energy. Explicit couplings to external geomechanical codes may be inaccurate for many of 

the rapid phase transitions related to hydrate in porous media. Section 3.2 below discusses 

this aspect briefly. 

3.1 Non equilibrium 

A limited review of some studies dealing with the modeling of hydrate exploration shows 

that the hydrate formation and dissociation is commonly treated as an equilibrium reaction 

governed by the pressure – temperature projection of the fluid/water/hydrate equilibrium 

curve.  
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Ahmadi et al. [58] developed a 1D reservoir model to study hydrate dissociation by using 

the depressurization method. The equilibrium conditions are used at the dissociation front 

and neglected water flow in the reservoir and also neglecting the Joule – Thomson effect. 

Huong et al. [59] presented 2D model to cylindrical model study. They studied the effect of 

the hydrate zone on the gas production from the gas layer and the importance of the 

intrinsic kinetics of hydrate decomposition with respect to equilibrium assumptions. They 

concluded that the kinetic equation was affected only when it was considered 5 orders of 

magnitude lower than the values found by  Kim and Bishnoi [47] in a PVT cell.  

Liu et al. [60] used also a 1D model to study depressurization of hydrate in porous media. 

They separated the hydrates and gas zones by a moving front where conductive and 

convective heat transfer in gas and hydrate zones were considered. They considered 

equilibrium (in terms of pressure and temperature equilibrium curve) at the front and 

concluded that the assumption of stationary water phase results in overproduction of 

dissociation front location and underproduction of gas production in the well. 

Gamwo and Liu [61] have presented a detailed theoretical description of the open source 

reservoir hydrate simulator HydrateResSim. Local thermal equilibrium is considered in the 

code. It considers both equilibrium and kinetic approaches, using Kim and Bishnoi [47] as 

the kinetic model of hydrate dissociation. They concluded that equilibrium approach over 

predicts the hydrate dissociation compared to kinetic approach.  

EOSHYDR2, a model proposed by Moridis, which can simulate hydrate behavior in both 

sediment and laboratory conditions, includes both equilibrium and kinetic models for 

hydrate formation and dissociation. Because of scarcity of suitable data for the parameters 

of the kinetic model, Moridis employed the equilibrium approach [50]. 

Later on, using the same module, Kowalski and Moridis [62] made a comparison study 

between kinetic and equilibrium approach and concluded that the kinetic approach is 

important on short time and core scale system while equilibrium approach can be used for 

large scale simulations. In their equilibrium model, they considered the system composed of 

heat and two mass components ( 4 and H2O) that are distributed among four possible 

phases; the gas phase (composed of 4 and 2 ), the aqueous phase, the solid ice phase 

and the solid hydrate phase. They considered that the system always exists in equilibrium, 

with the occurrence of the various phases and phase transitions determined by the 
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availability and relative distribution of heat and of two components [62]. This statement 

about the equilibrium approach is somewhat confusing and cannot describe a realistic 

hydrate reservoir, since it could happen only in a unique temperature, pressure, and 

composition. Depending on temperature, the water phase will exist as ice or liquid water 

except at the triple point where both can exist. Outside the triple point, there is only one 

degree of freedom according to Gibbs phase rule when there is free gas containing the 

hydrate former. Temperature is given by the local geothermal gradient and surface 

temperature (or sea floor temperature in the case of marine hydrates) so there is only one 

pressure in the reservoir for which equilibrium between all these three phases can exist. But 

even that is not correct since all phases are affected by minerals and corresponding 

adsorbed phase on the mineral surfaces. Strictly speaking the degrees of freedom is 

therefore zero. Therefore, even if all gas were consumed it would still not be possible to 

reach equilibrium. Consequently, the masses in the system will be distributed to minimize 

the free energy according to 1st and 2nd laws of thermodynamics. 

A few studies used a kinetic approach based on the kinetic model of Kim and Bishnoi 

developed according to laboratory experiments [47]. Employing of fitted data from PVT 

cell to make this kinetic model and then using it in reservoir conditions might be unreliable. 

A different approach according to the non-equilibrium nature of hydrate phase transitions 

should therefore be developed.  

3.2 Geomechanical stability 

Some productions methods such as depressurization, thermal methods and injection of 

inhibitors are being considered to extract 4 from hydrate bearing sediments (HBS). As a 

consequence, the hydrate will dissociate and may pose a significant hazard with potentially 

adverse consequences for stability of the sediments [63].  

Solid hydrates consist, for some hydrate deposits, a strong cementing agent. These deposits 

involve unconsolidated sediments characterized by limited shear strength. The dissociation 

of solid hydrates can affect the structural stability of HBS. In such deposits, it is the hydrate 

that supplies mechanical strength of the medium, and hydrate dissociation for gas 

production dramatically changes the geomechanical status of the system. The 

geomechanical status of the system is generally controlled by the properties of the specifics 
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of the flows, phases in the pores and the solid system. The changes in the pressures can 

affect the stress fields as a result of permeability and porosity which may imply failures and 

evolution of fractures; these processes can affect the flow behavior of the system. [64]. 

Some reservoirs which are suitable for storage of  are located in regions of low sea floor 

temperature which facilitate the formation of  hydrate (Snøhvit located in the offshore 

of Norway is cold enough in the upper section). These hydrates may practically reduce the 

permeability and as such provide some extra sealing capacity. The hydrate formation may 

lead to cementation of sediments by newly formed solid phase. The new formed phase will 

impart mechanical strength of the medium and makes the sediment more stable. 
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Chapter 4: Project goals and choice of scientific 
methods 

Hydrate phase transition dynamics are coupled on many scales – from the nano scale 

aspects of phase transitions and interactions with porous media surfaces up to 

hydrodynamic coupling on scales from molecular diffusions all the way up to turbulent 

flow – The fact that hydrates are unable to reach full thermodynamic equilibrium adds 

further challenges.  

The primary goal of this project has been to develop a hydrate simulator that can 

incorporate non-equilibrium thermodynamic analysis. Based on literature survey of existing 

hydrate simulators (see section 2.5 for a review); none of the existing platforms were found 

feasible for different reasons mainly because analysis of stability and non-stability in most 

of the codes   are based only on pressure and temperature variables as criteria for hydrate 

stability. Other limitations in the codes are found in the kinetic descriptions. A brief review 

of theoretical studies of hydrate in porous media are given in section 4.1 

In a general situation of non-equilibrium hydrates formed from different phase results in 

different hydrate fillings and corresponding differences in free energies of the different 

hydrates. In this sense, it seemed reasonable to use a platform in which it would be possible 

to incorporate different hydrates as “pseudo minerals”. The project is limited to hydrates of 

 and CH4.  

In a general non-equilibrium situation, the kinetic expressions for all possible hydrate 

formations and dissociations are formulated as competing pseudo reactions with specific 

kinetic rates. Specifically this involves hydrate formation on water/ /CH4 interface, 

from water solution and from /CH4 adsorbed on mineral surfaces, as well as all different 

possible hydrate dissociation possibilities. The basic idea is that direction of free energy 

minimum, under constraints of mass and heat transport will control the progress of phase 

transitions in non-equilibrium systems. 

Another goal has been to enable geomechanical analysis related to systems of rapid hydrate 

phase transitions. Examples are natural gas production from hydrates and vent systems and 

massive gas release from dissociating hydrates. A third goal has been to develop a simulator 

that should be able to estimate slow changes caused by natural changes. This implies that 
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the model needs to handle molecular diffusion as the lowest level of transport and for the 

rapid changes. The geomechanical analysis should be an implicit evaluation so as to avoid 

possible uncertainties due to time shifts in the geomechanical analysis.  

The three goals defined above limits the possible scientific methods to a reservoir simulator 

which can incorporate the physics of the system (non-equilibrium and geomechanics) in a 

best possible fashion. 

More details on the goals of the project related to the non-equilibrium phase transitions and 

how these are handled is given in section 4.2. A secondary goal of the project has been to 

incorporate geomechanical analysis and some objectives and goals related to that aspect are 

discussed in section 4.3 

4.1 Development of a new hydrate reservoir flow 
simulator as scientific method for model studies of 
hydrates in sediments. 

Different types of theoretical methods and simulation approaches have been applied to 

study hydrates in reservoirs. For modeling production of hydrocarbons from hydrate, which 

is one of the primary focus areas of this thesis, there are no alternatives than reservoir 

simulation. There are, however, different ways of including the hydrate phase in the flow 

model. Hydrate phase transition kinetics are by physical nature Nano-scale processes across 

thin interfaces, typically in the range of 1 to 2 nm. These phase transitions are dynamically 

coupled to phenomena ranging from pore-scale phenomena and impact of solid surfaces all 

the way upwards to Darcy flow and length scales of meters and kilometers. Different types 

of studies can be applied to explore smaller scale phenomena. But there is no way around a 

numerical tool that can couple all relevant dynamic processes from Nano-scale to reservoir 

scale in a way so as to retain the physics as fundamental as possible given realistic restraints 

of computational times. Available academic and commercial hydrate reservoir simulators in 

academia have typically been extended from different versions of classical reservoir 

simulators for oil and gas, or from hydrogeological codes. The available data on hydrate 

reservoirs are scarce and most often limited to interpretations of seismic and/or resistivity 

measurement. 
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Laboratory experiments can never reproduce a real hydrate reservoir, which during 

geological time scale have entered a situation of stationary balance between fluid phases 

and hydrate as a function of all factors that determines the local flow fluxes and mass 

exchange between phases.  In summary, neither data from real hydrates in nature nor 

hydrates from laboratory experiments can provide the level of confident reference data 

needed in development and verification of mathematical models in reservoir simulators.  

In view of the above, it is quite obvious that stronger emphasis has to be put on advanced 

theoretical modeling of the different parts of the coupled dynamics which are critical for the 

use of the reservoir simulator. With reference to the work in this thesis, the main focus is 

hydrate formation dynamics during  storage in reservoirs with cold sections, and 

production of gas using pressure reduction.  

To handle the non-equilibrium approach, there is a need for a reactive transport simulator 

which can handle competing processes of formation and dissociation of hydrates as well as 

the coupling between reactive flow and the geo-mechanical analysis. The simulator should 

have a flow description ranging from diffusion to advection and dispersion and as such is 

able to handle flow in all regions of the reservoir, including the low permeability regimes of 

hydrate filled regions.  

4.2 The choice of a compositional reactive transport 
reservoir simulator; focus areas for application. 

The global warming issue is a big challenge facing significant parts of scientists within 

climate research. The rise of  concentration in the atmosphere is considered the main 

cause of global warming. In order to avoid a situation of irreversible global warming, the 

reduction of  in the atmosphere is required.  

One of the most promising technologies used for reducing emissions of  to the 

atmosphere is the concept of CCS (  Capture and Storage) (Metz et al. 2005), of which 

the first part of this work only focus on specific issues related to the storage part.   

Several options for  storage have been proposed. Among all these options the 

geological disposal of  within porous rocks underground is the most attractive and is 

already in industrial use.  
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Another approach occurs at cooler temperatures with relatively high pressure beneath 

permafrost regions or in sediments of deep oceans. For example, the Snøhvit (offshore 

Norway) reservoir is cold enough in the upper hundreds of meters below seafloor which 

allows hydrate formation. Hydrate formation will have impacts on local porosity, 

permeability and geomechanics. Hydrates in sediments are generally not in thermodynamic 

equilibrium. This implies that there may be several competing hydrate phase transitions in 

the reservoir. Mineral surfaces bring additional thermodynamic phases of impact for 

hydrate phase transitions. 

Although relevant reservoirs for storage of  are located in regions which facilitate 

formation of  hydrate (offshore Norway), open data are still scarce. In addition, at the 

current stage, a large-scale commercial hydrate production is impossible. At the same time 

our knowledge about geomechanical behavior of hydrate bearing sediments during 

decomposition and their effects are very limited [63]. The mathematical models and 

numerical simulators are essential tools in predicting the dynamic properties of hydrates in 

reservoirs. To handle the non-equilibrium approach, there is a need for a reactive transport 

simulator which can handle competing processes of formation and dissociation of hydrates. 

According to these conditions, it is desirable to develop a reservoir simulator with an 

implicit coupling between reactive flow and the geomechanical analysis. This is  feasible 

since hydrate might be considered as a pseudo mineral and the kinetics of different 

"reactions" involving hydrate can be modelled according to results from more fundamental 

theories like phase field theory (PFT) [65, 66]. This implies that the hydrate phase 

transitions will automatically be coupled to geochemical reactions via the logistics of the 

reactive transport simulator. 

4.3 Extended RetrasoCodeBright as chosen platform 

A brief overview of previous studies on hydrates in porous media and available reservoir 

simulators in academia, industry and research institutions like for instance National 

laboratories in the USA was given in section 2.5. Although the review presented in section 

2.5 is too short to give any detailed overview of the inherent limitations of the existing 

platforms, none of these was considered as appropriate for further developments in this 

project, for different reasons. There are simply too many questionable approximations in the 

description of hydrate dynamics to give the necessary confidence in simulation of natural 
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gas hydrate production scenarios, hydrate-sealing effects during storage in cold 

reservoirs and the long-term development of hydrate reservoirs during geological time 

scales. 

The main goal of the project is to develop a new state of the art hydrate simulator which is 

able to model non-equilibrium thermodynamics of competing hydrate formation processes 

and competing hydrate dissociation processes to address: 

Hydrate production through pressure reduction and/or thermal stimulation 

Incorporate additional hydrate phase transitions that affect  the dynamics during the 

methods above, like dissociation towards under-saturated phases and mineral 

surfaces 

Prepare for inclusion of production of hydrates by injection of  and  with 

additives 

Implicit geomechanical evaluation 

Development of hydrate filled structures during long time scales for future 

evaluation of possible geo hazards 

Natural leakages of methane from hydrates 

The role of hydrate formation during  storage in sediments containing cold 

zones 

The first part of this PhD project is focused on theoretical studies of CO2 hydrates 

formation in cold aquifers. Two kinetic approaches are used: the first one is based on the 

effect of super saturation (or under saturation) as applied in the framework of classical 

nucleation theory of hydrate growth or dissociation . This theory is numerically simple 

and can be applied directly with the free energy changes related to the individual phase 

transitions which are possible. The super saturation must at least be negative enough to 

overcome the barrier of pushing aside the surrounding fluids. This barrier is proportional to 

interface free energy. Another  approach, which is applied indirectly, kinetic information 

from hydrate formation and dissociation from phase field theory (PFT) simulations [15] are 

extracted and fitted to simple models suitable for reservoir simulation.  

Non-equilibrium thermodynamic properties for the PFT simulations in situations of super-

saturations (leading to hydrate formation) and under-saturations (leading to hydrate 

dissociation) are based on a first order Taylor-expansion of hydrate from equilibrium state 
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as discussed by Kvamme et al. [67]. The performance of the simulator is demonstrated 

through example cases.   

Implications of hydrate formation on geomechanical properties of the models reservoir are 

other aspects addressed in this work. The effects of hydrate formation on the geomechanics 

of the reservoir are illustrated through analysis of the effective stress. 

According to some studies the worldwide amount of gas trapped in natural gas hydrates is 

estimated to more than twice all known conventional fossil fuels [27]. The second part of 

this PhD project has focused on theoretical study of gas production from hydrate bearing 

sediments.  An alternative way of treating hydrates in reservoir simulations which makes 

use of well-known logistics from reactive transport simulators. Kinetic rates for different 

hydrate dissociation "reactions" are derived from Phase Field Theory simulations and 

similar for different hydrate formation "reactions". Pressure reduction is used as gas 

production method. The effects of hydrate formation on the structure of the reservoir are 

illustrated through analysis of the effective stress developments but lack of realistic tensile 

strengths does not enable any conclusions on the geomechanical implications of hydrate 

formation and dissociation for the specific examples.  
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Chapter 5: Theoretical background 

It is not the intention of this work to go into very many details on the kinetics of phase 

transitions but a brief description of some basics is useful as a background for the more 

advanced models that is being applied to provide kinetic models for the different possible 

phase transitions involved in hydrate dissociation and formation. 

To account for non-equilibrium thermodynamics of the hydrate the results from phase field 

theory simulations [68] have been modified to be used in the kinetic model. Phase field 

simulations are based on the minimization of Gibbs’ free energy on the constraint of heat 

and mass transport. Extensive research has gone on in the same group on application of 

phase field theory in the prediction of hydrate formation and dissociation kinetics which is 

still in progress [67, 69-73]. In this study, the simulation results of such studies have been 

extrapolated and used as the constant rate of the kinetic model in the numerical tool.  

A corresponding kinetic rate based on mathematical description of super and under 

saturation is also used. This kinetic rate is calculated according to the classical theory [67]. 

The results are then implemented into the RCB code by means of a numerical method 

known as linear interpolation function on segments. The hydrate formation and dissociation 

can be observed in all flow related properties as well as the changes in the porosity (in 

terms of available volume fraction at disposal for fluids) in specific areas of the porous 

media 

5.1 Brief fundamentals on kinetics of hydrate formation 
and dissociation 

The process of hydrate formation can be divided into three steps: Nucleation, growth and 

induction. The nucleation is normally very fast: it takes only few nano-seconds [67] and it 

occurs when the driving force in terms of free energy difference exceeds the penalty for 

giving space for the new phase, as discussed below. The growth step can also be fast in 

terms of the thermodynamic contribution but is often constrained by limited mass transport. 

As it will be discussed below, nucleation and growth are physically well-defined processes 

but on the scales which makes them difficult to follow dynamically by experiments. 

Induction time is another term that occasionally occurs in the open literature. This can be 
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interpreted as the onset of massive growth, and as such is not physically well defined. 

Detection resolution of induction time is therefore subject to detection principles, whether it 

is through the detection of pressure changes, optical devices, sound or other types of 

detection principles.  

Within the main focus of this thesis, it is sufficient to describe the important stages above in 

terms of a simple theory, the classical nucleation theory.  

A cluster is an ensemble of a number of molecules. In terms of hydrate precursors it will 

contain water and hydrate formers like for instance CH4 or .   If the cluster is considered 

to be spherical, there are two competing processes occur. The first is related to the phase 

transition itself and the second is where the solute molecules become part of the surface of 

the growing crystal and requires energy (pushing term). The associated free energy change 

 can be formulated as: 

2 344
3s v vG G G r r gπ σ πΔ = Δ + Δ Δ= +                

Δ sG , is the surface free energy, Δ vG is the volume free energy. The first of these is the 

work needed to push away the surrounding old phases (“parent” phases) and represents a 

penalty and barrier towards the phase transition. The second term is the free energy gain of 

the phase transition itself. These two processes are shown in figure 8 below:  

Figure 8 variation of free energy as function of cluster size (modified from [2]) 
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The pushing term is dominating at the small cluster sizes. The process is normally 

characterized by physical elements of random when the size is below a certain critical size 

 and the cluster is instable. The degree of randomness varies depending on apparent 

phase(s) are related to randomness elements of molecular motions and associated energy 

fluxes in different directions. Once the cluster reaches the critical size  the free energy will 

decrease steadily due to the domination of the phase transition term. is given by the 

following equation: 

2( ) 4 8 0
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c v c
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G r g r
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The critical size allows us to calculate the flux of growth from classical nucleation theory:  

**
0

WJ J e β−=

Where 0J is the kinetic mass transfer term, 1
RT=β , and *W is the critical work involved 

in the creation of the first stable particle (at  ) and can be found by:  

*

0

( )
cr

cW w dr G r r= ∂ ⋅ = Δ =

Even particles larger than critical size can decay again if there is a lack of access to mass 

and more stable particles (lower free energy) close to the particle can benefit of consuming 

mass from less stable particles. 

Modeling of hydrate kinetics has often been empirical fitting to some functions of super- 

saturation conditions (growth) or under-saturation conditions (dissociation). Other methods 

model the mass transport constants according to the sum of some kinetic stages believed to 

limit the mass transport, and the thermodynamic driving forces are often modeled as 

difference of real state fugacity and equilibrium state fugacity [47].  

The main methods, as mentioned above, applied for dissociation of in situ natural gas 

hydrates are injection of inhibitors, depressurization and thermal stimulation. The process 
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of dissociation is endothermic. Heat must be provided in order to break hydrogen bonds 

between water molecules. During thermal stimulation for production from natural gas 

hydrates, this heat is provided directly and the dynamics of the heat dissipation become part 

of a more complex model. During depressurization, heat will be extracted from the 

surroundings and this transport can in many cases be rate limiting for the kinetics. 

5.2 Thermodynamics 

This section gives a brief overview of the thermodynamic calculations involved in hydrate 

phase transitions, including calculations of thermodynamic properties outside of 

equilibrium (subsection 5.2.5). Details are kept at a minimum level since the enclosed 

papers provide a more detailed overview of the methods and models applied to the different 

systems studied. 

5.2.1 Free energy 

The second law of thermodynamics states that any isolated system will tend towards 

maximum entropy. The changes in internal energy of phase are given in combination of 1st 

and 2nd law of thermodynamics:  

                      
n

i i i i i i
i i

i=1
dU T dS - pdV + dN                                                                   (5.1) 

 Where, S is the entropy is the chemical potential and N is the number of moles of 

components. For reversible changes, the equation becomes equality.  

By subtracting i id(T S ) and adding i id(P V )on both sides we obtain Gibbs free energy: 

                      
n

i i i i i i
i i

i=1
dG -S dT +V dp + dN≤                                                                  (5.2)                          

iiV dP is the shaft work and the addition of i id(P V )  into the equation (5.1) eliminates the 

internal work of pushing fluids in a flowing system. The subtraction of  i id(T S )  was made 

to change natural variable from S to T. Also, note that the T is the temperature acting from 
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the surrounds, which is seen by the incorporation of second law into the first law. The last 

term in right hand side is the chemical work related to extracting or inserting particles. At 

constant temperature and pressure (5.1) and (5.2) give: 

                               
n

i i
i i

i=1
dG dN≤                                                                                    (5.3) 

When hydrate is homogeneously being forming or dissociating from/to liquid water 

solution, the heat transport is very rapid, typically 2 to 3 orders of magnitude faster than 

mass transport. Heat transport is therefore not kinetically rate limited and phase transitions 

might be studied by isothermal approximation, like in the studies of [15, 68] which allows 

reversible and irreversible processes related to phase transitions progress until achieving a 

minimum free energy in the system. This implies: 

                             
total

total total
min

dG = 0
dG = dG

                                                                                     (5.4) 

This means that the system will progress towards total minimum free energy under 

constraints of temperatures, pressures and mass distribution over all possible phases. Total 

free energy is the extensive free energy as sum of extensive free energies of all the phases

in the system. If the system can reach equilibrium then the limits of the equation  (5.4) 

implies that the chemical potential of each component is the same in all the coexisting 

phases, as well as uniform temperatures and pressures across the entire system.  

As mentioned in previous chapter, hydrate in nature is generally not in equilibrium. From a 

thermodynamic point of view, the combination of mass conservations and conditions of 

equilibrium defines minimum criteria of possibility to reach equilibrium, most often known 

as Gibbs phase rule. Gibbs phase rule is simply the conservation of mass under the 

constraints of equilibrium. 

                              2F N π= − +                                                                                    (5.5)  

In equation (5.5) F  is the degree of freedom, N  is the number of components that actively 

participate in phase transition and π  is the number of theoretical phases.  Locally in a 

reservoir, temperature and pressure are given and according to Gibbs phase rule the degree 

of freedom is equal to two while with a system consisting of three phases (aqueous, gas and 
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hydrate), there will be only one degree of freedom and the system is over-determined and 

the three-phase system will be unable to reach equilibrium. The combination of 1st and 2nd 

law of thermodynamics will dictate the system to tend towards the minimum free energy for 

the whole system under the constraints of the total mass and distribution of this into all the 

possible phases.  

Equation (5.5) is a minimum condition for equilibrium in the sense that some theoretically 

possible phases may not be possible due to levels of free energy because of the combined 

first and second law (free energy) since distribution onto fewer phases might provide the 

lowest free energy for the distribution of the total mass. In that case, a new analysis 

according to equation (5.5) is needed in order to evaluate whether the system can reach 

equilibrium or not. This has to be repeated until the number of actual possible phases from 

the point of mass balance and equilibrium as well as free energy levels is fulfilled. 

5.2.2 Hydrate Thermodynamic 

The chemical potential for water in hydrate can be estimated using a modified version of 

the statistical-mechanical model: 

                                                  

            H H H,0
w w j kj

j k
(T,P,x )= (T,P)- ln(1+ h )                                        (5.6)                    

Where superscript H,0 denote empty clathrate [69], is the fraction of cavity of type j per 

water molecules and kjh is the canonical partition function of  guest molecule of type k in 

cavity type j and H,0
w is the chemical potential for water in an empty hydrate structure. The 

canonical partition functions can be expressed as: 

                                    
))inch = exp( ( - gkj kj kj                                            (5.7)

In equation (5.7) kj is the chemical potential of guest molecule k in cavity j in hydrate. The 

second term in the exponent is the free energy change of inclusion of the component k in 

cavity type j, which is independent of the specific hydrate type. 

Hydrate structure 1 (s1) contains three large cavities and one small cavity per 23 water 

molecules, 3/ 23lν =  and . 1/ 23sν =
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The filling fractions are given by:                                           

                                      kj
kj

kj
k

h
=

1+ h
                                                                (5.8) 

Where kj is the filling fraction of guest molecule k in cavity type j. kjx , is the mole 

fraction of guest molecule k in the hydrate type j and will be calculated according to the 

equation (5.9) 

                                 
1

kj

i
i kji

kj i
ii k

x
ν θ

ν θ
=

+
                                                                       (5.9) 

Here iν  is the number of type i cavities per water molecule. 

The changes in the free energy for a hydrate formation is calculated according to equation 

(5.10) 

    
2 2 24 4 4( - ) ( - ) ( - )Δ = + +H H p H H p H H p

w w w CH CH CH CO CO COG x x xμ μ μ μ μ μ                                     (5.10)  

In this equation, H represents hydrate phase, p represents either liquid, gas and adsorbed 

phases depending on where the components building the hydrate come  from, x composition 

and μ chemical potential. 

For a given hydrate to grow unconditionally Gibbs free energy change according to (5.11) 

must be negative and all gradients in free energy change (temperature, pressure, 

concentrations) must be negative. 

5.2.3 Fluid thermodynamics 

The free energy of the fluid phase is given as: 

                                     
3

Fluid Fluid
i i i

i=1
G = x                                                                       (5.11) 

Where Fluid
i is the chemical potential of the fluid phase of the ith component. 

The water chemical potential with some approximation of fugacity and activity coefficients 

is given as: 

                                        Fluid ideal gas
w w w= (T,P)+ RTln(y )                                               (5.12)
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Where wy is the mole fraction of water in the fluid phase which is given by Raoul’s law: 

                                        
Sat

w w w
w

w

x (T,P,x)P (T)y =
(T,P,y)Pφ

                                                          (5.13) 

Where φ  and γ are respectively fugacity and activity coefficient, wx is the mole fraction of 

water in the aqueous phase. The mole fraction of water is close to unity. The chemical 

potential for the mixed fluid states are expressed as:  

                          Fluid ideal gas pure
i i i i= + RTln (y )+ RTln (T,P, y)φ                                        (5.14) 

Where  is either CO2 and CH4 and the fugacity coefficients of component i in the mixture 

are calculated using the classical SRK equation of state (EOS). 

5.2.4 Aqueous thermodynamics 

The free energy of the fluid phase is given as: 

                                   
3

aqueous aqueous
i i i

i=1
G = x                                                             (5.15)

Where aqueous
iμ is the chemical potential of the fluid phase of the ith component. aqueous

iμ is 

derived from excess thermodynamics and have the following form 

                        aqueous
i i i i i 0= + RTln(x )+v (P - P )                                                       (5.16) 

i
∞μ is the chemical potential in water of component i at infinite dilution, R is the universal 

gas constant, iγ is the activity coefficient in the aqueous of component I in the asymmetric 

convention and iv∞  is the partial polar volume at infinite dilution of component i. i
∞μ are 

found by assuming equilibrium between fluid and aqueous phases aqueous fluid
i i= at low 

pressure and solubility. The chemical potential of water is described as: 

                    pure liquid
w w w w w 0= + RTln(x )+v (P - P )                                                       (5.17) 

wv is the molar volume of water and  pure liquid
w  is the pure chemical potential of water. The 

description for calculating the activity coefficient w is given by  Svandal et al.[70] 
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5.2.5 Non equilibrium thermodynamics and driving forces for phase 
transitions 

Equation  (5.18) below represents hydrates dissociation free energy differences. 

2 2 24 4 4( - ) ( - ) ( - )Δ = − + +H H p H H p H H p
w w w CH CH CH CO CO COG x x xμ μ μ μ μ μ                                 (5.18)

Driving forces for hydrate dissociation are conditioned when pressure and temperature are 

outside the hydrate stability zone, or situations where water is under-saturated with methane 

or sublimation when gas is under-saturated with water. Hydrate dissociates into gas and 

liquid water in the first case. In the second case, the final phase is water and in the third 

case, (sublimation) final phase will be gas. 

A non-equilibrium logistic system inside a reservoir simulator analyses the system locally 

(every element at every time step). All impossible ( G > 0) and unlikely (| G|< ) cases 

must be disregarded.  is a value that discriminates phase transitions with far too low 

driving force compared to the limited average retention time in the element as well as the 

nucleation barrier given by the interface free energy between the new and old phase. This 

also includes possibly mass transport limited cases, in which the phase transition is unlikely 

to proceed during the average retention time due to slow mass transport. In the case of mass 

limitations then the different kinetic equations for the possible competing phase transition 

will be subject to an analysis of free energy minimization under mass constraints. 

In case of super-saturation (non-equilibrium), the chemical potential for H2O, CH4 and CO2

in the hydrate can be calculated according to equation (5.19)
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            (5.19)

In this equation  
2 2

,H eq Fluid
CO COμ μ=  and

4 4

eq Fluid
CH CHμ μ= . The superscript eq denotes the equilibrium 

state, and i can be water, Carbon dioxide or methane for the systems in focus here. But of 

course the equations are general for other hydrate formers and water as well and not limited 

to two hydrate formers. 

The chemical potential gradients with respect to pressure can be given by 
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                                                i ViP
δμ
δ

=                                                            (5.20) 

Where iV denotes the partial molar volume of each component. 

The derivative of the equation (5.6) with the respect to the mole fraction: 
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h
x
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h

δ
δδμ ν

δ
=

+
                                                                   (5.21) 

Here r can be methane, carbon dioxide, or water. 

Equation (5.22) gives the relationship between molar enthalpy and the chemical potentials. 

Chemical potentials are directly estimated outside equilibrium,                                        
                                   

                              2

δ

∂

k
RT HP,N k= -

T RT
                                                             (5.22) 

for any component k in a given phase. The line above H indicates partial molar enthalpy. 

To obtain the enthalpy information for the convective terms of the energy balances in the 

reservoir simulator, it suffices to sum the contributions to each enthalpy of all components 

in each phase. 



57

Chapter 6: RCB simulator 

The RetrasoCodeBright (RCB) is the result of the coupling of two codes: CodeBright and 

Retraso. This code was designed to model problems consisting of coupled thermal, 

hydraulic, geochemical and geomechanical processes. CodeBright contains an implicit 

algorithm for integrating material flow, heat-flow and geomechanical model equations [71, 

72]. Retraso involves an explicit algorithm for updating the geochemistry  as shown in 

figure 9 [73, 74].  

The original RCB code was written as a hydrogeological code based on low-pressure gas 

phase (ideal gas). The first set of extension was made by incorporating  an equation of state 

for describing  and   mixed with impurities as relevant for studies of   storage in 

aquifers [75]. The equations of state included are by choice either Peng-Robinson  [76] or 

Soave-Redlich-Kwong [77] . At this stage, we make no arguments about on the accuracy of 

these two equations for . There are indeed better equations of state available for pure 

, like for instance the Span-Wagner equation [78]. At this stage, and for current 

generation of hydrate reservoir simulators, there are other uncertainties which are 

substantially higher. The extension of RCB for handling of hydrate as a phase is 

accomplished by defining every hydrate phase as a pseudo mineral. There are two 

advantages of that. First, it makes use of the logistics inside RCB for handling competing 

reactions based on lowest free energy pathways in every grid block of the system. Secondly, 

it has an interface for easy implementation of reaction kinetic models and corresponding 

parameters for all the “pseudo reactions”. These two features allow for implementation of 

“reaction models” for competing growth and dissociation routes depending on availability 

of surrounding mass and degree of super and under saturations for different competing 

“reactions” locally. 

The mathematical equations for the system are highly non-linear and solved numerically. 

The numerical approach can be viewed as divided into two parts: spatial and temporal 

discretization. Finite element method is used for the spatial discretization while finite 

differences are used for the temporal discretization. Newton-Raphson method iterations are 

used to solve the nonlinear algebraic systems of governing partial differential equations 

[73].  

In one time step the CodeBright part solves for mass flow, heat transport and 

geomechanical deformation. All these properties are then transferred to Retraso. Porosity is 
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updated according to mineral dissolution/precipitation and/or hydrate 

formation/dissociation, and permeability is updated according to a commonly used 

correlation [79] and all detailed results from the individual flux and phase properties are 

transferred back to CodeBright for the next time step as mentioned above. 

The schematic illustration of the coupling of the two modules is given in the figure 9. The 

results from this simulator are illustrated through a graphical window GiD4. 

Figure 9 RCB solves the integrated equations sequentially in one time step 

                                              

4 CIMNE, International Centre for Numerical Methods in Engineering, gid@cimne.upc.edu , Barcelona, Spain.  “GiD – 

The personal pre- and post-processor”, See also: http://gid.cimne.upc.es/ 
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6.1 Governing equations 

With reference to the master flow sheet illustrated in figure 9 the governing equations 

involved in the two sections of the code, the CodeBright part in the first loop and the 

Retraso part in the second loop. 

6.1.1 Mass balance of solid 

                 ( )(1 ) ( ) 0s sjt
θ φ∂ − + ∇⋅ =

∂
                                                                              (6.1) 

Here sθ is the mass of solid per unit volume of a solid, sj is the flux of solid and φ is 

porosity. From this equation, an expression for porosity variation is obtained as: 

          ( )1 1 (1 )s s s

s

D D du
Dt Dt dt

φ θφ φ
θ

= − + − ∇ ⋅                                                                     (6.2) 

Here, u is a solid displacement. The material derivative with respect to the solid has been 

used and its definition is:  

                      ( ) ( )sD du
Dt t dt

∂• = + ⋅∇ •
∂

6.1.2 Mass balance of water   

          ( ) ( )w w w w w
l l g g l gS S j j f

t
θ φ θ φ∂ + + ∇⋅ + =

∂
                                                             (6.3)

Where, w
lθ and w

gθ are respectively mass of water in liquid and gas phase, lS , gS  are degree 

of saturation of liquid and gaseous phases i.e., fraction of pore volume occupied by each 

phase, wf is the external supply of water. 

6.1.3 Mass balance of gas 

( )
( ) (( ) ) ( )

a a
s l l g g a a a a a a as

l l g g l l g g l g

D S S D duS S S S j j f
Dt Dt dt

θ θ φφ θ θ θ θ φ
+

+ + + + ∇⋅ + ∇⋅ + =        (6.4)
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Where, a
lθ and a

gθ are mass of gas component (CH4, CO2 ...) per unit volume in liquid and 
gas phase respectively. 

6.1.4 Momentum balance of the medium 

The momentum balance reduces to the equilibrium of stresses if the inertial terms are 

neglected: 

                             0bσ∇⋅ + =                                                                                        (6.5) 

Where, σ is stress tensor and b is the vector of body force.  

6.1.5 Internal energy balance of the medium: 

The equation for internal energy balance for the porous medium is established taking into 

account the internal energy in each phase (Es, El, Eg):          

           ( (1 ) ) ( ) Q
s s l l l g g g c Es El EgE E S E S i j j j f

t
ρ φ ρ φ ρ φ∂ − + + + ∇⋅ + + + =

∂
                        (6.6) 

Where, ci  is energy flux due to conduction through the porous medium, the other fluxes 

( , , )Es El Egj j j are advective fluxes of energy caused by mass motions and Qf is an 

internal/external energy supply.  

6.1.6 Constitutive equations and equilibrium laws: 

The set of necessary constitutive and equilibrium laws as mentioned in the Table 2 

associates the above balances.  

Table 2 constitutive equations 

Constitutive Equation Variable Name 
Darcy’s Law Liquid and gas advective flux 
Fick’s law Vapor and gas non- advective 

flux 
Fourier’s law Conductive heat flux 
Mechanical constitutive 
model 

Stress tensor 

Phase density Liquid density 
Retention curve Liquid phase degree of 

saturation 
Gas Law Gas density 
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Generalized Darcy’s law is used to compute the advective flux, q, of the α phase ( lα = for 

liquid, gα = for gas) and g is a vector of gravity forces. It is expressed as:

                         ( )kkrq P gα ρα α α
−

= ∇ −                                                                      (6.7) 

Where k is the tensor of intrinsic permeability, kr  is the relative permeability of the phase , 

αμ   is the dynamic viscosity of the phase . 

Van Genuchten’s retention curve [80] expressing saturation as a function of liquid or gas 

pressure: 

                         
0

1
11 g l

l

P P
S

P

−
− −= +

λ

λ                                                                (6.8) 

Where, 1g lS S= − . 0P  and λ are scale pressure and shape parameters. The relative 

permeability kr  depends on saturation ( lS ) which in its turn depends on lP  and gP . 

For calculation of intrinsic permeability, Kozeny’s model is used:  

                                
3 2

2 3

(1 )
(1 )

o
o

o

k  k −
−

⋅= ⋅                                                                     (6.9) 

In this equation is reference porosity and  is intrinsic permeability for matrix with 

reference porosity. 

6.1.7 Chemical Reactions: 

Equilibrium Solid-liquid interactions can be described by the law of the Mass Action: 

                             
1

N p pc
m m

m m m i ii
X K cν νλ γ

=
= Π                                                                         (6.10) 

where mX is the molar fraction of the m-th solid phase, mλ is its thermodynamic activity 

coefficient ( mX and mλ are taken equal to 1 for pure phases), ic and iγ are the 
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concentration and activity coefficient of the i-th species,  is stoichiometric coefficient in

the dissolution reaction of the m-th solid phase, and Km is the corresponding equilibrium 

constant.

For the kinetic solid-liquid interactions, the code uses a general formulation which includes 

several types of experimental functions:  

           ( ),

1 1
exp 1

N Nsk P mka m mki mk
m m mimkk i

E
r k am RT = =

= Ω −∏
ηθσ ζ                                       (6.11) 

Where, 

,1

1 Nc vmi
m i actualim

a
K =

Ω = ∏

And 

,
0 exp( )a mE

k km RT
−

=

mr is the mineral dissolution rate (moles of mineral per volume of rock and unit time), mkk is 

the experimental rate constant, mΩ is the ratio between the ion activity product for the real 

concentrations and the corresponding equilibrium constant. The parameters θ  and η  must 

be determined by fitting to experimental data. ,a mE  is the apparent activation energy of the 

overall reaction process, 0k is a constant. mσ is the reactive surface. The term mkiP
ia accounts 

for the catalytic effect of some species (particularly of H+). Factor mζ takes on values of +1 

or -1 depending on whether mΩ is larger or smaller than 1 (precipitation or dissolution) 

respectively at  equilibrium 1mΩ =  and therefore 0mr = . The kinetic equation for hydrate is 

according to two approaches: The first one is based on the results from the effect of super 

saturation on free energy change for the relevant phase transition. The kinetic impact on the 

flux is so far estimated according to the classical nucleation theory. An alternative model 

which is equally simple is MDIT theory [67]. Note that MDIT theory reduces to classical 

nucleation theory when the interface thickness goes to zero, or is set to zero. The second 

approach is based on the model of Kim and Bishnoi [47] but the rate constant is fitted based 

on results from phase field theory simulations.
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6.1.8 The aqueous complexiation reactions      

These reactions are considered almost instantaneous and can be considered as equilibrium 

reactions:  

            ( )a a a a a aLogK S Logc S Log cγ= +                                                       (6.12) 

Where aK is the equilibrium constant vector, which depends on T and P. aS is the 

stoichiometric coefficient matrix for aqueous complexiation reactions (including redox 

reactions). ca is the molar concentration vector of aqueous species and aγ is the vector of 

thermodynamic activity coefficients.  

6.1.9 Gas liquid interactions 

For reactions involving aqueous and gaseous phases, the mass action law states that:  

                    
1

Nc
i if f f i

p K c
ν νβ βγγ

=
= ∏                                                                                   (6.13) 

where  is the partial pressure of the f-th species in the gas phase, f is its activity 

coefficient, ci and i are the concentration and activity coefficient of the i-th dissolved 

primary species, respectively, βν  is the stoichiometric coefficient of the i-th species in the 

ex-solution reaction of fluid f, and Kf is the equilibrium constant of the reaction. 

6.2 Modification in RCB 

In comparison of the original version of RCB, the current version has been extended from 

ideal gas into handling of   according to the Soave –Redlich- Kwong (SRK) equation of 

state [81]. This equation of state is used in density calculations as well as the necessary 

calculations of fugacities of the   phase as needed in the calculation of dissolution of 

into the groundwater  [81, 82].  

The equation of state (EOS) and solubility calculations of CH4 was added in the code. The 

Soave-Redlich-Kwong (SRK) equation was updated by adding EOS parameters such as 

critical temperature, critical pressure and acentric factor.  



64

To account for solubility calculations of CH4, Henry’s constant for CH4 was added. The 

energy balance of the gas is modified from ideal gas according to equation (6.14) using 

SRK equation of state to calculate fugacity coefficient and derivatives.

                               . 2 (ln )id gas dH H RT
dT

φ= −                                                         (6.14)                          

The nonlinear partial differential equations of the system are solved numerically [73]. The 

Newton-Raphson method adopted to find an iterative scheme has been modified to improve 

the convergence of the numerical solution while increasing the range of working pressure in 

the system [81].  

The equation (6.15) is used to describe hydrate equilibrium conditions in the 

simulation. This is based on the model developed by Kvamme and Tanaka [69] where the 

SRK equation of state is used to calculate the fugacity of the liquid phase.                         
-7 6 -3 5  9.968156693851430 10  - 1.721355993747740 10
4 2 3 1.237931459591990 - 4.745780290305340 10
5 2 7 1.022898518566810 10 - 1.175309918126070 10
8 5.624214942384240 10

eqP T T

T T

T T

= × × × ×

+ × × ×

+ × × × ×

+ ×

                   (6.15)

In this equation eqP is calculated in MPa and T in Kelvin.  

For CH4 hydrate, the relationship (6.16) between temperature and pressure proposed by 

Sloan [2] was used:  

5 3( ) 1 .94138504464560 10 3.31018213397926 10
1 2 2 3 2.25540264493806 10  7.67559117787059 10

4 4 8 51.30465829788791 10   8.86065316687571 10

eqLn P T

T T

T T

= − × + × ×
−− × × + × ×

− −− × × + × ×

              (6.16)

To account for non-equilibrium thermodynamics of the hydrate, some modifications of the 

code have been made in this thesis. Two kinetics rates are implemented. The first one is the 

rate calculated according to the classical nucleation theory [67] and the theory of non-

equilibrium thermodynamics described earlier in the section 5.2.5. The results are then 

implemented in the RCB code by means of a numerical method known as a linear 

interpolation function on segments.  
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For comparison, the Kim Bishnoi model [47] is also implemented which frequently used in 

other hydrate codes but with rate constants derived from Phase Field theory:  

                                 ( )− = −s ed
dnH k A f f

dt
                                                         (6.17)

Here is the surface area (m2) for the reaction,  is the rate constant,  and  are 

respectively the values of the fugacity (Pa) for the pressure at a temperature  at 

equilibrium and in the gas phase. 

The kinetic rate used in this study is calculated from extrapolated results of phase field 

theory simulation [83, 84].  

Basically it is hard to see the relevance to a reservoir situation since this equation was 

derived using experimental data from a PVT cell (limited impact of solid walls and 

symmetric stirring). For comparison, however, we also examine this model for the model 

systems we study in the project reported here.  

The hydrate formation and dissociation can be observed in all flow related properties as 

well as though the changes in the porosity (in terms of the available volume fraction of 

disposal of fluids) in specific areas of the porous media. 

This code had been mostly used for isothermal conditions at 250C. Since the hydrate 

dissociation and formation are sensitive to temperature variations, the temperature gradient 

in the reservoir was included and considered in all the simulations. 

To study geomechanics of the system, effective stress calculation has been implemented 

into RCB according to Terzaghi's Principle [85].  

Concerning the implementation of hydrate into RCB, different hydrate phases are 

implemented as “pseudo minerals” so as to benefit from the logistics of RCB through easy 

implementation of kinetic models and parameters. Every route to hydrate formation (from 

hydrate forming fluid and water, from dissolved hydrate forming fluid and so on) results in 

unique hydrates in terms of cavity fillings and free energies. Each route is treated as a 

mineral reaction and similar for dissociation routes. If dissociation is slower than diffusivity 

into surrounding water, the hydrate dissociation “reaction” is hydrate to water and hydrate 

former dissolves in water. If a separate fluid phase is formed then the reaction is to water 
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and fluid phase. In a non-equilibrium case these routes implies different thermodynamic 

properties for hydrate formers and water. 

6.3 Demonstration examples 

In this section, two 2D hydro-chemical-mechanical models are presented. The first one 

presents a model where the temperature is sufficiently low and hydrate will form due to 

injection. For this purpose, hydrate has been used as a pseudo mineral component. The 

results from the effect of super saturation in the flux according to the classical nucleation 

theory [67] are used in the kinetic model.  The main focus in this example is on hydrate 

formation effects on porosity in different regions, as well as its influence on the flow pattern 

and the implication on geomechanical properties of the reservoir.  

In the second example, the CH4 hydrate was implemented in RCB and the impact of hydrate 

dissociation on porosity, gas pressure as well on its influence on flow pattern. Implications 

of hydrate dissolution on geomechanical properties of the model reservoir are other aspects 

addressed in this study of this model. For this purpose, hydrates have been added as a 

pseudo-mineral and an advanced kinetic model of hydrate phase transitions have been 

developed. The main tools for generating kinetics models have been phase field theory 

simulations, with thermodynamic properties derived from molecular modeling.  

6.3.1 Simulation of CO2 hydrates formation due to injection of CO2
in porous media 

The geometry of the 2D domain is  rectangle. There are two aquifers, one 

cap rock and one fracture zones. The fracture has the dimensions of . Six   

injectors are situated respectively 10m, 30m and 50m above the reservoir bottom on the left 

and right corners at constant pressure of 4 MPa as shown in the figure 10. 

The reservoir temperature gradient is  and the pressure gradient is

. The model is discretized into 1500 elements with dimensions of 10m by 20m. The 

cap rock is located at the depth of 270m down to 310m. Tables 3 to 5 present the 

information regarding available species in different phases, initial and boundary conditions 

and material properties. 
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Figure 10 schematic diagram of the simulated 2D reservoir 

Table 3 material properties 

Property  Aquifers Cap 
rock  

Fracture 

Young’s modulus, E [GPa]  0.5  0.5  0.5 
Poisson’s ratio 0.2 5 0.2 5 0.2 5 
Porosity  0.3 0.03  0.5 
Zero stress porosity, 0 0.3  0.03  0. 4 
Zero stress permeability, k0 [m2]  1.0-13  1.0-17  1.0-10

Irreducible gas and liquid saturation, Srg  0  0  0  
Van Genuchten’s gas-entry pressure, P0 [MPa], (at zero 
stress)  

0.0196  0.196  0.196  

Van Genuchten’s exponent [m] 0.457  0.457  0.457  
Longitude dispersion factor ( m ) 11 11 11 
Molecular diffusion ( m ) 10-10 10-10 10-10

Table 4 Initial and boundary conditions 

Parameter Bottom Boundary Top Boundary 
Pressure, (MPa) 4 1 
Mean Stress, (MPa) 8.76 2.33 
CO2 initial injection pressure, (MPa)  4.0 (at the injection 

point) 
- 
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Table 5 Chemical species in different formations 

The  simulations results of the different time steps are presented in the following. Liquid 

and gas fluxes, liquid and gas pressure, porosity and effective stress are the parameters of 

interest. Each figure shows the results at two time steps: results when the hydrate starts to 

form at day 360 and  after the hydrate formation at day 407. Figures 11 and 12 show the gas 

and liquid phase fluxes respectively. These figures clearly show that because of the 

fractures, flow will reach the upper aquifer in a relatively short time. As soon as 

reaches the top aquifer, it will start forming hydrate due to suitable temperature and 

pressure conditions as shown in figure 17. Figures 13 and 14 show gas and liquid pressures 

after 360 and 407 days. Pressure increase can be observed below cap rock which is parallel 

to gas flux pattern in figure 11. Gas phase flow is limited due to cap rock low permeability. 

Figures 15  and 16 show respectively the effective stress in xx direction and yy in the 

reservoir. Positive direction for x is towards right and positive direction for y is upwards. In 

the absence of any realistic tensile strengths to compare with, these figures merely illustrate 

the capability and feasibility of the code. The effective stress is readily available from the 

implicit algorithm at every time step in every grid point. This is a unique feature compared 

to other reservoir simulation codes dealing with aquifer storage of   in reservoirs with 

processes on many different scales, ranging from below seconds (hydrate formation) to 

minutes, hours, days and longer time scales (for instance quartz dissolution). 

Species Aquifer Cap rock Fracture 
Aqueous  H2O , HCO3

- , OH- , H+, 
CO2(aq), CO3

2-,O2, SiO2(aq), 
H2SiO4

2-, HSiO3
-      

H2O , HCO3
- , OH- , H+, 

CO2(aq), CO3
2-,O2, SiO2(aq), 

H2SiO4
2-, HSiO3

--           

H2O , HCO3
- , 

OH- , H+, 
CO2(aq), CO3

2-

,O2, SiO2(aq), 
H2SiO4

2-, 
HSiO3

-

Gas CO2 (g) CO2 (g) CO2 (g) 
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Figure 11 Gas flux (a) after 360 days (b) after 407 days 

Figure 12 Liquid flux (a) after 360 days (b) after 407 days 

Figure 13 Gas pressure (a) after 360 days (b) after 407 days 
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Figure 14 Liquid pressures (a) after 360 days (b) after 407 days 

Figure 15 Effective stresses in xx direction Sxx (MPa) (a) after 360 days and (b) 
after 407 days 

Figure 16 Effective stresses in yy direction Syy (MPa) (a) after 360 days and (b) 
after 407 days 
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Figure 17 Porosity (a) after 360 days (start of hydrate formation) and (b) after 
407 days. White area refers to the porosity of 0.03 in cap rock 

6.3.2 Simulation of methane hydrate dissociation in porous media 

The geometry of the 2D model is  rectangle. The reservoir is divided into 

two layers, the upper layer is hydrate layer and the lower layer is gas layer. Gas production 

wells are located 15 m above the gas layer at respectively right and left sides of the hydrate 

layer and as can be seen in figure 18. The   pressure of gas production well was kept lower 

than the surrounding pressure in the reservoir. Tables 6, 7 and 8 present the information 

regarding available species in different phases, initial and boundary conditions and material 

properties. 

                   Figure 18 Geometry of 2D model with 2 CH4 gas production wells 

The change in porosity is one of the more direct indications of hydrate phase transitions.  

As shown in figure 25, the reduction of porosity indicates hydrate formation and the 

increase of porosity indicates hydrate dissociation.  In figures 21, 22, gas and liquid flux 

patterns are plotted after the hydrate dissociation. Simulation results for different time steps 

are presented in this section. Liquid and gas phase fluxes, liquid and gas pressures, porosity 

and effective stress are the parameters of interest in this study. Each figure shows the results 

at two time steps: Results after 1 year at the top and results after 100 years at the bottom.  
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Table 6 material properties 

Property  Gas Layer Hydrate 
Layer  

Young’s modulus, E [GPa]  0.5  0.5  
Poisson’s ratio 0.2 5 0.2 5 
Porosity  0.3 0.03  
Zero stress porosity, 0 0.35  0. 35  
Zero stress permeability, (mD)  5x102  5x102

Irreducible gas and liquid saturation, Srg  0  0  
Van Genuchten’s gas-entry pressure, P0 [MPa], (at zero 
stress)  

0.0 196  0.0196  

Van Genuchten’s exponent [m] 0.457  0.457  
Longitude dispersion factor ( m ) 11 11 
Molecular diffusion ( m ) 10-10 10-10

Thermal conductivity of dry medium (W/m K) 4.64 4.64 
Thermal conductivity of saturated medium (W/m K) 2.64 2.64 

Table 7 Initial and boundary conditions 

Parameter Gas layer Hydrate layer 
Pressure, (MPa) 7.9 - 8.3 7.4 – 7.9 

Mean Stress, (MPa) 10.64-12.0 8.94 - 10.64

CH4 production pressure, (MPa) - 7.4 
Gas outgoing pressure (MPa) 8.3 7.4 

Table 8 Chemical species in different formations  

Due to pressure drop hydrate started dissociating according to the kinetic rate of hydrate 

dissociation, which was a function of temperature and pressure. Hydrate dissociation can be 

observed by the change in porosity as visible in figure 25. This change in porosity is 

directly proportional to the kinetic reaction rate of hydrate dissociation.  

The estimated principle effective stress in yy direction is plotted in figures 23 and 24. 

Positive direction for y is upwards. Effective stress is needed in studies of reservoir 

stability, compaction or deformation of reservoir. The most noticeable changes in the 

Species Gas layer Hydrate Layer 
Aqueous H2O , H+, OH- , CO3

-2, HCO3
, 

O2(g) 
H2O , H+ , OH- ,  CO3

2-,, HCO3
-, 

O2(g) 
Gas CH4 (g) - 

Rock Mineral Quartz Quartz 



73

vertical effective stress (Syy) direction as illustrated in figure 24 (b) are in the hydrate zone 

where the hydrate dissociates. Reduction in effective stress in both directions indicates that 

compaction in hydrate layer happened during hydrate dissociation. The reduction of 

effective stress Sxx and Syy were around 1MPa.   

Strength of hydrate-filled sediments reported by  Ebinuma et al. [86] suggests that this 

changes in effective stress might be well within safe limits for any mechanical failure in the 

reservoir.    

Figure 19 Gas pressure (a) after 1 year (b) after 100 years of production 

Figure 20 Liquid pressure (a) after 1 year (b) after 100 years of production 
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Figure 21 Gas flux (a) after 1 year (b) after 100 years 

Figure 22 Liquid flux (a) after 1 year (b) after 100 years 

Figure 23 Effective stress in xx direction Sxx (MPa) (a) 1 year and (b) after 100 
years 
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Figure 24 Effective stresses in yy direction Syy (MPa) (a) 1year and (b) after 100 
years   

Figure 25 Porosity after (a) 1 year and (b) after 100 years 
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Chapter 7: Summary of papers 

7.1 Simulation of Hydrate Dynamics in Reservoirs (paper 
1) 

During  storage in cold aquifers,  hydrate can form if suitable conditions of pressure 

and temperature exist there. Gas hydrates in reservoirs are generally not in thermodynamic 

equilibrium and there may be several competing phase transitions involving hydrate. A 

kinetic approach was used for hydrate reactions. The main tools for generating the kinetic 

models for hydrate phase transitions have been phase field theory simulations, with 

thermodynamic properties derived from molecular modeling [83].  

In this paper a simple model based on one zone of aquifer which has a hydrate stability 

zone. The hydrate formation is confirmed by the results of porosity changes in some parts 

of the aquifer.  

This paper is an extension of a conference paper given in 7.3 

7.2 Non-equilibrium modeling of hydrate dynamics in 
reservoir (paper 2) 

This work was an extension of study carried out earlier in 7.1. In this paper the non-

equilibrium nature of hydrate in porous media is investigated.  

Hydrate formation, dissociation and reformation towards coexisting phases, makes 

equilibrium impossible according to Gibbs phase rule, even if one of the fluid phases is 

totally consumed. The presence of mineral surfaces gives rise to adsorption sites that can 

contribute to hydrate nucleation even though the water molecules in first few layers are 

hydrate inhibited. 

Keeping this statement in mind, we present a study of  storage through a simulation 

example. A reservoir consisting of three layers: two aquifers and one cap rock which 

contains a fracture.  The upper aquifer zone of the reservoir had zone of  hydrate 

stability, where hydrate formation was studied. All possible phase transitions involving 
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hydrate are formulated and corresponding kinetic models are derived based on phase field 

theory simulations. 

7.3 CO2 hydrate dynamics during CO2 storage in saline 
aquifer (paper 3) 

This paper was the first published paper after we reworked the reactive transport RCB into 

a hydrate simulator. In this work, storage with possibility of hydrate formation was 

studied. The implementation of hydrate was demonstrated by using a model with two 

aquifer zones and cap rock in which a fracture was introduced was used. The zone of 

hydrate stability existed above the cap rock. was injected from the right corner of lower 

aquifer. The hydrate formation was indicated by the reduction of porosity in the area above 

the fracture (A part of hydrate stability zone). This work was the first step for further 

improvements of RCB as reservoir simulator.  

7.4 Simulation of geomechanical effects of CO2 injection 
in cold aquifers with possibility of hydrate formation (paper 
4) 

In this paper a reactive transport, RetrasoCodeBright (RCB) has been modified to account 

for hydrate phase transition in the reservoir. The phase transitions are handled as pseudo 

reactions to ensure the logistics of competing phase transitions in a non-equilibrium system.  

A model with two fractures in the cap rock was used. The effects of hydrate formation and 

dissociation on geomechanics of the reservoir were studied in the same time step in which 

transport calculations are done. Effective stress calculations has been implemented into 

RCB according to Terzaghi's Principle  [85] to enable analysis of geomechanical stability 

within same time-steps as mass- and heat- flow. Hydrate formation involves close to 10% 

expansion of water. storage with the possibilities of hydrate formation in reservoir was 

studied under realistic conditions and geomechanical impacts of hydrate formation were 

analyzed. It was concluded that the reservoir might be within safe limits of tensile failure 

for the model systems considered.   
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7.5 Simulation of CO2 hydrates formation in cold aquifers: 
non-equilibrium approach (paper 5) 

In this paper, the RCB simulator was improved to implement the non-equilibrium 

thermodynamic calculations. The non-equilibrium thermodynamic properties are estimated 

by first order Taylor expansions from equilibrium state. The results from the effect of super 

saturation in the flux according to the classical nucleation theory are used in the kinetic 

model [67]. 

A reactive transport reservoir simulator, RetrasoCodeBright (RCB) was applied, in which 

hydrate is treated as a pseudo mineral. A 2D hydro-chemical model was used in order to 

study the geological storage of  in reservoirs that are cold enough to facilitate 

hydrate formation. The effects of hydrate formation on liquid and gas fluxes, heat flux, 

liquid and gas pressures and liquid saturations are the parameters of interest.  The effects of 

hydrate dynamics on geomechanics of the reservoir are illustrated through analysis of the 

effective stress developments. Lack of realistic tensile strengths from real formations and/or 

experiments on synthetically generated systems does not provide basis for drawing rigorous 

conclusions on the geomechanical implications of hydrate formation and dissociation for 

the specific example examined. Different properties of hydrate formed from different 

phases were illustrated and discussed.

7.6 Theoretical studies of CO2 hydrates formation and 
dissociation in cold aquifers using RetrasoCodeBright 
simulator (paper 6) 

In this paper, two kinetic approaches have been compared: the first one is based on the 

effect of super saturation (or under saturation) in the classical nucleation theory of hydrate 

growth or dissociation [67]. The second one is based on the model of Kim and Bishnoi [47].  

Results are applied in model studies of hydrate formation and dissociation in a model 

reservoir.  

The modifications implemented into a reservoir simulator for reactive multiphase flow 

RetrasoCodeBright (RCB) are presented. These modifications include a non-equilibrium 

thermodynamic approach for gas hydrate formation and dissociation and its feedbacks on 
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porosity, permeability and heat flow. The effects of hydrate formation on the geomechanics 

of the reservoir are illustrated through analysis of the effective stress. 

7.7 A new reservoir simulator for studying hydrate 
dynamics in reservoir (paper 7) 

In this paper, the use of a reactive transport reservoir simulator (RCB) as a new platform for 

dynamic modelling of hydrates in porous media has been proposed. Each hydrate phase 

transition (formation and dissociation) is modelled as a pseudo reaction, with corresponding 

changes in free energies as the driving forces for the phase transition itself and dynamically 

coupled to transport of mass and heat. The main purpose of this paper is to describe the 

simulator in detail with integration algorithms as well as approaches for modelling non-

equilibrium thermodynamics and kinetics. More specifically a multi-scale approach, with 

Phase Field Theory as the core, is used for estimating kinetic rates of different possible 

phase transitions. 

7.8 Simulations of long term methane hydrate 
dissociation by pressure reduction using an extended 
RetrasoCodeBright simulator (paper 8) 

In this paper, a reactive transport reservoir simulator RetrasoCodeBright (RCB) has been 

reworked into a hydrate simulator. The main purpose of this work was to compare the 

simulation results of hydrate deposits from Mt. Elbert site, Alaska with results from the 

code comparison study of Anderson, B.J., et al [87].     

Hydrate has been added as pseudo-mineral components. This opens up for non-equilibrium 

thermodynamic description since kinetic models for different competing hydrate phase 

transitions can be included through their respective kinetic models. 

The RCB code is capable to handle different hydrates as different formation situations as 

well as different dissociations situations. RCB is also capable of couple between reactive 

flow and geomechanical analysis. 

A model resembling to deposit site at Mt. Elbert site, Alaska was built to illustrate the 

reservoir simulator. A detailed code comparison was given in this paper.  
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In order to study the implication of hydrate dissociation on geomechanical properties of the 

reservoir, the results for changes in stresses with time were included. 

7.9 Theoretical studies of Methane Hydrate Dissociation 
in porous media using RetrasoCodeBright simulator (paper 
9) 

This paper was the first attempt to study gas production from in situ hydrate deposits using 

RCB. For the simulation model, it has been used an example from real deposits of CH4

hydrates located at Messoyakha gas field [1]. Some studies confirmed that some of the gas 

produced from this reservoir is contributed by dissociation of hydrate  from hydrate layer 

[88].  

The production from this reservoir was performed by using a simple reaction of dissociation 

and then results were compared with the results of the hydrate simulator 

TOUGH+HYDRATE [51]. 
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Chapter 8: Conclusions 

A new simulator for hydrates in porous media has been developed through the work 

documented in this thesis and the enclosed publications. Two major aspects are uniquely 

different with the hydrate simulator developed through this work compared to other 

academic and commercial simulators. The simulator is a general non-equilibrium simulator 

which is able to handle competing hydrate phase transitions of formation and dissociation, 

and evaluate net hydrate balance in every node and every time step. A second important 

difference is the use of a reactive transport simulator as platform. Each hydrate phase 

transition is treated as a pseudo reaction and a free energy analysis determines which 

“hydrate reactions” are possible. 

The reactive transport simulator which was used as a basis, RetrasoCodeBright code (RCB), 

contains an implicit algorithm of material flow, heat-flow and geomechanical model 

equations and it involves an explicit algorithm for updating the geochemistry. RCB is 

designed to model problems consisting of coupled thermal, hydraulic, geochemical and 

geomechanical processes.  

RCB extended with different hydrate phase transitions as “pseudo reactions” makes use of 

the same logistics as competing mineral reactions in hydrogeological problems. Porosity (as 

defined through available pore volume fraction for fluids) is updated according to mineral 

dissolution/precipitation and/or hydrate formation/dissociation “reactions”. So far 

permeability is updated according to a commonly used correlation, which is a temporary 

simplification. Strategies for more rigorous modelling of permeability and relative 

permeability are outlined in 9.5. The reactive transport module in this simulator along with 

the hydrate definition in the system as a pseudo-mineral gives the opportunity to study the 

dynamics of hydrate in the reservoir by considering all possible phase transition scenarios 

and by coupling the code with a non-equilibrium thermodynamic module (minimization of 

free energy).   

In this work RCB was applied to modelling of storage in cold aquifer, combined with a 

free energy analysis for determining which hydrate phase transitions that are possible. 

During hydrate formation, vertical permeability is drastically reduced and horizontal 

spreading of  is reduced in the hydrate formation zone, which is an undesirable effect.    
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The simulator has also been applied to studies of hydrate production using pressure 

reduction. The lack of real hydrate production data is a limitation for objective evaluation of 

the simulator. In this work, the performance of the code has therefore only been compared 

to published results from other simulators. The exception is simulation of hydrate 

production from Messayokha (Siberia, Russia) which was not considered as real production 

data due to very limited monitoring on this production. After comparing our results with 

results of other reservoir simulators it has been demonstrated that the RCB code is 

competent of generating all important results necessary for detailed analysis of a gas 

production scenario.   

Several kinetic model approaches for hydrate phase transitions are implemented, tested and 

compared using this code. These are kinetic rates for different hydrate dissociation 

"reactions" which are derived from phase field theory simulations and similar for different 

hydrate formation "reactions", kinetic model for hydrate formation and dissociation 

according to the classical nucleation theory. The corresponding thermodynamic properties 

of hydrates outside equilibrium in these models are based on first order Taylor expansion 

from equilibrium pressure, temperature and concentrations. Results are also compared to 

the kinetic model of Kim and Bishnoi which is frequently used in other hydrate reservoir 

simulators, although the model was developed based on laboratory experiments without 

presence of porous medium (pressure, volume, temperature cell).  

Hydrates in reservoirs contribute to the geological stability of hydrate bearing sediments. 

The dissociation of clathrate hydrate could lead to geological instability of reservoirs, and in 

worst case trigger fractures and landslides.  

Hydrate formation during storage in cold aquifers involves a 10% expansion of water. 

Depending on where it forms and the local geology hydrate formation can have 

geomechanical effects on the stability of the reservoir. This aspect needs to be investigated 

prior to any project of  storage in aquifers. The boundaries of hydrate stability are likely 

to experience more dynamics in hydrate phase transitions. Upcoming hydrate meeting 

groundwater under hydrate forming conditions will lead to hydrate. But if the groundwater 

above gets diluted by flow (even diffusion) below co-existence limit of  in liquid water 

(quasi-equilibrium) hydrate will dissociate.   Inner loop of RCB solves simultaneously for 

mass-transport, heat flow and development of stress. Avoiding a time shift in evaluation of 

geomechanics through explicit couplings to geomechanical analysis tool is clearly an 



85

advantage. Terzaghi's model for effective stress has been implemented and provides online 

evaluation of geomechanical consequences.   
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Chapter 9: Future work 

9.1 Combination of heating and pressure reduction 
methods for producing gas hydrate 

Pressure reduction is the only production method tested so far with this extended RCB 

code.  Combination of pressure reduction and heating may be necessary for some hydrate 

deposits to reduce blocking due to reformation of hydrate in cold zones induced by the 

pressure drawdown. This can happen in different places in the reservoir. Pressure reduction 

gradient close to the production well is one of them, but even close to gas/hydrate boundary 

in reservoirs with hydrate on top of a gas filled section of the reservoir.  

There are several ways to thermally stimulate the reservoir. Injection of steam or hot water 

would be fairly straightforward to include in RCB. Depending on the completion of the 

reservoir heating can also be supplied by electrical cables embedded in the producing 

pipelines to avoid close to the well refreezing. This option requires a slight modification of 

the code to include local heat sources in the energy balance. These types of extensions will 

also open up for other types of local heating devices implemented into the reservoir. 

In situ combustion of fraction of the released gas has also been proposed by some groups. 

In its present form reactions involve solid (hydrate) and liquid water as primary constituents 

for either formation of hydrate or dissociation of hydrate. Gas that is involved in the hydrate 

“reactions” as released or consumed due to the reaction kinetics is transferred to the gas 

flux balance as corresponding local source or sink terms. Reactions that entirely involve gas 

(combustion) are not yet implemented but are definitely within reach by following the same 

logistics for reaction as in the liquid flux balance equations. 

9.2 Exchange of methane hydrate to CO2 hydrate 
through injection of CO2

Hydrate is more stable than  hydrate at the same pressure and temperature 

conditions over significant ranges. Mixed hydrate, in which CH4 dominates occupation of 

small cavities and  dominates occupation of large cavities of structure I is more stable 

than CH4 hydrate over all regions. It is therefore possible to inject into hydrate and 
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extract by direct exchange. Injection of  as a liquid converts methane hydrate into 

carbon-dioxide dominated hydrate while at the same time releasing the trapped natural gas 

[15] and then combine  storage with production of methane.  

We studied until now  and  reactions into RCB separately. Exchange reactions can 

be added in RCB in future and work is in progress on this as funded by new projects. 

The kinetic rates for this exchange follow two primary mechanisms. The dominating 

mechanism involves the creation of new  hydrate from injected . The released heat 

will then contribute to the dissociation of in situ CH4 hydrate. A second mechanism is direct 

solid state conversion of CH4 hydrate over to mixed hydrate. Both are thermodynamically 

favorable but the kinetic rate of the latter is very slow and proportional to a solid state 

diffusivity. Since there is always a minimum amount of free water available in the pores, 

the first mechanism will dominate even in the Alaska reservoirs for which hydrate 

saturations may be close to 80%. Both mechanisms can be included easily in terms of the 

thermodynamics. As for the kinetic rates fundamental studies (Molecular dynamics 

Simulations [39] and Phase Field Theory [15, 40, 65, 89]) have been conducted and the 

results show a very clear and distinguished change in kinetics from the first over to the 

second mechanism proportional to reduced amount of free water available for new hydrate 

formation. These kinetic rate data can be included in simplified forms into RCB along with 

a lowest free liquid limit for which mechanism one is significant. This is facilitated by 

couplings to dynamically update of local saturations as functions of hydrate phase transition 

kinetics. 

9.3 Hydrodynamics description of fractures and wells 

Fractures are introduced as high porosity and high permeability channels in cap rocks. This 

method with assumed fractures directions can slow calculation significantly because it can 

reproduce partially the effect of fluid breaking through the fractures. The passage of fluids 

are modeled by filtration mechanism because they are formed by regular grid blocks which 

means that fluids penetrate through faults or fractures by pushing fully or partially. 

Since the breaking through fracture happens quickly, it can be described more properly by 

the inclusion of a hydrodynamic description of flow through the fracture. Therefore it is 

suggested to extend the code to include a hydrodynamic fracture description. This can be 
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facilitated by the use of Navier-Stokes for realistic geometrical models of the fractures. 

Fluxes from different flow regimes (Diffusivity and up to Darcy flow) entering the fracture  

provide the boundary/entering velocities for Navier-Stokes, together with end boundary 

conditions for the fracture. 

Similar descriptions of wells are also feasible and likely numerically more stable due to 

simpler and relatively smaller regions of boundary conditions connection reservoir flow and 

Navier-Stokes inside the well. 

9.4 Extension of the code to more complete set of non-
equilibrium possibilities for hydrate phase transitions. 

One of the main goals of this work has been to illustrate the impact of non-equilibrium 

thermodynamics. For this purpose two models of kinetics were used: The first one is based 

on the effect of super saturation or under saturation in the flux according to the classical 

nucleation theory of hydrate growth or dissociation [67]. The second model is based on the 

model of Kim and Bishnoi [47]. A comparison between these two kinetic approaches has 

been made. Kim-Bishnoi model is empirical and generally not transferable from the PVT 

experiments from which it was derived. For the first approach we have considered only the 

free energy perturbation from equilibrium due to pressure gradient. 

This work is still in progress in two directions. One direction is to complete the code with 

all possible competing hydrate phases’ transitions so as to enable a more complete free 

energy analysis in each local volume grid of the model. Implementation of models for In 

situ conversion of CH4 hydrate through injection of  is still in progress and other 

relevant phase transitions will follow, including also different additions to the 

(chemicals or gases like for instance N2). 

Another direction related to non-equilibrium phase transitions are modeling of super-

saturations in all directions of free variables, including concentrations. Work is in progress 

also in this area. Presently free energy changes due to super saturations in concentrations 

are calculated by separate thermodynamic codes and imported into RCB as tables for 

interpolations but correlations to simple mathematical expression is another option for 

efficient use in RCB. It is also important in this context that all thermodynamic properties 

related to competing phase transitions are consistent in the sense that water in all phases is 
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based on residual thermodynamics (ideal gas as reference state). Gas, fluid  and CH4 are 

naturally based on ideal gas since equation of state is used for calculating these properties. 

This common level of free energy for all phases open up for several possible algorithms to 

minimize free energy in each volume and as such achieves a realistic evaluation on local 

phase distribution in each local volume of the reservoir.  

Numerically algorithms for free energy minimization are an important challenge for the 

future.  

9.5 Relative permeability correlations 

The present version of RCB is capable to calculate changes in absolute and relative 

permeability in every time step. The permeability calculations in the current code are based 

on porosity changes due to mineral dissolution or precipitation and hydrate formation or 

dissociation. In the present version of RCB, the thin channels present between solid mineral 

surface and gas hydrate surfaces are ignored. Fluid permeability calculations should be 

reworked with respect to these thin fluid channels.  

One possible approach is to combine CT scanned image of porous media and select most 

likely pore structures based upon stress analysis. This gives room for hydrodynamic 

modeling using Boltzmann flow or Navier-Stokes. Realistic pore fillings of hydrate can be 

included although interfacial tensions between hydrate and surrounding fluids needs to be 

estimated from molecular modelling or other approaches. This approach is feasible but 

might need simplified kinetic models for hydrate phase transitions.  

An alternative approach might be to use Phase Field Theory with implicit hydrodynamics 

and heat transport [89-91] 

9.6 Development of new and more accurate models for 
heat transport 

Heat transport dynamics is a critical issue in hydrate production using pressure reduction. 

Reducing the pressure to outside equilibrium makes the hydrate unstable in terms of free 

energy but the heat needed for the dissociation must be extracted from the surroundings if 

heat is not added through some form for thermal stimulation. This can lead to freeze down 
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of the formation and in worst case stop the production for time periods. Heat transport 

through systems that undergoes phase transitions are very complex problems.  

One possible strategy for fundamental development of new simplified models is to use 

advanced theoretical tools like Phase Field Theory (PFT) [89-91]. One extension to PFT, 

which is needed for this purpose, is to implement the possibility for setting a pressure 

gradient over the simulation cell. Another option is to enable point sinks in pressures at 

local grid volumes. Both of these options are realistic and short term extension of the PFT 

model [89-91]. It is however, recommended that the heat transport model is separated into 

conduction and convection instead of the current simplified approximation of an “efficient” 

heat conductivity.  

A second motivation for implementation of more rigorous heat transport models is to be 

able to more accurately estimate time and location where refreezing to hydrate can happen 

so that measures can be taken even during development of the production strategies.  
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