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Abstract

The aim of this thesis is to explore the possibility of using Genetic Programming
to create agents that play non-deterministic games at a human level. The game that
is used to test the hypothesis is Ms. Pac-Man; an old arcade game. The reason
for choosing this game is that there is a competition whose object it is to create
an agent for the game only using the visual data of the game. This allows me to
compare my results against human players and, others who have been trying to
solve the same problem. The best score a human has achieved is 921,360 points by
Abdner Ashman in 2005, while the agents in the competition have only received a
score of 36,280 points.

A modified emulator is used to run the original binary of the game. The
modifications are made to allow the agents easier access to key properties of the
game. They also make it possible to run the game as a background process, which
allows more than one emulator to run in parallel over multiple machines. This
makes it easier to run larger populations over many generations.

The ideas around how to solve the problem sees large changes during the
development of the project. A path-finding algorithm, A*, is introduced to decrease
the search space for the GP Library. The algorithm is modified by the agents to
control where to move.

Even though the results from the thesis are not as good as hoped, we do see
agents that perform near competition level. The late discovery of a bug in the
game-API made progress difficult. Especially since a large amount of time was
used on different solutions to the problem that proved ineffective. However, the
thesis does show that it is possible to make agents, through Genetic Programming,
that improves when playing non-deterministic games. Further research is needed
to show if this approach may prove better than humans at playing Ms. Pac-Man.
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Chapter 1

Introduction

In 2007 a competition for creating agents that play Ms. Pac-Man started at the
“IEEE Congress on Evolutionary Computation 2007”. The goal was to beat the
standing world record (for humans) of 921,360 points made by Abdner Ashman in
2005. No machine has beaten that score yet; only receiving 36,280 points in the
game.

Ms. Pac-Man is a difficult game, even for most human players. Nobody even
knows if it is possible to make a software agent that can beat the current standing
high score, though, I believe that it this is highly likely.

In this thesis I will be looking at one approach to solve the problem; namely
through Genetic Programming. I will also use some other algorithms and methods
to aid the Genetic Programming in making agents for the problem, as the A*-
algorithm used for search in graphs.

However, the focus of this thesis is not Ms. Pac-Man, it is to see if the use
of Genetic Programming in “non-deterministic”1 games is a viable strategy. The
reason for using Ms. Pac-Man as a test bed for this problem is that it is a small
enough problem domain with enough variation that it becomes an interesting
problem to work on.

What is meant by non-determinism is randomness. Or more specifically, that
there are things that can not be predicted. Not that all things can not be predicted.
If that was the case then the game would not be interesting as there would not

1Non-deterministic is written in quotes as the non-deterministic behavior is dependent on how
random the pseudo-random number generator is.
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exist a strategy that would be better then any other. Another word for this would
be “stochastic”. Problems that follow rules but at the same time allows for some
random choice will require that the agents are dynamic enough to follow the
changes that occur. This is something that humans are good at, but that machines
still lack.

1.1 Motivation

The motivation for the research is to explore how modern Machine Learning and
AI algorithms can compete at the same level as humans in non-deterministic games.
It also presents itself as a good opportunity to learn more about how to use this type
of algorithm in a real and largely unexplored space, and maybe discover something
new along the way.

That is not the only reason for doing this as it also is an excellent opportunity
to experiment with distributed parallel processing. Which is interesting in itself as
processors come with more and more cores and we need to distribute the work we
do over more machines to complete heavy calculations within a reasonable amount
of time. As the web page for the Ms. Pac-Man competition states:

This is a great challenge for computational intelligence and machine
learning, and AI in general.

This project will aim to show, through Genetic Programming, that modern
AI algorithms can be as good as humans on non-deterministic problems and that
computers are not restricted to deterministic problem spaces like chess and checkers
where it is possible to calculate every possible move (though impractical).

The approach for the project also has the opportunity to be transferred into other
similar problem spaces. An example could be the “pacman-vs-ghosts” competition
where the aim is to create an agent for Pac-Man and another team makes agents for
the ghosts. The Pac-Man agent then tries to get the most points, while the ghosts
try to stop Pac-Man from getting any points. More information can be found here
http://www.pacman-vs-ghosts.net/.
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1.2 Organization of the thesis

The thesis is divided into 6 distinct chapters. Each chapter will present a different
topic. The first chapter is the introduction; this chapter. It describes the motivation
behind the research and why it has been done.

The next chapter talks about the domain of the thesis, namely Ms. Pac-Man.
It will discuss what Ms. Pac-Man is, what the problems in Ms. Pac-Man are, and
what others people have done in the same area.

The third chapter will introduce the theory that the thesis builds on. It gives an
overview of what Genetic Programming is and the different topics within Genetic
Programming. It will also give a quick overview of some of the other algorithms
and techniques that have been used during or in the development of the project.

The fourth chapter will show how the system has been design and will go in
depth into how the development has progressed through the different iterations of
the project. It will also describe the different tools that have been used. Lastly, it
will show some samples of the code that have been created for the project.

In the fifth chapter there will be an evaluation of the different parts of the
system according to the criteria that was set in the development stage of the project
and some flaws in the design will be highlighted. It will also present some of the
experiments that have been conducted in the different iterations of the project.

The last chapter will give a brief summary of what has been done before it
explains what conclusions can be drawn from the research. Then, at the end, it
will look at what further research can be done to improve and expand the research
presented in the thesis.
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Chapter 2

Ms. Pac-Man

Ms. Pac-Man is an arcade game released by Midway in 1982 and is a modification
of another popular game, Pac-Man, made by Toru Iwatani for the Namco Company
in 1980. The original game is completely deterministic and can be cleared with a
perfect route. While in Ms. Pac-Man the ghosts will sometimes randomly change
direction. This makes it a lot more interesting to create agents for the game, as the
agents have to decide what path it should take instead of just finding the optimum
path. The general game play is well described by Lucas (2005):

The player starts with three lives, and a single extra life is awarded
at 10,000 points. While it is never a good idea to sacrifice a life, it
may be better to take more risks when there are lives to spare. There
are 220 food pills, each worth 10 points. There are 4 Power Pills1,
each worth 50 points. The score for eating each ghost in succession
immediately after a power pill starts at 200 and doubles each time. So,
an optimally consumed power pill is worth 3,050 (= 50 + 200 + 400 +
800 + 1,600). Note that if a second power pill is consumed while some
ghosts remain edible from the first power pill consumption, then the
ghost score is reset to 200. Additionally, various types of fruit appear
during the levels, with the value of the fruit increasing with each level.
The fruit on level one is worth only 100 points, but this increases to
many thousands of points in higher levels. It is not necessary to eat

1This thesis uses the term super pill.
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(a) The start screen of Ms. Pac-Man (b) A game of Ms. Pac-Man

any fruit in order to clear a level.

The interesting thing about this game compared to other versions of it, or
other arcade games, is that the agents can not just find an optimal path that can
be followed to clear the map, like in Pac-Man. The path of the ghosts move in a
non-deterministic way and the agent has to be highly dynamic to be able to avoid
the ghosts to receive a high score in the game.

In contrast to what some other researchers have done when making agent that
play games like this, and especially the others who have been researching the same
as me, I will not make my own clone of the game (Lucas, 2005, Robles and Lucas,
2009). I will be using an emulator and using the old arcade binaries. I will in other
words play the original game and not a clone that might not behave in the same
way as the original game.
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2.1 Research on the Ms. Pac-Man Problem

The Ms. Pac-Man problem is superficially very simple, but under the surface it
becomes incredibly complex. This complexity stems from the non-determinism of
the game.

There are some papers that are interesting for the work done in this thesis and
this section will be looking at some of them. Even though none of these papers use
Genetic Programming in their attempt to solve the problem they are still interesting
to look at to find ideas for how to represent the problem and to get some other
perspectives on the problem.

2.1.1 Evolving a Neural Network Location Evaluator to Play
Ms. Pac-Man

This paper, by Lucas (2005), is probably the closest paper to the topic of this thesis.
It is also using evolution to evolve agents for Ms. Pac-Man. The difference though
is that this paper evolves Neural Networks instead of computer code. Another
difference is that the game that is used in the experiments is only an approximation
of the original game and is implemented by the researcher. Though, some of the
differences make the game harder than the original, the behavior of the ghosts
are very different from the original behavior in the game. The way the agent
handles control over Ms. Pac-Man is that it evaluates all the possible next locations,
given the current node. The control algorithm will then move into the node that
receives the best score. It uses a feature vector designed by the author, but says it
would be better if it was possible to use all of the features in the game to control
where to move. This vector is input to the neural network. The neural network
was then evolved over generations where the overall objective was to evolve the
best agent possible. The quality of play was measured by averaging the score
over a significant number of games (e.g. 100). The results from the research
is a bit disheartening to see as they were only able to perform at the level of a
“reasonable novice human.” Around 4,500 points. Especially because this paper
uses an approach that is somewhat similar to the one in this thesis.

6



2.1.2 Learning to play using low-complexity rule-based poli-
cies: illustrations through Ms. Pac-Man

The method used in this paper, by Szita and Lõrincz (2007), is reinforcement
learning. They make the argument that Ms. Pac-Man meets all the criteria of a
reinforcement learning task. They say that

• The agent has to make a sequence of decisions that depend on its observation.

• The environment is stochastic.

• There is a well-defined reward function.

• Actions influence the rewards to be collected in the future.

The controller of the game is encoded by a compact decision list. The compo-
nents of the list is selected from a large pool of rules. The rules are either hand
crafted or automatically generated. A selection is learned by using a method called
cross-entropy, a global optimization algorithm.

The game that is used in this paper is also implemented by the researchers. The
behavior of the ghosts in this implementation is different from the original ghosts.
In this version the ghosts will move towards Ms. Pac-Man 80% of the time and
move randomly the other 20% of the time.

The results from this paper shows better results than the previous paper and
manages a score of around 9,000 points. The problem however is that there is a
significant difference in the implementation of the game, and that could have a lot
to say. This is not a problem for the paper though as the score in Ms. Pac-Man
is not the end goal of the research. The interesting part for the research in this
paper is however the different rules that are used in the controller for Ms. Pac-Man.
It is interesting to see what they are focusing on and that they also focus on the
immediate surroundings of Ms. Pac-Man.
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2.1.3 Pac-mAnt: Optimization Based on Ant Colonies Applied
to Developing an Agent for Ms. Pac-Man

In this paper, by Emilio et al. (2010), an optimization algorithm based on ant
colonies is used to develop competitive agents for Ms. Pac-Man. A genetic
algorithm is then implemented to optimize the parameters for the artificial ants.

The aim of the paper is to verify if Ant Colony Optimization can be used to
develop competitive agents for real-time video games. The paper also uses its own
implementation of Ms. Pac-Man, but also tests it against the original game.

The way the controller works is that it tries to optimize the score it can achieve
in any given situation. It calculates the score by defining 2 types of ants. The first
is the collector ant. This type of ant is used for collecting points. The second
type is the explorer ant. It tries to find safe paths to prevent Ms. Pac-Man from
being caught. The ant colony has a wide range of parameters that the genetic
algorithm can optimize. Some of the parameters include the size of the colony, and
the maximum and minimum distance the ants will travel.

The system presented in the paper shows interesting results. It is much higher
than the previous papers and can show the best score of 20,850 points. The
interesting part in this paper is that a genetic algorithm was implemented and
showed that it is possible to use evolutionary methods to get higher score than what
has been achieved earlier.

2.1.4 Ms. Pac-Man competition results

To get a better understanding of the difficulty of the Ms. Pac-Man problem we will
look at the performance of the agents at the first and latest competition event.

We can see the first results in table 2.2. The results from the first competition
was rather poor with the maximum score of 3,810 points made by the default agent.
Though, one of the contestants could not get their agent to run at the event, but
would later manage to get over 17,000 points.

In the latest competition in 2011 we can see from table 2.2 that there is a
significant improvement from the first time the competition was held. Now the
highest scoring agent is over 36,000 points. That is almost 10 times as much as the

8



Default Wirth Handa Elno
1,330 1,120 1,000 650
230 820 1,300 1,040
1,940 780 2,170 1,310
2,390 1,250 1,760 1,790
2,990 3,370 1,880 1,360
2,060 1,700 1,310 680
3,810 1,490 2,270 620
3,140 1,990 2,270 620
3,149 1,990 2,210 1,830
1,010 1,380 1,700 1,370
1,990 2,830 1,910 1,160

Max 3,810 1,673 2,270 1,181
Mean 2,269 3,370 1,751 1,830

Table 2.1: Results from the 2007 competition (Lucas, 2007).

best scoring agent in the first competition. The score is however a far cry from the
best a human has achieved.

Something to note is that all of the agents have wild differences in how they
score in different runs. I think this really shows us the effect the stochastic nature
of the game has on the performance of the agents.
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Bruce Kyong-Joong Nozomu Ruck TsungChe
12,180 5,070 23,870 12,290 6,350
13,700 8,300 20,150 19,330 8,420
12,640 19,900 30,200 21,250 7,770
3,240 6,560 36,280 23,690 16,790

Prior 10 runs 7,570 9,020 21,410 13,660 20,300
5,370 13,900 16,830 9,110 13,880
7,960 8,549 32,310 15,760 7,310
12,180 7,690 20,640 24,060 8,350
3,880 16,600 31,940 25,420 14,520
6,790 12,750 24,580 15,730 19,810
6,800 (15,760) 24,460 21,860 (12,840)

Live session runs 5,930 (12,360) 16,130 27,240 (4,920)
5,180 12,380 18,530 5,440 5,710

Max 13,700 19,900 36,280 27,240 20,300
Mean 7,955 11,448 24,341 18,065 11,305
Note: Entries in parentheses was run after the live event.

Table 2.2: Results from the 2011 competition (Lucas, 2011a).
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Chapter 3

Genetic Programming and related
concepts

This chapter discusses the theories and literature that the research relies on. It
will present an extensive review of Genetic Programming. In addition it will also
explain some of the problems that may occur when using Genetic Programming
to solve computational problems. It will also discuss the other algorithms and
techniques that were used in the thesis.

3.1 Genetic Programming

Genetic Programming is a method that uses the mechanisms of evolution to evolve

code into a form that is good enough as a solution for the problem at hand. It is not
expected to produce a perfect solution, but an approximation towards it. This can
be handy in situations were one does not know what a prefect solution is. As an
approximation of natural evolution on computer programs the method is part of a
larger set of algorithms that are called Evolutionary Computation or Evolutionary
Algorithms.

Before continuing, to make it easier to follow the text onward, it would be
helpful to define a few terms. First, there should be a distinction between the terms
“code” and “program”. From here on out I will use the term “program” as the
instructions an individual created by the Genetic Programming Library consists

11



of. Even tough I could use the term individual, I feel it is a way to disambiguate
between the instruction set defining the program in an individual and the full
individual defined by its program, fitness and other data.

This does however create a new problem when addressing the instructions the
system consists of. To resolve this I will be using the term “code” when discussing
these parts of the system, but, to keep confusion to a minimum, I will try to use
the name of the part or address it as the system or otherwise try to avoid using the
term “code” when possible.

By solution, in this context, it is meant a means of solving a problem, not
a correct answer. This thesis is not looking for correct answers, and neither is
Genetic Programming. I want to find approximations to good enough solutions.

Even though these two things are the same, both are instructions for the machine
to perform, I think it will be easier to understand the overall text if we differentiate
between them as it will no longer be needed to figure out what is being discussed
from the context.

3.1.1 Representation

The most common representation for Genetic Programming is a syntax-tree where
a function is a node and variables and constants are terminals (Poli et al., 2008a).
To create the programs GP uses a set of primitives, which is a combination of
predefined functions and terminals.

Function set

The function set is the set of predefined functions that the genetic programming
library is allowed to use during creation and mutation of the individuals in the
population (Koza, 1992). What this set consists of is dependent on the problem at
hand. A function set to approximate the function x2 +3 might be {∗,+}. Observe
that the constants and the x-variable is not in the function set. This is because the
constants and variables are not part of the function set.

12



Terminal set

The terminal set is the set of terminals, or leaf nodes, for the individuals. These
are there to ensure that the functions have access to values for their arguments.
Terminals can be constants or variables (Poli et al., 2008a). If they are variables
they are usually there to be used by the fitness function to test the program or
meant as the input of the function being created. To represent the terminal set in
the example used earlier in explaining the function set, a valid terminal set could
be {1...5,x}. As we can see here all the numbers between and including 1 and 5
are in the set, but if we look at the problem it only contains 2 and 3, and we could
have just put them in there, but this is to highlight the fact that the reason for using
GP is that we are unsure of the best solution to a problem and need something that
works. So usually when working with GP one will be working without knowing
what is best, therefore one should put a range of variables and constants in the set
to ensure that it covers the basis of the problem.

Sufficiency

It is important that the representation of the individuals together with the primitive
set is sufficient for the problem at hand. By sufficiency it is meant that the
representation is capable of expressing most, if not all, of the solutions to the
problem (Langdon et al., 2008). If it is not able to do that the Genetic Programming
Library will not find a satisfactory solution. Proving sufficiency can be very
difficult, especially if the problem is poorly understood. It is not strictly necessary
to prove that the primitive set is sufficient, but one should at least have a general
idea if it is the case or not.

Trees

The most popular way of representing programs in Genetic Programming is to
represent them as syntax-trees. This is because it is both easier for the researcher to
reason about and is easily machine-readable (Back et al., 1997). Looking again at
the previous example, the tree-representation of the solution to the problem could
look something like this:

13



+

*

x x

3

Normally this would be represented as a list inside the Genetic Programming
Library and could look like this:

(+ (* x x) 3)

As we can see, this looks unmistakably like lisp code. This makes lisp an
excellent candidate for Genetic Programming and many libraries that already exists
for Genetic Programming are written in a lisp (see: Koza (1992)).

Linear

Linear representation of programs in Genetic Programming has also been used as
it is closer representation of imperative programming and how many of the most
popular programming languages works (Brameier and Banzhaf, 2007). Again, the
same example as before can be represented as follows if one wants to use this type
of representation:

R0 := I0 ∗ I0;

O0 := R0 +3;

Here the representation is in a C-like syntax where R0 represent a registry
address, I is the input registry and O is the output registry. This representation is
closer to the imperative programming paradigm and might be easier to comprehend
and use than the tree-based representation for some users.

3.1.2 Initialization

Initialization of a new population can happen in several ways, but the most common
is random creation of new individuals (Poli et al., 2008a). The reason for this is that
one does not always know what a good solution is and a random population is as
good as any guess. Another way of initialization would be to prepare a population
by hand based on the functions provided in the function set.
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The two simplest ways of generating the population is to use either the methods
called grow or full. We will be discussing these two and a third, very popular one,
called ramped half-and-half.

Full

In the full-method the tree is created by starting at the tree’s root node and creating
nodes from the function set until the tree is at full depth (Poli et al., 2008a). When
full depth is reached only terminals can be chosen. The reason for the name “full”
is that it creates trees where every node is filled to the full starting depth.

Using the primitive set {+,−,∗,1...5,x,y,z} and the depth 2 a sample tree
could be:

*

*

z 4

+

7 x

Grow

The grow method allows for more shapes than the full method. Instead of selecting
nodes from the function set it selects its nodes from the full set of primitives. But
as with the full-method, it can only select terminals when the specified depth is
reached (Poli et al., 2008a).

Using the same primitive set and depth as in the full-method grow could produce
a tree like this:

*

y -

x 1
As we can see, this tree is also expanded to the specified depth, but if we look

at the left leaf of the top node we can see that it is a terminal while the right node
is a function. When the right node reached the specified depth we can see that it
also only contains terminals, as with the full method.
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Ramped half-and-half

Ramped half-and-half is a method proposed by Koza (1992). It is a combination of
the two previous methods where half of the population uses full and the other half
uses grow. It is also normally used with a range of depth limits. This is to ensure
that a large pool of tree of various shapes and sizes are generated for the initial
population.

3.1.3 Fitness Evaluation

The fitness evaluation is the part of the program that determines how well a single
program is performing. There has to be a way to evaluate the programs and this is
the function that does that. Usually, this happens by deciding a metric on how to
evaluate the performance of a solution. There are two ways of doing this depending
on what the goal is.

If the goal is to achieve an approximation of a value, e.g, one tries to find a
better compression algorithm for an image, then the interesting value is not the
bit-string representing the image but the difference between the original and the
compressed version. In this instance we can make the metric of the fitness function
the absolute difference between the image produced by the program and the image
from the known algorithm (Back et al., 1997). In other words we would like a
value as close to 0 as possible.

If on the other hand the goal is to do as good as possible when playing a game
we may want to choose the high-score of the game as the metric for the fitness
function. In this case the best individual is the one with the highest score in the
game. This is a type of competitive fitness score that fits well in problems that are
naturally competitive and where it is difficult to compute an absolute metric for the
individuals (Back et al., 1997).

In the end the way the fitness score is evaluated depends heavily on the task
at hand. The fitness function is also the part of GP that drives how the population
evolves. It is therefore crucial to create a fitness function that can put a metric to
how good a program performs the given task (Koza, 1992).
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3.1.4 Selection

Selection happens after the fitness function has evaluated the individuals within the
current population. Selection then sorts and selects individuals that are acceptable
for inclusion in the new generation. There are more than one way of doing this
selection and we will discuss some of them.

Rank-based selection

Rank-based selection is normally not used as the only selection form if it is used
at all. What rank-based selection does is that it selects a predefined percentage of
the best of the previous population to be used for generation of the new generation
(Back et al., 1997). It is however often used as a supplement to the other selection
methods in that a small part of the best of the previous population is included
in the new generation. In conjunction with other selection strategies this type of
selection is often called elitism. Elitism should be used sparingly, but can prove to
be beneficial to the overall health of the population (Poli et al., 2008b). In this kind
of situation the selected individuals are usually not used in the recombination step,
but instead just copied into the next generation.

Why rank-based selection is not used as the sole selection method is because it
will most likely lead to a rapid loss in diversity for the population. The best of the
population will very quickly take over the population and squeeze out all variety.
This makes it so that further advancement comes at a much higher cost than with
other selection methods.

Fitness proportionate selection

A popular form of selection is fitness-proportionate selection. It is popular because
it is easy to implement and understand. It also usually gives satisfactory results.
The problem, however, is that it can be slow on large populations.

The way it works is that it calculates the chance of selecting an individual from
the population based on the proportion of the total fitness of the population the
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individual holds (Holland, 1975). Or in mathematical terms:

pi =
fi

∑
N
j=1 f j

Where pi is the probability that the i-th individual is selected, N is the amount of
individuals and f is the fitness of an individual.

Tournament selection

Tournament selection is another popular form of selection. It is usually much
faster than fitness proportionate selection because it does not have to calculate the
probability of selection for every individual every generations.

Instead, tournament selection selects n individuals randomly from the popula-
tion and then selects the best individual to be used for the new generation (Blickle
and Thiele, 1995). The following pseudo code shows how it is implemented:

tournament(tsize, population):
for i → 1 to tsize do:

a′i→ chose individual with best fitness from tsize randomly

chosen individuals from population.
return {a′1, ...,a′tsize

}

Where tsize is the size of the tournaments.

3.1.5 Recombination

Recombination is the name for the function that handles the creation of new
individuals for the next generation. There are three main ways that recombination
can happen; mutation, reproduction and crossover. Reproduction is merely taking
an individual from the population and copying it into the next generation. Mutation
and crossover however are a bit more advanced and the next sections will therefore
explain them with more depth.

Mutation

Mutation is usually a rare occurrence but can be really beneficial when it happens.
This is because it has the potential to introduce new bits of code that the population
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doesn’t already contain. This also makes it helpful in preventing a homogeneous
population.

There are 3 main ways for mutation to happen: Replacing, removing and
constant mutation. The names of the mutation types are rather self-explanatory,
but there some things that might not be that intuitive so we will still describe the
different types.

A replacing mutation is a mutation that replaces a part of the program with
a new that is (usually) generated from the function and terminal sets (McKay
et al., 1995). The generation happens much in the same way the generation of new
individuals, but with more restrictions like shorter depth and width.

A removing mutation will remove something from the program. This depends
a bit on the structure of the representation of the program. E.g., in a tree representa-
tion the mutation can remove a node from any point in the tree. One can of course
set restrictions on how a removing mutation behaves as well (Angeline, 1997).

A constant mutation is a bit different from the rest of the mutation operators.
It will instead of only mutating an individual, affect all individuals in the new
generation that contains that constant. What happens is that a constant is chosen
and changed either randomly or by design (Schoenauer et al., 1996).

These are the general mutation operator that exists, though there are other
specializations of these operators.

Mutation is not necessary to have a working GP process, as shown by Koza in
Koza (1992) and Koza (1994), but it can be advantageous to include low rates of
mutation (Koza et al., 1996).

Crossover

Another type of recombination is crossover. This type of recombination is there
to represent how sexual reproduction happens in biological processes. Crossover
is done by exchanging nodes in two or more individuals (Poli et al., 2008a). The
selection of which nodes to exchange depends on the restrictions on how programs
can be put together. It is also possible to put other restrictions on the crossover
function. The easiest way to implement crossover is to select a random node in
each parent. The nodes are then exchanged, putting the selected node in place of a
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node in the other parent. This type of crossover is called uniform crossover (Poli
and Langdon, 1998). There are other types of crossover that are more specialized
on were the crossover happens within the parents.

What one has to be aware of when doing crossover is the types of input the
different functions can receive. The danger her is that a crossover might replace a
node with a node that returns something that the parent can’t handle. This can lead
to type errors. E.g., if a node that returns a number, like +, is replaced with a node
that returns a list of numbers, like (map inc [1 2 3]) and the parent node is

* then, when the parent node is evaluated, it will throw an error that states that a
list cannot be thrown to a number and stop working.

It is important to be aware of this type of problem when building the crossover
selector, and to some extent, the primitive set.

3.1.6 Problem areas

Other than the problems already discussed there are some aspects of Genetic
Programming that tend to be problematic. We will discuss the most prevalent ones
here.

3.1.7 Bloat

Bloat is a common problem within Genetic Programming. It is also difficult to
prevent as there are many different aspects of Genetic Programming that in synergy
can affect the emergence of bloat in the programs, but there are some areas that
might be more worth to investigate than others.

Especially in the definition of the problem domain and how the GP Library
builds the programs and how it combines them into new ones. It is here possible
to define restrictions on the way the program grows and how it evolves. But the
easiest area to control bloat is by introducing new selection criteria based on not
just the fitness score the individuals receive. E.g., one could look at the size of
the programs and give the programs that are smaller but the same fitness a bigger
advantage than the larger programs. This is called the parsimony pressure method
(Koza, 1992).
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There are plenty of other ways to control bloat in the population both by
creating mutation operators that ensure smaller children and putting size and depth
limits to how large an individual can grow (Poli et al., 2008a), but the measures
that need to be taken depends on the project and the specific problems that occur.

3.1.8 Diversity

Ensuring diversity in the programs can be a real challenge. Even though there are
ways to detect homogeneity in the population, it is difficult to decide on a good
solution to the problem that doesn’t introduce new problems itself.

It is possible to estimate diversity by looking at the variety of the population.
If the number of distinct individuals falls below an acceptable threshold (usually
around 90%) there might be problems with diversity in the population. However, a
high variety is not necessarily indicative of a diverse population. The reason for
this is that there might be programs that look different, but mainly do the same
thing (Poli et al., 2008a). Also known as introns.

3.2 Other research

Here we will be looking at some of the different sources for the theory behind
Genetic Programming and other concepts that is used in the thesis; like the A*-
search algorithm.

3.2.1 A*-search algorithm

A* is a heuristics search algorithm that is excellent for finding paths in graphs.
Invented at the Stanford Research Institute (Hart et al., 1968), it is an extension
of Edsger Dijkstra’s 1959 algorithm (Dijkstra, 1959). It tries to find the shortest
path through a graph by looking one node on the shortest path it has found for now
and choosing the node that has the shortest distance towards the goal. This strategy
ensures that A* will always find the shortest path through the graph.
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3.2.2 Memoization

Memoization is a technique for optimizing pieces of code. It does this by limiting
the amount of repeat calculations that can happen in a computer program. This is
done by storing the calculations it does, and then the next time the function needs
to do the same calculation for the same input it will use a look-up table to retrieve
the previously calculated value from memory (Michie, 1968).

Memoization can easily be done automatically as long as the function that
it is done for does not affect state elsewhere in the program and has no side
effects (Norvig, 1991). It is especially efficient on recursive code that generally
has a large potential of recalculating previous results. An often used example
of memoization is the calculation of the Fibonacci-numbers, which, when done
naively, will calculate all past Fibonacci-numbers for every Fibonacci-number
calculated.

The problem with memoization though is that it will use a lot more space than
what the function would do otherwise. On machines with plenty of memory this is
generally a good trade of, but if one is willing to do this depends on the magnitude
of memory the memoized version of the function needs versus the speeds gains
received.

3.2.3 Socket programming

Sockets are a tool for enabling programs to communicate over computer networks.
The way it works is that a server listens to a socket on its end of the line waiting
for a connection from another machine. A client will then connect to that machines
socket and if it receives a reply that the connection is open and ready it will send
a message. The client will then usually wait for a response from the server. The
server will take the message from the client and either do some calculations on
the message or pass it a long to another machine. After the server has finish the
calculation it will respond back to the client. After the client has received the
response it needs, the connection between the two machines are usually closed by
the client (Stevens et al., 2004).
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Chapter 4

Design and Development

The topic for this chapter is the design and development of the system. The chapter
will go over the requirements, the design and will show a diagram over the system.
The development of the system has required the use of a lot of different tools and
the chapter will therefore also be presenting these as well.

There are 3 main parts of the system, the Genetic Programming Library (GP
Library), the Emulator and, the Distribution Framework, each with their own sub-
parts. I will be trying to explain in detail what each of these parts do and how they
interconnect with each other.

4.1 Requirements

It is important to know what is needed to implement for the Genetic Programming
Library and how the emulator should behave. Firstly, there are some rules for the
competition the agents should follow. The rules are:

1. The program should interact with the game by capturing screen pixels.

2. The program should not noticeably slow down the game.

3. The program will have three attempts at playing the game.

This means that the system should not access or acquire any information
directly from the memory of the machine running the game. The agent should find
all the information it needs in the bitmap capture of the screen.
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Secondly, the Genetic Programming library should be able to do some opera-
tions. It should be capable of

• creating random individuals.

• mutation of individuals.

• crossover of two individuals.

• fitness-proportionate selection.

• elitism on a generation.

• running a fitness test.

Some of these requirements are obvious, but it is important to know what needs
to be done to get an overview of how long time the development will take. Other
things are also good to know, like what selection process to use. The earlier these
decisions are made the easier it is to plan for the eventual implementation of that
part of the program. Though, one could argue that if one does not know what the
actual implementation is going to be then one would have to keep a more overall
open design in the whole system to later accommodate for these decisions.

The emulator should also be able to do some basic things that are needed to
succeed with the project. It should be able to

• run the original binaries of Ms. Pac-Man.

• run with and without a graphical user interface.

• provide an API for access to key areas in the game.

The reason I want to run the original binaries is that it ensures that the project
is using a version of the game that is as close as possible to the original behavior
of the game and to the parameters of the competition. It also ensures that no bugs
are introduced into the behavior of the ghosts, which is one of the most important
parts of the problem. The only problem here though is that the emulator might
already have some unknown bugs. I also want the emulator to be able to run in the
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background instead of with a GUI so fewer resources are used, and it can run on a
server that has no way of displaying a GUI. The last thing is an API, and there is at
least the need for a minimal API the agents can use to get the state of the screen
and send commands to the game to move Ms. Pac-Man. Without this it will be
very hard to do anything.

The Distribution Framework should be as simple as possible, but there are
some criteria that it should follow. The framework is divided into two parts, the
client and the servers.

The client should be able to

• distribute and set up servers on a set of machines.

• check which servers are available to process the individuals.

• split a population up into equal parts and send them to the servers for pro-
cessing.

• Receive back the processed individuals and put them back together before
sending them back to the GP Library.

The servers should

• Look to see if anyone is using the machine it is running on.

• Tell the client that it can not process anything if this is the case.

• Run the fitness function for the individuals.

• Return the processed individuals back to the client.

The reason for looking to see if there is anyone using the machine is to avoid
using up the resources that are available. This is to make it less likely that a
machine is turned off while running the fitness test and data is lost.

4.2 System diagram

Here is a diagram showing how the different parts of the system interconnects.
A more detailed version of the Genetic Programming library can be found in the
section for the development of the Genetic Programming library.
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Figure 4.1: A diagram over the full system.

What figure 4.1 shows is that the GP Library creates a population. The pop-
ulation is divided by the Distribution Framework and sent in equal pieces to the
different machines in the machine park of the Distribution Framework. Each
machine then runs a fitness test for each of the machines. During the fitness-test
the individuals send commands and receive the state of the program from the API
wrapped around the game running on the emulator.

4.3 The Genetic Programming Library

The Genetic Programming Library consists of 3 sub-parts: The part that creates
the generations, the part that runs the generations and, the specification of the
individuals. It has gone through many changes to how it works, but there has been
a general design idea throughout the process.

4.3.1 Diagram over the Genetic Programming library

This is a diagram over the flow of the Genetic Programming library. It show a
simplified overview of how the population is transformed through the generations
and what happens at the different stages of the generations. It does, however, not
show the connection it has to any of the other parts of the system. Most of the
implementation specific details are glossed over. This is especially evident in how
the fitness of the individuals are calculated as this is done through the Distribution
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Figure 4.2: A diagram over the Genetic Programming library.

If we look at figure 4.2 we can see that first, a population is created. This
is done by running the expand function for each new individual that should be
created, i.e., for the size of the population. The population is then passed to fitness
evaluation. After fitness evaluation the population is pass to recombination were
the individuals that are fit for the next generation are selected through fitness-
proportionate selection. There are 3 paths for the selected individuals to take.
Either they passed through mutation, crossover or copying. The result of this is a
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new generation. The new generation is then passed back for fitness evaluation and
the whole things starts over from there. This process will happen until it is aborted
or a set number of generations is reached.

4.3.2 Individuals

How the individuals behave have changed considerably during the develop of the
system, but this section will only be discussing the last iteration of the individuals.

The representation of individuals is with a map that contains the fitness and
the program that the fitness-function runs. The programs are represented as a tree,
or more specific lists-within-lists; which is the preferred representation of data in
Clojure. This makes sure that instead of defining an evaluator for the “randomly”
created program, it is possible to use the evaluator already present in the Clojure
language. The only problem is that the programs have to conform to the Clojure
syntax and language specifications, but this is really a feature as it therefore will be
no difference between the system code and the created individuals.

The direction the individuals move in is controlled by a simple A*-search to
the currently most interesting point. The interesting points are the points that has
something Ms. Pac-Man wants to eat on it. To determine the most interesting of
these points, the individual modify a set of weights it gives each point. The point
with the lowest weight is the most interesting point. The weights are also used by
the A*-search to determine where it does not want to go. Every point on the map
starts at 0 and then additional weights are given or detracted depending on criteria
found through Genetic Programming. In other words, the A*-algorithm calculates
the shortest path to the interesting point (pill, super-pill, blue ghosts, fruit) with the
lowest weight, and moves in the direction of that path.

1 (do (adjust-point (get-pinky) 1000.0)

2 (adjust-point (get-superpill 2) 4)

3 (adjust-point (get-superpill 0) 0)

4 (adjust-circle (get-blinky) 103 1.0E10)

5 (adjust-point (get-blinky) 10.0)

6 (adjust-point (get-sue) 5))

Using the above individual as an example of what the programs can do, we
see here that the ghosts have their value adjusted such that the points they occupy
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have a higher cost than going another way (if the adjustment happens twice it is an
additive process, the value can never become lower). The adjust-circle function
will adjust everything around the point in a decreasing manner until it reaches the
circumference of the circle.

4.3.3 Generation of generations

The generator first creates a random generation from a specified set of functions
and terminals. This set is also further controlled by setting limitation in what
functions and terminals can interconnect with one another. The generator creates
the new individuals by selecting a random function that it expands in a guided
but semi-random way using the grow method of expansion. When the generator
creates a new generation from an old one it does many of the same things, except
for some small differences.

The population is moved to recombination where the individuals are select
by fitness-proportionate selection. A small change has been made to the way the
selection method selects individuals and now gives a small advantage to programs
that are smaller but have the same fitness as another program. The individuals that
are selected are then chosen for mutation, crossover or just copying.

Crossover requires two individuals. A node is selected in each individual as the
swap point. These nodes are swapped and two new individuals are moved into the
new generation.

Mutation has 3 different ways it can happen as well. It can either replace,
remove or insert a node in the code tree. Each of the three have an equal chance of
happening.

Copying, mutation and, crossover have a set percentage chance of happening.
The most likely is usually crossover. Then mutation and lastly copying with a small
percentage of the individuals moved to the new generation.

A small percentage of the best individuals in the population is can also be
moved into the new generation through elitism.
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4.3.4 Testing a generation

To test a generation a fitness-function is mapped onto each individual in the
population. There are two modes in which the fitness function can run. Either in
graphics mode or in server mode. In graphics mode it requires a GUI and it shows
the game as the agents plays it, but it requires a lot of resources and does not scale
well over multiple machines. The server mode runs without a graphical interface
and over multiple machines, this allows for more individuals to run simultaneously
and faster. The problem however is that it is not possible to see what is going on.

For the most part the generations runs in server mode, but when a problem oc-
curs that is too difficult to debug without visual confirmation of what is happening,
it is good to have graphics mode. This also means that there should be as little as
possible difference between the graphics mode and the server mode. To solve this
the graphics mode is now only a small layer on top of the server mode. It runs in a
thread alongside the emulator and agent and receives the pixel-map in the same
way that the agent does and for every tick of the Ms. Pac-Man world it will update
the visuals with the new pixel-map.

Keeping the graphical part of the emulator in a different thread also makes sure
that it has as little as possible impact on the performance of the agent as the agent
will not be dependent on the GUI to finish drawing the scene before it gets the
pixel-map itself.

4.3.5 Configurations

The GP Library has many configuration options that affect everything from the
size of the population, to how the population is created, to how many times the
fitness-function should run. A small change to any of these parameters could give
large changes to the behavior of the population and to the chances of finding a good
solution to the problem at hand. Because of the uncertainty in the configurations
it is very difficult to know if the reason for a poorly performing population is
that there is a problem with the understanding of the problem domain or just a
problem with the chosen configurations. It is also entirely possible that the current
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population is just unlucky1 for the time being. This section will be looking at the
different configuration options in the Genetic Programming Library.

Size of population

The most obvious configuration is the population size. A larger population size
can give more variety, but at the cost of having to run more fitness tests. A
problem however is that if the population starts to become homogenized, variety
will decrease much faster in a large population than in a smaller one. This is
because a small amount of different individuals will have a larger impact on a small
population than on a large one.

Rate of elitism

The elitism rate ensures that the highest performing individuals are not lost in the
next generation because they are unlucky. How elitism does this is that for each
generation a set percentage of the best performing individuals are copied into the
next generation. Individuals selected through elitism are also generally allowed
in the normal selection pool for the next generation. The elitism-rate should in
any case be low, around 1-5% of the population. Any higher and the population
risk loosing diversity. The risk of loosing the best performing individuals when
not using elitism can be quite high, especially with a selection method like fitness-
proportionate selection, which is design to also allow low performing individuals
to survive into the next generation. This means that there is a possibility for the
population to be unlucky and only low performing individuals survives into the
next generation.

However, there is the problem that keeping the high performing individuals can
over time remove diversity from the population as the same individuals are copied
every time into the new population. If these individuals are in a local maxima it
might be very difficult to get out of that maxima as the more there are of the same
individual the more likely it is to be chosen.

1By unlucky it is meant that a higher performing individual has been removed or the random
combination of new mutations or crossovers has not found a good match yet.
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Max starting depth and width of programs

It is possible to control how deep and wide the beginning programs can be. This is
both to ensure that the individual-creator does not go into an infinite loop, and to
control the size of the programs.

The size of the programs can be important as too small programs might lead
the GP Algorithm into a local maxima that can be difficult to get out of as the next
maxima demands a much larger program then what is currently possible.

Starting with very large programs is also bad as the larger the programs get,
the more random elements are introduced that are most likely bad for performance.
These bad performing elements then have to be removed from the population by
the Genetic Programming algorithm through the generations.

It is also generally a better idea to allow the programs to grow naturally through
the generations then starting with large programs, as randomly generated programs
can introduce a lot of unnecessary code. This means that the Genetic Programming
algorithm has to use more time pruning the code trees before being able to gain
performance by growing.

Mutation rate

The mutation rate controls the amount of mutations that happens during the recom-
bination. Depending on what one wants to achieve this configuration can either be
set really high, or, as it normally is, really low. A normal mutation rate would be
around 1.5%. It is also possible to cut out crossover as a recombination operator
and only use mutation (and copying).

The reason for a high mutation rate is to introduce more variety into a popu-
lation that has a tendency to drift into local maxima and produce homogeneous
populations. A larger variety will allow the population to escape the local maxima.
A low mutation rate is set if the population is able to hold a reasonable variety, but
sometimes needs a push in a new direction.

A mutation rate that changes with the population could also be set if it is
possible to have a good measure of the variety of the population. The mutation
rate will be high if the population is homogeneous, but low if the population is
more heterogeneous. This is similar to how Simulated Annealing works in that the
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configuration changes over time in accordance with how the population performs.

Crossover rate

This configuration is normally set very high. Most recombinations happens by
crossover. A normal rate would be around 90%.

Reproduction rate

This rate is not explicit on the source code, but is an aggregate with the crossover
and mutation rate. It is the missing percentage after crossover and mutation is
added together. If we look at normal mutation rate and the crossover rate we can
see that these percentages are quite low and around 8% of the recombinations.

Fitness runs

The last configuration that can be done to the Genetic Programming library is how
many times the fitness test should be run for the individuals. Getting the right
amount of fitness-runs depends a lot on the problem. For a functional problem
problem, i.e., that it is known that the generated function will always return the
same results, it is not necessary to test the fitness more than once for each fitness
case. If it is a stochastic problem however, like the Ms. Pac-Man problem, the
amount of fitness runs should be determined by how many times it takes to get
a good statistical sample of the average run of an individual. This can however
be problematic if it takes a really long time to run the fitness-function. If this is
the case, then a compromise should be met between the time it takes to run the
fitness-function and the accuracy needed to find a good average.

4.3.6 Restrictions on the GP Library

I have tried to keep the GP library as general and configurable as possible, but as it
stands now there are many things that are specific to the Ms. Pac-Man-problem
domain. Or, by that I mean that to write an extension to a new problem one will
have to change the code for the definition of the individuals. This definition is now
tightly coupled with the GP library. It is not difficult to do, but will take some time.
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It would be better if the individuals were defined in a domain specific language,
but this was not possible with the time limitations on the project.

4.3.7 Sample code of the Genetic Programming library

To get a deeper understanding of how the library does some of the more complicated
tasks we will be looking at some of the code that has been implemented. We will
be looking at the expand and fitness functions. The reason for looking at these
two is that the expand function will show how the individuals are created and
therefore gives some insight into the process of how the programs behave. The
fitness function on the other hand will give a deeper understanding of how the
programs play the game and what is needed to make a functioning fitness function
for the Ms. Pac-Man problem. The full and uninterrupted code can be found in the
appendix.

expand

expand is a recursive function. The recursion is ended if either a specified depth,
symbol, number or, empty node has been reached. The function then passes that
part of the individual to atomize to stop the expansion of new nodes. The
function takes a list of expressions together with the remaining depth it can go to
in the tree.

1 (defn expand [exprs depth]

2 (if (or (symbol? exprs)

3 (number? exprs)

4 (empty? exprs)

5 (< depth 1))

6 (atomize exprs)

If the function is none of these things then we can continue with the execution. The
first expression is always a function and doesn’t need an expansion; it stays where
it was as the first part of the list.

7 (cons (first exprs)

It is the rest of the exprs-list that has a possibility of expansion. We loop through
them and provide an accumulator for the new list. If there are no more terms we
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return the accumulator.

8 (loop [terms (rest exprs)

9 acc ()

10 expr-width (rand-int MAX-STARTING-WIDTH-OF-EXPR

)]

11 (if (empty? terms)

12 acc

For the rest of the list we check if it is any of these symbols and according to what
symbol it is we replace it with a random function from the set of function that are
of that type.

13 (let [term (first terms)

14 exp (case term

If the term is of type expr or expr+ we select a random function from the
function-list and expand it. We also decrement the depth expand can go.

15 (expr expr+)

16 ,(expand (rand-nth ind/FUNCTION-LIST)

17 (dec depth))

If it is expr? we check if a new randomly chosen number is smaller than the
EXPR?-RATE, it is then a new expanded random function is returned from the
function list. Else an empty list is returned.

18 expr?

19 ,(if (< (rand) EXPR?-RATE)

20 (expand (rand-nth ind/FUNCTION-LIST

)

21 (dec depth))

22 ())

For point, we return an expanded function from the point-list.

23 point

24 ,(expand (rand-nth ind/POINT-LIST)

25 (dec depth))

If it is none of these we return an atomized version of the term.

26 ,(atomize term))]
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Then the function loops on the list. If the term is of type expr+ we return the
terms as long as the allowed expr-width is greater than 0 (e.g., positive). In the
other cases we loop on the rest of the terms. The accumulator is then concatenated
with the expression created by the expansion of the terms. Lastly we decrement
the expr-width.

27 (recur (if (and (= term ‘expr+)

28 (pos? expr-width))

29 terms

30 (rest terms))

31 (concat acc (list exp))

32 (dec expr-width))))))))

fitness

fitness is the function that tests the fitness of the programs created through the
genetic programming. It takes the amount of times the test should run and the
program as arguments. It returns the sum of the different fitness-scores it achieves
divided by the amount of tries it does (e.g., the average).

1 (defn fitness [tries code]

msp (a global variable) becomes bound to a new object, the Game, which is the
Java code that runs the game for the fitness test.

2 (binding [msp (Game.)]

3 (loop [score 0

4 times 0]

If the set amount of times has been run or, it has run for 3 times and the average
score is still 120, the fitness function returns. This number is considered somewhat
special in that it represents the point were the program has in reality done nothing.

5 (if (or (<= tries times)

6 (and (<= 3 times)

7 (= (/ score times) 120)))

It then returns the score averaged over time.

8 (int (/ score times)
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If it does not end it starts the game and updates the game until it can receive
commands.

9 (do (.start msp)

10 (.update msp)

It then adds the new score to the previous score, and increments the amount of
times it has run.

10 (recur (+ score

This part of the program is the real running of the fitness test. Here it updates the
game state and runs the program in quick succession. It finishes with returning the
score that the code managed to achieve.

11 (do (while (not (.isGameOver msp))

12 (eval‘∼code)
13 (.update msp))

14 (.getScore msp)))

15 (inc times)))))))

4.4 The Emulator

The Emulators only function is to run the Ms. Pac-Man binary, but it has received
many modifications to make it run faster and smoother. An API was also built
over the emulator to make it easier to interface the GP Library with the emulator,
and to make the problem space the GP Library has to search through smaller. The
API has received drastic changes throughout the development. In this part only the
most resent version of the API will be discussed.

The API contains the code for starting the game and transforming the pixel-map
created by the emulator into discrete structures such that the programs created by
the GP Library more easily can understand the map. The map finds the positioning
of the different objects within the game and contains a path finding algorithm,
namely A*, that the GP Library utilizes.

After the rendering of the map the API will collect the pixel-map and process
the image. Before the game starts the full graph of the map is calculated. The
graph is then used for the remainder of that stage to calculate where all the entities
are on the map.
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It finds the graph by looking in 16*16 pixel blocks, which is the size of an
entity on the map. Starting in the uppermost corner of where it is possible for
anything to move, it looks in every corner of the 16*16 block to see if any of the
four corners are not black. If this is true, it is not possible for an entity to move
there and the point gets removed from the graph (, i.e. all corners needs to be black
for it to be possible for any entity to move into the position). The API needs a set
of different functions to look for each entity, but the method to produce them is
basically the same: For each point on the graph it looks in the 16*16 block for a
pattern matching any of the entities available on the map. If a block matches a
pattern the entity is in that block.

4.5 The Distribution Framework

The reason for the Distribution Framework is that during development I discovered
that running a large population over many generations was very slow. It could
take days to run experiments and tests that needed multiple generations to give
meaningful results. After some deliberation, I decided that I could use the many
idle machines that are stationed in computer labs around the university.

The Distribution Framework was therefore made to make it possible to run a
generation over multiple machines. It works by creating a server on each machine
in the machine park. The server is responsible for receiving individuals from the
controller and running the fitness test on them. This means that for each individual
it receive from the client it will start a new emulator and run the individual against
it.

The client is responsible for receiving a new generation from the Genetic
Programming library. It will split the generation up into equal sizes and send one
portion to each of the servers in the machine park.

The way the individuals are distributed is that a socket is opened to each of the
servers. Each portion of the population is sent as a character stream to the server.
The server receives the character stream and converts the character stream back
into individuals. This is not the fastest way to do this, but it is fast enough.
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4.5.1 Sample code for the Distribution Framework

In this section we will be looking at the implementation of how the Distribution
Framework splits a population into equal parts, and then sends the individuals
for processing on the servers. We will also look at how the server receives the
individuals and how it runs the fitness calculation over them and afterwards sends
the individuals back to the client. The full and uninterrupted code can be found in
the appendix.

Server/client

The client creates the individuals and splits them up into equal sizes, it then sends
each set of individuals to a machine.

1 (defn- send-inds-to-machine [individuals machine]

2 (try

It opens a socket to the machine and creates a reader to read the reply from the
machine.

3 (let [socket (Socket. (format ‘‘%s.klientdrift.uib.no’’

machine) 50000)

4 rdr (LineNumberingPushbackReader.

5 (InputStreamReader.

6 (.getInputStream socket)))]

7 (try

It then creates an output stream and prints the individuals to the stream.

8 (binding [*out* (OutputStreamWriter.

9 (.getOutputStream socket))]

10 (prn individuals))

In the end it wait for the reply from the server, converts it from a string to Clojure
data and returns it.

11 (read-string (.readLine rdr))

Finally it shuts down the connection to the server.

12 (finally

13 (shutdown-socket socket))))
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The function ignores all raised exceptions and if they happen we might lose some
data because of this.

14 (catch Exception e nil)))

The server receives the input and output stream of the connection.

1 (defn- run-fitness [ins outs]

It creates a new reader that gets read and the output string from the reader is
converted to Clojure data, which happens to be a set of individuals.

2 (let [rdr (LineNumberingPushbackReader.

3 (InputStreamReader. ins))

4 inds (read-string (.readLine rdr))

It then runs the fitness test on the individuals.

5 out (gp/run-fitness-on inds)

6 (binding [*out* (OutputStreamWriter. outs)]

and prints the result from the fitness test to the connection.

7 (prn out))))

4.6 Other considerations

In this case, and as it usually is with GP, there a considerable amount of problems
with defining the problem space and finding out how to approach the problem.
There are many things to take into consideration to make a functioning system that
also performs well.

4.6.1 Bloat

One of the ways the system tries to control bloat is to give programs that are shorter
an advantage over the longer programs. It has a slightly higher chance of getting
selected over the longer program.

Another way is that it restricts the way the GP Library creates and combines
new programs. How this is done is by adding constraints on the types for the input
and output of the functions. This helps to control bloat by avoiding configurations
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of agents where parts of the calculation is always thrown away. It is usually much
simpler to just allow any input to all functions and discard the input that the function
can not handle. The problem here is that this can build large patches of code that
does nothing.

4.6.2 Diversity

Diversity is more difficult to control. It is important to maintain diversity, but
there is no silver bullet that can auto-magically do it. Instead I have been trying
to look for this problem in the population by monitoring the scores achieved by
the programs. The thinking is that if there is over all the same scores for the
programs the diversity is low. However if there is a large difference in the scores,
the population is more diverse.

This is not foolproof and there are situations were it is not true that the popu-
lation holds a high diversity even though there is a large difference in the fitness
scores. E.g., if the way GP produces programs that produce highly disparate fitness
scores for each run then the same program can appear to be the best program and
the worst (in the most extreme cases). A way the system tries to diminish this
problem is by running the programs several times and then averaging the score.
This way it can make a much more balanced view of how the program performs.
There is a performance cost to this though so there has to be a balance between
running the program many times for accuracy and not running the fitness function
for a too long time.

It is also highly possible that different programs get very close to the same
scores. However, an optimal population will usually have some individuals that are
better then the rest, and some that are worse. If this line starts to get blurred, there
is something wrong with the population.

4.6.3 Emergent and unexpected behavior

Some emergent behavior will always appear when doing GP, and unexpected
behavior is per definition unexpected. I have been trying to minimize both these
two types of behavior from happening, though both forms have been observed
during the development. E.g., there was a problem were the most immediate
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solution to the problem at hand was to grow the program in size. If the program
was bigger it had more time to decide what it wanted to do and therefore it would
do better. This is a bad solution for the problem, even though it provides a better
score in the game, because performance is also tied to time constraints set by the
contests for the Ms. Pac-Man problem. The way this was solved was by putting
a constraint on the score such that a smaller program is always beneficial given
the same score in the game. This is not a foolproof plan, but gets rid of the most
extreme cases. The problem described here was also solved by making the agent
run after the game instead of at the same time.

4.6.4 Other

A problem that haunted the project for a long time happened when I was trying
to parallelize the system. The problem was that usually one program would not
finish and instead run forever. This seems like a problem that could be easily fixed,
but the problem was that this would happen maybe once during 10-15 generations
of 500 programs. The program would also be distributed over approx. 40-50
machines. That is a possible 7,500 agents running over 50 machines, and there is
only one program exhibiting the problem!

The first thought was that there had to be a problem with the program, but
after retrieving the program and running it locally the problem disappeared. The
focus then went over to that the machine might be the problem, that there had
to be some faulty software on that machine or hardware that interfered with the
operation of the fitness-run, but after removing the machine from the machine park
and again running the GP process for around the same amount of time as last time
the problem would reappear. This time with another program.

In the end I discovered that the problem was that in some extreme conditions
a thread that started the game after reaching the start screen would run and finish
before the game had created the next frame. This caused the game to not start and
there would be a program stuck at the start screen. The problem was solved fairly
easy after discovering the issue by making a loop that ensured the game had gone
past the start screen.

This problem would also appear later, but for a completely different reason.
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This time an agent was created that managed to find a configuration that would
always be able to avoid the ghosts, but would not pick up the pills and finish the
game. The problem was solved by putting a timer on the fitness function.

4.7 Tools

In this section I will discuss the different tools I have used to complete the project.
Why I chose the different tools and some of their strength and weaknesses.

4.7.1 Java

The system is partly programmed in Java because it is a language I was already
quite comfortable with, and that the Emulator the system uses to run the Ms. Pac-
Man game also is written in Java. Java is a nice language, but has a large amount of
syntax (compared to some other languages). It was therefore decided to use another
language that could intermingle with the java code for the Genetic Programming
library.

The problem with Java though is that it can be slower then other languages, but
it has good editor support and debugging utilities.

4.7.2 Emulator – CottAGE

CottAGE is an emulator built in Java. It has drivers for many old games, including
Ms. Pac-Man. In this project I am using a stripped down version of the CottAGE
emulator that now has the possibility to run in a headless mode, e.g., without a
graphical user interface, and that also can run multiple instances of the games next
to each other in the same JVM. CottAGE needed to start a new JVM each time
one wanted to run a new instance of Ms. Pac-Man, but during the development the
code was modified such that it is now possible for many games to run in the same
JVM without disturbing each other. This removes overhead when running the GP
Library and preserves resources.

Unnecessary code was also mostly removed so that the remaining code is only
the code that is needed to run Ms. Pac-Man. The reason for this is to both create a
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smaller footprint for the code and to make it easier to find where in the code certain
things happened, like where the score of the game is stored. Removing things also
made sure that I became more familiar with the code and had fewer places to look
for bugs if I needed to.

CottAGE is open source, but currently unsupported, software. It is the basis for
a new emulator, but it seems unsupported as well. The reason for using CottAGE
instead of the new emulator was that during the preliminary research for the project
I could not figure out how to run Ms. Pac-Man on the new emulator and there was
no available examples of it running Ms. Pac-Man or Pac-Man anywhere on the
web. The web-version of Ms. Pac-Man that the competition recommends is also
based on CottAGE.

4.7.3 Clojure

To develop the Genetic Programming library I decided to use Clojure as it is a
dialect of Lisp that works well together with Java. The reason I wanted something
that worked well with Java was that the Emulator chosen for the project is written
in Java. I also wanted to work with a lisp as it is a good match for Genetic
Programming in that it is easy to treat code as data and data as code. This allows
us to create code for the Genetic Programming task that is real code, and I don’t
have to create my own language that runs on top of everything else. In other
words the Genetic Programming library creates code that is Clojure-code. This
helps considerably as I also use standard Clojure functions inside the code of the
generated code.

4.7.4 Distribution – SSH – clojure-control

I soon discovered that running the system took considerable amounts of resources
and time and that I needed a way to either increase the speed of the code or to
allocate more resources. There is a limited amount of speed ups that can be done
to the code so I decided to see if there was a way to get more available resources. I
discovered that there were plenty of idle machines with linux installed all over the
university. This lead to finding another open source project, clojure-control, and
made a distribution platform, through SSH, to distribute the work load onto all of
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the available machines. This worked for some time, but, because of instability of
the connection between the machines, another solution was devised.

In the end I ended with implementing a client/server-architecture where the
client would create and manipulate the generations and each machine in the network
would run a server capable of running the fitness test. The client would then split
and distribute the generation over the available servers.

4.7.5 Git – github

The project uses git as its version control software. Git is well suited for the task in
that it is easy to work with and easy to find a host for the code. I decided to use
github as the host because, at the time the project started, github said they would
provide a closed repository free of charge for students working on projects for their
education.

4.8 Iterations

There have been many changes during the coding of the problem as new ideas have
formed and new problems have been discovered. This chapter will be looking at
these problems and changes and how the program evolved during the development.
It will however not go into any depth for the experiments that were done through
the iterations. This topic will be presented at a later stage.

4.8.1 Iteration 1

Iteration 1 of the development consisted almost exclusively of trying to figure
out how the emulator worked so that I could make a version of it that runs in the
background and is not dependent on a GUI and, making a preliminary Genetic
Programming Library.

For the GP Library I focused on a minimal function set that I thought might
be able to create increasingly better programs. The functions were at this point
defined as:
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• (move-left), (move-right), (move-up), (move-down)
These functions would be responsible for changing the direction Ms. Pac-
Man would move in.

• (do expr+)

do would allow for sequential execution of commands.

• (get-pixel int int), (get-pixels)
These would allow access to the value of a specific pixel or all of them.

• (if expr expr expr?)

if allows for branching.

• (rand-int 288)

rand-int would allow for random integers to the height of the map.

• (= expr+), (msp> expr+), (msp< expr+)

Comparison operators are important for the programs to discover distances
and find things in the images provided by the emulator.

• (or expr+), (and expr+)

or and and gives an alternative to using the branching operator for every-
thing.

• (msp-sleep)

msp-sleep puts the running thread to sleep. This is for the program to
time specific events.

• int

int is not an operator but a placeholder for a constant. On program creation
the expand-function will transform this into an integer and use it as a terminal.

• ()

The program uses the empty list as a terminal.

Here, expr stands for a single expression and, expr+ is series of expressions.
An expression is one is either a function or terminal.
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All functions are also programmed in such a way so that if they take in an
argument of a type that it can not handle it will drop the argument, as we can see
from the msp>-function:

1 (defn msp> [& keys]

2 (let [l (remove #(not (instance? Number %)) keys)]

3 (if (empty? l)

4 true

5 (apply > l))))

Here we can see that msp> removes any instance from the input that is not a
number, it then checks of the remaining list is empty, if it is it returns true, else it
checks if the numbers in the list is ordered from largest to smallest.

In this iteration the fitness function(s) are also radically different from what
they will become in later iterations and are heavily dependent on timing instead of
proper synchronization. This both became a source of bugs and much time spent
in debugging because of it.

I would also implemented mutation as the only recombination operator for this
iteration. The implemented mutation operator is a bit interesting though, in that it
would iterate through the nodes of the program and each node would have a chance
of mutating. If it mutated a node it would stop the mutation process such that only
one node would ever mutate in a given program. What this entailed though was that
the bigger the program the more likely it was that the program would mutate. This
got changed in the next iteration, because it became unpredictable over time and
there was a needed for more control over what goes on when a program mutates.

The reason for only implementing mutation as a recombination operator was
to get something functioning quickly and other recombination operators can take
more time and requires more thought to implement correctly.

The last thing that was implemented in the GP Library for this iteration was
fitness-proportionate selection as the selection method of choice. The reason for
this instead of tournament selection is that fitness-proportionate selection is easy to
implement and has shown great results for other people in the past. I also wanted a
selection method that did more than just selection based on elitism as that generally
leads to a homogeneous population, and that is undesirable. Even though I wanted
to have a functioning GP library (and something to run it on) as soon as possible
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I though that the time would be best spent if it wasn’t spent on implementing
something that was not going to be use later.

Plenty of code was also removed from the emulator, though there was also
some new code to support headless mode. This way it was possible to run the
code in the background without disturbing the user of the machine the process was
running on. It also makes it possible to run faster as the emulator does not have
to show the graphics. An attempt was made to make the emulator run even faster,
but because of a bug in the emulator this was not possible before completion of
iteration 1. The bug would be revisited in iteration 3.

4.8.2 Iteration 2

The system went through drastic changes for iteration 2. What was discovered
from iteration 1 was that the function-set that was used for the generation of a
population was too small as I observed what could only be describe as random
search for programs. It was therefore decided to add more functions in the hope
that it was not the basis for the current idea that was bad, but just that the current
problem space was too large and had to be made smaller for the GP library to be
able to find a satisfactory solution in an adequate time frame.

The first thing that was done was that the entities and how to find them was
added. This was done to make it easier for the programs to know what the
interesting items there are to operate on in the game. The list of the items are as
follows:

• mspacman

• blinky

• pinky

• sue

• pills

• walls

• walkway
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To make the search space even smaller the program generator was modified
by sorting the functions into types. Sorting them into types allows the generator
to ignore the other functions when selecting a node for an argument that needs
a specific type. This can be seen here as the functions that return a boolean are
sorted into one list:

• (msp-check-area-below entity),
(msp-check-area-above entity),
(msp-check-area-leftof entity),
(msp-check-area-rightof entity)

These functions would check if there was a ghost in a direction from the
entity. Later, they where also made to support if Ms. Pac-Man was in the
direction from the ghosts if a ghost was passed as the entity.

• (msp-closer? entity item)

msp-closer? is a method more than a function and relies on state. It
receives an entity to check for and if it has check for that entity and item
before (in this context all entities are also items) it checks if the distance
between them is smaller than before, and if it is it returns true else false. If it
has not check for the entity/item-pair before it returns false by default.

• Others
The old functions from iteration 1 that return booleans are also in this list.

Another new function that was added was the (msp-relative-distance
entity item). This function, as its name suggest returned the relative distance
between the entity and item.

At this time there was a shift in the way I was thinking about how the programs
should behave. I could split this into another iteration, but I feel that the ideas
overlap in such a way that to split them would change the understanding of how
the development progressed.

The shift in thinking was with the behavior of the programs. The old way from
iteration 1 was that the program should execute behavior as soon as it needed it.
This would had the problem of creating both large and erratic programs. I therefore
opted to change the way the program would give commands to Ms. Pac-Man,
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now the program would return a direction (or none), instead. This would lead
to programs that would not have to time things correctly and instead just worry
about current state. It would still have to run the program in parallel with the game,
though. The idea was that running the programs in parallel would ensure small
programs that responded within the time constraints in the problem without having
to specify it in the fitness-test; it becomes implicit. The more one can make these
things implicit for the GP algorithm the less problems with undefined and emergent
behavior there should be.

I also wanted to remove the dependence on timing in the fitness test, which was
becoming a source of bugs and slowed down the fitness tests considerably. Since
the desire was also to have the programs run in parallel with the game I had to
resort to object locking and other ways to ensure that the program and game were
on the same page. Therefore I needed to ensure that the agents would wait until
the game had started before it started to send commands to the game. There were
some small problems here, but nothing colossal. A problem that took some time to
figure out was that to start a game it needs to receive a series of key presses, but the
emulator will not accept key presses unless the thread it is in is running. In the end
the problem was solved by spawning a new thread that would send the necessary
key presses to the emulator while the emulator was running. Using a lock on an
object also ensured that when the game ended and a new game was starting the
program could be paused while waiting to start again.

When the tests for iteration 2 started a frustrating problem was discovered.
Running the fitness test the amount of times needed for an accurate account of the
fitness of a program was taking to long when running it over large populations.
The first solution that was tried was to run the fitness tests in parallel. The thinking
was that since each machine in the machine park have a 4 core processor available
it should be able to run at least 4 individuals in parallel as the 4 core processor
has 8 thread available, 2 for each core; one thread for the game and one for the
individual. In the end I discovered that the game was running in normal game speed
and therefore the game thread would spend a significant amount of time in a pause
it was possible to run 8 individuals in parallel without losing any performance on
any of the individuals.

This was still not fast enough. The progress through the generations was still
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unbearably slow. Especially since a population as large as 5-7 hundred individuals
was wanted and the current framework could only support up to 100 individuals.

The solution to this came in that the university has a number of computer
labs that run Linux with access via ssh. It therefore became possible to split
the population up into sizable chunks and send them for processing to different
machines. It was possible to do this since no programs fitness can affect another
programs fitness. To build the distribution framework I decided to first try to find
an existing open source library that I could use or re-purpose for what was needed.

The problem was that there was some restrictions in what could be done with
the machines. First of all, having only normal user access to the machine meant
that I had no admin and was not able to install any new software to the machines.
So, after searching for some time I found the clojure-control library; a library
meant to deploy commands from a local machine to a set of remote machines. It
uses ssh to connect to the machines, which is available, and is written in Clojure,
which is good for me since all my affected code is also in Clojure. Another thing
that made this framework good for the project is that when a user logs in to a
university machine one gets access to ones private storage area. This meant that it
was possible to start the fitness test on a remote machine if only a command was
sent to the machine containing the programs it was going to test.

Modifying clojure-control didn’t take long, but a problem soon arose. Crippling
problems with the ssh-daemon running on the machines would occur daily to hourly.
The ssh-daemon would either crash and new requests would go into a hang-up loop
or something would freeze and not respond. This meant that if the system sent a
request to a machine with this problem the process sending the request would also
hang until the process was killed. The next problem came with authentication. I
was using public key authentication to authenticate the connection to the machines,
the problem however was that one part of the authentication to the servers is with
Kerberos. The Kerberos authentication does not accept public key authentication.
This is not a problem in and of itself, but what happens when an authentication
request does not authentication with Kerberos is that Kerberos never responds with
a deauthentication. It just never authenticates. This means that any connection will
just hang forever. These problems would be intermittent and it was impossible to
know when they would appear. This is why it took a long time to debug. When the
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problem was discovered I filed a bug report with the IT-department at the university,
but in the end it could not be fixed in time and I had to find a new solution that
proved to be much simpler and more robust than the modified clojure-control
approach.

The new solution was thought up after a discussion with some fellow student
that are working on networks and they asked why I didn’t do the whole client/server
business by myself through socket programming. In the end this was a much better
idea. Especially after a new library that wrapped around Javas internal socket API
for Clojure was found, which made much of the socket programming considerably
easier than it would have been otherwise. Having no earlier experience with socket
programming I sat out to learn and discovered that it was much easier to build
this sort of thing myself since the problem with the distribution of programs was a
rather simple one.

In the end the whole system consisted of one client, the part that generates
and divides the population, and the servers, the machines where the fitness of the
individuals is calculated. This is done by dividing the individuals in the population
into equals sets and then sent to each machine in the cluster as a string. The client
then reads this string as Clojure-data, and after that the fitness tests evaluates it as
normal. This is as simple as it can get and gets the job done in an efficient and
satisfactory manner.

In the end, the problem with a too large search space was still prevalent and the
GP library could still not find a sufficient solution in a satisfactory amount of time.
This leads to the next iteration were a new idea comes into light and the discovery
of the real reason for the unsatisfactory state of the programs appears.

4.8.3 Iteration 3

As was said, for iteration 3 I was again thinking of how I could narrow down the
problem-space further. The problem space was still too large for the GP Library
to find any acceptable solution in a reasonable amount of time. For this round I
would go through 2 stages of ideas and I will explain them in-depth, but before this
is done the real problem that has been plaguing the development with insufficient
run times and poor performance will be revealed.
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The real reason for all these problems with programs that perform in an in-
sufficient way stems from a bug in the API for the Emulator. This bug does not
show up when playing the game normally as a person because a person will not
do what the programs does and relies on. The problem is that when the programs
“press” a button to move, the button does not stay “down”. It releases the moment
after the program has “stopped” pressing the button, which is right away. That is
not totally true, but it is in effect what happened between the programs and the
emulator. Things would still work and the generations would still do better over
time, but would stop improving after a couple of generations. How this happened
is that the agents could up to a certain point rely on timing the button presses for
exactly when it was needed, but in the long run this would not be enough. This
problem was even thought to have been eliminated earlier, but obviously there
was a second component to the problem. I felt this was important to note before
continuing as it is very important for the direction of the project.

Iteration 3 saw the removal of running the game and the program in two
different threads. Now the game would run and then the program would decide
its course of action. The reason for this was that there was still a problem with
seemingly random behavior in the agents. A change of tactic was therefore needed
to see if there was a way to figure out why this happened. After discovering the
real reason, as described earlier, there was no longer any time to change back to
the original plan.

This also lead to revisiting the bug discovered in the emulator in iteration 1.
The reason for this was that since the game and agent would run alternately, it
should be possible to just run the emulator at full speed without having any sleeps
and pauses since it was no longer necessary to worry about timing. The problem
however was that when the sleep cycle was removed from the emulator it would
crash with a divide-by-zero exception. This error happened because the emulator
calculates how long it should pause to keep a constant frame-rate of 24 fps, but
when the emulator is no longer throttling the speed the frame-rate is set to 0. This
will later trigger a divide-by-zero exception. After some diving into the emulator
code the flaw was found and fixed with a try-catch that would just ignore the error.
This seemed to work fine.
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In the first stage of this iteration the plan was to “pre-calculate”2 most of the
code that was deemed unnecessary for the GP to find. To do this there first had to
be a refactoring of the old Java code to make it easier for the Clojure code to look
at the different parts of the emulator. This also lead to a refactoring and rethinking
of the function-set for the GP as well, since it needed functions to deal with the new
emulator API. This is a messy time in the development and much of the work is
done because I was moving back and forth between ideas, which makes it difficult
to explain in an efficient manner. I will therefore gloss over some of the gritty
details.

Another problem was that the programs were not able to figure out a good
path-finding algorithm by itself and if it can’t find a path-finding algorithm it will
never behave in a good way. With that in mind I decided that implementing A*
would be a good idea as A* is one of the top performing path-finding algorithms.
With A* the idea was to calculate the distance to all the “interesting points” in the
map; the ghosts (and the blue ghosts when they appear as Ms. Pac-Man eats a super
pill), the pills and the super pills, and make the program decide where it wants to
go. The way the programs was supposed to do the decision was that it would first
sort the goal points, all the pills and different things it can eat, according to the real
distance, computed by A*, from Ms. Pac-Man. The Program would then rotate and
change the list as it pleased. It would also remove points from the map where it did
not want to go. It could remove any point that did not contain a pill (, as it has to
eat all the pills before it can advance to the next level). When the fitness-functions
run it will then use the newly created map as a way to calculate the A* distance to
the target that the program selects. This way it could have a path-finding algorithm
that is efficient and that the program could still have control over where it should
go. In the end there was a rather large problem with the approach.

The problem was that even though A* is one of best path-finding algorithms
to use I found that it took to long to calculate A* from Ms. Pac-Man to all of the
interesting points. This coupled with an already heavy load of finding all the object
on the map made the time it took before the program could even try to calculate the
direction Ms. Pac-Man wanted to go, just too slow. An attempt to try and optimize

2And by pre-calculation it is meant that the system calculates the operations so the GP Library
can focus on finding good programs for the important parts of the problem.
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the A* algorithm such that all the paths were not calculated each time was made,
but to no avail.

In stage 2 a new idea emerged that was designed to solve the problems in
stage 1. The idea is that instead of figuring out what the best point to go to is,
the bot should figure out what the least interesting areas are and weight them for
the A*-algorithm. This means that the bot only has to decide where it does not
want to go, not where it wants to go. This demands less processing from both the
calculation of the target and the amount of work the programs has to do.

The program now could add a circle around a point (that could be relative to an
entity on the map) and add the desired desirability, or more undesirability, to the
points captured in the circle. The A*-algorithm will then take this desirability and
use it as weights for its calculations. A higher weight means that a path has to be
considerably shorter to weigh up for the undesirability of going there.

4.8.4 Iteration 4

The final iteration was more about optimization, debugging and fixing problems
that had cropped up in the previous iteration. The first problem was that the agents
would in some rare cases go into an infinite avoid loop. What I mean by that
is that the agent would be able to always avoid the ghosts. The way this would
happen is that the ghosts would chase the agent out the tunnel on one side of the
map, when the agent reappeared on the other side the ghosts would turn to that
side of the map and chase the agent out of the map again and to the other side. In
some configurations this behavior would continue forever. The problem was solved
by using a timer to determine how long the agent was allowed to play the game
before being stopped. The time is determined by how long on average the previous
generation used to run through the game and then adding two standard deviations
to that number. The first generation is given half a minute to finish the game.

The second problem was that the game was running too slow. A profiler was
therefore utilized to find the worst spots in the code. The profiler showed that the
A*-implementation was one of the worst offenders. This lead to the re-factoring
of the A*-implementation. It went from one of the slowest pieces of code in the
project to admittedly still being significant, but was no longer anywhere near the
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amount of time spent in this part of the code as before. This was done by making
as much of the code static as possible. There was also an overall clean-up of the
code that certainly removed some hot spots as well.

The second large optimization that was done was on the code that creates the
map for the agents to read. Finding the different entities and items on the map
was taking a really long time. There was a lot less room for optimization in this
part of the code as most of it is needed to find the different entities on the map.
However, there were some areas where the code could be streamlined into a single
loop instead of running through the same data every time. This brought down the
run-time of this piece of code by a significant amount. Even though it is still one
of the heaviest pieces of the code base, the time it is using now is much closer to
acceptable then what it was before.

After the discovery of the bug where the agents had to accurately time when
they should turn or risk missing a corner, I wanted to do a new experiment with one
of the old ideas. The system has change significantly since then, especially how the
data from the game is collect, so the code had to be re-written. This was however
surprisingly easy as the code and libraries have been designed quite modular and
there was not that much change needed for the old design to work.

Looking back at iteration 2 and the function that where defined in there, a lot
of the same functions are available again. The msp-check-area-*-functions
are all there. The distance functions are now gone and replaced with some other
functions that work a bit differently. Since A* is now available for use just the
direction to the entity is recorded instead of the distance. It would probably be easy
to also implement a distance based on the A*-path as well, but because of time
constraints it was not implemented. Instead, the opposite direction is calculated.

Some entities where removed and some added. The new entities now include,
as before, Ms. Pac-Man and the ghosts, but there are also some new, the closest
pill, super pill and blue ghosts, as well as the furthest blue ghosts and super pill.

The agent is calculated, as in the last iteration, after the map is calculated and
returns the direction to move Ms. Pac-Man in. This is again, so that we don’t have
to worry about threads being parked and can just fully utilize the power we have
available on the machines.

The reason for not splitting these two strategies into two different iterations is
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that there is no architectural change behind the choice in strategy. Both rely on the
same basic background that does most of the work.
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Chapter 5

Evaluation

In this chapter we will be evaluating the system and look at experiments that
were done during different stages of the development. We will see that during
the development there is a significant improvement in the performance of the
programs created by the Genetic Programming library, but that it does not achieve
the better-than-human goal. Why this is the case will not be explained here, but we
will revisit it later when we look at the conclusion of the thesis and further work.

5.1 Genetic Programming library

The Genetic Programming library performs well for the task that it is supposed
to. It conforms to all of the criteria mentioned in the requirements for the library.
There are some complaints though. It would be better if the way to adapt it for new
situations was through a Domain Specific Language (DSL). This would mean that
if one wanted to use GP library in a different setting and for a different problem
than what it is now, one would only have to give it a new set of configurations
instead of how it is now where one has to go into the source of the library and
change things to match a new situation.

Another feature that would be nice is if the different parts of the library would
be easier to change into a new implementation. E.g., one should be able change or
add new mutation operator by writing a new one and present it to the library. This
could be a part of the DSL mentioned earlier.
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There is also room for speed ups in the execution of creating new generations.
This is not a big complaint however as the fitness function is at least a couple of
orders of magnitude slower and time spent optimizing for execution speed should
be spent here instead. Though, this depends heavily on the problem the fitness
function is implemented for.

5.2 The Emulator

The emulator does everything that it should do. It runs the original binaries for
Ms. Pac-Man, it has a background mode, and contains an API for the agents to
have easy access to the properties the agents need to play the game. The API does
however much more than just provide an easy interface for receiving movement
commands from the agents and sending the image of the screen. It is responsible for
calculating the position of the items within the game and to calculate the distance
between them. All of this is implemented in the API to remove as much as possible
from the problem space and make the Genetic Programming library focus on the
important parts of the problem instead of getting bogged up in discovering the
different items and where they are in the game.

A problem though is that the implementation of the API is a bit slow. It needs
to be faster so more of the processing can be spent figuring out what to do instead
of what is on the map and where they are.

The emulator is also slow. It could be beneficial to the agents, as the system is
now, if some time was spent optimizing the calculations for the game. The reason
for this is that the agents can not run before the emulator is finished with producing
the image. The agent then uses the space between finishing the previous screen
and starting to calculate the next one. If producing the image was faster more time
could be spent calculating the actions of the agent.

5.3 The Distribution Framework

The Distribution Framework also conforms to all the criteria that was set for it.
However there are some complaints. Most were resolved by switching away from
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using ssh as the communication protocol and communicating by sending strings
over sockets, but some remain.

The first is that since this is client machines and used by other students as well,
some data will be lost some of the time. The reason for this is that sometimes
the other students will turn these machines off. There is no fail-safe built in to
retrieve the lost data. Instead the system will continue working with the remaining
available population. The individuals running on that machine however will be
lost. This is probably the most glaring mistake in the Distribution Framework.

It is also much more difficult to debug code that is running on multiple machines.
Especially when bugs that seem to only appear on some of the machines, but all of
the machines are running mostly the same hardware. The difficulties can however
be mitigated with good logging of the behavior of the code.

There is also no security implemented. This means that if anyone knows the
machine the server is running on and the port it is listening to, he can send and
execute commands on that server. Possibly disrupting the process. Though, because
of good security at the network level, only people with access to the network will
be able to do so. This has not been a problem for the development during this
thesis, but should be taken into consideration in further studies. The reason for not
implementing any security was that the risk involved was considered low and the
time spent on implementing security was therefore better spent on other parts of
the project.

5.4 Experiments

There have been conducted more experiments then the ones represented here, but
because of the large number of experiments I have decided to only present some of
the experiments in light of the four developmental iterations.

5.4.1 Experiment design

There is large variation in the experiments and they differ throughout the evolution
of the software, but there is a red line through all of them. The experiments consist
of making configurations to the software and running them through the genetic
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programming library. Most of the time the experiments had to run for several days
to give any meaningful results.

Because of the nature of what I am trying to do and how I am doing it the
code for the programs has changed considerably, this means that it can be very
difficult to compare between the different iterations. I will try to compare where it
is appropriate, but will otherwise abstain from doing so.

The experiments were done by doing multiple runs with variation on key
variables in the GP framework. I would change the mutation rate, reproduction
rate, population size, rate of elitism, the starting depth and width of the programs
and the amount of fitness-tests ran for each program. I would also change the way
individuals were created and some times seed the initial population with programs
that I knew were doing well. The types of mutations that can happen also changed
from one to three.

Each experiment will visualize the data collected from the fitness tests. The
fitness of an agent will be the average score achieved from the fitness tests. This
means that the graphs showing “best score” in reality is the best average score of
the population.

5.4.2 Experiments in iteration 1

In the first iteration the point of the experiments was not to get a high score, but
to prove that the Genetic Programming framework was working and that I had a
platform to build the rest of the system on. I wanted to see that the programs were
interfacing with the game well and that they could improve over time. Anything
outside of this goal was considered a bonus.

If we look at figure 5.1 we can see that the population is gradually getting better.
Even though the numbers might not be that high, the first couple of runs showed
much promise as it is possible to see from this that the programs are actually doing
something. It is possible to say this, even from just looking at the scores. The
reason for this is that 120 is the score the program would score if the program
would do no actions at all. Ms. Pac-Man will always start moving left and if no
action is taken she will collect 12 pills worth 120 points. There are other ways
of achieving this score, but usually it would represent a program that did little or
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Pop. size: 20
Fitness runs: 5
Elitism: N/A
Mutation: 0.02
Crossover: N/A

Figure 5.1: Average score of test population, 25.11.11

next to nothing. Therefore a score lower than 120 is actually more interesting than
a score of 120. Individuals with a fitness score lower than 120 is actually doing
something, something wrong, but at least something.

However, there are two clear problems that the graph shows. The first is that it
plateaus quite quickly; after only 15 generations. The other problem is that after
it has plateaued the average score is erratic. This signals that there is something
wrong with either how the fitness score is run or how the problem is encoded. As we
know from previous discussions this is probably the problem with only changing
direction when the “button”1 is pressed at the same moment as it is possible to
move in that direction. This is reoccurring problem that won’t be properly solved
before late in the third iteration.

After developing the program further into a better working state a new test
was made as the previous test was only to test if everything was working and how
long it would take. Based on the previous test, in this test the population size was
modestly increased to see what effect this would have on the run time. Two new
functions where added, get-pixelxy and find-colour, together with two
variables, x and y, to give the agents some state they could manipulate. In this
case the x and y variables represent position in the x- or y-plane of the map.

1Putting button in quotes here because the programs doesn’t actually push buttons but sends
commands that the emulator interprets as button presses.
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Pop. size: 25
Fitness runs: 5
Elitism: N/A
Mutation: 0.02
Crossover: N/A

Figure 5.2: Average score of population, 25.11.11

Looking at figure 5.2 we can see the average score of the population and what
we see is that it takes a sharp turn upwards in the couple of first generations, but
after a while it stabilizes around 480. This is actually a lower score than the first
test run, but even though this is the case there is some interesting things we can see
in this graph.

Pop. size: 25
Fitness runs: 5
Elitism: N/A
Mutation: 0.02
Crossover: N/A

Figure 5.3: Best average of population, 25.11.11

The first interesting point is that the graph uses a much longer time to plateau

63



than the previous test run. It is also a bit less erratic than the previous graph. The
strange thing though is that it seems to be falling in fitness towards the end. There
are several reasons for this to happen. One is that this is only 100 generations.
There is a chance that the individuals will start to climb again. It is quite normal
to see this kind of oscillation in the fitness of a population after it has plateaued
and is “waiting” for a new recombination to happen to make a better individual.
This is especially true when the generations are run, like this one is, without
elitism. This means that if a generation is particularly unlucky it might, through
bad recombination and selection, end up with only individuals that are worse than
the previous generation. Whole genomes might actually disappear in this sort of
situation.

If we also look at figure 5.3, which shows the best individuals for the same
generation, we can see that throughout the generations it has a very erratic behav-
ior. Comparing this to the average score we can see that the average has to be
responsible for evening out this erratic behavior. It is also evident that the best
score is partly responsible for the decline in fitness towards the later generations,
but that probably there are worse individuals than there were before in previous
generations.

An interesting observation is also that the best individuals in a population does
not control the average as much as one might think. This is good as that would
mean that the fitness score is more evenly distributed throughout the population.

5.4.3 Experiments in iteration 2

Iteration 2 saw one of the longest running experiments and perhaps even one of
the more interesting ones. Maybe not interesting from the point of solving the
problem, but interesting from the perspective of how Genetic Programming works.
We can see this in figure 5.4.

In this experiment the population ran for a 1,000 generations. What I mean by
interesting for how Genetic Programming works is that if we look at the graph we
can see this stepping of how good the best of the generation is. The reason for this
stepping is that in the experiment, elitism is used to preserve a set percentage of the
population and that a new optimization entered the Genetic Programming library.
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Pop. size: 400
Fitness runs: 20
Elitism: 0.05
Mutation: 0.15
Crossover: 0.65

Figure 5.4: Best average of population, 10.01.12

Now, instead of running every individual every generation, the library would use
the previous score from the previous generation if the individual was preserved to
the next generation either through copying or elitism. What the stepping represents
are where new combinations of individuals or new beneficial mutations occur. The
problem however is that these beneficial recombinations seem to happen slower
and slower during the generations. Though, there might not be enough data points
to say that.

The problem seems to be that rest of the population does not take benefit of
these mutations and changes that are happening to the best of the population. We
can see this if we look at figure 5.5. This is probably the overall problem in this
experiment and why we don’t see better scores. The average score of the population
is much lower than that of the best in the population.

This is quite strange though and might be indicative of a larger problem that is in
the Genetic Programming library and maybe a problem with the new optimization
idea that was employed. What one might expect from a population like this is
that a new beneficial change would spread rather quickly through to the overall
population. Most likely the reason this is not happening is that the best scoring
individual was lucky during one generation and since the score achieved at this
point was not a good representation of the score the individual would normally
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Pop. size: 400
Fitness runs: 20
Elitism: 0.05
Mutation: 0.15
Crossover: 0.65

Figure 5.5: Average score of population, 10.01.12

achieve. Either the new optimization technique has to be removed, or the fitness
test has to be run more times. In the end it as decided to remove the optimization
technique as it running the fitness tests the required amount to get a good fitness
score would be too slow.

5.4.4 Experiments in iteration 3

In the third iteration there was a drastic increase in the fitness of the individuals as
we can see from figure 5.6. It also showed a much better curve of improvement than
what has been seen before. The overall erratic behavior of the average population is
also gone. This is indicative of a healthier population than what has been achieved
before.

We can still see the sharp rise in the beginning generations, but it does not
taper off as fast as it used to do in the past. It resembles much more the usual
development we see in Genetic Programming. When we look at the best individuals
we see the same; there is a steady increase in fitness over the generations. We
still see some erratic behavior in the best individuals, but that is generally to be
expected. Especially since each individual is only ran a handful of times to find the
average fitness. This would probably be much smoother if we ran each individual
more times.
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Pop. size: 400
Fitness runs: 5
Elitism: 0.05
Mutation: 0.15
Crossover: 0.75

Figure 5.6: Average score of population, 19.04.12

In this experiment the long standing bug where the agents had to time their
change of direction to the exact corner or risk not being able to turn, is fixed. I
would like to say that we can see this from the data, but since there is such a huge
difference in the overall way the programs function from the previous generation
to this one that would be a stretch. We can however make the observation that the
generations seem to be running much smoother if we look at the shape the graphs,
than what we have seen earlier. A large improvement has also been made on the
scores achieved by the agents. The starting score is now around 2,000 points, and
we can see a peak of above 5,000 points.

It might be wishful thinking, but if the overall trend continues in a way that one
could expect from Genetic Programming, we would be able to start seeing scores
that rival that of other algorithms used to create solutions for this problem.

5.4.5 Experiments in iteration 4

During iteration 4 two experiments were conducted. The first one was with the
same as in iteration 3, but with some bug-fixes. The second was a new version of
the ones conducted in iteration 2. This was to show that the idea was not wrong,
but that it was a problem with a long standing bug that kept it from becoming
better.
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Pop. size: 400
Fitness runs: 5
Elitism: 0.05
Mutation: 0.15
Crossover: 0.75

Figure 5.7: Best average of population, 19.04.12

Experiment 1

Looking at figure 5.8 it looks pretty much as a continuation of figure 5.6 in the
experiments in iteration 3. This is perfectly acceptable as they are based on the
same code, except for a couple of bug-fixes. The most prominent one being the one
where the agent could go into an infinite loop on the map preventing the game from
finishing. What we see is that the population is in a steady rise up until around
3,700 points where it seems to taper off. This seems to go against the expectations
from iteration 3 where it was suggested that this configuration should be able to
get as good scores as what other researchers have achieved. If we however look
at the score of the best individuals in figure 5.9 we can see that the best recorded
individual is almost at 10,000 points with 9,848 points. Which scores better than
most others in the competition, except for the one held in 2011.

When looking at the individuals in the population for this run it is evident what
has happened. The population has lost almost all diversity and consists mostly of
the same individual in different configurations. If this is the main problem of the
population or if there are other limitations that prevent the population from getting
better needs further experimentation.
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Pop. size: 400
Fitness runs: 5
Elitism: 0.05
Mutation: 0.15
Crossover: 0.75

Figure 5.8: Average score of population, 18.07.12

Experiment 2

Pop. size: 300
Fitness runs: 8
Elitism: 0.00
Mutation: 0.15
Crossover: 0.75

Figure 5.10: Average score of population, 23.07.12

For the second experiment the individuals where changed back to how they where
made in iteration 2. This was to confirm that the previous approach was also valid
after the bug fix. If we look at figure 5.10 we can see that the individuals rise very
sharply and then halts at around 3,000 points. This is probably because of a too
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Pop. size: 400
Fitness runs: 5
Elitism: 0.05
Mutation: 0.15
Crossover: 0.75

Figure 5.9: Best average of population, 18.07.12

small function set that does not contain all of what the agent needs to do any better.
It does however show that the idea has potential, even though there obviously are
some problems that need to be addressed.

We also see a pretty serious dip around 500 generations. We will get back to
that after looking at the best individuals in figure 5.11. In this graph we can see
some wild fluctuations in the best individuals, and the same dip that we see in figure
5.10. The reason for the fluctuations is probably because of two things. The first is
that the fitness test is run too few times. The other is that this experiment was done
without any elitism. The mutation rate and reproduction rate is also changed for this
experiment. The reasoning behind these changes is that the previous experiment
had problems with diversity in the population. Making sure copying into the next
generation happens rarely or not at all while crossover and mutation happens much
more can help create a more diverse population.

And that gets us to the reason for the dip at the end of the graphs. I believe it
is simply because we do not have any elitism to keep the best individuals in the
population over generations and the population was unlucky and lost a lot of the
performing individuals.

Overall the graphs in this experiment has a rather strange shape. This is
probably also because of the too small function set and that the GP library managed
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Pop. size: 300
Fitness runs: 8
Elitism: 0.00
Mutation: 0.15
Crossover: 0.75

Figure 5.11: Best average of population, 23.07.12

to create one of the highest performing individuals possible when randomly creating
individuals for the first generation.

This experiment needs to be run again with a larger function set and more
fitness tests to truly validate if the strategy will be useful.
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Chapter 6

Conclusion and further work

This chapter will sum up the results from the research and look at how it relates to
the goal of the thesis. It will also look at what the results from the Ms. Pac-Man
problem shows. After that it will discuss what there is to improve on in the research
and areas where further research could go deeper then the focus of this study. I will
also speculate on what I could have done different knowing what is known now.

6.1 Conclusion

I have created a Genetic Programming Library that creates agents for the old Ms.
Pac-Man arcade game and tries to best other people that have tried the same using
other techniques. I have created a way for the GP created agents to access and find
the different objects within the Ms. Pac-Man game. A distribution framework for
the genetic programming library has also been made so that it is possible to utilize
the processing power that is available through the linux machines that are standing
idle throughout the university.

In the experiment section I presented an individual that performed almost at
the level of current competitive play with an average over 5 runs of 9,848 points.
Looking at the scores the agent received we see that it has managed to get a top
score of 11,890. This is almost 1 third of the way to the best scoring agent in the
system with 36,280 points, but still almost 2,000 points below the least scoring
agent with its highest score of 13,700 points. The interesting part though is that
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my average is still higher then the least scoring agents average of 7,955 points, and
close to two of the others who achieved averages of 11,448 and 11,305 points.

Even though the results from this thesis is not better then the currently top
scoring agents, it can still show agents that are scoring much better then what the
first agents that where created and that has a higher average score then one of the
agents from the latest competition. If we look at previous competitions we can see
that my agents are better then many of them. I therefore believe that it is possible
to say that I have built a system that shows that Genetic Programming is a valid
technique for creating agents that play non-deterministic games. A long standing
bug really prevented research from going any further. Had the bug been discovered
earlier I might been able to show better results. The problem here really came down
to time constraints. If more time had been available there might have come results
out of the research that could have rivaled the highest performing algorithms that
have been used to solve the problem.

6.2 What could have been done differently?

Looking back at the development of the system I can see mistakes that could have
been avoided had I known what I know now. Firstly some of the work could have
been avoided in that I found a competing Genetic Programming Library written in
Clojure after most of the development for my version was written. There had been
an extensive search done for Genetic Programming and Clojure in the preliminary
research for the thesis, but somehow this library had escaped my attention. This was
not a total loss as I now have a much better understanding of the implementation
specific problems of Genetic Programming. There is also a difference in how the
two libraries have been implemented. E.g.: In my library multi-argument functions
are allowed, but not in the other library where the number of arguments has to be
explicitly stated. The workaround to this problem is to define the same function
with all the different number of arguments that are needed. The most important
thing here however is that having implemented my own library meant that I know
all the implementation specific details. This allows me to prototype new features
as they are needed much faster then what I would have otherwise been able to.

Another thing I should have done was to spend more time in the beginning
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looking at how the emulator works. The problem that emerged from this mistake
haunted the project all through the development. Discovering the bug that has
really impeded the score of the agents I believe would have had a profound effect
on the results of the project. In the end though, it is not automatically true that the
bug would have been found even if I had spent more time working on the emulator.
What should have been done though, is to look deeper into the root of this problem
before making the assumption that it had been solved. The problem however was
that at the time it seemed that it was my own code that was the problem and not
the implementation of the emulator.

The distribution through the clojure-control library should also have been
dropped much earlier in favor for the current system. It is much simpler and has
a much larger tolerance for failure than the system based on clojure-control. The
problem in itself was not clojure-control, it did its job beautifully, the problem was
the instability of the ssh servers and the authentication issues through Kerberos.

6.3 Further work

In the future, if one wants to continue the work that this thesis represents, there is a
couple of interesting points that one could look at. There currently two immediate
paths that future research could explore. The first is to continue the research on the
agents that use configurations of A* to find its way around the map from iteration
3. The other is the strategy from iteration 2. Both have shown great promise. A
problem however, is that the emulator and fitness function is quite slow. If any of
these strategies are to be pursued some effort should be put into making these parts
of the program faster. It would be beneficial to be able to run larger populations
faster.

Another thing would be to use the Genetic Programming framework in other
situations to see if it can perform better there. It might require some work to replace
the areas of the code that is dependent on the current problem, but it should not
take too much time. Something that should be easier is to test it with another Ms.
Pac-Man competition were the contestants either program Ms. Pac-Man (as I have
done already) or program the ghosts. It would be interesting to see how the current
programs do in this situation instead of with just the standard ghosts.
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It would also be interesting to revive the effort to run the agent and the game
simultaneously in a different thread. This could ensure that the agents get more
time to run and could therefore potentially make better decisions. It would also
guarantee that the agent will not slow the game down. The problem however is that
it would also increase the time needed for every fitness test to run. It is however
possible to somewhat mitigate this problem by running the game at normal speed
until it has received a direction for that frame and then stop waiting to create the
next frame.

One could also use the stripped down emulator to test other methods to solve the
Ms. Pac-Man problem. An interesting method could be to use Neural Networks,
especially in combination with Genetic Programming. If it at the same time
is possible to program the Neural Network for General-purpose computing on
graphics processing units1 (GPGPU), then it would be possible to fully utilize
the parallel nature of Neural Networks. This could serve as a way to cut the
processing time of the API and agent dramatically allowing for more processing for
the decision making process. Neural Networks are also excellent in combination
with Genetic Programming. The only things that has to be done is to change the
primitive set to neurons and weights instead of functions and terminals.

Another interesting approach could be within the immune algorithms. Inspired
by the biological immune system, immune algorithms tries to protect a host or-
ganism from pathogens and toxic substances. Treating the ghosts as pathogens
and Ms. Pac-Man as the organism. The immune algorithms were not designed for
this sort of task, but could prove a novel way of using the methods. The algorithm
that is best fit for this kind of task might be the Clonal Selection Algorithm, which
was designed as a general machine learning algorithm that has already been ap-
plied to pattern recognition, function optimization and combinatorial optimization
(Brownlee, 2011).

In the end we can see that even though the library is capable of creating agents
that are performing at a level close to other researchers agents, there are plenty
of improvements that can be done on the research in the thesis and several new
directions available for creating agents in non-deterministic games.

1Also know as graphics cards.
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Appendix A

Listing of code

A.1 fitness

1 (defn fitness [tries code]

2 (binding [msp (Game.)]

3 (loop [score 0

4 times 0]

5 (if (or (<= tries times)

6 (and (<= 3 times)

7 (= (/ score times) 120)))

8 (int (/ score times))

9 (do (.start msp)

10 (.update msp)

11 (recur (+ score

12 (do (while (not (.isGameOver msp))

13 (eval‘∼code)
14 (.update msp))

15 (.getScore msp)))

16 (inc times)))))))
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A.2 expand

1 (defn expand [exprs depth]

2 (if (or (symbol? exprs)

3 (number? exprs)

4 (empty? exprs)

5 (< depth 1))

6 (atomize exprs)

7 (cons (first exprs)

8 (loop [terms (rest exprs)

9 acc ()

10 expr-width (rand-int MAX-STARTING-WIDTH-OF-EXPR

)]

11 (if (empty? terms)

12 acc

13 (let [term (first terms)

14 exp (case term

15 (expr expr+)

16 ,(expand (rand-nth ind/FUNCTION-LIST)

17 (dec depth))

18 expr?

19 ,(if (< (rand) EXPR?-RATE)

20 (expand (rand-nth ind/FUNCTION-LIST

)

21 (dec depth))

22 ())

23 point

24 ,(expand (rand-nth ind/POINT-LIST)

25 (dec depth))

26 ,(atomize term))]

27 (recur (if (and (= term ‘expr+)

28 (pos? expr-width))

29 terms

30 (rest terms))

31 (concat acc (list exp))

32 (dec expr-width))))))))
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A.3 Server/client

1 (defn- send-inds-to-machine [individuals machine]

2 (try

3 (let [socket (Socket. (format ‘‘%s.klientdrift.uib.no’’

machine) 50000)

4 rdr (LineNumberingPushbackReader.

5 (InputStreamReader.

6 (.getInputStream socket)))]

7 (try

8 (binding [*out* (OutputStreamWriter.

9 (.getOutputStream socket))]

10 (prn individuals))

11 (read-string (.readLine rdr))

12 (finally

13 (shutdown-socket socket))))

14 (catch Exception e nil)))

1 (defn- run-fitness [ins outs]

2 (println ‘‘Run-fitness’’)

3 (let [rdr (LineNumberingPushbackReader.

4 (InputStreamReader. ins))

5 inds (read-string (.readLine rdr))

6 out (gp/run-fitness-on inds)]

7 (println ‘‘finished’’)

8 (binding [*out* (OutputStreamWriter. outs)]

9 (prn out))))
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