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Abstract

Wind generated surface waves represent a critical factor for offshore constructions and
coastal development, and are highly relevant in scientific questions related to climate
and weather. The sea state can be described by several parameters, but significant
wave height is particularly important, traditionally defined by the average height of
the highest third of individual waves. This study targets two aspects describing wave
climate: extremes and trends in significant wave height.
The Norwegian Reanalysis (NORA10) - a combined high-resolution atmospheric

downscaling and wave hindcast based on the ERA-40 reanalysis covering the Norwe-
gian Sea, the North Sea, and the Barents Sea is presented and validated. The wind-wave
data archive, spanning the period September 1957 to August 2002, shows a significant
improvement from ERA-40 over the whole range of data, but particularly in upper per-
centiles. Given the performance of NORA10, it provides a baseline climatology of
significant wave height, which other datasets may be compared against.
An extended version of NORA10, covering 1958 to 2009, is utilized to obtain 100-

year return value estimates of significant wave height. The analysis explores three
different approaches, where the applied extreme value distribution is dictated by the
chosen subset of the initial data. This is done by: (i) peaks-over-threshold; (ii) annual
maxima; and (iii) the r largest order statistic within blocks of one year. These subsets
should conform to the generalized Pareto distribution (i) and the generalized extreme
value distribution (ii/iii), respectively. By assuming stationary conditions, the three
models provide results mainly within ±5%. In areas where the discrepancy is larger,
(iii) is found less satisfactory. Method (i) yields good conformity when the threshold
is set high. Here, the 99.7-percentile is applied. Given the better use of data, (i) is pre-
ferred over (ii). Based on (i), the 100-year estimates are peaking around 22 m northwest
of Scotland, around 14 m in the North Sea and above 16 m in the Norwegian Sea.
The robustness of a return value estimates often depend on the amount of available

data. As most conventional time series of significant wave height do not extend further
than 50 years, 100-year return value estimates can only be obtained by extrapolating
some fitted theoretical distribution. In this study, a method for estimating return val-
ues from aggregated ensemble forecasts is presented. The archived ensemble forecasts
originate from the European Centre for Medium-Range Weather Forecasts (ECMWF)
and consist of 51 members run twice daily. To ensure that the aggregates are inde-
pendent representations of the model climate, only 10-day forecasts are retained. By
assuming each forecast being representative of a 6-hour interval, collectively 1 year of
ensemble forecasts are representative of more than 25 years of data. In two separate
papers, aggregates of ensemble forecasts, equivalent to more than 220 years of data,
are utilized to obtain 100-year return value estimates of significant wave height and
wind speed. The datasets are carefully validated against in situ measurements and al-
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timeter data, and found representative of the observed climate. Return value estimates
are obtained by traditional extreme value models, but also obtained directly from or-
der statistics as the dataset, on average, should contain more than 2 events exceeding
the 100-year return value. It is shown that the estimates come close in equalizing cor-
responding estimates from NORA10, and yield significant improvements compared to
ERA-40 and ERA-I.
Reanalyses may be considered homogeneous in the sense that they run with the

same model configuration. However, they are highly dependent on assimilation and
may suffer from the ever growing observational system. Ideally, assimilation should
only be a mean to reduce random errors, but if a model exhibits systematic errors, data
assimilation may correct bias. Once a model is run in forecast mode, the effect of
assimilation is usually lost, as the model relax towards it biased state. ERA-I is a cou-
pled wind-wave reanalysis produced at ECMWF, spanning the period 1979 onwards.
Besides the reanalysis, ERA-I is run as 10-day forecasts. Altimeter observations are
the only kind of wave data assimilated, first introduced in August 1991. Here, trends
based on different forecast ranges are compared and validated against observations. It
is shown that trends in significant wave height from analysis are highly affected by the
transition in August 1991, especially in the northeast Atlantic and the eastern tropical
Pacific. Finally, the 48-hour forecast range is proposed as a better candidate to obtain
realistic trends.
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Chapter 1

Outline

The purpose of this thesis is to investigate return value estimates and trends in signifi-
cant wave height globally and with special emphasis on the northeast Atlantic. Focus is
being made on improving corresponding estimates based on well established reanaly-
ses. This is conducted by utilizing conventional and unconventional data, and different
statistical methods to highlight uncertainty in the aforementioned estimates.
The manuscript is organized as follows. Chapter 2 gives a brief introduction, ac-

companied by the main objectives of the thesis. Chapter 3 provides the relevant scien-
tific background. The applied methodology is presented in Chapter 4, while Chapter
5 offers a summary of results and future perspectives. The five papers included in this
thesis are listed below and will in the following be referred to by their Roman letters.

Paper I: A high-resolution hindcast of wind and waves for the North Sea, the Norwe-
gian Sea and the Barents Sea
Magnar Reistad, Øyvind Breivik, Hilde Haakenstad, Ole Johan Aarnes, Birgitte R. Furevik
and Jean-Raymond Bidlot
J. Geophys. Res., 116, C05019, 2011

Paper II: Wave Extremes in the Northeast Atlantic
Ole Johan Aarnes, Øyvind Breivik and Magnar Reistad
J. Climate, 25, 1529–1543, 2012

Paper III: Wave Extremes in the Northeast Atlantic from Ensemble Forecasts
Øyvind Breivik, Ole Johan Aarnes, Jean-Raymond Bidlot, Ana Carrasco and Øyvind Sætra
J. Climate, 26, 7525–7540, 2013

Paper IV: Wind and wave extremes over the world oceans from very large ensembles
Øyvind Breivik, Ole Johan Aarnes, Saleh Abdalla, Jean-Raymond Bidlot and Peter A.E.M.
Janssen
Geophys. Res. Lett., 41, 5122–5131, 2014

Paper V: Marine wind and wave height trends at different ERA-Interim forecast ranges
Ole Johan Aarnes, Saleh Abdalla, Jean-Raymond Bidlot and Øyvind Breivik
J. Climate (accepted)
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Chapter 2

Introduction and objectives

Wind generated surface waves are probably the most striking evidence of the air-sea
interaction taking place at the boundary between the atmosphere and ocean. They range
in size and shape, from tiny ripples seen on a calm day to violent breaking waves more
often associated with stormy conditions. Simplistically, waves are the combined effect
of wind and gravity. As wind blows across the ocean surface, momentum is transferred
from air to water by wind induced pressure differences, creating a resonance effect,
forcing the surface away from its flat initial state. While the restoring force of gravity
will strive to maintain equilibrium, inertia will make the surface overshoot/undershoot,
creating a oscillating effect. This process and its demise play an important role in
weather and climate by exchanging heat and gas between the atmosphere and ocean.
In order to describe the sea state, we rely primarily on a few key parameters that

are observable with the human eye. These are: wave height - the vertical displace-
ment between an adjacent crest and trough; wave period - the time elapsed between
two successive crossings of the mean surface elevation (zero-crossing); and wave di-
rection - the heading of a wave. However, as the surface elevation to a large extent
is a stochastic process, it is not practical to describe the wave condition by the mea-
sure of individual waves. More often the sea state is defined by the average conditions
taken over some period of time where it is reasonable to assume stationarity, ideally
between 15-35 minutes (WMO-group, 1998). From this, the significant wave height is
defined as the average height of the highest third of individual waves. Mean period and
mean wave direction are obtained in a similar manner. In the following thesis, signifi-
cant wave height (Hs) is the primary parameter of interest. Maximum individual wave
height, important in estimating structural impact loads, is more often obtained by em-
pirical relations and statistical distributions having dependency onHs (Forristall, 1978).
Similarly, freak waves, or rogue waves, are beyond the scope of this work. This study
does however emphasise wind, as it is the driving force in generating waves.
In a direct sense, waves are important to humans on different levels. They can af-

fect one’s daily recreational activities or have substantial socio-economic impact, e.g in
conjunction with coastal settlement in areas exposed to erosion and deposition. Com-
mercial businesses often take a special interest in waves, as wave-induced loads may
lead to economic loss, contamination or even fatality. For instance, as the aquaculture
is moving further out to the coast, and into harsher wave climate, there is an increasing
concern for cultured fish escaping and spreading disease. If we are going to stabilize
global greenhouse gas emissions as advised by the United Nations Framework Con-
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vention on Climate Change, we need to a see a rapid increase in renewable energy ex-
ploitation. With the advent of offshore wind farms and wave energy converters in deep
water, a new set of wave related challenges arise. The international shipping commu-
nity is well aware of the dangers associated with waves, but has historically struggled
to come to a common classification standard. While ships have the advantage of being
mobile, the offshore petroleum industry is usually confined to fixed locations unable to
avoid major weather events. The Petroleum Safety Authority in Norway (PTIL), an in-
dependent government regulator, is responsible for maintaining a safe operation. All
petroleum related industry on the Norwegian Continental Shelf are imposed by PTIL
to meet the recommendation stated by the NORSOK-standards. Typically, structural
design and mooring dimensioning must withstand wave events with an annual proba-
bility of exceedance equal to 10−2 and 10−4, depending on the platform being manned
or not.
In order to make return value estimates of Hs with an average recurrence rate once

every 100 or 10,000 years, there is a substantial need for long reliable data records.
This is not easily achieved, as the first wave observations became available in the late
70s from in situ measurements (Gemmrich et al., 2011), later followed by platform-
mounted instruments. Satellite-borne altimetery was not operational before the mid
80s. The advent of meteorological reanalyses in the 90s offered a much appreciated
contribution. By running numerical weather models over an extended period of time,
firmly controlled by historic observations, climate research obtained a relatively co-
herent dataset, regular both in time and space. Still, reanalyses are only approximate
representations of the real climate, and have until recently not covered more than ∼ 60
years. They are affected by the ever-improving observational system and have proven
inadequate in representing extreme wind and wave events, mainly due to resolution
limitations (Cox and Swail, 2001; Caires et al., 2004).
Firstly, the robustness of return value estimates of Hs will primarily rely on three

factors: the quality of the data; the size of the dataset; and the choice of statistical
method. All three aspects are considered herein. Secondly, reported trends in mean
Hs are typically on the order of a few centimetres per year, at most, depending on the
area and period in question (Young et al., 2011; Wang et al., 2012; Dodet et al., 2010;
Dupuis et al., 2006). If assimilation can impose step changes of some decimetres, this
will significantly affect trends.
This PhD thesis is focused around limitations and side effects associated with Hs-

data obtained from reanalyses, particularly related to: (i) their ability to represent ex-
treme conditions and (ii) how inherent trends are influenced by assimilation. The main
motivation is to overcome these deficiencies to obtain better estimates of return values
and trends. Given the obvious relationship between wind and waves, the majority of
the work is supported by corresponding analyses conducted on wind speed.
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Objectives

The objective of this thesis has been twofold:

1. Identify regional and global return value estimates of significant wave height by:

• utilizing a high-quality hindcast developed at the Norwegian Meteorological
Institute.

• investigating the usefulness of unconventional data, in the form of archived
ensemble forecasts, to obtain vast datasets.

• validating different statistical models.
2. Investigate trends in significant wave height from ERA-I and its influence of non-
stationary assimilation by:

• comparing trends obtained at analysis and increased forecast range.
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Chapter 3

Scientific background

3.1 Global wave climate

In deep water, wave growth is primarily controlled by three factors: wind speed; fetch
- the open stretch of sea surface forced by the wind; and duration - the time the sea sur-
face is affected by wind. With wind speed being the most important factor, the wave
climate tends to follow the wind climate. In Figure 3.1 it is shown that the majority of
wave energy is located within the mid-latitudes of the Northern and Southern Hemi-
sphere (NH/SH), particularly near the storm tracks (Sterl and Caires, 2005; Stopa et al.,
2013). However, as waves are unaffected by the Coriolis effect (wave lengths are rarely
above 1 km long), they propagate along great circles until encountering land or shoals,
influencing oceans outside their area of generation. The local sea state is often a com-
bination of waves generated locally - wind sea, and those generated by distant weather
systems - swell. As this definition is somewhat imprecise, wave models tend to define
swell as wave energy propagating faster, or in another direction than the local wind.
While there can be several swell systems present at one time, there can only be one
wind sea system. In general, the stronger the wind climate, the more wind sea influ-
enced the wave climate is. Typically, wind speed and significant wave height of the
mid-latitudes are more correlated than in the swell-dominated Tropics (Semedo et al.,
2011).
As illustrated in Figure 3.1, the annual mean wind and wave conditions are highest

in the SH. This is related to a relatively higher density of extratropical cyclones sur-
rounding Antarctica compared to the NH (Bengtsson et al., 2006; Ulbrich et al., 2009).

Figure 3.1: Annual mean Hs andU10 based on ERA-Interim over the period 1979-2012. Max-
imum ice extent is illustrated by the Hs data, in white.
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Even though the total number of extratropical cyclones per year in the SH are only
marginally higher than in the NH (Hodges et al., 2011), the typical life span of a low-
pressure system in the SH is longer as these systems move almost unaffected by land
(near 60◦S), and are therefore able to generate more wave energy.
In terms of annual wind and wave variability, the situation is reversed. The high-

est extratropical cyclone intensity is found in the North Pacific and the North Atlantic
Bengtsson et al. (2006). These low-pressure systems are generated (cyclogenesis) or in-
tensified by the baroclinic instability imposed by the warm Kuroshio and Gulf Stream,
east of Japan and off Cape Hatteras/Newfoundland, respectively. This implies that the
highest waves and wind speeds globally are found downstream of these areas (Moore
et al., 2008; Sampe and Xie, 2007; Alves and Young, 2003; Caires and Sterl, 2005a;
Young et al., 2012; Breivik et al., 2014). Here, the nature of these extreme events is in-
vestigated, reduced to a matter of estimating the highest wave conditions that may be
expected during a certain period of time. In doing so, different types of wave data are
assessed.

3.2 Observations

Wave observations are typically obtained in two ways, by in situ or remote sensing tech-
niques (Holthuijsen, 2007). The first category include instruments located at the sur-
face (buoys), below the surface (inverted echo-sounders, pressure sensors) or surface-
piercing devices (wave poles). All instruments that measure waves from above the
surface are by definition remote sensing. These are typically installed onboard ships
and platforms, or satellite-mounted. Still, platform-mounted devices are sometimes re-
ferred to as in situ measurements, due to their vicinity to the surface. A few places this
is also the case in this study. However, wave height observations are mainly obtained
from buoys and satellite-borne radar altimetry.
Wave buoys are surface following devices which measure acceleration. By inte-

grating the vertical acceleration twice, the vertical motion of the surface elevation (η)
is obtained. Some buoys also contain an electronic compass and two additional ac-
celerometers in order to measure the directional components of the wave field. Signifi-
cant wave height is usually defined as:

Hs = 4std(η(t)) (3.1)

which is equivalent to the average of the highest third of the waves over time (t).
Radar altimetry measures the vertical displacement directly. However, when per-

formed from space, the footprint of the beam is too large to represent the surface eleva-
tion at one single location. Instead, the reflected pulse will represent the roughness of
the surface over a larger area, typically a few kilometres. By measuring the shape of the
returning signal, an estimate of Hs is obtained. Basically, higher waves lead to a longer
return signal, as opposed to smaller waves, which in turn is empirically associated with
some Hs (Tucker, 1991; Carter, 1993).
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3.3 Wave models

As the evolution of individual waves is too computationally expensive to solve opera-
tionally, wave models attempt to predict the statistics of the wave field, i.e. how wave
amplitude (surface elevation) is related to individual wave components of different fre-
quencies ( f ) and directions (θ ). The variance density spectrum, E( f ,θ), offers a con-
tinuous representation of the surface elevation, formally known as the two-dimensional
(2D) wave spectrum. By integrating the 2D wave spectrum over all frequencies and
directions, the total variance of the surface elevation is obtained, also known as the
zeroth-order moment

m0 =
∫ 2π

0

∫ ∞

0
E( f ,θ)d f dθ (3.2)

Based on Eq. 3.1, the significant wave height is defined by

Hm0 = 4
√
m0 (3.3)

Wave modelling dates back to the 50s (Gelci et al., 1957), but has come a long way
since then. Today most wave models are of the third-generation type, with no ad hoc
assumption being made on the shape of the 2D wave spectrum. The most commonly
used wave models in forecasting areWAM (WAMDI Group, 1988; Komen et al., 1994),
WaveWatch III (WW3) (Tolman, 2009) and SWAN (Holthuijsen, 2007). In deep water,
mainly three source terms control the evolution of the 2D spectrum, i.e. wind input
(Sin), non-linear interaction (Snl) and wave dissipation (Sds). Simplified, the evolution
of the 2D wave spectrum can be expressed by:

dE( f ,θ)
dt

= Sin+Snl+Sds (3.4)

A comprehensive description of how these source functions are defined and solved, is
presented in Cavaleri et al. (2007).

3.4 Reanalyses and hindcasts

In situ wave observations obtained from buoys are a rare commodity. The majority of
wave buoys are located in coastal areas or in conjunction with oil rigs (see National
Data Buoy Center - NOAA (2014) for the most comprehensive collection of real-time
wave buoy data). While their temporal coverage is often quite good, the scarcity of
data in the open ocean offers an insufficient spatial representation for wave climate as-
sessments. For this reason, reanalyses and hindcasts are attractive substitutes for obser-
vational records. These data archives are built by running coupled numerical weather
prediction (NWP) models and wave models to recreate a historic period. This is usu-
ally conducted in two ways. In a stand-alone system, winds obtained from the NWP
model force the wave model without any feedback to the NWP. In this way, the NWP
and the wave model can be run in two separate operations. In a coupled system, the sea
surface roughness used by the atmospheric component is dependent on the sea state de-
fined by the wave model, which again affects the winds of the NWP (Janssen, 2004).
This set-up requires the models to run simultaneously.
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Table 3.1: Commonly applied reanalyses.

Reanalysis Period Resolution Reference
NCEP-NCAR R1 1948- ∼ 210 km Kalnay et al. (1996)
NCEP-DOE R2 1979- ∼ 210 km Kanamitsu et al. (2002)
CFSR 1979- ∼ 38 km Saha et al. (2010)
JRA-25 1979-2004 ∼ 125 km Onogi et al. (2007)
JRA-55 1958-2012 ∼ 50 km Ebita et al. (2011)
MERRA 1979- ∼ 50 km Rienecker et al. (2011)
ERA-15 1979-1993 ∼ 125 km Gibson et al. (1997)
ERA-40 1957/09-2002/08 ∼ 125 km Uppala et al. (2005)
ERA-Interim 1979- ∼ 79 km Dee et al. (2011)
NOAA-20CRv2 1871-2011 ∼ 210 km Compo et al. (2011)

In order to recreate the past weather on a day-to-day basis, data assimilation is es-
sential. This is evident from traditional weather forecasting where the skill of the NWP
rapidly deteriorates with forecast range (FCR). Operationally, NWP models combine
the last available forecast (first guess) with meteorological observations to create an
optimal estimate of the atmospheric state at the time of analysis. This may be con-
ducted according to different assimilation methods, e.g. Optimum Interpolation (Li-
onello et al., 1992), 3 dimensional variational analysis and 4 dimensional variational
analysis (Kalnay, 2003). Reanalyses are essentially run in the same way, but have the
advantage of continuous data assimilation. In this way, model limitations and inaccura-
cies imposed in the previous analysis step are unable to evolve forward in time. Since
wave models represent a forced system, primarily relying on the quality of the wind,
wave data assimilation is secondary and therefore more often run without assimilation,
i.e. as hindcasts (Cox and Swail, 2001; Swail and Cox, 2000; Reistad et al., 2011;
Chawla et al., 2013).
While the model configurations used in operational NWPs are updated and im-

proved regularly, models used in atmospheric reanalyses are kept unchanged over the
period in question with the aim of creating homogeneous datasets. However, as reanal-
yses are highly dependent on data assimilation, inhomogeneities are difficult to avoid.
Since the International Geophysical Year (IGY), 1st of July 1957 to the 31st of De-
cember 1958, there has been a tremendous increase of meteorological observations,
mainly due to the advent of satellite-borne measurements. This has led to a more effec-
tive model-bias correction over the years. However, observations, like models, possess
biases that often need to be calibrated before assimilation, a non-trivial task in itself
(Zieger et al., 2009; Wan et al., 2010; Vincent et al., 2012).
Because most reanalyses span considerable periods of time, they are computation-

ally expensive to run. Usually developers need to resort to coarser model resolution
than normally applied in operational forecast models at the time. There are a number
of well established global atmospheric reanalyses that have been extensively used in
climate monitoring and research, see Table 3.1. For a more complementary summary,
see Dee (2013). None of these provide wave data, but offer forcing data for wave hind-
casts (Swail and Cox, 2000; Cox and Swail, 2001; Dodet et al., 2010; Chawla et al.,
2013; Caires et al., 2004).
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The European Center for Medium-Range Weather Forecasts (ECMWF) is the only
center running coupled atmosphere-wave reanalyses. These reanalyses are directly or
indirectly incorporated in all 5 papers presented herein. A brief introduction follows
below.

3.4.1 European Reanalysis - ERA

The ERA project is a series of reanalyses developed at ECMWF (Gibson et al., 1997;
Uppala et al., 2005; Dee et al., 2011). It was motivated by the need for a dataset gener-
ated by a modern, consistent and invariant data assimilation system. Up until the mid-
nineties, most climate monitoring was based on available observations and archived
operational forecasts coming out of models with continuously updated configurations.
As a result, the atmospheric reanalysis ERA-15 was completed in 1996 (Gibson et al.,
1997). It covered the period December 1978 through February 1994 and had a resolu-
tion of ∼ 125 km. Even though widely recognised, several deficiencies were detected
in ERA-15 (Kallberg et al., 2004). Sterl et al. (1998) used ERA-15-winds to force a
stand-alone WAM model, creating the first global wave hindcast. The performance of
the wave model was then used to infer the quality of the ERA-15-winds. It was con-
cluded that winds were too weak in areas of high winds due to resolution limitations. In
areas of weak winds the study was inconclusive, but it was suggested that WAM itself
tended to overestimate wave heights in these areas.
By 2002, a second generation reanalysis was available. The improved and extended

ERA-40 was the first reanalysis run with a fully coupled atmosphere-wave model (Up-
pala et al., 2005; Janssen, 2004), spanning the period September 1957 to August 2002,
a total of 45 years. By replacing the Optimal Interpolation (OI) scheme used in ERA-
15 with a 3D-Var analysis, the available observations were better utilized, increasing
the performance. Caires et al. (2004) carried out a comprehensive intercomparison
of different wind-wave hindcasts, including the ERA-40 reanalysis. It was concluded
that ERA-40 was best suited to describe global wind and wave height variability and
to conduct detailed analyses. In terms of trends, the different datasets offered similar
estimates. Still, by collocating ERA-40 with in situ buoy measurements and TOPEX
altimeter wind and wave height data, Caires and Sterl (2003) confirmed that ERA-40
wave heights are too low at the high percentiles, and also overestimates at the low end.
As a consequence, Caires and Sterl (2005b) proposed a new non-parametric method
developed to correct these defects, and to compensate for inhomogeneities imposed by
assimilated altimeter wave observations. For instance, ERA-40 Hs are of lower quality
from December 1991 to May 1993 due to impaired quality in the assimilated ERS-1
wave altimeter data (Uppala et al., 2005). The corrected ERA-40 (C-ERA-40) showed
clear improvements over the entire range of wave data, both in scatter and bias.
ERA-Interim (ERA-I) is the third reanalysis produced within the ERA-series and

was intended as a preparation for the successor of ERA-40 (Dee et al., 2011). Initially,
the reanalysis covered the period 1989 and onwards, but it has since been extended back
to 1979. It is based on the Integrated Forecast System (IFS) release Cy31r2, which was
operational at ECMWF from 12 December 2006 until 5 June 2007. The most relevant
model updates since ERA-40 (Cy23r4) are presented in Dee et al. (2011) (Table II).
ERA-I has an increased spatial resolution of ∼ 79 km and uses a 4D-Var assimilation
scheme. Even though the majority of observations assimilated in ERA-I are the same
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as those used in ERA-40 (up until 2002), there are some improvements. The ERA-I
project is ongoing and updated in near real-time. An intercomparison study of ERA-I
and CFSR marine surface wind speed (U10) and Hs is presented in Stopa and Cheung
(2014). Unlike the coupled ERA-I, the CFSR wave data is obtained with a hindcast
using WW3. This study showed that ERA-I, like its predecessors, generally underesti-
mates wind and waves at the upper percentiles, while CFSR revealed a small positive
bias. By investigating error trends relative to altimeter data, the study concluded ERA-I
to be more homogeneous in time and therefore more suitable for analysing long-term
variability. This was primarily based on comparison with TOPEX and GFO data, first
available in 1992. However, altimeter wave data, the only type of wave data assimi-
lated in ERA-I, was first introduced in August 1991. The homogeneity of ERA-I Hs
is mainly affected by this transition, which this study does not capture. This issue is
treated in Paper V.

3.4.2 NORA10

The Norwegian Reanalysis 10 km (NORA10) is a regional dynamical downscaling
of ERA-40’s atmospheric component, originally spanning the period September 1957
through August 2002. Beyond this date, the archive utilizes operational analyses from
the ECMWF IFS and is regularly extended to the present day. Computed winds are fur-
ther used to force a stand-alone wave model, forming a coherent wind and wave archive
covering the northeast Atlantic, i.e an area west of Ireland and to the north, including
the Norwegian Sea, the North Sea and the Barents Sea. NORA10 is developed by the
NorwegianMeteorological Institute and funded by the Norwegian Deepwater Program1
(NDP), a consortium from the Norwegian offshore petroleum industry. The project was
primarily motivated by the need for high quality wind and wave data, crucial for sur-
veys of metocean conditions. Besides basic statistics, the archive is typically used to
calculate average weather windows, enabling more cost effective operations offshore.
The data are frequently used in extreme value analysis in conjunction with mooring
analysis and structural design. Getting the high percentiles and extremes right were
always a prime motivation.
The atmospheric downscaling is performed with the High Resolution Limited Area

Model (HIRLAM) version 6.4.2 (Undén et al., 2002), on a 10-11 km spatial resolution.
The model is forced by ERA-40 on the boundaries with temperature, wind, specific
humidity and cloud water at all 40 vertical levels, and surface pressure with 6-hourly
temporal resolution. HIRLAM is run in 9-hourly sequences, but the last 3 hours are
primarily used to obtain better precipitation data. The initial condition is a blend of
the preceding 6-h forecast (first guess) and the initialization increment between the two
filtered states of ERA-40 and first guess. This is intended to preserve quickly evolving
systems and better represent intense extratropical cyclones.
The wave hindcast is generated with a modified WAM Cycle 4 model (Günther

et al., 1992; Komen et al., 1994) and run in a nested mode. A coarser 50 km model
forced by ERA-40-winds (WAM50), covering the main wave generating area of the
North Atlantic, provides boundary conditions to the inner model which is forced by
HIRLAM winds and covers the same area (WAM10), see Breivik et al. (2009) for a

1www.ndwp.org
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description of the handling of the open boundaries. Unlike ERA-40, WAM10 is run
with shallow water physics and has twice the directional resolution, i.e. 15◦/24 bins.
Paper I presents an in-depth description of NORA10 and validation. Paper II uses

NORA10 to obtain 100-year return value estimates of Hs, which is further utilized in
Paper III to validate return values estimates of Hs based on archived ECMWF ensem-
ble data (presented below).

3.5 Ensemble prediction

The forecast skill of NWP models is constantly improving as our ability to measure
and model atmospheric and oceanic processes evolves. Increased computational power
allows NWP models to run with ever higher resolution, explicitly resolving smaller
processes. Still, the chaotic nature of the atmosphere and ocean will always add an
element of unpredictability which is not represented by deterministic models. This un-
certainty is mainly associated with two factors: limited knowledge about the initial state
of the atmosphere/ocean and necessary model simplifications and approximations. By
running essentially the same model with perturbed initial conditions and a perturbed
model, this uncertainty may be quantified by the spread of the different forecasts. Be-
ing computational heavy, ensembles are often run with coarser resolution. Probabilistic
forecasts in the form of ensembles have been run operationally at ECMWF (Molteni
et al., 1996; Buizza et al., 2007, 2005) and US National Centers for Environmental Pre-
diction (NCEP) (Toth and Kalnay, 1993, 1997) since 1992. As of 2014, ECMWF runs
their Ensemble Prediction System (ENS) for medium-range and monthly forecasts, and
System 4 (S4) for seasonal forecasts (Molteni et al., 2011). The medium-range fore-
cast is initialized twice a day, at 00 UTC and 12 UTC, and extends 15 days ahead. The
atmospheric model is run with a horizontal resolution of ∼ 32 km at the surface and
with a coarser resolution of ∼ 63 km beyond day 10, while the coupled wave compo-
nent uses the coarser resolution throughout the whole period. The ensemble comprises
51 members, where 50 are run with slightly perturbed conditions of the atmospheric
component. The last member is started from the best estimate of the initial state (con-
trol), corresponding to the initial state used in the high-resolution (HRES) deterministic
model. Any deviation between the control and HRES reflects resolution issues. Twice
a week the medium-range runs are extended up to 32 days to create monthly forecasts
(Vitart, 2004), while long range seasonal forecasts (1-7 months) are produced once a
month.
An example of a medium range ENS forecast of Hs is presented in Figure 3.2.

Unlike the atmospheric component, the wave model is not initialized from perturbed
conditions, which is reflected by the lack of spread at analysis (ANA). TheHs-forecasts
are only affected by different atmospheric forcing. It is further illustrated that the spread
of the ensemble is generally increasing with time, representing lower confidence with
forecast range (FCR). At day 10, indicated by the black ellipse, the forecast skill of the
ENS data is more or less non-existing. The 10-day forecasts constitute the data basis in
Paper III and Paper IV.
As models are integrated forward in time, they are prone to drift, offering slightly

different model climate at increased FCR. This implies that prognoses may be inter-
preted slightly differently depending on FCR. ECMWF has tackled this issue by re-
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Figure 3.2: Plume diagram of ENS significant wave height at Ekofisk. Each individual forecast
is plotted in gray. The control run is presented by the blue dashed line. The 10-, 50- and 90-
percentile of the ensemble is illustrated in black, magenta and red, respectively. The 10-day
forecast range is indicated by the black ellipse.

running the model configuration in question over a historic period (re-forecasts) (Hage-
dorn, 2008; Hagedorn et al., 2012). In this way, a representative model climatology at
the desired FCR is obtained, in which the real-time ensemble may be compared against.
For instance, the extreme forecast index (EFI) is an index representing the shift in dis-
tribution between the real-time ensemble and the model climate, ranging from -1 to 1
(Lalaurette, 2003; Prates and Buizza, 2011). In the extreme case where all members
of the real-time ensemble are higher than the model climate, the EFI equals one. The
model climate is based on five consecutive 32-day re-runs starting Thursdays, centred
around the actual prediction time. This is done for the last 18 years, where an ensemble
of 5 members are initiated by the ERA-I reanalyses, consisting of four slightly per-
turbed initial conditions. This offers a model climatology consisting of 5 members x 5
weeks x 18 years, a total of 450 forecasts representative of the FCR and time of year.
The obvious advantage of such an index is that model bias, if any, is accounted for
without the user needing to be familiar with the performance of the model.

3.6 Return value and trend estimates

100-year return value estimates of Hs

Knowledge about the “worst case scenario” has special relevance in aspects concerning
offshore and coastal planning. To define such an event (at a given location), it is often
convenient and necessary to relate the estimate to a time period, asking questions such
as: what is the highest expected Hs over a period of 100 years? Given the limited
availability of wave data, return value estimates of Hs are hard to verify, as the events
one seeks to describe usually are larger than those recorded. In this regard, statistical
extreme value models are crucial. By fitting theoretical probability distributions to the
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data at hand, exceedance levels beyond the span of the data may be investigated.
Historically, different methods have been applied to obtain return value estimates of

Hs (Mathiesen et al., 1994; Lopatoukhin et al., 2000; Soukissian and Kalantz, 2006).
These can be distinguished by how the raw data is managed. Usually, this is done in
three ways, either by using all data, also known as the initial distribution method (IDM),
by using threshold exceedances, known as peaks-over-threshold (POT), or finally, by
only retaining the highest value within blocks, where a block refers to some period of
time. In this study, we have only applied the latter two, which are presented in Section
4.1 and applied in Paper II, Paper III and Paper IV.
The biggest advantage of the IDM, is that it is not wasteful. It exploits all data.

Historically, this has been an attractive approach, since the availability of Hs-data have
been limited. However, as most time series of Hs obtained from in situ measurements,
hindcasts and reanalyses are given at 1-6 hours intervals, the data are serially corre-
lated. This violates the requirement that data should represent independent events or
storms. In order to come to terms with this, some decorrelation time scale needs to
be applied, which is usually set to 3 hours (Alves and Young, 2003; Cooper and For-
ristall, 1997; Tucker, 1991; Vinoth and Young, 2011). Even though this is rarely true,
100-year return value estimates obtained with the IDM often correspond fairly well
with estimates obtained with POT or by blocking, which are in fact representing inde-
pendent data. However, the IDM offers usually higher return value estimates when the
return period is reduced to 1 or 10 years. This may indicate that also 100-year return
value estimates will be biased high as Hs time series grow longer in the future. Also,
there is no theoretical justification for a specific distribution function representing the
IDM data. Usually, several different functions are tested, where the function providing
the best fit to the data are chosen (Vinoth and Young, 2011; Alves and Young, 2003).
Further, since the IDM is highly influenced by the bulk of the data, or the lower part of
the Hs-distribution, this may have implications when waves are generated by different
weather systems. For instance, in areas influenced by both tropical and extratropical
cyclones, the Hs-data belong to two different populations. Since extratropical storms
are more frequent, the Hs-data generated from these systems will be more weighted
when fitting a distribution function. If so, there is a big risk that the 100-year return
value estimate will be underestimated as they are typically related to tropical cyclones.
Similarly, in areas where water depth becomes a limiting factor on wave growth, the
Hs-data may be a combination of deep water waves and shallow water waves. If the
majority of Hs-data is unaffected by water depth, the 100-year return value estimates,
representing shallow water waves, are likely to be too high.
A recent paper by Vinoth and Young (2011) presents 100-year return value estimates

of Hs and U10 from altimeter data, which is a follow up of Alves and Young (2003)
based onHs alone. These studies illustrates significant discrepancies between estimates
obtained with IDM and POT, where it is concluded that the FT1 (Gumbel) distribution
fitted to the IDM data validates best against corresponding estimates based on in situ
measurements. Here, the POT approach is found unsuitable because altimeter data
represent a temporal undersampling of the sea state, i.e. storm peaks are often missed.
Given the fact that IDM/FT1 is more affected by the bulk of the data, this approach is
less affected by missing peaks. It should be noted that Vinoth and Young (2011) use a
relatively low threshold for the POT data, which is set at the 90-percentile. This was
probably done intentionally to retain a minimum number of data, but still, this may
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have affected the return value estimates significantly. In Paper II it is shown that the
threshold needs to be set significantly higher to get a satisfactory fit to modelled data
in the northeast Atlantic.
Another study based on altimeter data (Topex/Poseidon) was conducted by Chen

et al. (2004). Here also the IDM/Gumbel was applied to obtain 100-year return value
estimates of Hs and U10. In order to compare the results of these studies, Table 3.2
presents the maximum 100-year estimates obtained globally, i.e. in the northeast At-
lantic. These estimates are accompanied by the data period, the binning resolution and
the applied method. In those cases where a study presents more than one estimate, the
estimate of the preferred method is written in bold. For other regional studies based on
altimeter data, see Carter (1993); Wimmer et al. (2006) for 50-year returns in the north-
east Atlantic and Panchang et al. (1998) for 50-year returns around North America.

Table 3.2: Maximum 100-year return value estimates of Hs in the northeast Atlantic as ob-
tained from different global studies. From left to right: reference of study; type of data; data
period; resolution of data; the applied method; maximum 100-year return value estimate in the
northeast Atlantic, where recommended estimates are presented in bold.

Reference Data Period Resolution Method 100-yr

Alves and Young (2003) Altimeter 1986-1995
2◦ ×2◦ POT/3PW 22-24 m
4◦ ×4◦ POT/3PW 22-24 m
2◦ ×2◦ IDM/FT1 24-26 m

Chen et al. (2004) Altimeter 1993-2000 1◦ ×1◦ IDM/Gumbel 20-21 m
Caires and Sterl (2005a) ERA-40 (cal) 1958-2000 1.5◦ ×1.5◦ POT/EXP 24.5-27.5 m

Vinoth and Young (2011) Altimeter 1985-2008

1◦ ×1◦
IDM/FT1 20-22 m
POT/3PW 18-20 m
POT/GP 20-22 m

2◦ ×2◦
IDM/FT1 20-22 m
POT/3PW 20-22 m
POT/GP 20-22 m

Caires and Sterl (2005a) conducted a similar global study based on ERA-40 Hs
and U10 over the period 1958-2000, also presented in Sterl and Caires (2005). Here,
the exponential distribution is fitted to POT data above the 93-percentile. As ERA-
40 is known to underestimate the high percentiles (Caires and Sterl, 2003), the 100-
year return value estimates were calibrated against corresponding estimates based on
in situ measurements. This study concluded that the exponential distribution in most
cases yield realistic estimates, but on the conservative side. In certain regions, like the
northeast Atlantic, the estimates were considered too conservative, i.e. overestimates.
It was suggested that this could be compensated by applying a higher threshold, e.g.
at the 97-percentile. Even though not advised by Caires and Sterl (2005a), there are
other studies implying that Hs-data in the northeast Atlantic may belong to the GP-
distribution (described in Section 4.1) with a negative shape parameter, i.e. having an
upper bound, see e.g. Izaguirre et al. (2011). Estimate of the maximum 100-year Hs
from Caires and Sterl (2005a) is incorporated in Table 3.2.
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Trend estimates

A simplified way of describing climate change is to represent it by a linear trend. Al-
though trends should be used cautiously to predict the future by extrapolation, they are
relevant in describing tendencies. Reanalyses constitute an important resource in do-
ing so. However, trends, especially when weak, put high demands on the accuracy
of the underlying data. Typically, reanalyses are affected by the growing number of
assimilations over the period it covers, which may lead to deceptive trends.
There are a number of reanalyses, see Table 3.1, and hindcasts whose purpose is to

describe the atmosphere-wave climate as precise as possible. However, as long as these
datasets yield different representations, there are good reasons to examine what these
differences are caused by. For instance, see Simmons et al. (2014), for comparisons of
temperature between ERA-I, ERA-40, MERRA and JRA-55.
In Caires et al. (2004) it was concluded that long-term trends taken over the two pe-

riods, 1958 to 1967 and 1990 to 1997, showed very similar features, implying trends
were indifferent to the dataset being used. It was however stated that ERA-40, showed
a slightly different pattern in trends over the period 1990-1997 due to erroneous al-
timeter data (ERS-1) assimilated over the period January 1992 until May 1993. In a
similar study conducted by Stopa and Cheung (2014), Hs and U10 from ERA-I and
CFSR/CFSR wave hindcast (Chawla et al., 2013) were compared against in situ mea-
surements and altimeter observations. By investigating trends in the monthly error be-
tween the modelled and observed data, this study concluded that ERA-I was the most
homogeneous over time, and therefore more adapted to trend analysis of Hs and U10.
This result was mainly based on comparisons with altimeter data (Topex/Poseidon and
GEOSAT Follow-on) taken over the period 1992-2008.
While the CFSR wave hindcast is run without any wave data assimilation, both

ERA-40 and ERA-I introduced altimeter wave measurements in August 1991. It is a
general concern how this may affect the regional wave statistics of the reanalyses. Due
to the choice of period, this issue is not captured by Caires et al. (2004) and Stopa
and Cheung (2014), but is addressed in Paper V. To illustrate the problem, Figure
3.3 presents two time series of the mean Hs for the month of January over the period
1979-2012 at 55◦N 40◦W. It is shown that trends obtained at ANA and the 48-hour
FCR (FC48) portray very different trends. This is directly affected by the step change
imposed by altimeter assimilation in August 1991, indicated by the sudden change in
discrepancy between the two time series.
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Figure 3.3: Top: Mean significant wave height for the month of January over the period 1979-
2012 at 55◦N 40◦W based on ERA-I from analysis (ANA) and 48-hour forecast (FC48). The
corresponding Sen estimator for trend is presented by solid lines. For comparison, the trend in
ANA based on linear regression is presented by the dashed line. Bottom: Discrepancy between
ANA and FC48 over the corresponding period.
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Methodology

4.1 Extreme value analysis

Extreme value analysis is a branch within statistics dealing with rare events, typically,
more extreme than previously observed. This is accomplished by means of statisti-
cal models, i.e. theoretical probability distributions, known to conform to the relevant
data at hand. As these models indeed are general approximations, they may be used to
investigate probabilities of events beyond the empirical distribution, which only repre-
sent a subset of all possible outcomes. This type of extrapolation is necessary, but can
be highly sensitive to the applied statistical approach.
Extreme events are scarce by definition and usually shifted away from the main part

of the data, represented by the mode. Therefore, it may be inexpedient to model the dis-
tribution of all possible outcomes of the random process, but rather to focus on the tail
of the distribution. The extreme statistics used in this thesis is mainly based on the work
by Coles (2001), and the references given therein. We primarily rely on two methods
of extracting the representative data, either by blocking or peaks-over-threshold (POT).
By blocking, we only retain the highest value or a limited number of the highest values
within a given time frame, which is here, set to one year. With POT, we retain thresh-
old exceedances above a predetermined threshold. Both methods require the data to be
independent events, implying no two Hs entries should originate from the same storm.
This is achieved by requiring a minimum of 48 hours between peaks, which is sufficient
to separate Hs-data generated by the same extratropical cyclone. Further, data should
be identical, i.e. they should originate from the same statistical distribution. This may
be violated if there are significant trends in the data, or if the dataset exhibits sudden
step changes. Both issues are addressed in the thesis. Trends are presented in Paper
V, while step changes, due to model updates and non-stationary assimilation, are dis-
cussed in Paper II, Paper III and Paper V. Although debatable, we find it reasonable
to assume the effect of trends and discontinuities to be secondary compared to the sub-
stantial uncertainty associated with the return value estimates presented herein. For all
practical purposes, the data are assumed independent and identically distributed (IID).
The central limit theorem (CLT) states that the distribution of means based on a large

number of IID variables will be approximately normal, regardless of the underlying
distribution. Related to the above discussion, this implies that the means based on all
independent events within each block would be approximately normally distributed. In
extreme value theory there exist an analogy to the CLT, given by the extremal types
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theorem, which states that the renormalized maxima of all independent events within
each block has a limiting distribution defined by the generalized extreme value (GEV)
distribution:

G(z) = exp

{
−
[
1+ξ

(
z−μ

σ

)]−1/ξ
}

(4.1)

where z in our case represents Hs. The form of the distribution is controlled by three
parameters, i.e. shape (ξ ), scale (σ ) and location (μ), where G(z) takes the form of the
Gumbel (ξ → 0), Frèchet (ξ > 0) or Weibull (ξ < 0) distribution. By inverting Eq. 4.1
we are left with two terms, depending on ξ , that may be used to obtain return value
estimates of z:

zp =
{

μ − σ
ξ [1−{− ln(1− p)}−ξ ], for ξ �= 0

μ −σ ln{− ln(1− p)}, for ξ = 0
(4.2)

where G(zp) = 1− p and p corresponds to some probability of exceedance. In our
case, where G is representing the distribution of annual maxima, 1/p will correspond
to a return period in years. For instance, for a return period of 100 years, the annual
probability of exceedance is p= 0.01.
It can further be shown that if the annual maxima have an approximate distribution

of G, defined by Eq. 4.1, then threshold excesses, y, above some large enough value
u should conform to a distribution within the generalized Pareto (GP) family, which is
defined by:

H(y) = 1−
(
1+

ξy
σ̃

)−1/ξ
(4.3)

requiring y> 0 and (1+ξy/σ̃)> 0, where σ̃ = σ +ξ (u−μ). Similar to GEV, the GP
family takes three forms, depending on ξ . In the special case of ξ → 0, Eq. 4.3 reduces
to the exponential distribution (EXP). Corresponding N-year return values are defined
by

zN =

{
u+ σ

ξ [(Nnyζu)
ξ −1], for ξ �= 0

u+σ ln(Nnyζu), for ξ = 0
(4.4)

where ny represents the number of data per year and ζu is the probability of an individ-
ual observation exceeding the threshold u.

Model diagnostics

In this study we use the maximum likelihood to fit the theoretical distribution to the
chosen subset of the initial data (Coles, 2001). Return value plots offer a convenient
tool to check the conformity between the two. By plotting − ln(− ln(1− p)) against
zp, the GEV distribution is linear if ξ = 0, concave with an asymptotic limit if ξ < 0
and convex with no upper limit if ξ > 0. The model diagnostics of the GP distribution
can be presented in the same way. Figure 4.1 presents three return value plots where
the GP and EXP distribution is fitted to POT data using three different thresholds, i.e.
the 97-percentile, the 99.3-percentile and the 99.7-percentile. It is shown that the GP
distribution takes three forms depending on threshold, i.e ξ < 0, ξ ∼ 0 and ξ > 0,
respectively. This has significant impact on the accompanied 100-year return value
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Figure 4.1: Top: Time series of Hs from NORA10 over the period 1958-2012 at the position
72◦N 5◦E marked in gray. Peaks-over-threshold (POT) data separated by a minimum of 48
hours with the threshold set at the 97-percentile (green dots), 99.3-percentile (black circles)
and 99.7-percentile (red dots). Bottom: Return value plots of the generalized Pareto (GP)
(dashed red) and the exponential distribution (EXP) (dashed black) fitted to the different POT-
data. Corresponding 100-year return value estimates are given in the legend and indicated by
the pink and gray dashed lines, respectively.

estimates, presented in the legends, ranging from 15.3 to 16.6 m. Also, the EXP shows
great variation, ranging from 15.5 to 17 m. One of the potential benefits of using a
threshold model is the possibility of utilizing more data for the distribution fitting, as
opposed to the annual maximum. Even so, there exist no consensus on how to choose
an optimal threshold. Often it is necessary to carefully study return value plots to obtain
an ideal fit. Since this is not practical when return value estimates are obtained for a
large area, a pragmatic way of dealing with this issue, is to apply a predetermined
threshold representing some percentile of the initial data (Challenor et al., 2004; Caires
and Sterl, 2005a).

4.2 Trend analysis

Mann-Kendall/Seasonal Kendall

A straightforward approach for estimating trend is obtained by linear regression. How-
ever, as pointed out by Sen (1968), the least square estimator is vulnerable to gross
errors if the parental distribution departs from the normal distribution, which is the
case for Hs (Holthuijsen, 2007).
In the following trend analysis presented in Paper V we are dealing with monthly
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data, mean and maxima, respectively. Let Xi = (xi1,xi2, . . .xini) represent the monthly
data of Hs and U10 in chronological order, where ni is the total number of entries from
month i= 1,2, . . .12 (only one entry per year). Based on Sen (1968), a robust estimate
of the monotonic trend is given by:

b=median
(
xi j− xil
j− l

)
∀l < j (4.5)

where 1≤ l < j≤ ni. For seasonal estimates of trend, the desired months (i) are chosen
accordingly. Notice that the set of slopes are only obtained within each month. In this
way, seasonality is accounted for. The annual trend is obtained by the median of all
slopes taken over all months. As an example, Figure 3.3 illustrates trends obtained
with the Sen estimator and linear regression.
In order to establish whether a trend is statistical significant or not, we we apply

the Seasonal Kendall test, a non-parametric test of randomness (H0) against trend (H1),
an extension of the Mann-Kendall test (Mann, 1945; Kendall, 1948) especially adapted
to seasonal data with serial dependence (Dietz and Killeen, 1981; Hirsch and Slack,
1984). The Seasonal Kendall statistics for month i is expressed by

Si =
ni−1
∑
k=1

ni
∑
j=k+1

sgn(xi j− xik) (4.6)

In case of missing data at time j or k, sgn(xi j− xik) is set to zero. From Mann (1945);
Kendall (1948); Hirsch et al. (1982) we define S′ = ∑12i=1 Si, having a mean and variance
given by

E[S′] =
12

∑
i=1
E[Si] = 0 (4.7)

Var[S′] =
12

∑
i=1
Var[Si]+

12

∑
i=1

12

∑
l=1
cov(SiSl), i �= l (4.8)

where Var[Si] = nig(nig−1)(2nig+5)/18 and nig represents the number of non-missing
data per month (nig = ni for complete series). According to Hirsch et al. (1982),
cov(SiSl) = 0 when Si and Sl are independent random variables. However, this fails
to hold for monthly lag-1 serial correlation as low as 0.2 (Hirsch and Slack, 1984). In
the following we use an estimate of the covariance term defined by Dietz and Killeen
(1981), which is documented in Hirsch and Slack (1984). A two-sided test for trend is
based on the standard normal variate Z defined by

Z =

⎧⎪⎪⎨
⎪⎪⎩

S′−1
(Var[S′])1/2 if S′ > 0
0 if S′ = 0
S′+1

(Var[S′])1/2 if S′ < 0
(4.9)

where H0 is accepted when |Z|< 1.96, using a significance level of α = 0.05.
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Summary

This PhD thesis is a survey of regional and global wave climate represented by signif-
icant wave height, Hs. The study has had two focus areas: return value estimates and
trends. Both aspects are mainly controlled by three factors:

• the quality of the data
• the time span and coverage of the data
• choice of statistical approach

All three issues are addressed by:

• Paper I: Validating a high resolution hindcast covering the Northeast Atlantic,
the NORA10.

• Paper II: Comparing three statistical approaches to obtain 100-year return value
estimates based on NORA10.

• Paper III: Investigating the potential of utilizing large aggregated ensemble fore-
casts for return value estimates in the northeast Atlantic.

• Paper IV: Using a nonparametric approach based on order statistics to obtain
global return value estimates of Hs andU10 from aggregated ensembles.

• Paper V: Investigating global trends in Hs and U10 from ERA-I, and their influ-
ence of data assimilation.

A brief summary of the papers are given below:

5.1 Summary of papers

Paper I: High-resolution hindcast of wind and waves for
the North Sea, the Norwegian Sea and the Barents Sea
The relative coarse resolution of ERA-40’s atmospheric component (∼ 125 km) has
been shown to generate Hs data of poor quality in the upper percentiles, where ex-
treme events are quite severely underestimated. For this reason, the raw data have been
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considered inappropriate for return value analysis. However, ERA-40 does portray Hs
variability very well, a testament to its ability to reproduce synoptic features of the
atmosphere. This paper presents the Norwegian Reanalysis 10 km (NORA10), a com-
bined regional downscaling of ERA-40’s atmospheric component and a stand-alone
wave hindcast covering the northeast Atlantic over the period September 1957 to Au-
gust 2002. With different model physics and higher spatial resolution, NORA10 winds
are on average 0.5 m/s higher than ERA-40 over the open ocean, and in excess of 3
m/s in coastal areas. Validation against synoptic observations and QuikSCAT reveals
that NORA10 is performing better on the whole range of data, but are still slightly
weak on the highest wind speeds. The improved winds are reflected in the Hs data,
which generally show higher correlation and smaller bias when validated against in
situ measurements and altimeter observations. More importantly, NORA10 shows a
clear improvement in the upper percentiles of Hs, establishing NORA10 as a high qual-
ity wave hindcast able to reproduce Hs extremes satisfactory in the northeast Atlantic.
Given the performance of NORA10 Hs, it provides a baseline climatology, which other
datasets may be compared against.

Paper II: Wave Extremes in the Northeast Atlantic

In this paper, an extended version of NORA10 is utilized to obtain 100-year return
value estimates of Hs in the northeast Atlantic. The original downscaling of ERA-40 is
prolonged in an identical manner based on analysis fields from the Integrated Forecast
System (IFS) at the European Centre for Medium-RangeWeather Forecasts (ECMWF).
The chosen period, 1958 until the end of 2009, spans a total of 52 years. By comparing
NORA10 against in situ measurements before and after the transition in August 2002,
no major discontinuities are detected.
Three commonly applied extreme value models are used to investigate uncertainty

in the 100-year return value estimates. The applied statistical distribution is dictated by
the way extreme data is extracted from the initial dataset. This is done in two ways:
by blocking or as threshold exceedances. Within each block of one year, we retain
the annual maximum or a number of the largest entries. This is considered as two
different approaches, where both subsets should conform to the generalized extreme
value (GEV) distribution. Threshold exceedances are obtained according to the peaks-
over-threshold (POT) approach, making sure peaks are separated by a minimum of
48 hours. The threshold selection is based on the Anderson-Darling test and visual
inspections of return value plots. Here, the generalized Pareto (GP) distribution is fitted
to POT data above the 99.7-percentile to obtain 100-year return value estimates.
For the majority of the model domain, the three approaches offers estimates within

±5%. However, in certain areas discrepancies are peaking around ±20%. By inves-
tigating the conformity between the three data subsets and the corresponding distribu-
tions, the POT/GP combination seems to yield better results in these areas.
Based on POT/GP the 100-year estimates are peaking around 22 m northwest of

Scotland, around 14 m in the North Sea and above 16 m in the Norwegian Sea. It is
further concluded that the return value estimates are too low near the western bound-
aries of the domain due to influence of the boundary conditions provided by ERA-40
and IFS-ECMWF analysis.
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Paper III: Wave Extremes in the Northeast Atlantic from Ensemble Fore-
casts

Return value estimates of Hs are often based on datasets that are considerable shorter
than the return period in question. As most time series do not extend much further
than 50 years, 100-year return values are rarely represented in the data. In an effort
to overcome this limitation, this study investigates the possibility of utilizing an un-
conventional dataset that is shown to span far beyond 100 years. Here, represented by
archived ensemble forecasts from the ensemble prediction system (ENS) at ECMWF.
The main purpose of the ENS is to provide confidence estimates to the traditional

medium range forecasts. This is obtained by running 50 slightly perturbed versions of
the deterministic model at lower spatial resolution, plus a control run. In general, the
spread of the ensemble is increasing with forecast range, reflecting the uncertainty in
the forecast. Beyond day 6, the forecast skill is very low. At day 10, the 51 ensemble
members are sufficiently uncorrelated to be considered independent representations of
the model climate.
In this study, we aggregate historic ENS data at forecast range +240 h, i.e. day 10,

over the period 1999-2009. The ENS is run once a day up until 23 March 2003, and
twice a day beyond this data. By assuming each member representing a 6-h interval, the
aggregated dataset is equivalent of ∼ 226 years of data. This implies that the dataset,
on average, should contain more than 2 events exceeding the 100-year return value.
Here, we apply the GEV and GP distribution to obtain 100-year return value esti-

mates of Hs in the northeast Atlantic. The results are compared against corresponding
estimates based one NORA10, ERA-40 and ERA-I. It is shown that the ENS data yields
estimates comparable to NORA10 return values, and show a clear improvement over
ERA-40 and ERA-I, which are known to underestimate the higher percentiles. It is con-
cluded that archived ENS data represents an unused resource that may complement and
sometimes yield more precise return values than traditional reanalyses and hindcasts.

Paper IV: Wind and wave extremes over the world oceans from very
large ensembles

In this study, we investigate a nonparametric approach to obtain global 100-year return
value estimates ofHs andU10. Aggregated ensemble forecasts over the period 26March
2003 to 25 March 2012 offer approximately 229 years of data. According to definition,
these data should, on average, have ∼ 2.29 entries that are equal to or exceeding the
100-year return value. So, without resorting to traditional extreme value models, it is
possible to obtain direct estimates (DRE) from the weighted interpolation between the
second and third highest entries taken from the order statistics.
In the following we compare 100-year return value estimates based on DRE, the GP

distribution and the exponential (EXP) distribution, where the latter is a special case
within the GP family. Normally, the conformity between the extreme value models
and the data are validated by return value plots. Here, this is conducted by comparing
the GP/EXP estimates against DRE estimates, which serves the same purpose at the
probability level of the 100-year return period. This offers a representation of the be-
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haviour of the GP/EXP distributions globally. The discrepancy between GP and EXP
is most pronounced in the cyclone prone areas, where GP yields significantly higher re-
turn value estimates, caused by a positive shape parameter. In general, GP offers higher
return value estimates of Hs andU10 and better conformity to the DRE.

Paper V: Marine wind and wave height trends at different ERA-Interim
forecast ranges

Reanalyses play an important part in describing the past climate. They provide baseline
climatologies that e.g. climate models are compared against. However, as reanalyses
are highly affected by assimilation, it begs the question how trends are affected by the
ever growing number of observations.
ERA-I is a highly recognized reanalysis produced at ECMWF providing both atmo-

spheric and wave data. Besides the traditional reanalysis, ERA-I is also run as forecasts
every 12 hours up until 10 days ahead. In general, models tend to relax towards the
model climate at increased forecast range (FCR), being less affected by assimilation.
By comparing trends obtained at analysis against increased FCR, it is possible to inves-
tigate to what degree trends are affected by assimilation. Here, we put special emphasis
on the effect of wave altimeter data, introduced in August 1991, as this is the only type
of data directly affecting the wave field. Further, we compare two stand-alone WAM
runs forced by ERA-I winds, run with and without wave altimeter assimilation, in or-
der to see effects of different satellite updates. Trends in Hs and U10 at different FCR
are validated against in situ measurements and ENVISAT altimeter winds.
Here, it is concluded that the introduction of wave altimeter assimilation in August

1991 creates a step change in the ERA-IHs data, especially pronounced in the northeast
Atlantic and the eastern tropical Pacific, which impose spurious trends. It is shown
that Hs-trends are affected by the different satellite updates, the number of operating
satellites and the general availability of wave altimeter data. There are also proof of
step changes in theU10 data, e.g. seen with the introduction of data from QuikSCAT in
the southern hemisphere in 2000, but to a lesser extent.
Trends seem to be damped or slightly shifted towards the negative using data at

increased FCR. Even so, the 10-day FCR is capable of representing the main spatial
features of the trend found near analysis. Still, there is a trade-off between removing
the impact of data assimilation at longer forecast range and getting lower level of un-
certainty in the predictions at shorter forecast range. Here, data at the 48-hour FCR is
proposed as a better candidate to reproduce realistic Hs-trends. Given the fact that as-
similation also introduces step changes in theU10 data, trends based on the 24-48 hour
FCR will remove some of the spurious effects.

5.2 Conclusions and future perspectives

The robustness of return value estimates are mainly controlled by three factors: the
quality of the ground data, the amount of available data and the choice of statistical
method. Even so, given the nature of extremes, return value estimates are not easily
verified. Increased confidence is first and foremost achieved by coherent results based



5.2 Conclusions and future perspectives 29

on different datasets and statistical approaches. In this regard, the northeast Atlantic
makes an interesting proving ground as it represents the area anticipating highest Hs
extremes, i.e. the global maximum.
The return value estimates presented in this thesis are mainly based on NORA10

and archived ENS data, but further compared against corresponding estimates from
ERA-40, ERA-I and in situ measurements. The two primary datasets have different
characteristics. NORA10 is a high-resolution dataset with verified high performance
on the whole range of data; it is run with the same model configurations throughout
the period; it does however have a transition in August 2002, going from ERA-40 to
IFS-ECMWF boundary conditions, but if any, the discontinuity is shown to be small;
it is only regional; the length of the time series is moderate (∼ 50 years). The archived
ENS data has lower spatial resolution; it is based on different model configurations;
it is not influenced by assimilation, as it consist of 10-day forecasts; it is global; the
dataset is vast (> 220 years).
Given the different spatial resolution, the 100-year return value estimates are not

strictly comparable. While NORA10 represents approximately 1-hour average sea
states, the ENS data are validated and assumed to represent 6-hour averages. The ENS
estimates are therefore biased slightly low compared to NORA10, i.e. when disregard-
ing the westernmost areas of NORA10 which are heavily influenced by the boundary
conditions. Still, the ENS data provide significantly higher estimates than ERA-40 and
ERA-I, which are known to underestimate the higher Hs percentiles. Based on the ENS
data, the global maximum is just below 20 m. In comparison, NORA10 estimates are
exceeding 22 m when based on POT/GP. Compared to similar studies, see Table 3.2,
the ENS estimates are slightly on the low side, while NORA10 is more centred among
the rest.
In this study two families of extreme value distributions have been utilized to ob-

tain 100-year return value estimates, the generalized extreme value (GEV) distribution
and the generalized Pareto distribution, where the choice of distribution is dictated by
the chosen subset of the initial data. Both distributions may be applied with restrictions
set on the shape parameter. If set to zero, the distributions reduce to the Gumbel and
the exponential distribution (EXP), respectively. When the GEV and the GP distribu-
tions were applied with no restrictions, more than 70% of the model domain conforms
to a negative shape parameter based on NORA10 Hs, i.e. providing return value es-
timates approaching an asymptotic upper limit. This is in accordance with Izaguirre
et al. (2011). This implies that the EXP distribution will provide more conservative
estimates in the northeast Atlantic, as the distribution is unbounded at the high end.
However, we do acknowledge that the EXP and GP distribution tend to converge when
applying a sufficiently high threshold in the POT data. Still, the GP distribution may
have advantages in situations where the wave data belong to different populations. For
instance, in certain areas where bottom friction becomes a limiting factor, data may be
a mix of deep water and shallow water waves. If the majority of Hs data are behaving
as deep water waves, the fitted EXP is likely to produce overestimates, while the in-
creased adaptability of the GP are more likely to conform better to the highest waves.
Similarly, in cyclone-prone areas, where the majority of waves still are generated by
extratropical cyclones, the highest Hs-data generated by tropical cyclones are likely to
be underestimated by the EXP distribution.
The return value estimates presented in this study is based on extreme value mod-
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els assuming stationary conditions, which is in accordance with the studies we have
compared against. Still, in future work, non-stationary models should be investigated
in order to account for trends and interannual variability (Coles, 2001; Ruggiero et al.,
2010; Izaguirre et al., 2011, 2013). Even so, it may be added that trends in monthly
maximum Hs over the period 1979-2012, is shown to be weak and non-significant out-
side the tropics, justifying the assumption of stationary conditions. It should also be
added that one of the benefits of using large aggregates of ENS data, is that it does
not exhibit long-term trends and low-frequency oscillations since the initial conditions
cover a fairly short period of time; in our our case, no more than 11 years.
The use of ensemble aggregates for return value estimates is a new and alterna-

tive approach. It represents an unused resource that may complement and sometimes
yield more realistic return value estimates than obtained from traditional reanalysis and
hindcasts. The aggregates used in this study is shown to represent more than 200 years
of data, but may be significantly extended as more historic ENS data becomes avail-
able. There are however a few pitfalls. Special attention must made to the homogeneity
of the data, as models are constantly updated. And, even though it is shown that the
10-day forecasts represent independent draws from the model climate, this may fail
to hold as the forecast skill of the ENS is improving. Still, the method should be ap-
plicable to other datasets. By avoiding assimilation altogether, 10-member ensemble
integrations spanning the twentieth century (Hersbach et al., 2013) may prove relevant
for estimating Hs return value estimates and corresponding trends.
This study has presented trends in Hs and U10 based on the ERA-I reanalysis. It

is shown that Hs-trends, in particular, should be used with care. The last decades have
seen an ever growing number of assimilations and inclusions of new observations which
are likely to affect trends. It is shown that the introduction of altimeter wave heights
in August 1991 imposes a step change in the Hs data, with most pronounced effect
in the northeast Atlantic and the eastern tropical Pacific. These areas are typically
associated with wave model bias, which is abruptly corrected by altimeter wave height
assimilation. Here, it is shown that data at increased FCR are less affected by spurious
effects imposed by assimilation, and therefore may portray Hs and U10 trends more
realistically.
With the advent of reanalyses spanning the twentieth century (Compo et al., 2011;

Poli et al., 2013), special care is taken to tackle the problem of a changing observing
system. By omitting all satellite data, assimilating surface observations only, the ob-
jective of these reanalyses is to attain homogeneous datasets more adapted for trend
analysis. Trends in U10, mean and extremes, have recently been presented in (Boissé-
son et al., 2014; Donat et al., 2011; Brönnimann et al., 2012), but also Hs-trends based
on reconstructions and hindcasts have been conducted Wang et al. (2012); Bertin et al.
(2013). As shown in this study, inferences should be made cautiously when compared
against Hs-trends obtained with ERA-I at analysis.
Generally, reanalyses like ERA-40 and ERA-I constitute invaluable data archives

for climate research. Still, they should not be considered flawless representations of
the real climate. They require special attention depending on the topic in question,
reflected by their inherent limitations. Often alternative datasets are required to support
and verify their validity, which is illustrated by this thesis.
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Errata

Equation (3) on page 85 and equation (1) on page 110 are both written:

H(y) = 1−
(
1+

ξy
σ̃

−1/ξ
)

, but should read:

H(y) = 1−
(
1+

ξy
σ̃

)−1/ξ

Corrections

1. Paper V (page 3 and 123) is no longer in revision, but has been accepted

2. Wrong reference on page 128, under "RHtestsV4 - Homogenization", second
paragraph: "Wang et al. (2010)" not "Wan et al. (2010)"

3. Table 3.1 on page 12: should be "ERA-40 / 1957/09-2002/08" not "ERA-40 /
1979-1993" and "ERA-Interim / 1979-" not "ERA-Interim / 1979-1993"
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