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Abstract

We explore the theory of cohomology of groups and the classification
of group extensions with abelian kernel. We then look at the group ex-
tensions that underlie the truncated Witt vectors on the truncation set
{1, p} where p is a prime number. It turns out that we can do without the
multiplicative structure on the source ring A by factoring the extension’s
representing cocycle through a map into the p-fold tensor product of A
divided out by the Cp-action.



1 Introduction

Given two groups G and N , we can ask the following question: What are the
essentially different ways we can express the group G as a quotient of some
group E by N? Answering this question amounts to classifying certain objects
called extensions, which are short exact sequences of groups

1→ N → E → G→ 1 .

Restricting ourselves to extensions with abelian kernel, i.e. where N is an
abelian group A, we solve the classification problem by using the theory of
cohomology of groups.

Turning our attention to the truncated Witt vectors on a commutative ring
A, we examine the extension we get from the projection of the Witt vectors
onto A by forgetting down to abelian groups. This yields an extension

0→ A→W → A→ 0

which is represented in the second cohomology group H2(A,A) by a cocycle
depending on the multiplication in A. It turns out that this cocycle factors
through a map into the p-fold tensor product of A divided out by the Cp-action,
yielding another extension

0→ A⊗p/Cp →W ′ → A→ 0 ,

in which the group structure in W ′ does not depend on the multiplication in
A. We discover that tensoring this extension with Fp yields a long exact se-
quence in homology in which the connecting homomorphism is equal to a certain
normalized cochain A→ A.

1.1 Why do we care?

In this section we will give some background information that lies outside the
scope of this thesis, but which may help the reader place it in a wider context.

The motivation for this thesis is questions in equivariant homotopy theory,
more precisely the equivariant structure of smash powers. If E is a spectrum,
G a finite group and S a finite G-set, let

E∧S = E ∧ · · · ∧ E

be the smash product of E with itself indexed over the elements of S. The moti-
vation lies in an attempt to understand the G-spectrum E∧S , and in particular
its fixed points (E∧S)G under the G-action.

A variant of the Redshift conjecture is that the chromatic level of (E∧S)G

is higher than that of E itself. In particular, if multiplication by p is null-
homotopic in E then it is not null-homotopic in (E∧p)Cp , where Cp is the
cyclic group of order p. We wish to study this more closely by examining the
fundamental cofiber sequence

(E∧p)hCp → (E∧p)Cp → E ,

where (E∧p)hCp
are the homotopy orbits under the Cp-action. If the fixed

points are going to have higher chromatic filtration than E, then this cofiber
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sequence must be non-trivial. One way to understand such a cofiber sequence
is to understand the boundary map

E → Σ(E∧p)hCp
,

which should be easier to understand since both E and (E∧p)hCp
are easier to

understand than the fixed points.
Such questions arise in connection with topological Hochschild homology: If

E is a commutative ring spectrum then

S 7→ E∧S

becomes a functor and we can give meaning to E∧X , where X is a simplicial
set. In particular, THH(E) arises as E∧S

1

where S1 is a simplicial model for
the circle. Note that this case does not require that E be commutative. Let Cp
be the cyclic group of order p, acting on S1 by multiplication by the p-th roots
of unity. This leads to the following variant of the fundamental cofiber sequence
above

THH(E)hCp
→ THH(E)Cp → THH(E) ,

where THH(E)hCp
are the homotopy orbits and THH(E)Cp are the fixed points

of THH(E).
We wish to understand this cofiber sequence by studying the boundary map

THH(E)→ Σ THH(E)hCp

To discover higher periodic classes one must work with coefficients. In par-
ticular, to discover increased divisibility by p, it is fair to start out with working
with homotopy mod p.

In this thesis we study the lowest homotopy groups for the fixed points and
the boundary maps in mod p. Here we rediscover the well known truncated Witt
vectors for THH, while for the finite fixed points discover “new“ extensions of
π0E. In the last case we get an explicit version of the boundary map and an
open question is how our formulas should generalize from π0 to a map of spectra.

Concretely, letting A be an abelian group, E = HA the Eilenberg-MacLane
spectrum on A and G = Cp be the cyclic group of order p, the fundamental
cofiber sequence becomes

(HA∧p)hCp
→ (HA∧p)Cp → HA .

In this case the boundary map is the map ∂ : HA → Σ(HA∧p)hCp , which in
mod p homotopy becomes the map

π∗∂ : π∗HA ∧ S/p→ π∗Σ(HA∧p)hCp
∧ S/p .

Looking at the long exact sequence in homotopy given by smashing with the
cofiber sequence

S
p−→ S→ S/p ,

where S is the sphere spectrum, we see that for i < 1, πiΣ(HA∧p)hCp
∧ S/p

is equal to zero since taking homotopy orbits preserves connectivity. Moreover,
for i > 1 we have that πiHA ∧ S/p is equal to zero. Thus, the only non-zero
part of π∗∂ is the connecting homomorphism

π1HA ∧ S/p→ π0(HA∧p)hCp ∧ S/p .
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This map is actually the connecting homomorphism

Tor1(Fp, A)→ Fp ⊗A⊗p/Cp ,

for which we discover a concrete formula in Section 3.

2 Cohomology of groups

We will start by defining a set of basic objects that will be of use later. Most of
the contents of this section is taken from [1, ch. I-III] while expanding on those
parts requiring additional details. The goal of this section is to be able to give
a definition of the cohomology of a group G with coefficients in a ZG-module
M .

2.1 Chain complexes and homology

Let R be a ring. A chain complex C over R is a graded R-module C = (Cn)
together with an endomorphism d of C, called the differential of C, with degree
−1 satisfying d2 = 0. If d instead has degree +1, we write C = (Cn) and say
that C is a cochain complex. If M is a module, we will let M denote the chain
complex · · · → 0→ 0→M , concentrated in degree 0.

If C is a chain complex, we define the homology of C to be the graded R-
module H(C) = (Hn(C)) = ker d/ im d. If C is a cochain complex, we write
H(C) = (Hn(C)) and call it the cohomology of C.

A graded module homomorphism f : C → C ′ of degree 0 between two
chain complexes is called a chain map if d′f = fd. A chain map f : C → C ′

whose induced map H(f) : H(C)→ H(C ′) is an isomorphism, is called a weak
equivalence. In particular, homotopy equivalences of chain complexes are weak
equivalences.

2.2 Resolutions

Definition 2.2.1. Given an R-module M , a resolution ε : F → M of M over
R is an exact sequence

· · · → F2
d2−→ F1

d1−→ F0
ε−→M → 0

of R-modules. A free resolution is a resolution where all the Fi are free.

Since every exact sequence is a chain complex, we can view a resolution in
terms of chain complexes by regarding ε as a chain map from the chain complex
F = (Fn)n≥0 to M , where M is the chain complex concentrated in degree 0:

· · · // F2
d2 //

��

F1
d1 //

��

F0
//

ε

��

0

· · · // 0 // 0 // M // 0

Proposition 2.2.2. The exactness condition on the sequence

· · · → F1 → F0 →M → 0

holds if and only if ε is a weak equivalence
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Proof. If the sequence is exact, then Hi(ε) : Hi(F )→ Hi(M) is the isomorphism
0 → 0 for i > 0 and H0(F ) → H0(M) is the isomorphism F0/ ker ε → M .
Conversely, if ε is a weak equivalence then Hi(ε) is an isomorphism for all i
which implies that the sequence is exact. The implication can be seen in the
case i = 0 from the diagram

F0
ε //

��

M

H0(F )

<< .

Proposition 2.2.3. Every module has a free resolution.

Proof. LetM be a module and let d−1 be the zero mapM → 0 and let F−1 = M .
For each i ≥ 0, let Fi be the free R-module on ker di−1 and let di : Fi → Fi−1
be the map sending each generator to its corresponding element.

Proposition 2.2.4. A module M over a principal ideal domain R admits a
resolution

0→ F1 → F0 →M → 0 .

Proof. By Proposition 2.2.3, M has a free resolution F → M . Since R is a
principal ideal domain, submodules of free R-modules are free. Thus F1 is
equal to the kernel of the map F0 →M and hence F2 = 0.

Since free modules are direct summands of themselves, free modules are
projective and it follows from 2.2.3 that every module has a projective resolution.

Note that a free R-module M admits the free resolution 0→M
1−→M → 0.

2.3 The integral group ring

Let G be a group and let M be the free Z-module on the set G. As a set, M
consists of the functions f : G→ Z having finite support, with sum and scalar
multiplication defined pointwise. Consider the map µ : M ×M → M sending
(f, g) to x 7→

∑
uv=x f(u)g(v) =

∑
u f(u)g(u−1x).

Proposition 2.3.1. The map µ is Z-bilinear and associative, giving a product
on M .

Proof. Let f, g ∈M and x ∈ G. Let µ(f, g) be denoted by fg. To prove that µ
is Z-bilinear, we must show that (nf +mf ′)g = nfg +mf ′g:

(nf +mf ′)g(x) =
∑
uv=x

(nf +mf ′)(u)g(v)

=
∑
uv=x

(nf(u) +mf ′(u))g(v)

= n
∑
uv=x

f(u)g(v) +m
∑
uv=x

f ′(u)g(v)

= nfg(x) +mf ′g(x) .
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The calculation for the second coordinate is similar. Next, let h be another
element of M . To prove associativity, we need to show that (fg)h = f(gh):

(fg)h(x) =
∑
u

fg(u)h(u−1x) =
∑
u

∑
v

f(v)g(v−1u)h(u−1x)

=
∑
v

f(v)gh(v−1x)

= f(gh)(x) .

Let 1G denote the unit element of G. The unit with respect to µ is then the
function 1 : G→ Z mapping 1G to 1 and every other element to 0.

Definition 2.3.2. The ring given by endowing M with the product µ is called
the integral group ring of G and is denoted ZG.

The functors G 7→ ZG and R 7→ R∗, where R∗ is the multiplicative group of
units of R, form an adjoint pair

Grp
Z− //

Rng .
(−)∗
oo

This gives a bijection
Grp(G,R∗) ∼= Rng(ZG,R)

which is natural in G and R. Letting R = End(A) be the ring of endomorphisms
of A then since End(A)∗ is equal to Aut(A), the group of automorphisms of A,
we get a bijection

Grp(G,Aut(A)) ∼= Rng(ZG,End(A)) ,

giving that there is a one-to-one correspondence between ZG-module structures
on A and G-actions on A. We will usually not distinguish between these two
concepts.

2.4 The cohomology of a group

We are now ready to define the cohomology of a group G with coefficients in
a ZG-module M . Let ε : F → Z and η : P → M be projective resolutions of
respectively Z and M over ZG, and let C and C ′ be chain complexes over a
ring R with differentials d and d′ respectively. There is a chain complex

HomR(C,C ′)

defined in degree n as the R-module of graded module homomorphisms from C
to C ′ with differential D defined by

D(f) = d′f + (−1)n+1fd .

Observe that HomR(C,C ′)n =
∏
q∈Z HomR(Cq, C

′
q+n). If C ′ were concentrated

in degree 0, we would get that

HomR(C,C ′)n =
∏
q∈Z

HomR(Cq, C
′
q+n) = HomR(C−n, C

′
0) ,
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which would be natural to view as the degree n part of a cochain complex
defined in degree n by

HomR(C,C ′)n = HomR(C,C ′)−n = HomR(Cn, C
′
0) .

In this case, the differential δ = (D−n : HomR(C,C ′)n → HomR(C,C ′)n+1)
would take the form

δ(f) = (−1)n+1fd . (2.4.1)

Definition 2.4.1. The cohomology H∗(G,M) of G with coefficients in M is
the homology of the cochain complex Hom ZG(F,M) where M is concentrated
in degree 0.

We will now construct a concrete resolution F of Z over ZG, allowing us to
compute the cohomology of a group according to Definition 2.4.1.

Proposition 2.4.2. Let X be a simplicial abelian group having the face maps
di : Xn → Xn−1 for 0 ≤ i ≤ n. The sequence

· · · → Xn
∂n−→ Xn−1 → · · · → X1

∂1−→ X0 ,

where ∂n(x) =
∑n
i=0(−1)idi(x), is a chain complex of abelian groups.

Proof. Since the face maps are group homomorphisms, so are the ∂n’s. Left to
show is that ∂n−1∂n = 0. We have

∂n−1∂n(x) =

n−1∑
i=0

(−1)idi

 n∑
j=0

(−1)jdj(x)

 =

n−1∑
i=0

n∑
j=0

(−1)i+jdidj(x) .

The simplicial identity didj = dj−1di holds for i < j and hence this double sum
splits into the following three sums∑

i<j

(−1)i+jdj−1di(x) +
∑
i=j

(−1)i+jdidj(x) +
∑
j<i

(−1)i+jdidj(x) .

Observing that the terms indexed by the i’s and j’s satisfying i = j + 1 cancel
the terms indexed by the i’s and j’s satisfying i = j, we have:

∂n−1∂n(x) =
∑
i+1<j

(−1)i+jdj−1di(x) +
∑
j<i

(−1)i+jdidj(x)

=
∑
j<i

(−1)j+i+1didj(x) +
∑
j<i

(−1)i+jdidj(x)

= 0 .

Definition 2.4.3. If X is a simplicial abelian group then the Moore complex
MX is the chain complex given by Proposition 2.4.2

Let EG be the simplicial set given in degree n by G×n+1. The face and
degeneracy maps in EG are defined respectively by
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di(g0, . . . , gn) = (g0, . . . , ĝi, . . . , gn)

si(g0, . . . , gn) = (g0, . . . , gi, gi, . . . , gn) .

The group G acts freely on each degree EGn of EG by

g(g0, . . . , gn) = (gg0, . . . , ggn) ,

making EG a free simplicial G-set. Extending this action linearly, ZEG be-
comes a free simplicial ZG-module by [1, I.3.1], each degree ZEGn having basis
the set of representatives of G-orbits of elements (g0, . . . , gn). The Moore com-
plex MZEG becomes a chain complex of free ZG-modules and since EG is
contractible, we obtain weak equivalences

MZEG→MZ→ Z .

Definition 2.4.4. The standard resolution of Z over ZG is the weak equivalence
MZEG→ Z given by composing the two weak equivalences above.

Each G-orbit in ZEGn is represented by an element (1, g1, g2, . . . , gn), which
can be written in the form

[h1| · · · |hn] = (1, h1, h1h2, . . . , h1 · · ·hn)

by letting h1 = g1 and hi = g−1i−1gi for 1 < i ≤ n. In this basis, the face maps
are given by

di[g1| · · · |gn] =


g1[g2| · · · |gn] i = 0

[g1| · · · |gigi+1| · · · |gn] 0 < i < n

[g1| · · · |gn−1] i = n .

Definition 2.4.5. The bar resolution of Z over ZG is the standard resolution
where each degree of ZEG is given the basis described above.

If F → Z is the standard resolution, there is for each n a submodule Dn of Fn
generated by the elements (g0, . . . , gn) such that gi = gi+1 for some 0 ≤ i < n.
Orbits of such elements are represented by elements [h1| · · · |hn] where hi = 1
for some 0 < i ≤ n.

Definition 2.4.6. The normalized bar resolution of Z over ZG is the resolution
defined in degree n by Fn/Dn and is generated by elements [h1| · · · |hn] such that
hi 6= 1 for all i.

Since any two projective resolutions of a module are homotopy equivalent,
and homotopy equivalences are weak equivalences, the cohomology H∗(G,M)
does not depend on the choice of resolutions F and P . Thus we may choose F
to be the bar resolution, and we get

Hom ZG(F,M)n = ZG-mod(MZEGn,M)

= ZG-mod(Z[G×n+1],M)

∼= G-set(G×n+1,UM)

∼= Set(G×n,U ′UM) ,
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where the two isomorphisms are given respectively by the adjoint pairs

G-set
Z[−] //

G-mod ,
U

oo

and

Set
G×−//

G-set .
U ′

oo

Explicitly, the isomorphism Set(G×n,U ′X) ∼= G-set(G×n+1, X) is given by send-
ing a function f : G×n → U ′X to the G-set homomorphism

(g0, . . . , gn) 7→ g0f(g−10 g1, . . . , g
−1
0 gn) ,

with the inverse sending a G-set homomorphism f ′ : G×n+1 → X to the function

(g1, . . . , gn) 7→ f ′(1, g1, . . . , gn) .

Definition 2.4.7. If F is the bar resolution, then Hom ZG(F,M) is called the
standard complex and is denoted C∗(G,M).

Taking F instead to be the normalized bar resolution, we get the subcomplex
C∗N (G,M) of C∗(G,M) consisting in degree n of those functions f : G×n →M
satisfying

f(g1, . . . , gn) = 0

whenever at least one gi = 1.

Definition 2.4.8. The cochain complex C∗N (G,M) is called the normalized
standard complex. A function f : Gn → M is said to be normalized if it is a
cochain in CnN (G,M).

2.5 Group extensions

Definition 2.5.1. Let G and N be groups. An extension of G by N is a short
exact sequence

1→ N → E → G→ 1 (∗)

of groups. Another extension 1 → N → E′ → G → 1 is equivalent to (∗) if
there is a homomorphism E → E′ of groups such that the following diagram
commutes:

E

��

%%
1 // N

%%

99

G // 1

E′

99

By the Five lemma, any equivalence of extensions is necessarily an isomor-
phism.

Definition 2.5.2. An extension 1 → N → E → G → 1 is said to be a split
extension if it is split as a short exact sequence of groups.
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Restricting ourselves to those extensions where N is an abelian group A,
there is to each extension an associated action of G on A:

Proposition 2.5.3. An extension of a group G by an abelian group A gives
rise to an action of G on A, giving A the structure of a ZG-module.

Proof. Consider the extension 0 → A
i−→ E

π−→ G → 1. By exactness, A is
isomorphic to the kernel of π, which means that A is embedded as a normal
subgroup of E. E acts on A by conjugation, which restricts to the trivial ac-
tion on A. We get an induced action of the quotient group E/A ∼= G on A,
given explicitly by i(ga) = g̃i(a)g̃−1 for some g̃ ∈ π−1(g). Viewing the action
as a group homomorphism G → Aut(A) from G to the group of automor-
phisms of A, we obtain the corresponding ZG-module structure by the bijection
Grp(G,Aut(A)) ∼= Rng(ZG,End(A)).

Definition 2.5.4. For a fixed ZG-module structure on A, E(G,A) is the set of
equivalence classes of extensions of G by A giving rise to the given group action
of G on A.

Definition 2.5.5. Given an action of G on A, the set A×G together with the
multiplication

(a, g)(b, h) = (a+ gb, gh)

is called the semi-direct product of G and A relative to the given action of G
on A and is denoted AoG.

The unit element of AoG is (0, 1) and inverses are defined by

(a, g)−1 = (g−1(−a), g−1) .

Note that we get an equality AoG = A×G exactly when the G-action on A is
trivial, in particular when E is abelian. The canonical inclusion and projection
gives us a split extension

0→ A
incl−−→ AoG

proj−−→ G→ 1 . (2.5.1)

Definition 2.5.6. Given an action of G on A, the extension (2.5.1) is called
the canonical split extension of G by A

Since splittings s : G→ AoG of the extension (2.5.1) are of the form

s(g) = (a, g)

for some a in A, with a depending on g, and since

s(gh) = s(g)s(h) = (a, g)(b, h) = (a+ gb, gh) ,

the splittings of the extension (2.5.1) are in one to one correspondence with
functions d : G→ A satisfying d(gh) = d(g) + gd(h).

The canonical split extension (2.5.1) gives rise to the given action of G on
A. To see this, let g ∈ G. Then g̃ ∈ π−1(g) is of the form (a, g) for some a ∈ A
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and so if b ∈ A, the the induced G-action ∗ on A is given by

i(g ∗ b) = g̃i(b)g̃−1 = (a, g)(b, 1)(a, g)−1

= (a+ gb, g)(g−1(−a), g−1)

= (a+ gb− a, 1)

= (gb, 1)

= i(gb) ,

showing that the induced action is is indeed the action we started out with.
Now, let

0→ A
i−→ E

π−→ G→ 1 (2.5.2)

be another extension giving rise to the same action of G on A.

Proposition 2.5.7. The extension (2.5.2) splits if and only if it is equivalent
to the canonical split extension of G by A.

Proof. Assume that the extension splits and let s : G → E be a splitting.
If e is an element of E then e = e(sπe)−1(sπe) where e(sπe)−1 ∈ kerπ and
sπe ∈ im s. Moreover, if e is in both the the kernel of π and image of s, then
πe = 1 = πsg = g so that e = 1. By exactness, kerπ is equal to im i which
is isomorphic to A, and since πs is a bijection, s is an injection so that im s is
isomorphic to G. Thus, we get a bijection A×G→ E of sets by

(a, g) 7→ i(a)s(g) .

The unique group structure on the set A×G making this bijection an isomor-
phism is calculated by noting that i(ga) = g̃i(a)g̃−1 implies i(ga)g̃ = g̃i(a), so
that

i(a)s(g)i(b)s(h) = i(a)i(gb)s(g)s(h)

= i(a+ gb)s(gh) ,

giving the multiplication (a, g)(b, h) = (a+gb, gh) on A×G, which is just AoG.
Since the diagram

AoG

∼=

��

proj

##
0 // A

i ##

incl

<<

G // 1

E

π

;;

commutes, we have the required equivalence. Conversely, assuming we have
such an equivalence, we get a splitting s by letting s(g) = φs′(g) where φ is
the isomorphism A o G → E given by the equivalence and s′ a splitting of
(2.5.1).

From this proposition, we see that for a given ZG-module structure A, there
is, up to equivalence, only one split extension of G by A giving rise to the given
action of G on A.
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Given the extension (2.5.2), we may always choose a normalized set-theoretic
section of π, i.e. a function s : G → E such that πs = idG and such that
s(1) = 1. Since

π(s(g)s(h)) = πs(g)πs(h) = gh = πs(gh)

we have that s(g)s(h)s(gh)−1 is in i(A). This gives a function

f : G×G→ A

defined by i(f(g, h)) = s(g)s(h)s(gh)−1. Note that if s is normalized, then this
implies that f too is normalized, i.e.

f(g, 1) = f(1, g) = 0 . (2.5.3)

This is true since i(f(1, g)) = s(g)s(1)s(g)−1 = s(g)s(g)−1 = 1 and

i(f(g, 1)) = s(1)s(g)s(g)−1 = 1 .

Since f is identically 1 if and only if s is a homomorphism, f measures the
failure of s being a splitting. Letting φ be the bijection φ : A×G→ E, defined
by

φ(a, g) = i(a)s(g) ,

we have that
i(a)s(g)i(b)s(h) = i(a)i(gb)s(g)s(h)

= i(a+ gb)i(f(g, h))s(gh)

= i(a+ gb+ f(g, h))s(gh) .

Thus, the group law on the set A×G making φ an isomorphism is defined by

(a, g)(b, h) = (a+ gb+ f(g, h), gh) .

Letting Ef denote the set A×G together with this group structure, we get
an extension

0→ A
incl−−→ Ef

proj−−→ G→ 1 , (2.5.4)

which is equivalent to (2.5.2), seen again from the commutativity of the diagram

Ef

∼=

��

proj

  
0 // A

i   

incl
>>

G // 1 .

E

π

>>

Moreover, the G-action ∗ on A induced by the extension (2.5.4), is the given
G-action:

incl(g ∗ a) = g̃ incl(a)g̃−1

= (b, g)(a, 1)(b, g)−1

= (b+ ga+ f(g, 1), g)(−g−1f(g, g−1)− g−1b, g−1)

= (b+ ga− f(g, g−1)− b+ f(g, g−1), 1)

= (ga, 1) = incl(ga) .
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Thus, given the function f defined above we can, up to equivalence, reconstruct
the extension (2.5.2).

Proposition 2.5.8. Let A be a ZG-module and let f : G×G→ A be a function
satisfying (2.5.3). The binary operation (a, g)(b, h) = (a + bg + f(g, h), gh)
defines a group structure on A×G if and only if

gf(h, k)− f(gh, k) + f(g, hk)− f(g, h) = 0 . (2.5.5)

Moreover, if f satisfies (2.5.5), the canonical inclusion and projection gives an
extension

0→ A
incl−−→ (A×G)f

proj−−→ G→ 1 (2.5.6)

inducing the given G-action on A. This extension also has the property that
if s′ : G → A × G is the canonical cross-section g 7→ (0, g), then the function
f ′ : G×G→ A defined by incl(f ′(g, h)) = s′(g)s′(h)s′(gh)−1, is the function f .

Proof. Assume that the given operation defines a group structure, then associa-
tivity holds only if

[(a, g)(b, h)](c, k) = (a+ gb+ f(g, h) + ghc+ f(gh, k), ghk)

is equal to

(a, g)[(b, h)(c, k)] = (a+ gb+ ghc+ gf(h, k) + f(g, hk), ghk) .

This holds only if f satisfies (2.5.5). Conversely, if f satisfies the given condition,
then associativity obviously holds. Now assume f satisfies the condition (2.5.5).
The canonical inclusion and projection define homomorphisms in the sequence
(2.5.6) since

incl(a+ b) = (a+ b, 1) = (a+ b+ f(1, 1), 1) = incl(a) incl(b)

and

proj((a, g)(b, h)) = proj(a+ bg + f(g, h), gh) = gh = proj(a, g) proj(b, h) .

Thus, by the injectivity of incl and surjectivity of proj, the sequence (2.5.6) is
an extension, inducing the G- action ∗ on A defined by

incl(g ∗ a) = g̃ incl(a)g̃−1

= (b, g)(a, 1)(b, g)−1

= (b+ ga+ f(g, 1), g)(−g−1f(g, g−1)− g−1b, g−1)

= (b+ ga− f(g, g−1)− b+ f(g, g−1, 1)

= (ga, 1) = incl(ga) ,

which is the given G-action. Lastly,

incl(f ′(g, h)) = (0, g)(0, h)(0, gh)−1

= (f(g, h), gh)(−(gh)−1f(gh, (gh)−1), (gh)−1)

= (f(g, h)− f(gh, (gh)−1) + f(gh, (gh)−1), 1)

= (f(g, h), 1) = incl(f(g, h)) ,

showing that f ′ is equal to f .
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Observe that functionsG×G→ A satisfying (2.5.3) correspond to 2-cochains
in the normalized chain complex C∗N (G,A), and that (2.5.5) holds if and only
if f is a cocycle.

Let s : G → E be a normalized section of π in (2.5.2). If s′ is any other
normalized section, then due to the bijection φ : A×G→ E, the element s′(g)
in E can be written i(a)s(g) for some a ∈ A, and so s′ must be of the form

g 7→ i(c(g))s(g)

for some function c : G→ A satisfying c(1) = 0. The function f ′ : G×G→ A
defined by i(f ′(g, h)) = s′(g)s′(h)s′(gh)−1 then has the values

i(f ′(g, h)) = i(c(g))s(g)i(c(h))s(h)(i(c(gh)s(gh))−1

= i(c(g))i(gc(h))s(g)s(h)s(gh)−1i(c(gh))−1

= i(c(g) + gc(h) + f(g, h))i(c(gh))−1

= i(c(g) + gc(h) + f(g, h)− c(gh)) ,

and so f ′(g, h) = f(g, h) + c(g) + gc(h)− c(gh) = f(g, h) + (δc)(g, h). Thus, the
change of section of π in (2.5.2) is reflected by modifying f by a coboundary in
C2
N (G,A), and we have the following theorem [1, IV.3.12]:

Theorem 2.5.9. For a fixed ZG-module structure on A, there is a bijection

E(G,A) ∼= H2(G,A)

given by sending an extension 0→ A
i−→ E

π−→ G→ 1 to the function

f : G×G→ A

defined by
i(f(g, h)) = s(g)s(h)s(gh)−1

where s is any normalized set-theoretic section of the extension. The inverse is
given by sending a function f : G×G→ A to the extension

0→ A
incl−−→ (A×G)f

proj−−→ G→ 1 .

3 On the extension giving the truncated Witt
vectors

For the remainder of this thesis, let A be a commutative ring and p a prime
number.

3.1 Witt vectors in general

Definition 3.1.1. A set S of positive integers is a truncation set if n ∈ S and
d | n implies d ∈ S.

13



A truncation set S gives rise to the Witt ring WS(A), defined as a set by
WS(A) = AS . The ghost map w : WS(A)→ AS is given in the n-th coordinate
by

a 7→ wn(a) =
∑
d|n

da
n/d
d .

By [2, proposition 2], there is a unique ring structure on WS(A) such that the
ghost map is a natural transformation of functors from rings to rings. This
unique ring structure is obtained explicitly by forcing w to be a homomorphism
of rings.

Definition 3.1.2. For n a non-negative integer, Wn(A) is the Witt ring on the
truncation set Sn = {1, p, p2, . . . , pn−1}. The vectors in Wn(A) and ASn are
indexed over the set {0, . . . , n− 1} of the powers of p in Sn

3.2 The extension underlying W2(A)

Let W = W2(A). The ghost map w : W → A×A is given by

(a0, a1) 7→ (a0, a
p
0 + pa1) .

If a = (a0, a1) and b = (b0, b1) are two vectors in W , the sum a+ b is given by
solving the equation w(a+ b) = w(a) + w(b) for a+ b. We have

w(a) + w(b) = (a0 + b0, a
p
0 + bp0 + p(a1 + b1))

w(a+ b) = w(s) = (s0, s
p
0 + ps1) ,

which gives the following equations:

s0 = a0 + b0,

ps1 = −
p−1∑
i=1

(
p

i

)
ap0b

p−i
0 .

Since 1 ≤ i < p, the binomial coefficients
(
p
i

)
= p!

i!(p−i)! are all divisible by p,

and hence we can solve the second equation above for s1, giving

s1 = (ap0 + bp0 − (a0 + b0)p)/p .

This forces the following group law on W

a+ b = (a0 + b0, a1 + b1 + (ap0 + bp0 − (a0 + b0)p)/p) .

Letting f : A× A→ A be the map (x, y) 7→ (xp + yp − (x+ y)p)/p, this group
law takes on the familiar form

a+ b = (a0 + b0, a1 + b1 + f(a0, b0)) .

The identity element in W is (0, 0) and the additive inverse of a is

−a =

{
(−a0,−a1) p > 2

(−a0, a20 − a1) p = 2 .

14



Since the ghost map restricts to the identity on A in its zeroth coordinate,
the projection W → A from W to A sending (a, b) to a is a surjection of rings.
The kernel of this projection is I = {(0, a) | a ∈ A}.

Forgetting down to abelian groups, we get an extension

0→ I
incl−−→W

proj−−→ A→ 0 (3.2.1)

of A by I. Since W is abelian, the associated ZA-module structure on I is
trivial. Observing that the map I → A sending (0, a) to a is an isomorphism of
groups, and that interchanging the two coordinates in W yields an isomorphism
W ∼= (A×A)f , we see that f represents the class of this extension in H2(A,A).
Indeed, by applying the coboundary map δ : C2(A,A)→ C3(A,A) described in
(2.4.1) to the cochain f we find that

δf(a1, a2, a3) =− (f(a2, a3)− f(a1 + a2, a3) + f(a1, a2 + a3)− f(a1, a2))

=− ap2 + ap3 − (a2 + a3)p

p
+

(a1 + a2)p + ap3 − ((a1 + a2) + a3)p

p

− ap1 + (a2 + a3)p − (a1 + (a2 + a3))p

p

+
ap1 + ap2 − (a1 + a2)p

p

= 0 ,

showing that f is a cocycle. Moreover, the equations

f(a, 0) =
ap − ap

p
= 0

f(0, b) =
bp − bp

p
= 0

hold for any a, b in A, showing that f is normalized. The following diagram
then shows that f represents the class of (3.2.1).

0 // I //

∼=
��

W // A // 0

0 // A // W //

∼=
��

A // 0

0 // A // (A×A)f // A // 0 .

Example 3.2.1. Let A = Fp be the field of characteristic p. As we have seen,
the sum a + b of two vectors a and b in W is determined by the value of the
function f : Fp×Fp → Fp on the vector (a0, b0). Examining the case p = 2, we
see that

a+ b = (a0 + b0, a1 + b1 − a0b0) .

For the vector (1, 0) in W , we have that 2(1, 0) = (1, 0)+(1, 0) = (2,−1) = (0, 1),
which is not zero in F2 × F2. This implies that W cannot be isomorphic to
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F2×F2, and since W is of order 4, then by the classification of finitely generated
abelian groups, we must have

W ∼= Z/4Z .

In fact, if p is any prime number and n a non-negative integer, then [3, corollary
§6.8] characterizes Wn(Fp) by

Wn(Fp) ∼= Z/pnZ .

If p acts injectively on H2(A,A), the extension (3.2.1) is a split extension.
To see this, let g : A→ A be the p-th power map a 7→ ap. Then

δg(a, b) = ag(b)− g(a+ b) + g(a)

= ap + bp − (a+ b)p

= pf(a, b) ,

so the class of pf is zero in H2(A,A), implying that the class of f is zero if p
acts injectively. Note that g is a normalized cochain in C1(A,A).

Since A is commutative, the multiplication map A×p → A factors through
the projection A×p → A×p/Cp of A×p onto its Cp-orbits, and thus corresponds
uniquely to the linear map

µ : A⊗p/Cp → A

defined by sending an element a1 ⊗ · · · ⊗ ap to the product a1 · · · ap.
Let X be the set of surjective functions {1, . . . , p} → {0, 1}, and let the

function f ′ : A×A→ A⊗p/Cp be given by

f ′(a, b) = −
∑

[x]∈X/Cp

[ax1
⊗ · · · ⊗ axp

] ,

where a0 = a and a1 = b. In words, −f ′(a, b) is the sum of all the orbits of
tensors consisting of both a’s and b’s.

Lemma 3.2.2. Let a 6= b. For each 1 ≤ i < p, the number of summands in
f ′(a, b) whose representing tensors consist of exactly i a’s is

(
p
i

)
/p. This gives

a total of (2p − 2)/p summands.

Proof. Let 1 ≤ i < p. There are
(
p
i

)
functions in X that hit 0 exactly i times.

Since p is prime, Cp is a simple group, and since each orbit [x] in X is in one to
one correspondence with the quotient group Cp/Cpx (where Cpx is the isotropy
subgroup of x), we have that each orbit must be of order either p or 1. Suppose
[x] has order 1. Then for a generator t of Cp, we must have tjx = x for each
j = 0, . . . , p − 1. Since tjx(i) = x(i + j mod p), this means that x is not
surjective, a contradiction. Thus, every orbit of X has p elements, and so the
total number of orbits of tensors consisting of exactly i a’s is equal to

(
p
i

)
/p.
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Using the Binomial theorem, we see that the total number of summands is

p−1∑
i=1

(
p

i

)
/p =

1

p

p−1∑
i=1

(
p

i

)
1i1p−i

=
1

p

(
p∑
i=0

(
p

i

)
1i1p−i − 2

)

=
(1 + 1)p − 2

p

=
2p − 2

p
.

Proposition 3.2.3. The diagram below commutes.

A×A
f //

f ′

��

A

A⊗p/Cp

µ

;;

Proof. Need to show that µf ′ = f . If a, b ∈ A, then

µf ′(a, b) = µ

− ∑
[x]∈X/Cp

[ax1
⊗ · · · ⊗ axp

]


= −

∑
[x]∈X/Cp

µ[ax1
⊗ · · · ⊗ axp

]

= −
∑

[x]∈X/Cp

ax1
· · · axp

= −
p−1∑
i=1

(
p
i

)
p
aibp−i

=
ap + bp −

∑p
i=0

(
p
i

)
aibp−i

p

=
ap + bp − (a+ b)p

p

= f(a, b) .

Since x⊗ 0 = 0, we have for any a, b in A

f ′(a, 0) = f ′(0, b) = 0 ,

showing that f ′ is normalized. To show that f ′ is also a cocycle, we need the
following lemma.
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Lemma 3.2.4. Let a, b, c be elements of A and let Y be the set of surjective
functions {1, . . . , p} → {0, 1, 2}. Then the following two equations hold

f ′(a+ b, c) = f ′(a, c) + f ′(b, c)−R
f ′(a, b+ c) = f ′(a, b) + f ′(a, c)−R ,

where R =
∑

[y]∈Y/Cp
[ρy1 ⊗ · · · ⊗ ρyp ], ρ0 = a, ρ1 = b and ρ2 = c.

Proof. In the first equality, the summands in f ′(a, c) are summands in f ′(a+b, c)
since any summand [αx1

⊗ · · · ⊗ αxp
] in f ′(a, c) is a term in the summand

[βx1
⊗ · · · ⊗ βxp

] in f ′(a + b, c). Since A is abelian, the same holds for f ′(b, c).
The remaining summands are represented by tensors consisting of both a’s,
b’s and c’s, and hence are of the form [ρy1 ⊗ · · · ⊗ ρyp ]. Let ϕ be the map
{0, 1, 2} → {0, 1} defined by

0 7→ 0

1 7→ 0

2 7→ 1

Each summand [ρy1⊗· · ·⊗ρyp ] in R is a term in the summand [βϕy1
⊗· · ·⊗βϕyp

]
in f ′(a+ b, c). This shows the first equality. Finally, since f ′ is symmetric,

f ′(a, b+ c) = f ′(b+ c, a) = f ′(a, b) + f ′(a, c)−R .

Let us now calculate δf ′ where δ : C2(A,A⊗p/Cp)→ C3(A,A⊗p/Cp) is the
coboundary map. Using Lemma 3.2.4, we have

δf ′(a, b, c) = (−1)3f ′d(a, b, c)

= −f ′(b, c) + f ′(a+ b, c)− f ′(a, b+ c) + f ′(a, b)

= −f ′(b, c) + f ′(b, c)− f ′(a, b) + f ′(a, b)

= 0 .

This shows f ′ is a normalized cocycle in C2(A,A⊗p/Cp), and f ′ represents the
class of the extension

0→ A⊗p/Cp →W ′ → A→ 0 (3.2.2)

in E(A,A⊗p/Cp), where W ′ ∼= (A⊗p/Cp × A)f ′ . Notice that unlike W , the
group law on W ′ does not depend on the multiplication in A. We see that the
extension (3.2.2) is still split if p acts injectively on H2(A,A⊗p/Cp). Indeed, if
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g′ : A→ A⊗p/Cp is the cochain a 7→ [a⊗p], then

δg′(a, b) = ag′(b)− g′(a+ b) + g′(a)

= [b⊗p]− [(a+ b)⊗p] + [a⊗p]

= [b⊗p]−

(∑
x∈X

[ax1 ⊗ · · · ⊗ axp ] + [a⊗p] + [b⊗p]

)
+ [a⊗p]

= −
∑
x∈X

[ax1
⊗ · · · ⊗ axp

]

= −
∑

[x]∈X/Cp

p[ax1
⊗ · · · ⊗ axp

]

= −p
∑

[x]∈X/Cp

[ax1 ⊗ · · · ⊗ axp ]

= pf ′(a, b) .

If p acts injectively, this implies that the class of f ′ is zero in H2(A,A⊗p/Cp).

Definition 3.2.5. Let R be a ring and let M and N be R-modules. If F →M
and P → N are projective resolutions of M and N over R, then

TorR∗ (M,N) = H∗(F ⊗R N) = H∗(F ⊗R P ) = H∗(M ⊗R P ) .

Note that when R = Z, we write Tor∗(M,N) instead of TorZ∗ (M,N).

Proposition 3.2.6. For any abelian group A, Tori(Z, A) = 0 for i > 0 and
Tor0(Z, A) = A.

Proof. Let ε : F → A be a projective resolution of A over Z. By definition,
we have Tori(Z, A) = Hi(Z ⊗ F ) = Hi(F ). Since F is exact at all positive
degrees, Hi(F ) = 0 for i > 0. If i = 0 then, since ε is a weak equivalence,
H0(F ) = A.

Let now ε : P → Fp denote the sequence

0→ Z
p−→ Z

ε−→ Fp → 0 ,

where p is multiplication with p and ε is the quotient map. Since the sequence
above is exact and each Pi is free, this forms a projective resolution of Fp over
Z. Since projective modules are flat, tensoring P with the extension (3.2.2)
yields a short exact sequence

0→ P ⊗A⊗p/Cp → P ⊗W ′ → P ⊗A→ 0 (3.2.3)

of chain complexes. The chain complexes in (3.2.3) are the columns in the
following diagram

0 // Z⊗A⊗p/Cp //

p

��

Z⊗W ′ //

p

��

Z⊗A //

p

��

0

0 // Z⊗A⊗p/Cp // Z⊗W ′ // Z⊗A // 0
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Applying the Snake lemma to the diagram above yields the following long exact
sequence in homology:

0→ Tor1(Fp, A
⊗p/Cp)→ Tor1(Fp,W

′)→ Tor1(Fp, A)→
Fp ⊗A⊗p/Cp → Fp ⊗W ′ → Fp ⊗A→ 0 .

(3.2.4)

By Proposition 2.2.3, A has a projective resolution F over Z. The tensor
product of P with F yields another short exact sequence

0→ Z⊗ F → Z⊗ F → Fp ⊗ F → 0 (3.2.5)

of chain complexes. The chain complexes in (3.2.5) are the columns in the
following diagram:

0 // Z⊗ F1
p //

��

Z⊗ F1
//

��

Fp ⊗ F1
//

��

0

0 // Z⊗ F0
p // Z⊗ F0

// Fp ⊗ F0
// 0

This yields another long exact sequence in homology:

0→ Tor1(Fp, A)→ A
p−→ A→ Fp ⊗A→ 0 . (3.2.6)

If p is zero in A then p : A→ A is the zero map, and so (3.2.6) becomes

0→ Tor1(Fp, A)→ A→ 0→ A→ Fp ⊗A→ 0

giving the following isomorphisms:

Tor1(Fp, A) ∼= A ∼= Fp ⊗A . (3.2.7)

Moreover, if p is zero in A then we have

Tor1(Fp, A
⊗p/Cp) ∼= A⊗p/Cp ∼= Fp ⊗A⊗p/Cp . (3.2.8)

Applying the isomorphisms in (3.2.7) and (3.2.8) to (3.2.4), we get the long
exact sequence

0→ A⊗p/Cp → Tor1(Fp,W
′)→ A

∂−→ A⊗p/Cp →W ′ ⊗ Fp → A→ 0 .

Note that the map ∂ in the sequence above is the connecting homomorphism

Tor1(Fp, A)→ Fp ⊗A⊗p/Cp

in (3.2.4). Chasing the diagram given by (3.2.3), an element x1 in A is the
image of the element (0, x1) in W ′. Applying the multiplication map p to the
element (0, x1), we get that ∂(x1) is the first coordinate of p(0, x1).

Definition 3.2.7. Let (0, x1), . . . , (0, xn) be elements of W ′. Define h to be the
function A×n → A⊗p/Cp satisfying the following relation in W ′.

(0, x1) + · · ·+ (0, xn) = (h(x1, . . . , xn), x1 + · · ·+ xn) .
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To be able to define the connecting homomorphism ∂ explicitly, we need a
concrete formula for the function h from Definition 3.2.7.

Lemma 3.2.8. Let x = (x1, . . . , xn) be a sequence in A×n and let Z be the set
of non-constant functions {1, . . . , p} → {1, . . . , n}. The following equality holds

ph(x) = −p
∑

[z]∈Z/Cp

[xz1 ⊗ · · · ⊗ xzp ].

Proof. Let X be the sum
∑n
i=1 xi and observe that

−
∑
z∈Z

[xz1 ⊗ · · · ⊗ xzp ] = −[X⊗p − x⊗p1 − · · · − x⊗pn ].

Since each Cp-orbit in Z has exactly p elements, this implies that

−p
∑

[z]∈Z/Cp

[xz1 ⊗ · · · ⊗ xzp ] = −[X⊗p − x⊗p1 − · · · − x⊗pn ] .

For the case n = 1, we have ph(x) = 0 = −[(x1)⊗p−x⊗p1 ]. Assume the statement
holds for some n = k > 1. By definition of h and the group law in W ′, we get

k+1∑
i=1

(0, xi) =

k∑
i=1

(0, xi) + (0, xk+1)

= (h(x), X) + (0, xk+1)

= (h(x) + f ′(X,xk+1), X + xk+1)

Multiplying the first coordinate in the sum above by p yields

ph(x) + pf ′(X,xk+1) =− [X⊗p − x⊗p1 − · · · − x
⊗p
k ]

− [(X + xk+1)⊗p −X⊗p − x⊗pk+1]

=− [(X + xk+1)⊗p − x⊗p1 − · · · − x
⊗p
k+1] ,

which is the statement for n = k + 1, completing the proof.

Proposition 3.2.9. If Z is the set of non-constant functions {1, . . . , p} →
{1, . . . , n} then

h(x) = −
∑

[z]∈Z/Cp

[xz1 ⊗ · · · ⊗ xzp ] .

Proof. Let B = ZA be the free abelian group on A and let g : A×n → A⊗p/Cp
be defined by

g(x) = −
∑

[z]∈Z/Cp

[xz1 ⊗ · · · ⊗ xzp ] .

We will prove the Proposition by showing that h − g = 0. Since B = ⊕AZ we
have

B⊗p = (⊕AZ)⊗p

∼= ⊕A×p(Z⊗p)
∼= ⊕A×pZ

= Z[A×p]
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so that B⊗p is isomorphic to the free abelian group on A×p. Since Z[−] is the
left adjoint to the forgetful functor from abelian groups to sets, it takes colimits
to colimits. Thus,

B⊗p/Cp ∼= Z[A×p]/Cp
∼= Z[A×p/Cp]

so that B⊗p/Cp is the free abelian group on A×p/Cp. The naturality of η = h−g
now yields the commutative diagram

B×n //

ηB

��

A×n

ηA

��
B⊗p/Cp // A⊗p/Cp .

The horizontal maps are given by sending each generator to its corresponding
element. Since B⊗p/Cp is torsion free, Lemma 3.2.8 implies that ηB is zero and
since the top horizontal map in the diagram above is surjective, we have that
ηA must also be zero.

The sum n(0, x) in W ′ is given by the last proposition as (h(x, . . . , x), nx),
where h(x, . . . , x) is equal to the sum −

∑
[z]∈Z/Cp

[x⊗p]. Since there are exactly

np − n functions in Z, there are (np − n)/p orbits in Z/Cp. Thus,

n(0, x) =

(
−n

p − n
p

[x⊗p], nx

)
.

This shows that ∂(x) = −p
p−p
p [x⊗p]. If p is zero in A then since p ≥ 2, we have

−p
p − p
p

=
p− pp

p

= 1− pp−1

= 1 ,

showing that the connecting homomorphism

∂ : A→ A⊗p/Cp

is equal to the map g′. Observe that p is zero in A, this implies that p is not
zero in W ′ since p(0, 1) in W ′ would then be equal to (g′(1), 0) which is not
zero.

What we have discovered is that in the case of an extension of A by A⊗p/Cp
represented by the 2-cocycle f ′, the connecting homomorphism ∂ coincides with
a particular given 1-cochain g′ when p is zero in A. An effort to generalize this
discovery provokes the following question:

Question. Given a module M and a cocycle ϕ in C2
N (A,M) satisfying

pϕ = δγ

for some cochain γ : A→M in C1
N (A,M), will tensoring the resolution P with

extensions 0 → M → E → A → 0 represented by ϕ always give long exact
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sequences

0→ Tor1(Fp,M)→ Tor1(Fp, E)→ Tor1(Fp, A)
∂−→

Fp ⊗M → Fp ⊗ E → Fp ⊗A→ 0

in which the connecting homomorphism ∂ is equal to γ?

Observe that the question above assumes a priori that p times the represent-
ing cocycle ϕ is equal to the coboundary of some cochain γ, while the assumption
that p is zero in A and M is removed.

To answer the question, let us again construct the connecting homomorphism
∂ by chasing the diagram

0 // M

p

��

// E //

p

��

A //

p

��

0

0 // M // E // A // 0

We start by picking an element a in A in the kernel of p, i.e. such that pa = 0.
This element is the image of the element (0, a) in E. Applying the multiplication
map p to (0, a), we have that ∂(a) is the first coordinate of p(0, a). Recall that
the group operation in E is determined by the cocycle ϕ in the following way:

(m, a) + (n, b) = (m+ n+ ϕ(a, b), a+ b) .

Calculating p(0, a) according to this group law then gives

p(0, a) = (ϕ(a, a) + ϕ(2a, a) + · · ·+ ϕ((p− 1)a, a), pa)

=

(
p−1∑
i=1

ϕ(ia, a), pa

)
.

Multiplying the first coordinate of p(0, a) by p, we get

p

(
p−1∑
i=1

ϕ(ia, a)

)
=

p−1∑
i=1

pϕ(ia, a) .

By assumption, pϕ(ia, a) = δγ(ia, a). Substituting this in the sum above yields

p−1∑
i=1

pϕ(ia, a) =

p−1∑
i=1

δγ(ia, a)

=

p−1∑
i=1

γ(a)− γ(ia+ a) + γ(ia)

=

p−1∑
i=1

γ(a)− γ((i+ 1)a) + γ(ia) .

For example if p = 2 we have

2ϕ(a, a) = γ(a)− γ(2a) + γ(a) = 2γ(a) .

23



In general, the terms −γ((j + 1)a) and γ(ia) cancel for j = i − 1 whenever
1 < i < p. The remaining terms in the sum above are then

p−1∑
i=1

γ(a)− γ((i+ 1)a) + γ(ia) =

(
p−1∑
i=1

γ(a)

)
− γ(pa) + γ(a)

= (p− 1)γ(a) + γ(a)

= pγ(a) ,

which shows that p∂(a) = pγ(a). By modifying the proof of Proposition 3.2.9
we see that ∂ = γ and we have proved the following theorem.

Theorem 3.2.10. Let M be a module, A an abelian group and ϕ a cocycle
in H2(A,M) representing an extension 0 → M → E → A → 0. If ϕ has the
property that

pϕ = δγ

for some cochain γ in C1
N (A,M), then the connecting homomorphism ∂ in the

long exact sequence

0→ Tor1(Fp,M)→ Tor1(Fp, E)→ Tor1(Fp, A)
∂−→

Fp ⊗M → Fp ⊗ E → Fp ⊗A→ 0

is equal to γ.
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