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Abstract

In this thesis mathematical models with and without dynamic capillary effects are

developed to model water flow and solute transport through a porous medium.

The system of equations are discretised using the finite volume method TPFA

in space and the backward Euler method in time. To solve the nonlinear sys-

tems appearing at each time step numerically, robust linearisation methods are

proposed. These methods do not involve the computation of derivatives. The

methods are analysed and have been shown to be linearly convergent and robust.

Moreover, the convergence was shown to be independent of mesh size. The influ-

ence that the dynamic effects have on flow and transport is studied numerically.

Additional numerical experiments were conducted to study the convergence of the

linearisation schemes. The numerical results are shown to be in correspondence

with the theoretical results.

v





Contents

Acknowledgements iii

Abstract v

1 Introduction 1

2 Mathematical Modelling of Porous Media Flow 3

2.1 Flow in Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Fluid Properties . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Darcy’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Diffusion and Transport Equations . . . . . . . . . . . . . . 11

2.2 Two-Phase Flow Model . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Two-Phase Flow . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Capillary Pressure . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Richards’ Equation . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Parameterisations . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Non-Standard Models . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Dynamic Capillary Pressure and Hysteresis . . . . . . . . . . 16

2.3.2 Extension of the Standard Model . . . . . . . . . . . . . . . 18

2.4 The Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Simplifications of the Mathematical Model . . . . . . . . . . 20

2.4.2 Representative Equations . . . . . . . . . . . . . . . . . . . 20

3 Numerical Methods 23

3.1 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Discretisation in Space . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . . 26

3.2.2 TPFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Discretisation in Time . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Linearisation Richards . . . . . . . . . . . . . . . . . . . . . 37

vii



Contents

3.4.2 Linearisation Dynamic Capillary Pressure . . . . . . . . . . 40

3.5 Discretisation in Space and Time . . . . . . . . . . . . . . . . . . . 43

3.5.1 Convection-Diffusion Equation . . . . . . . . . . . . . . . . . 44

3.5.2 Standard Richards’ Equation . . . . . . . . . . . . . . . . . 47

3.5.3 Richards’ Equation with Dynamic Capillary Pressure . . . . 50

3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Numerical Results 55

4.1 Convergence for an Academical Example . . . . . . . . . . . . . . . 55

4.2 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Numerical Solutions of Flow and Transport . . . . . . . . . 59

4.2.2 Convergence History of the Linearisation Schemes . . . . . . 69

5 Conclusion 75



Chapter 1

Introduction

A classic case of gravity-driven flow in porous media is infiltration of water through

soil. An important application connected to this is the pollution of groundwater.

Organic compounds deposited on the ground surface or being used at i.e. chemical

factories, enter the soil and through infiltration of water containing the dissolved

substances these contaminants can reach the groundwater. Stability of the flow

field is a key question for the infiltration, as the formation of what is known as

preferential flow paths can create large consequences on the transport of contami-

nants to ground and surface waters. It has been shown through experiments that

the instability is related to a phenomena in one dimensional infiltrations called

saturation or pressure overshoot [9].

Through experimental evidence presented in [18] it was suggested that hysteresis

and dynamic effects in the capillary pressure relationship represent an important

role and have the potential of describing phenomena of saturation overshoot and

preferential flow paths. In order to evaluate the safety connected to a contam-

inated site, a reliable prediction of the water movement and solute transport is

of key importance. So to model the water flow the Richards equation will be

used. However, when this equation is based on the static relation for the capil-

lary pressure, given by pc = pa − pw, it is unable to predict unstable infiltrations.

Thus, mathematical models including dynamic or non-equilibrium effects will be

considered.

Robust and flexible numerical methods are needed to successfully handle these

conditions. To recognise the most optimal numerical methods, a set of conditions

the methods should satisfy are introduced. Such conditions include the principle

of mass conservation as well as the method’s ability to yield explicit expressions

for the fluid flux inside the medium at a lowest possible CPU time. The finite

1



2 Chapter 1. Introduction

volume method TPFA satisfies these conditions, while the classical methods such

as finite difference (FD) and finite element method (FEM) are not optimal with

regards to these conditions [19].

In this thesis the TPFA method will be used for the spatial discretisation and

the backward Euler method for the temporal discretisation. On each time step

a nonlinear system of equations arises. In order to solve this system numerically

a linearisation scheme is needed. A common method for solving such systems is

Newton’s method. However, two main concerns regarding the Newton method is

that the Jacobian of the system has to be assembled, as well as the fact that the

convergence of the method is not guaranteed when the initial guess is not “close

enough” to the solution, implying a restriction on the time step.

Therefore, to treat the nonlinearities of the PDEs in the mathematical models,

two linearisation schemes will be proposed and analysed. The first scheme applies

to the standard Richards equation and is based on the works presented in [37]

and [36]. It is in this thesis applied for the TPFA method for the first time. The

second linearisation scheme applies to Richards’ equation with dynamic capillarity.

It continues the works in [36, 37]. The scheme is new. The linearisation schemes

do not involve the computation of derivatives and will be shown to be very robust.

Moreover, the convergence of the schemes is independent of the mesh diameter,

this being an important advantage when compared to other linearisation methods.

The outline of this thesis is set up in the following way. In Chapter 2 represen-

tative mathematical models will be developed to describe flow and transport in

porous media. Chapter 3 gives an introduction to the numerical methods used

to solve the system of equations. The equations are discretised using the TPFA

and backward Euler method. Additionally, to treat the nonlinearities of the model

equations, two numerical linearisation methods are proposed and the convergence

analysis is presented. Further, numerical simulations are conducted and the nu-

merical results are then presented in Chapter 4. Here, the flow and transport

profiles as well as the convergence of the linearisation schemes will be evaluated

numerically. The conclusion is given in Chapter 5.



Chapter 2

Mathematical Modelling of

Porous Media Flow

This chapter is devoted to giving an overview of the equations describing flow in

porous media. Through discussion of the physical properties of the fluids and the

porous medium, the background for the mathematical model will be provided and

the governing equations used to model contaminant transport will be presented.

Further, to account for possible dynamic effects related to the phenomena of satu-

ration overshoot and the origination of preferential flow paths, certain extensions

of the standard model will be given. To conclude the chapter, some assumptions

in order to simplify the model will be presented and a summary of the main equa-

tions throughout the chapter is made. The aim of this chapter is thus to present

and explain the equations needed to construct the representative mathematical

models which are used in the numerical methods discussed later in the thesis.

2.1 Flow in Porous Media

Several important properties of the fluid and the porous medium has to be taken

into consideration when deriving the mathematical model. These properties, as

well as the main equations for describing flow in porous media, being Darcy’s law

and equations of mass conservation, will be presented in the following.

3



4 Chapter 2. Mathematical Modelling of Porous Media Flow

2.1.1 Physical Properties of a Porous Medium

The focus of this thesis includes the transport of contaminants through soil, which

can be defined as a porous medium. However, soil is merely one example in a

vast group of porous materials and domains ranging from lungs and kidneys to

groundwater aquifers and oil reservoirs. A common factor in all these examples

is that part of the domain is occupied by the solid matrix, while the remaining

part known as the void space consists of pores. The pores in a porous medium

are occupied either by a single fluid phase, or by multiple fluid phases, e.g., gas,

water and oil, with each phase occupying a distinct portion of the void space [1].

Flow pathways exist within the pore space of the material, often consisting of

a complex structure of both interconnected and isolated pores. The fine scale of

these flow paths cannot reasonably be resolved, instead averages over length scales

more convenient are defined. The scale of choice is referred to as a representative

elementary volume (REV) [2]. Then to one mathematical point in space, within

the porous medium, the properties of the REV surrounding this point is associated,

see Figure 2.1.

The length scale of the REV typically range from one centimetre to a few tens of

centimetres, and is large enough to allow for meaningful averages of the void space

and solid matrix to be defined and laboratory measurements to be made [2]. This

is known as the continuum approach and is recognized for its ability in preserving

heterogeneities in the medium even though an exact small-scale representation of

the pores is not obtained [14].

x

Porous medium

REV

Solid matrix

Void space

Figure 2.1: The representative elementary volume (REV) of point x in space
of a porous medium.
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Let Ω denote the REV. By expressing the void space volume as Ωv and the solid

matrix volume as Ωs, so that

Ω = Ωv + Ωs, (2.1)

the porosity can be defined as

φ =
Ωv

Ω
. (2.2)

In other words, the porosity is the ratio between the volume of the voids in the

REV and the total volume of the REV.

Below the ground surface the domain is commonly divided into a saturated zone

and an unsaturated zone. The two zones are separated by the water table, where

the pressure head is equal to the atmospheric pressure [13]. In the saturated zone

all available pores are filled with water, while in the unsaturated zone this is not

the case. Hence, there are two phases present in the void space of the unsaturated

zone. These are water and air. When dealing with two-phase flow, the need to

indicate the fraction of the pore space occupied by each fluid develops. Denoting

Ωw and Ωa as the volume occupied by water and air respectively, the fraction of

water, also known as water saturation, is given by

Sw =
Ωw

Ωv

, (2.3)

and the fraction of air by

Sa =
Ωa

Ωv

. (2.4)

Since the sum of the volumes occupied by water and air equals the void space

volume

Ωv = Ωw + Ωa, (2.5)

the sum of the water saturation and the air fraction equals one

Sw + Sa = 1. (2.6)

From this, the water content θ can be defined as the volume of water divided by

the total volume of the REV. It is given by the porosity φ, multiplied with the

water saturation Sw

θw = Swφ =
Ωw

Ωv

Ωv

Ω
=

Ωw

Ω
. (2.7)
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2.1.2 Fluid Properties

Viscosity of a fluid, µ, and density of a fluid, ρ, are two important properties

in the modelling of flow in porous media. The viscosity is a measure of internal

friction within a phase, and describes the phases’ resistance to flow [14]. Meaning,

the higher the value - the slower the flow.

The density is defined as the ratio between mass and volume of a fluid

ρ =
Mass of fluid

Volume of fluid
. (2.8)

For a given temperature, T , the density of a fluid is normally dependent on the

pressure, p, applied to the fluid. Therefore, in practice, a fluid is usually compress-

ible.

2.1.3 Darcy’s Law

First published by Henry Darcy in 1856, Darcy’s law is one of the most impor-

tant building blocks for the description of flow in porous media [2]. The basis of

the relation was formed by the study of empirical experiments related to water

treatment and the design of sand filters (detailed explanation of the experiments

in [2] p.17-19). It is worth noting, that due to friction between the phase and the

wall of the pore being a dominating factor for flow in pores, the hydrodynamic

flow equations, e.g. the Navier-Stokes equation, cannot be used to model flow in

a porous medium [3].

From his experiments, Darcy found that the volumetric flow rate q is proportional

to the cross-sectional area A, the difference in hydraulic head h, and inversely

proportional to the distance between the measurement points l [2]. Giving,

q ∼ A(h2 − h1)

l
. (2.9)

By including the hydraulic conductivity κ, and dividing by the area A, eq. (2.9)

can be expressed as the volumetric flux u of water through the column

u ≡ q

A
=
κ(h2 − h1)

l
. (2.10)

The relation was later derived mathematically [2].
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Introducing h = p
ρg

+ z and k = κµ
ρg

, the extension of Darcy’s law into a differential

equation yields

u = − κ

ρg
∇(p+ ρgz) = −k

µ
(∇p− ρg), (2.11)

where k is the permeability, µ the fluid viscosity, p the pressure, ρ the fluid den-

sity, g is the gravitational acceleration and z the height against the gravitational

direction. The gradient of the hydraulic head represents the fluids ability to flow

at a given spatial point in the porous medium.

The hydraulic head, h, is found by examining the state of water in the porous

medium, which is described by its energy [13]. From elementary physics, recall

that

Energy = Kinetic Energy + Potential Energy. (2.12)

Assuming the flow to be a so-called laminar flow, meaning the flow of water

being sufficiently slow, the kinetic energy may be neglected. Additionally, by

disregarding the influence on the flow by all other factors than the pressure and

gravitational forces acting on the fluid, the potential energy at a given spatial

point in the porous medium may be written as

Potential Energy = Pressure Potential + Gravitational Potential. (2.13)

The potential energy of a fluid in a porous medium is often called the hydraulic

potential [13]. By inserting the formulas for the potentials into eq. (2.13), the

following equation is obtained

mgh = pV +mgz. (2.14)

Here m is the mass of the fluid, V the volume, p is the pressure on the fluid at

the spatial point being considered and z the elevation from a reference level called

datum. Manipulations of eq. (2.14) gives the formula describing hydraulic head

h =
pV

mg
+ z =

p

ρg
+ z. (2.15)

The second equality holds from the fact that ρ = m
V

, and the minus sign in Darcy’s

law is added since a fluid in a porous medium flows from higher values to lower

values of hydraulic head.
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The permeability k is another important property of the porous medium [2]. It

measures the ability of the porous medium to transmit fluid, and is an average

property of the medium [4]. Meaning, a porous medium with a large permeability

has a higher ability to transmit fluid through its pore space than a porous medium

with a small permeability. However, if the permeability is sufficiently close to zero

the porous medium is so-called impermeable, which means that it does not transmit

fluid through its pores [13].

An interesting aspect of flow in porous media is that the porous medium may

allow a fluid to flow more easily in one direction than another [2]. Therefore, the

concepts of anisotropic and isotropic material and homogeneous and heterogeneous

material are important to derive for further understanding of the permeability.

If the material making up the solid matrix of a porous medium is anisotropic,

the permeability changes value depending on the direction being considered. If

there are no directional differences in the permeability, the material is said to be

isotropic. When the permeability changes as a function of spatial location, the

material is referred to as heterogeneous. Conversely, when a material is spatially

uniform, it is called homogeneous [2]. For homogeneous and isotropic media, the

permeability k is a constant scalar [3]. The medium considered in this thesis is

assumed to be an isotropic, homogeneous medium.

Although there are two phases present in unsaturated soil, the interest in this

thesis lies in modelling the flow of the water phase. The presence of the air phase

does however influence the flow of water, seeing as the air phase occupies some of

the pore space reducing the set of pores through which the water phase is able to

flow. This results in an increase in difficulty in the fluid flow, which is reflected

in a lower value of the apparent permeability [2]. To account for this reduction,

the absolute permeability k in eq. (2.11) is multiplied with a relative permeability

kr, which is a function of volumetric occupancy of the fluids [2]. The relative

permeability of the water phase depends on the water saturation

kr = kr(Sw), (2.16)

whereas the absolute permeability k is a material parameter depending on the

medium. The effective permeability for the water phase is given by

ke = kr(Sw)k, (2.17)

which is a reduced permeability due to the presence of an air phase in addition to

the water phase.
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Darcy’s law for the water phase is then given by,

uw = −kr(Sw)k

µw
(∇pw − ρwg). (2.18)

Here µw denotes water viscosity, ρw the water density and pw the water pressure.

2.1.4 Mass Conservation

The mathematical statement of the principle of conservation of mass is another

important building block when modelling flow in porous media. The basis for

the equation of mass conservation is formed by the statement that the change of

mass of a particular substance within a volume has to be equal to the amount of

mass created inside the volume, minus the mass that leaves the volume through

its boundaries [2]. In the following, the mass conservation equation will be derived

in a similar fashion as in [5] and [2].

Ω ∂Ω

n

Figure 2.2: A domain Ω with boundary ∂Ω and outward unit normal n

First, introducing an arbitrary volume Ω, with boundary ∂Ω and outward unit

normal n, see Figure 2.2. The mass per total volume of a species is given by the

porosity φ times its density ρ. Then, the time variation of the total mass in Ω is

given by
∂

∂t

∫
Ω

φρ dV. (2.19)

Using Leibniz integral rule [6] this expression becomes∫
Ω

∂

∂t
(φρ) dV. (2.20)

For this derivative not to equal zero, there has to be a source or sink inside Ω or

a flux through the boundary ∂Ω. Both will be considered in the following.
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The net flux over the boundary ∂Ω is given by∫
∂Ω

(ρu) · n dS, (2.21)

where u is the volumetric flux vector and n denotes the outward unit normal to

the surface ∂Ω. Defining the source density Q, the total production or destruction

is given by ∫
Ω

QdV. (2.22)

Collecting the previous terms (eqs. (2.20) to (2.22)), the mass conservation equa-

tion on integral form is described by∫
Ω

∂

∂t
(φρ) dV +

∫
∂Ω

(ρu) · n dS =

∫
Ω

QdV. (2.23)

To obtain the more general form of the mass conservation equation, the divergence

theorem [6] is applied to the boundary integral, u is assumed to be sufficiently

smooth and it is acknowledged that eq. (2.23) holds for any arbitrary closed volume

Ω. Then, the differential form of the mass conservation equation is obtained

∂

∂t
(φρ) +∇ · (ρu) = Q. (2.24)

As in the previous section covering Darcy’s law, the mass conservation equation

can be expressed for the water phase. Water being an immiscible fluid as it does

not mix with air, the mass of the water phase is a conserved quantity, satisfying

∂(ρwφwSw)

∂t
+∇ · (ρwuw) = Qw. (2.25)

Using that θw = φwSw the equation for the conservation of mass for the water

phase is described by the following equation,

∂ρwθw
∂t

+∇ · (ρwuw) = Qw. (2.26)

uw is the volumetric flux obtained from Darcy’s law.
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2.1.5 Diffusion and Transport Equations

The point of interest in this thesis lies not only in the overall fluid phase, but

rather in the movement of one or more of the components that make up the phase

in question, namely the water phase. More specifically, the transport of dissolved

contaminants. Let c = c(x, t) define the concentration of a component. The

conservation equation for the component within the fluid phase can then be given

as
∂c

∂t
+∇ · J = Q, (2.27)

where J denotes the flux over the boundary ∂Ω of the domain Ω. Flux is a quantity

defined on a “per area, per time” basis [2]. Q still denotes any sources or sinks.

A dissolved component may be transported by the means of advective transport or

molecular diffusion. Advective transport is referred to as the transport by the bulk

flow of the fluid phase, whereas for diffusion the fluid is at rest and the molecules

move from areas of high concentration to areas of low concentration by random

movements of the dissolved particles. Experimental evidence leads to the following

law

J(1) = −D∇c (2.28)

describing diffusion. Where D is the diffusion coefficient, also called molecular

diffusivity [5]. Equation (2.28) is known as Fick’s first law [7].

Inserting eq. (2.28) into eq. (2.27), the diffusion equation is obtained

∂c

∂t
−∇ · (D∇c) = Q. (2.29)

For a fluid in motion, convection of the particles takes place. This being described

by

J(2) = uc. (2.30)

Here, u is the velocity of the fluid found by Darcy’s law (eq. (2.11)). By taking both

transport and diffusive processes into account, the convection-diffusion equation

is obtained
∂c

∂t
−∇ · (D∇c− uc) = Q. (2.31)

The relative strength between the two processes in eq. (2.31) is measured by the

Péclet number [5]. One process may dominate the other, in which case the dom-

inated process may be ignored and only the dominating process considered. I.e.,
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if convection dominates, diffusion can be ignored, and the transport equation is

considered
∂c

∂t
+∇ · (uc) = Q. (2.32)

The diffusion equation, eq. (2.29), is a second order parabolic partial differential

equation (PDE), while the transport equation, eq. (2.32), is a first order hyperbolic

PDE [8]. Adaptive discretisation techniques will be necessary due to the fact that

the different nature of the two processes has to be reflected in the model [5]. In

this thesis, examples containing both diffusion and transport will be considered,

hence the convection-diffusion equation will be applied.

As stated at the start of this section, transport of dissolved contaminants in the

water phase, i.e. organic solvents, are of interest. By denoting a component within

the fluid phase by subscript i, the concentration of the component is defined as

the ratio of the mass of component i to the total mass of the fluid phase [2],[5].

The subscript is omitted in the following, due to the fact that only one component

is assumed dissolved. Applying an averaging procedure, recalling that the water

content is given by θw := Swφ and using a phenomenological description for the

diffusive mass flux [5], the resulting differential equation for the water phase reads

∂(θwc)

∂t
−∇ · (θwD∇c− uwc) = Q. (2.33)

If the production rate Q is independent of c, eq. (2.33) is linear [5]. This is assumed

true in later chapters. Equation (2.33) models transport through diffusion and

convection of a dissolved substance.

2.2 Two-Phase Flow Model

When modelling flow through a porous medium such as soil, different consider-

ations are necessary when encountering the saturated and the unsaturated zone.

Recalling that the saturated zone is completely filled with the water phase, this

relates to single-phase flow. However, in order to model flow through the unsatu-

rated zone the need to develop the concept of two-phase flow emerges. This need

originates from the fact that both a water and an air phase is present in this zone.

To construct the two-phase flow model, which in this thesis is the simplified model

known as the Richards equation, some important properties of two-phase flow has

to be considered.
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2.2.1 Two-Phase Flow

Modelling of two-phase flow in porous media, concerns the simultaneous flow of

two fluid phases within a porous medium. Again, the two fluid phases in question

being water and air. One of the phases is referred to as the wetting phase, while

the other is referred to as the nonwetting phase. This is defined in such a way that

the fluid which is preferentially attracted by the solid is called the wetting fluid,

while the other fluid is referred to as the nonwetting fluid [2]. The contact angle

is defined as the angle between the fluid-fluid interface and the solid, and is used

to determine whether or not a fluid is a wetting or a nonwetting fluid. The fluid

on the side of the interface with an angle less than 90° with respect to the solid

surface is the wetting fluid [2].

In section 2.1.1, the saturation (Sα) for each fluid phase was defined. Here, α

denotes either the wetting phase (α = ω) or the nonwetting phase (α = n). For

the porous medium soil, with water and air as the two phases present, water is the

wetting fluid and air the nonwetting fluid. Hence, α = w, a is chosen to represent

the water and air phase respectively.

2.2.2 Capillary Pressure

An important role in describing two-phase flow in a porous medium, is played

by the existence of fluid-fluid interfaces at the pore scale. This allows the two

fluids to coexist in the pore space. From the fact that these interfaces can support

nonzero stresses, different pressures can exist on either side of the interphase [2].

Hence, each phase usually has a different pressure. The difference between the

phase pressures is defined as the capillary pressure, denoted by pc, and is defined

by

pa − pw = pc(Sw). (2.34)

Here, pa is the pressure of the air phase, while pw represents the pressure of the

water phase. The capillary pressure can be measured as a function of the water

saturation Sw, and is a hysteretic function [9] which will be defined in section 2.3.1.
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2.2.3 Richards’ Equation

From a two-phase flow system, a simplified representation often used to describe

water movement in unsaturated soils can be derived. This is the Richards equation.

The applications of this equation are valid for a two-phase porous medium where

the two phases are water and air. The domain of interest being the shallow soil

zone whose top boundary corresponds to the land surface [2].

Some important properties allow for this simplification, the biggest and most im-

portant one being the assumption that the air phase is at constant pressure ev-

erywhere in the soil [13]. This assumption is based on other simplifications, which

include rapid flow of air, meaning that air movements are driven by small pressure

gradients, and that the domain is interconnected and connected to the exterior

atmosphere [2].

Considering these simplifications yields an approach for deriving Richards’ equa-

tion. The simple two-phase flow model for immiscible fluids is represented by the

following set of equations

∂θα
∂t

+∇ · (uα) =
Qα

ρα
= fα, (2.35)

uα = −kr,αk
µα

(∇pα − ραg), (2.36)

Sw + Sa = 1, (2.37)

pa − pw = pc(Sw). (2.38)

Recall, θα is the water content and uα the volumetric flux, with α = w, a, repre-

senting the water and air phase respectively. Equation (2.35) is the mass conser-

vation equation and holds because the density ρα is set to be constant. The second

equation is the Darcy law, while eq. (2.37) is the relation given by eq. (2.6), see

section 2.1.1. Equation (2.38) is the capillary pressure.

Since the air pressure is assumed to be equal to the atmospheric pressure every-

where, i.e. pa = 0, this means that one of the primary unknowns is eliminated

and one of the equations, this being the air-phase equation, can be eliminated [2].

The capillary pressure pc is now equal to the negative of the water pressure pw,

pc(Sw) = −pw. (2.39)

The capillary pressure is positive because the water pressure is less than the at-

mospheric pressure in the unsaturated zone [2]. By expressing Darcy’s law with
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respect to the pressure head, Ψw = pw
ρwg

, and the height against the gravitational

direction z,

uw = −K(θw(Ψw))∇(Ψw + z), (2.40)

where K(θw(Ψw)) is the hydraulic conductivity and both K and θ are given func-

tions of Ψ. This can be inserted into eq. (2.35) and hence give rise to what is

defined as the Richards’ equation,

∂θw(Ψw)

∂t
−∇ · [K(θw(Ψw))∇(Ψw + z)] = fw. (2.41)

θw(Ψw) is obtained by inverting the relation given by eq. (2.39). Equation (2.41)

is a nonlinear PDE consisting of the second derivative with respect to space and

first derivative with respect to time. Thus, it is recognized as a parabolic PDE.

2.2.4 Parameterisations

As stated in section 2.2.3, the hydraulic conductivity K, and water content θ are

known functions of the pressure head Ψ. Based on experimental results, different

functional relationships have been proposed for describing the dependency between

K, θ and Ψ [38]. From this point on, the van Genuchten-Mualem parameterisation

is applied. It is given by

For Ψ ≤ 0

θ(Ψ) = θR + (θS − θR)

[
1

1 + (−αΨ)n

]n−1
n

, (2.42)

K(θ(Ψ)) = KSθ(Ψ)
1
2

[
1−

(
1− θ(Ψ)

n
n−1

)n−1
n

]2

= KS

[
1− (−αΨ)n−1 [1 + (−αΨ)n]

1−n
n

]2

[1 + (−αΨ)n]
n−1
2n

.

(2.43)

For Ψ > 0

θ = θS, (2.44)

K = KS. (2.45)

Here, θR is the residual water content, θS the saturated water content, KS is the

saturated hydraulic conductivity and α and n are van Genuchten curve fitting

parameters [10]. θR, θS, α, n, KS are material specific constants. Equations (2.42)
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and (2.43) are valid for the unsaturated soil zone, while eqs. (2.44) and (2.45)

holds for the saturated zone.

In this thesis the focus is on the strictly unsaturated flow regime, i.e. Ψ < 0,

θ′ > 0 and K > 0. From [38], it is worth noting that in the present setting the

Richards equation degenerates whenever Ψ→ −∞, implying that both θ′(Ψ) and

K(θ(Ψ)) are approaching 0, or situated in the fully saturated regime (Ψ ≥ 0), when

θ′(Ψ) = 0. The regions of degeneracy depend on the saturation of the medium;

therefore these regions are not known a priori and may vary in space and time.

2.3 Non-Standard Models

The model derived in section 2.2 is based on the validity of eq. (2.34) (and

eq. (2.39)). This includes an equilibrium assumption, which is not necessarily

true. There is experimental evidence (Hassanizadeh et al. [18, 39]) that dynamic

effects and hysteresis are playing an important role and therefore eq. (2.34) is not

valid in this form. These effects also have the potential of describing phenomena

such as saturation overshooting or finger formation, see D.A.Dicarlo [9], which is

not the case for Richards’ equation based on the static relation eq. (2.34).

In the following some mathematical models which include non-equilibrium effects

and/or hysteretic effects will be presented. Such models are referred to as non-

standard models.

2.3.1 Dynamic Capillary Pressure and Hysteresis

To present the principle of hysteresis, an experiment from [2] p. 77-79 will be

reproduced. Assuming a sample of porous medium with pores filled with the

wetting fluid, see Figure 2.3. There is a left reservoir of wetting fluid and a right

reservoir with nonwetting fluid. Further assuming that the pressure in the two

reservoirs are controllable, the top and bottom of the sample are impermeable and

the influence of gravity can be neglected.

By increasing the pressure in the nonwetting fluid, it is possible to measure the

amount of wetting fluid displaced. When equilibrium is reached, a data point

relating the capillary pressure and the saturation is produced. The experiment

can be repeated with varying pressure differences to collect several data points.

Plotting these data points will give a typical capillary pressure - saturation curve,

see Figure 2.4.
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Impermeable

Impermeable

Wetting fluid
reservoir

Nonwetting fluid
reservoir

PorousMedium

Wetting fluid

Figure 2.3: Sample of porous medium with left reservoir filled with wetting
fluid and right reservoir filled with nonwetting fluid.

From this, four points can be made. First, the process where nonwetting fluid dis-

places wetting fluid is referred to as drainage, while when wetting fluid displaces

nonwetting it is called imbibition. Second, the residual saturation values (Sresα )

are clearly represented, which in this case means that the soil is never completely

dry. Thirdly, there is an obvious difference between the curves for drainage and

imbibition, meaning that the relation between the capillary pressure and the satu-

ration depends on the history. Therefore, it is not enough to know the saturation

at one point to determine the capillary pressure, but it is also important to know if

the saturation is increasing (imbibition) or decreasing (drainage). Such behaviour

is called hysteresis, or the process is said to be hysteretic. The primary drainage

curve includes full saturation (Sw = 1) as one of its end points, relating to no

nonwetting fluid to start with. Main drainage and main imbibition curves are

curves that begin at the residual saturation points of the other fluid. Lastly, the

curves that begin at points between the two residual saturations are referred to as

scanning curves. The fourth point is that a finite capillary pressure is required be-

fore any drainage displacement begins. The capillary pressure required to initiate

displacement of the wetting fluid is called the entry pressure. Capillary exclusion

is the phenomenon whereby nonwetting fluid is unable to enter particular spatial

regions that are filled with wetting fluid due to failure to reach this entry pressure.

Thus an important feature of the macroscopic capillary pressure-saturation curve

is its hysteretic behaviour observed when reversing the flow direction, e.g. from

drainage to imbibition [16]. The standard relationship assumed between capillary

pressure and saturation, see eq. (2.38), is empirical in nature, and as such lacks

a firm theoretical foundation [39]. In fact, the relationship pn − pω = pc is valid

only under static condition. Under dynamic conditions, pn − pω depends on the
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Figure 2.4: Typical form for a capillary pressure-saturation curve. From
Nordbotten et al. [2].

flow velocity, which at larger time scales manifest itself as a change in saturation

with time [16].

Hassanizadeh and Gray (1990) [18] suggested that the hysteretic behaviour of the

capillary pressure is related to the configuration of interfaces, since fluid pres-

sures vary spatially within each flowing phase, macroscale (or average) pressure

values will be different from pressure values at the interface [16]. Based on ther-

modynamic considerations, they concluded that the hysteretic behaviour of the

capillary pressure-saturation relationship can be modelled by including the spe-

cific interfacial area in the formulation [16]. In other words, they advocated a

dynamic capillary pressure, where the capillary pressure depends not only on the

saturation and saturation direction but also the rate of saturation change [9]. For

the remainder of this thesis, the focus will be on the effects of including dynamic

capillary pressure in the model, while the effects of hysteresis are left unexplored.

2.3.2 Extension of the Standard Model

In order to include non-equilibrium effects in the model, an extension will be

added to the Richards’ equation. Most continuum models that are proposed are

extensions of Richards’ equation as derivation of this only requires the Darcy

law and conservation of mass, in addition to the fact that the Richards equation

works in almost all cases [9]. The extension is related to the concept of dynamic

capillary pressure and yields additional terms of the θ − Ψ relationship. In the
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literature there are several different extension models available, a collection of

which is presented in [16], p. 10-11. For the further study of these phenomena

in this thesis, an equation based on thermodynamic considerations suggested by

Hassanizadeh and Gray (1990) [18] and Kalaydjian (1992) [17] is applied [16]. The

equation relates the difference in the phase pressure pa−pw to a capillary pressure

pc by

pa − pw = pc(θw)− τ(θw)
∂θw
∂t

. (2.46)

Here, τ(θw) ≥ 0 is a non-equilibrium coefficient. In this formulation, pc is an

intrinsic property of the porous medium-fluids system, whereas the fluid pressure

difference pa − pw is dependent on flow dynamics (and thus initial and boundary

conditions) [16]. The pressure difference between the air and water phase is equal

to a capillary pressure only under static condition. Equation (2.46) suggests that

at any given point in time where equilibrium is disturbed, the saturation will

change to reestablish the equilibrium condition, and the coefficient τ(θw) controls

this process [16].

Recall from section 2.2.3, that since the pressure of the air phase is assumed equal

to the atmospheric pressure everywhere, there is no need to solve for pa. Also

utilising that pw can be set to be equal to the pressure head Ψw, eq. (2.46) takes

the form

Ψw = −pc(θw) + τ(θw)
∂θw
∂t

, (2.47)

with pc being the equilibrium (or static) capillary pressure.

The time derivative of θw in the Richards’ equation (eq. (2.41)) is replaced by the

rearrangement of eq. (2.47), given by

∂θw
∂t

=
1

τ(θw)
Ψw +

1

τ(θw)
pc(θw). (2.48)

The static capillary pressure pc(θw) is given by the van Genuchten-Mualem pa-

rameterisation

pc(θw) =

[(
θw−θR
θS−θR

)−n−1
n − 1

] 1
n

α
. (2.49)

Equation (2.49) is obtained by inverting the relation eq. (2.42)
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2.4 The Mathematical Model

As a final note to the chapter, a summary of the equations derived in the previous

sections is presented. Thus establishing the representative mathematical models

used to describe porous media flow. The models will found the basis for the

numerical analysis developed in chapter 3.

2.4.1 Simplifications of the Mathematical Model

The following assumptions are set to hold true for all problems considered in

subsequent chapters:

� the density ρ is constant,

� the porosity φ is constant,

� the temperature T is constant,

� dissolved components do not influence the flow.

The first assumption is utilised in section 2.2.3, eq. (2.35), to yield the described

Richards’ equation (eq. (2.41)). From assuming the temperature and porosity to

be constant the fluids are said to be incompressible, see section 2.1.2. The final

assumption is necessary to ensure that no additional relations or equations are

needed to describe the flow of water containing dissolved components.

2.4.2 Representative Equations

Summing up the equations for the flow in a porous medium introduced in sec-

tions 2.1 to 2.3, yields the following mathematical models.

Standard Models

The Richards equation without any additional relations or extensions, as well as

the convection-diffusion equation are defined as the standard models. Assuming
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all equations models flow for the water phase, the subscript w is omitted for the

remainder of the thesis, and the model for the Richards’ equation becomes
∂tθ(Ψ)−∇ · [K(Ψ)∇(Ψ + z)] = f, in Ω,

θ(Ψ), K(Ψ), in Ω,

Ψ(t, x)|t=0 = Ψ0(x), in Ω,

Ψ(t, x) = ΨD or nTK∇(Ψ + z) = qN1 , on ∂Ω,

(2.50)

with θ(Ψ) and K(Ψ) given by the van Genuchten-Mualem parameterisation in

section 2.2.4. Initial and boundary conditions are needed to ensure uniqueness

of the solution, given by Ψ0(x) and ΨD, qN1 respectively. Here ΨD represents

Dirichlet boundary conditions and qN1 are Neumann boundary conditions (see

section 3.2.3). Ω is a domain in space consisting of a porous medium with ∂Ω as

its boundary.

The model for the convection-diffusion equation becomes
∂t(θc)−∇ · (θD∇c− uc) = Q, in Ω,

u = −K(Ψ)∇(Ψ + z), in Ω,

c(t, x)|t=0 = c0(x), in Ω,

c(t, x) = cD or nT (θD∇c− uc) = qN2 , on ∂Ω.

(2.51)

The convection-diffusion equation is coupled with the Richards equation, so that

the volumetric flux, u, originally resulting from the Darcy law (eq. (2.40)), and the

water content θ are obtained from the computations of Richards’ equation. As in

the case of the model for the Richards equation, initial and boundary conditions

are included to ensure uniqueness of the solution, where cD and qN2 are Dirichlet

and Neumann conditions respectively.

Non-Standard Model

The non-standard model is given by the Richards equation with the extension

for the dynamic capillary pressure, defined in section 2.3.2, included. The model

becomes
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∂tθ −∇ · [K(θ)∇(Ψ + z)] = f, in Ω,

Ψ = −pc(θ) + τ(θ)∂tθ(Ψ), in Ω,

K(θ), pc(θ), τ(θ) in Ω,

Ψ(t, x)|t=0 = Ψ0(x), in Ω,

Ψ(t, x) = ΨD or nTK∇(Ψ + z) = qN1 , on ∂Ω.

(2.52)

In this, the time derivative in Richards’ equation is replaced by the expression given

by the second equation, resulting in a pseudo-parabolic equation, where dynamic

effects are included in the capillary pressure [22]. The capillary pressure pc(θ) is

described in eq. (2.49), and τ(θ) is given by some function. K(θ) is given by the

first relation in eq. (2.43), and the initial and boundary conditions will be defined

in the same manner as in the standard model, (2.50). The Convection-Diffusion

equation, given by (2.51), is also coupled with this model. The case when τ = 0

corresponds to the standard model.
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Numerical Methods

In the previous chapter, a coupled set of partial differential equations was obtained.

These sets of equations will be solved numerically in one spatial dimension (1D),

using finite difference methods and a finite volume method known as the two-

point flux approximation scheme or simply TPFA [12]. This chapter will present

the theoretical background for the discretisation of the equations, also including

the fully discretised schemes in space and time. The Richards equation and the

equation giving the non-standard extension are both nonlinear, and thus need to

be linearised in order to be solved numerically. In section 3.4 robust linearisation

schemes are presented for Richards’ equation with and without dynamic capillary

pressure. The scheme for the Richards equation with dynamic capillarity is new,

whereas the one for the standard Richards’ equation is the one in [37, 40] but for

a TPFA discretisation. The schemes will be shown to be robust and linearly con-

vergent, in addition to have certain advantages compared to the more widespread

and commonly used linearisation methods. Lastly, a short comment about the

implementation of the numerical schemes is made.

3.1 Grid

One of the first steps of implementing methods for solving a mathematical prob-

lem numerically, requires a ’geometric discretisation’ of the domain Ω [5]. The

discretisation is often constructed by placing grid points throughout the domain

and connecting these points using nonintersecting, straight lines [19]. In two di-

mensions (2D) the grid points now make up the corners of the grid cells.

23
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Figure 3.1: Point-distributed
grid

Figure 3.2: Cell-centered grid

For a function f(x) defined on the domain of the grid, the grid points are used to

provide a discretised representation of the function. Let xi, i = 1, 2, ..., N denote

the grid points of a grid. A discretised representation of f is then given by

f = [f(x1), ...., f(xN)]T . (3.1)

There are in principle two main types of grids, when applied results in different

discretised representations of the function f . These are point-distributed grids

and cell-centred grids. When the grid points are placed at the corners of the cells

it is known as a point-distributed grid, while a cell-centred grid has its grid points

in the centres of the cell [19], see Figures 3.1 and 3.2. For a cell-centred grid

the grid must be generated before the cell-centred points can be determined, even

for one-dimensional grids. In general, it is not possible to place a random set of

points throughout the domain, before creating a grid around the points, so that

they make up the cell-centres [19].

The TPFA scheme is a cell-centred finite-volume method [12]. Thus, the one-

dimensional interval in space is discretised using a cell-centred grid. The spacing

is assumed to be equidistant. First, the interval [0, L] is divided into N equal

cells. The walls of the cells are given by xi+ 1
2

= ih for i = 1, 2, . . . , N , where

h = xi+ 1
2
− xi− 1

2
= L/N . Then x 1

2
= 0 and xN+ 1

2
= L denotes the boundaries of

the domain, see Figure 3.3.

x

L0

x 1
2

x 3
2

xi− 1
2

xi+ 1
2

xN− 1
2

xN+ 1
2

Figure 3.3: Space interval divided into N equidistant cells.

After the space interval is divided into equidistant cells, the cell-centred points

are defined and denoted by the grid points x1, x2, . . . , xN , see Figure 3.4. Since

the grid is equidistant, the distance between neighbouring grid points equals the



Chapter 3. Numerical Methods 25

x

L0

x 1
2

x 3
2

xi− 1
2

xi+ 1
2

xN− 1
2

xN+ 1
2

x1 xi xN

Figure 3.4: Cell-centred discretisation in space.

length of each cell, ∆x = xi+1 − xi = h. Then x1 = h/2 and xi = ih − h/2 for

i = 0, . . . , N . The rightmost grid point is xN = Nh− h/2 = L− h/2.

Equivalently to the discretisation in space, there is also a discretisation in time,

see Figure 3.5. The time interval [0, T ], spans from initial time, t0 = 0, to final

time, tm = T . As in the case with the spatial grid points, the time steps are

assumed equidistant, given by ∆t = tj+1 − tj = T/m, for j = 0, 1, . . . ,m.

t

T0

t0 t1 tj tj+1 tm−1 tm

Figure 3.5: Equidistant time discretisation.

3.2 Discretisation in Space

In order to solve a PDE by the means of a numerical method, the equation must

be discretised. The PDEs in the mathematical models from section 2.4.2 are de-

pendent on space and time, and thus need to be discretised with respect to both

variables. The main focus in this section will however be on the discretisation

in space and on boundary conditions. There are several ways to perform spatial

discretisation of a PDE. The method chosen in this thesis is, as mentioned previ-

ously the TPFA scheme, which is recognised as a control volume method (CVM)

also referred to as a finite-volume method [12, 19]. CVMs are a class of numerical

methods used to apply spatial discretisation to PDEs. They are popular methods

due to the fact that they satisfy the physical principle of mass conservation, in

addition to being fairly easy to formulate for complex grids. For 1D, the TPFA is

equivalent to the finite difference method for a cell-centred grid.
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3.2.1 Finite Difference Method

One of many different approaches to solving PDEs numerically, are finite difference

methods. It is an elementary discretisation method, in which the derivatives in a

differential equation are replaced by finite difference approximations at a discrete

set of points in space or time. The resulting set of equations, can then be solved by

algebraic methods [20]. For further study of the finite difference method, besides

what will be presented in the following, see [8, 19, 20, 21].

To establish appropriate finite difference approximations of derivatives, Taylor

series are applied. Recall from calculus [6], that for f(x± h) = f(xi±1),

f(xi±1) = f(x)± f ′(xi)h+ f ′′(xi)
h2

2!
± f ′′′(xi)

h3

3!
+ . . . (3.2)

Using the + series, the forward difference approximation for the first derivative is

attained

f ′(xi) =
f(xi+1)− f(xi)

h
+O(h), (3.3)

while the − series results in the backward difference approximation for the first

derivative

f ′(xi) =
f(xi)− f(xi−1)

h
+O(h). (3.4)

These approximations are first order accurate, given by the termO(h), also referred

to as the truncation error. To attain a better approximation, the negative sign

in eq. (3.2) can be subtracted from the positive sign, to get the centred difference

approximation

f ′(xi) =
f(xi+1)− f(xi−1)

2h
+O(h2). (3.5)

This approximation is second order accurate (O(h2)).

For the second order derivative, a centred finite difference approximation is achieved

by adding the two series in eq. (3.2), to give

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

h2
+O(h2). (3.6)

As with the centred difference, this approximation yields a truncation error of order

h2, meaning they are more accurate approximations than eqs. (3.3) and (3.4). This

is as expected from geometric considerations.
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By applying eq. (3.6) to the ordinary differential equation (ODE)

− (Kux)x = f, (3.7)

with K constant, the approximation for the second derivative becomes

−Kuxx ≈ K
−u(xi+1) + 2u(xi)− u(xi−1)

h2
. (3.8)

This can be expressed by the linear system matrix system

Au = b, (3.9)

where

A =
K

h2



2 −1

0−1 2 −1

. . . . . . . . .

−1 2 −1
0 −1 2


, (3.10)

and

b =


f(x0)

f(x1)
...

f(xN)

f(xN+1)

 , (3.11)

for i = 1, . . . , N .

3.2.2 Two-Point Flux Approximation

Unlike finite difference methods where partial derivatives are replaced by divided

differences, see section 3.2.1, finite volume methods have a more physical motiva-

tion and are derived from conservation of (physical) quantities over cell volumes

[12]. One finite volume method is the TPFA scheme, which is undoubtedly one

of the simplest discretisation techniques for elliptic equations. However, it is still

widely used for simulation purposes due to its simplicity and the method yielding

explicit expressions for the fluxes and harmonic averaging of the permeability, see

[19]. It holds when the flux is equal on both sides of the cell wall. The theory



28 Chapter 3. Numerical Methods

described in this section is based on the lecture notes by I.Aavatsmark [19] and ob-

tained through personal communication with F.A.Radu [13] while he was lecturing

the course Flow in Porous Media (MAT254).

As in section 3.2.1, an ordinary differential equation (ODE) is given by

− (Kux)x = f, (3.12)

where K = K(x) denotes the permeability and f some source-term. The index

denotes the derivative with respect to x. The TPFA is based on the integral

formulation of the problem given by∫
∂Ωi

q · n dS =

∫
Ωi

f dx. (3.13)

Applying the divergence theorem [6] generates the left hand side of eq. (3.13),

with q = −Kux. The domain of the ODE is discretised by a cell-centred, one-

dimensional grid, see Figure 3.6. The grid points denoted by xi for i = 0, . . . , N

are thus located at the centres of the cells, and the cell walls are given by xi− 1
2

and xi+ 1
2
.

∆xi−1 ∆xi ∆xi+1

∆xi− 3
2

∆xi−1 ∆xi− 1
2

∆xi ∆xi+ 1
2

∆xi+1 ∆xi+ 3
2

Figure 3.6: Cell-centred grid with grid points xi and cell walls xi+ 1
2
.

Integrating eq. (3.13) over the ith cell, from xi− 1
2

to xi+ 1
2
, gives

qi+ 1
2
− qi− 1

2
=

∫ x
i+ 1

2

x
i− 1

2

f(x)dx. (3.14)

To obtain an expression for qi+ 1
2

as a function of u, it first requires a rewriting of

the relation q = −Kux to get

ux = − q

K(x)
. (3.15)

By integrating eq. (3.15) from xi to xi+1, the relation,

ui+1 − ui = −qi+ 1
2

∫ xi+1

xi

1

K(x)
dx, (3.16)
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is obtained. This relation can be manipulated to give the desired expression for

qi+ 1
2
, given by

qi+ 1
2

= − ui+1 − ui∫ xi+1

xi

1
K(x)

dx
. (3.17)

It now remains to derive an expression for the integral∫ xi+1

xi

1

K(x)
dx. (3.18)

For a cell-centred grid, K(x) is assumed constant on each cell, denoted by the

values at the grid points so that Ki = K(xi). From Figure 3.6, ∆xi = xi+ 1
2
−xi− 1

2
,

represents the distance between the walls of the cell. Since xi and xi+1 are grid

points of two neighbouring cells, the integral is approximated by taking the average

over the two cells involved, given by∫ xi+1

xi

1

K(x)
dx =

1

2

(
∆xi+1

Ki+1

+
∆xi
Ki

)
. (3.19)

The approximation in eq. (3.19) holds for non-equidistant, cell-centred grids. In

this thesis however, equidistant, cell-centred grids with ∆xi = h are considered,

which leads to the expression∫ xi+1

xi

1

K(x)
dx =

h

2

(
1

Ki+1

+
1

Ki

)
. (3.20)

Inserting eq. (3.20) into eq. (3.17) gives

qi+ 1
2

= − ui+1 − ui
h
2

(
1

Ki+1
+ 1

Ki

) . (3.21)

Finally, by inserting the equations for q for an equidistant, cell-centred grid,

eq. (3.14) becomes

ui − ui−1

h
2

(
1
Ki

+ 1
Ki−1

) − ui+1 − ui
h
2

(
1

Ki+1
+ 1

Ki

) =

∫ x
i+ 1

2

x
i− 1

2

f(x)dx. (3.22)

Equation (3.22) can be expressed as

ai(ui − ui−1)− ai+1(ui+1 − ui) = bi, (3.23)
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by denoting

ai =
1

h
2

(
1
Ki

+ 1
Ki−1

) , (3.24)

bi =

∫ x
i+ 1

2

x
i− 1

2

f(x)dx ≈ hfi, (3.25)

where fi is defined as

fi =
1

h

∫ x
i+ 1

2

x
i− 1

2

f(x)dx, (3.26)

and the second relation in eq. (3.25) arise from applying the midpoint rule [24].

Rearranging eq. (3.23) leads to the system of equations

− aiui−1 + (ai + ai+1)ui − ai+1ui+1 = bi, (3.27)

for i = 1, . . . , n. Hence, being a system of n equations. The unknowns ui can be

collected in the vector u = [u0, . . . , un+1]T . That is, there are n + 2 unknowns

in n equations. In order to achieve a unique solution, additional boundary condi-

tions are needed and will be considered in the following section, see section 3.2.3.

The system of equations in eq. (3.27) can be represented by the following matrix

representation

Au = b, (3.28)

where the sparse, tridiagonal coefficient matrix A is given by

A =



−a1 a1 + a2 −a2

0−a2 a2 + a3 −a3

. . . . . . . . .

−an−1 an−1 + an −an0 −an an + an+1 −an+1


(3.29)

As a final mark, it is worth noting that the TPFA scheme only yields consistent flux

approximations for K-orthogonal grids [14, 23]. A grid is said to be K-orthogonal

if and only if the flux across all edges can be approximated to a two-point flux in

a consistent way [19]. For further reading on the properties of K-orthogonal grids

see [19] p. 144-146.
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3.2.3 Boundary Conditions

PDEs has to be supplemented by initial and boundary conditions in order to spec-

ify a particular situation where a unique solution is expected, see section 2.4.2.

Boundary conditions are specifications on the boundary of the domain, ∂Ω [5].

For a one-dimensional domain, or interval, the boundary consists of two separate

boundary points located at the left and right side of the interval, see Figure 3.4.

Two of the principle types of boundary conditions will be presented in the fol-

lowing, these are Dirichlet and Neumann boundary conditions. Depending on the

problem, it can in some cases be convenient to apply the same boundary condi-

tion at the left and right boundary, while in others a combination of boundary

conditions are more fitting.

Dirichlet Boundary Conditions

For a system of PDEs, the Dirichlet boundary condition is given by the function

value of the unknown at the boundaries of the domain. To provide an outline of

Dirichlet boundary conditions, the stationary, one-dimensional problem eq. (3.12),

where u = u(x) is the unknown, will be considered on the domain [0, L]. The

Dirichlet boundary conditions are then given by

u(0) = u0, (3.30)

and

u(L) = uL. (3.31)

Since the grid applied in the discretisation of the domain is assumed to be cell-

centred, Figure 3.4, the discretised form of the boundary conditions become

u 1
2

= u0, (3.32)

and

un+ 1
2

= uL, (3.33)

For a point-distributed grid, the boundary points will coincide with the grid points

at the left- and rightmost endpoints, making the construction of Dirichlet bound-

ary conditions straight forward, as u is defined at the grid points. This is not

the case however for cell-centred grids, as is evident from eqs. (3.32) and (3.33).

Alternative methods for handling the boundary conditions are thus needed. In
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Figure 3.7: Cell-centred grid with ghost cells included at the boundaries of
the interval.
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x 1
2

x 3
2

xi− 1
2

xi+ 1
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x1 xi xn xn+1 = Lx0 = 0

Figure 3.8: Cell-centred grid with adjusted half cells near the boundaries of
the interval.

[21], two ways to construct Dirichlet boundary conditions for cell-centred grids are

presented.

The first method consists of including a ghost cell at each boundary as shown in

Figure 3.7. It is then assumed that the Dirichlet boundary condition is prescribed

at the centre of the ghost cell and the usual approach is followed to derive the

difference equation on the first and last cell. Two additional grid points, x0 and

xn+1, are thus created, and the Dirichlet boundary conditions can be defined as

u0 = u0, (3.34)

and

un+1 = uL. (3.35)

It is noted in [21] that prescribing the Dirichlet boundary condition at the centre of

the ghost cell instead of the boundary is a first order approximation, and will not

be adequate if the solution is strongly dependent on the distance away from the

boundary condition. The second method is to include a half cell at the endpoints

of the interval as done in Figure 3.8. In this case, no equation is derived on the

1st cell, but rather derived on the 2nd cell and when it reaches the 1st cell it takes

on the Dirichlet boundary condition [21].

When applying the method of adding ghost cells to the ends of an interval dis-

cretised using a cell-centred grid, the Dirichlet boundary condition is more or less

handled the same way as for a point-distributed or vertex centred grid. The dif-

ference is where the grid points, xi, are defined and consequently in what points
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u is computed. This can be demonstrated by using the discretisation of eq. (3.12)

given by eq. (3.27) in section 3.2.2. Thus, the system of equations looks like

−a1u0 + (a1 + a2)u1 − a2u2 = b1

−a2u1 + (a2 + a3)u2 − a3u3 = b2

...

−an−1un−2 + (an−1 + an)un−1 − anun = bn−1

−anun−1 + (an + an+1)un − an+1un+1 = bn

The Dirichlet boundary conditions are given by u0 = u0 and un+1 = uL (eqs. (3.34)

and (3.35)), and the terms involving the boundary conditions can be moved to the

right hand side of the system, giving

(a1 + a2)u1 − a2u2 = b1 + a1u0

−a2u1 + (a2 + a3)u2 − a3u3 = b2

...

−an−1un−2 + (an−1 + an)un−1 − anun = bn−1

−anun−1 + (an + an+1)un = bn + an+1uL

This can be expressed as the system

Au = b, (3.36)

for u = [u1, . . . , un]T , where

A =



a1 + a2 −a2

0−a2 a2 + a3 −a3

. . . . . . . . .

−an−1 an−1 + an −an0 −an an + an+1


(3.37)

and

b =


b1 + a1u0

b2

...

bn−1

bn + an+1uL

 . (3.38)
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Neumann Boundary Conditions

For the case when Neumann boundary conditions are imposed, the values that the

derivative of the function is to take on the boundary are specified. That is, the

Neumann boundary conditions for a one-dimensional domain is given by

−Kux(0) = uα, (3.39)

and

−Kux(L) = uβ (3.40)

Recalling that x 1
2

= 0 and xn+ 1
2

= L, see Figure 3.4. Again, demonstrating by

the discretisation of eq. (3.12), and using the fact that the flux q is given by

q = −Ki(x)ux, the derivative at the cell wall, xi+ 1
2
, is expressed by qi+ 1

2
. Thus,

the boundary conditions are given by

q 1
2

= uα, (3.41)

and

qn+ 1
2

= uβ. (3.42)

From eqs. (3.14) and (3.25),

qi+ 1
2
− qi− 1

2
= bi, (3.43)

for i = 1, . . . , n. The first equation, when i = 1, becomes

q 3
2
− q 1

2
= b1, (3.44)

where q 1
2

= uα is given by the boundary condition, eq. (3.41), and eq. (3.44) can

be expressed as

q 3
2

= b1 + uα. (3.45)

Similarly for the last equation, when i = n, eq. (3.41) becomes

qn− 1
2

= bn + uβ. (3.46)

From observation of the above equations, it is worth noting that when discretising a

system of equations using a cell-centred grid like the one in Figure 3.4, Neumann

boundary conditions are the natural choice. This is due to the flux boundary

condition being located at the boundary, making considerations of ghost cells or

half-cells unnecessary.
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Lastly, recalling eqs. (3.21) and (3.24), where

qi+ 1
2

= −ai+1(ui+1 − ui), (3.47)

the first and last equation become

a2u1 − a2u2 = b1 + uα (3.48)

−anun−1 + anun = bn + uβ, (3.49)

while the other equations remain unchanged. As in the case with Dirichlet bound-

ary conditions, the set of equations can be displayed with the matrix representation

Au = b, (3.50)

where

A =



a2 −a2

0−a2 a2 + a3 −a3

. . . . . . . . .

−an−1 an−1 + an −an0 −an an


(3.51)

and

b =


b1 + uα

b2

...

bn−1

bn + uβ

 (3.52)

for u = [u1, . . . , un]T .

3.3 Discretisation in Time

To present the time discretisation methods, the ODE

u′(t) = F (t, u(t)), (3.53)

will be considered. From the forward difference approximation in eq. (3.3), the

resulting numerical scheme discretised with respect to time is known as the forward
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Euler scheme, or the explicit Euler’s method [25, 26], given by

un+1 = un + ∆tF (tn, un). (3.54)

If the backwards difference approximation in eq. (3.4) is applied instead, the re-

sulting scheme will now be the backward Euler scheme, also known as the implicit

Euler’s method [25, 26],

un+1 = un + ∆tF (tn+1, un+1). (3.55)

For both relations, n = 1, . . . , T denotes the time steps, ∆t denotes the uniform

length of each time step and un represents the numerical approximation of the

exact solution u at time tn = n∆t.

What separates the two methods is the input of the function F , characterising the

method as an implicit or explicit method. In [24] a method is called explicit if

un+1 can be computed in terms of the previous values uk, k ≤ n, while it is said

to be implicit if un+1 depends implicitly on itself through F .

The Euler methods of eqs. (3.54) and (3.55) are Taylor methods of order one [25],

meaning they are both first order methods [26]. The stability conditions of the two

methods do however differ [24, 25]. While the backward Euler method satisfies

the absolute stability property,

|un| −→ 0 as tn −→ +∞, (3.56)

where u is the solution of u′(t) = λt with λ < 0, for any value of ∆t. This is

not the case for the forward Euler method, where the method is stable only for

certain values of ∆t. For a more detailed study of the stability conditions of the

two methods, see [24] p. 480 or [25] p. 609-610. An implicit method generally

requires more work than an explicit one, in particular if F is a nonlinear function

with respect to u, in which case a linearisation technique must be applied to solve

eq. (3.55), see section 3.4. If F is a linear function of u, the equation is simply

rearranged and solved for un+1.

3.4 Linearisation of Nonlinear Equations

The mathematical models presented in this thesis consist of coupled, nonlinear

PDEs. This makes the design and implementation of efficient numerical schemes

a challenging task. To discretise the equations in space, a locally conservative
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finite volume [19, 28, 29, 30, 31] discretisation, see section 3.2.2, is applied due to

its alleviation of several stability issues. Furthermore, a fully implicit temporal

discretisation is implemented because of its stability properties for all time-scales,

see section 3.3.

The spatial and temporal discretisations thus lead to a large system of nonlinear

equations for each time step. Common methods for solving such systems are the

fix point method [24], Picard’s method [5] or Newton’s method [5, 32, 33, 34, 35].

The two former are linearly convergent while the latter is quadratically convergent

[27]. Newton’s method is a powerful tool when applied to systems arising from

discretisation of parabolic equations, but the quadratic convergence does however

come at a price of only local convergence in solution space. Two main concerns

regarding Newton’s method is that the Jacobian matrix of the system needs to

be assembled, as well as the fact that the convergence of the algorithm is not

guaranteed when the initial guess is not “close enough”, which implies a restriction

on the time step [27].

To treat the nonlinearities of the PDEs in the mathematical models of section 2.4.2,

two linearisation schemes are proposed and analysed. The first scheme applies to

the standard Richards equation (see section 2.4.2) and is based on the works of

M.Slodicka [37] and Radu et al. [36]. It is in this thesis applied for the TPFA

method for the first time. See Radu et al. [27] for a similar scheme for two-phase

flow. The second linearisation scheme applies to Richards’ equation with dynamic

capillarity (see section 2.4.2). It continues the works in [36, 37]. The scheme

is new. A similar linearisation method was proposed by Fan et al. [22], with

saturation as the primary variable.

The linearisation schemes do not involve the computation of derivatives and are

shown to be very robust (see sections 3.4.1 and 3.4.2). Moreover, the convergence

of the schemes is independent of the mesh diameter, this being an important

advantage when compared to other linearisation methods.

3.4.1 Linearisation Scheme for the Richards Equation

The linearisation scheme for the Richards equation is based on the schemes pre-

sented in M.Slodicka [37], Radu et al. [36] and F.A.Radu [40]. See [37] for a

Galerkin FE based scheme and [36, 40] for mixed finite element (MFEM). Simi-

larly to the proposed linearisation scheme derived for the finite volume method,

multi-point flux approximation (MPFA) [12, 19], in the recently published report

by Radu et al. [27], the scheme is in the following applied to the TPFA method.
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Throughout this thesis the following assumptions on the data and the solution of

the continuous problem are considered.

(A1) θ(·) is monotone increasing and Lipschitz continuous.

(A2) pc(·) is monotone decreasing and Lipschitz continuous.

(A3) K is constant, K > 0.

(A4) τ is constant, τ > 0.

A fully implicit temporal discretisation of Richards’ equation (eq. (3.117)), by the

backward Euler method, leads to the nonlinear system

θn+1 + ∆tAn+1Ψn+1 = ∆tfn+1 + θn, (3.57)

where θn = θ(Ψn), θn+1 = θ(Ψn+1) with Ψn,Ψn+1 piecewise constants on the cells,

and An+1 is the system matrix given by

An+1 =
K

h2



2 −1

0−1 2 −1

. . . . . . . . .

−1 2 −1
0 −1 2


, (3.58)

for the 1-dimensional case and K constant. For a detailed explanation of how

eq. (3.57) is derived see section 3.5.2.

Instead of applying any of the standard approaches to solving eq. (3.57) the lin-

earisation method from Radu et al. [27, 36], M.Slodicka [37] and F.A.Radu [40]

is considered. The linearisation is applied in combination with the TPFA method

for the first time. Let

LΨ = supΨ

d

dΨ
θ(Ψ). (3.59)

In practice, any constant LΨ ≥ supψ
d
dψ
θ(ψ) will ensure convergence of the scheme,

as it will be shown in Theorem 3.1. Then, iterate j + 1 is obtained by solving the

following system of equations

LΨ(Ψn+1,j+1 −Ψn+1,j) + θ(Ψn+1,j) + ∆tAn+1Ψn+1,j+1 = ∆tfn+1 + θ(Ψn), (3.60)
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where Ψn+1,0 = Ψn. Note that eq. (3.60) is a linear elliptic system. To evaluate

the convergence of the linear system the error at iteration step j+ 1 is introduced

en+1,j+1
Ψ = Ψn+1,j+1 −Ψn+1. (3.61)

In order to show the convergence of the scheme, it will be proven that

||en+1,j+1
Ψ || −→ 0 when j −→∞, (3.62)

where ||·|| is the notation for the discrete L2 norm, ||en+1,j+1
Ψ ||2 :=

∑
i

mi|Ψn+1,j+1
i −

Ψn+1
i |2. Here mi represents the length of each subinterval i of the 1-dimensional

domain, mi = h for an equidistant grid. The discrete L2 scalar product is defined

by 〈u, v〉 :=
∑
i

miuivi.

Theorem 3.1. Assuming (A1),(A3) and that the time step ∆t is sufficiently small,

and that the finite volume method satisfies (3.66), the linearisation scheme (3.60)

is (at least) linearly convergent.

Proof. Subtracting eq. (3.57) from eq. (3.60) results in

LΨ(Ψn+1,j+1 −Ψn+1,j) + θ(Ψn+1,j)− θ(Ψn+1) + ∆tAn+1(Ψn+1,j+1 −Ψn+1) = 0,

(3.63)

which can be expressed as

LΨ(en+1,j+1
Ψ − en+1,j

Ψ ) + θ(Ψn+1,j)− θ(Ψn+1) + ∆tAn+1(en+1,j+1
Ψ ) = 0. (3.64)

Then multiplying with en+1,j+1
Ψ (the multiplication is done element wise, and

summed up after weighing by the cell mass mi) to obtain

LΨ〈en+1,j+1
Ψ − en+1,j

Ψ , en+1,j+1
Ψ 〉+ 〈(θ(Ψn+1,j)− θ(Ψn+1)), en+1,j+1

Ψ 〉
+ ∆t〈An+1e

n+1,j+1
Ψ , en+1,j+1

Ψ 〉 = 0.
(3.65)

The following inequality is needed for the finite volume method, which can be

easily verified (see [27]):

〈An+1e
n+1,j+1
Ψ , en+1,j+1

Ψ 〉 ≥ a||en+1,j+1
Ψ ||2 (3.66)

where a not depending on ∆t. The relation

〈u− v, u〉 =
|u|2

2
+
|u− v|2

2
− |v|

2

2
(3.67)
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is also utilised. Combining eqs. (3.65) to (3.67), and performing some algebraic

manipulations leads to(
LΨ

2
+ a∆t

)
||en+1,j+1

Ψ ||2 +
LΨ

2
||en+1,j+1

Ψ − en+1,j
Ψ ||2 + 〈(θ(Ψn+1,j)− θ(Ψn+1)), en+1,j+1

Ψ 〉

≤ LΨ

2
||en+1,j

Ψ ||2 + 〈(θ(Ψn+1,j)− θ(Ψn+1)), en+1,j+1
Ψ − en+1,j

Ψ 〉.
(3.68)

By using the monotonicity of θ, its Lipschitz continuity and the Young inequality,

i.e. |uv| ≤ ε
2
|u|2 + 1

2ε
|v|2 for all ε > 0, this further becomes(

LΨ

2
+ a∆t

)
||en+1,j+1

Ψ ||2 +
LΨ

2
||en+1,j+1

Ψ − en+1,j
Ψ ||2 +

1

Lθ
||θ(Ψn+1,j)− θ(Ψn+1)||2

≤ LΨ

2
||en+1,j

Ψ ||2 +
1

2ε
||θ(Ψn+1,j)− θ(Ψn+1)||2 +

ε

2
||en+1,j+1

Ψ − en+1,j
Ψ ||2,

(3.69)

with the condition on Lθ:
1
Lθ
≥ 1

2LΨ
. From LΨ > Lθ

2
and letting ε = LΨ, this gives(

LΨ

2
+ a∆t

)
||en+1,j+1

Ψ ||2 ≤ LΨ

2
||en+1,j

Ψ ||2. (3.70)

Finally,

||en+1,j+1
Ψ ||2 ≤ LΨ

(LΨ + 2∆ta)
||en+1,j

Ψ ||2. (3.71)

Equation (3.71) is clearly a contraction [24], hence proving the convergence as

||en+1,j+1
Ψ || −→ 0 when j −→∞.

3.4.2 Linearisation Scheme for Richards’ Equation with

Dynamic Capillary Pressure

The linearisation scheme for Richards’ equation with dynamic capillary pressure

about to be presented, is a new scheme continuing the works of M.Slodicka [37],

Radu et al. [27] and F.A.Radu [40]. A similar scheme is given by Fan et al. [22],

where they solve for saturation and not pressure as in this thesis.

A fully implicit temporal discretisation of Richards’ equation with dynamic capil-

lary pressure (eqs. (3.136) and (3.137)), by the backward Euler method, leads to

the nonlinear system

θn+1 + ∆tAn+1Ψn+1 = ∆tfn+1 + θn, (3.72)

∆tΨn+1 = −∆tpc(θ
n+1) + τθn+1 − τθn, (3.73)
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where An+1 is the system matrix defined as (3.58). For a detailed explanation of

how eqs. (3.72) and (3.73) is derived see section 3.5.3. Note that this system is

coupled. The new linearisation method is considered when solving the system of

equations. Iterate j + 1 is obtained by solving

LΨ(Ψn+1,j+1 −Ψn+1,j) + θn+1,j+1 + ∆tAn+1Ψn+1,j+1 = ∆tfn+1 + θn, (3.74)

and

∆tΨn+1,j+1 = −∆tpc(θ
n+1,j) + τθn+1,j+1 − τθn + Lθ(θ

n+1,j+1 − θn+1,j). (3.75)

LΨ, Lθ are positive constants to be specified at a later time. The errors at iteration

step j + 1 are introduced to evaluate the convergence of the linear system

en+1,j+1
Ψ = Ψn+1,j+1 −Ψn+1, (3.76)

en+1,j+1
θ = θn+1,j+1 − θn+1. (3.77)

Again, the convergence will be proved by showing that

||en+1,j+1
Ψ ||, ||en+1,j+1

θ || −→ 0 when j −→∞, (3.78)

where || · || is the notation for the discrete L2 norm, defined in the same manner

as in section 3.4.1.

Theorem 3.2. Assuming (A1)-(A4) and that the time step ∆t is sufficiently

small, and that the finite volume method satisfies (3.66), the linearisation scheme

(3.74) and (3.75) is (at least) linearly convergent for any LΨ > 0 and Lθ ≥ ∆tLpc.

Proof. Subtracting eqs. (3.72) and (3.73) from eqs. (3.74) and (3.75) results in

LΨ(en+1,j+1
Ψ − en+1,j

Ψ ) + en+1,j+1
θ + ∆tAn+1(en+1,j+1

Ψ ) = 0, (3.79)

and

Lθ(e
n+1,j+1
θ − en+1,j

θ )−∆t(pc(θ
n+1,j)− pc(θn+1)) + τen+1,j+1

θ = ∆ten+1,j+1
Ψ . (3.80)
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Multiplying with ∆ten+1,j+1
Ψ in eq. (3.79) and en+1,j+1

θ in eq. (3.80) and then adding

the results gives

∆tLΨ〈en+1,j+1
Ψ − en+1,j

Ψ , en+1,j+1
Ψ 〉+ ∆t〈en+1,j+1

θ , en+1,j+1
Ψ 〉

+ ∆t2〈An+1e
n+1,j+1
Ψ , en+1,j+1

Ψ 〉+ Lθ〈en+1,j+1
θ − en+1,j

θ , en+1,j+1
θ 〉

−∆t〈pc(θn+1,j)− pc(θn+1), en+1,j+1
θ 〉+ τ ||en+1,j+1

θ ||2 = ∆t〈en+1,j+1
Ψ , en+1,j+1

θ 〉.
(3.81)

Applying (3.66) and (3.67) yields

∆t

2
LΨ||en+1,j+1

Ψ ||2 +
∆t

2
LΨ||en+1,j+1

Ψ − en+1,j
Ψ ||2 + ∆t2a||en+1,j+1

Ψ ||2

+
Lθ
2
||en+1,j+1

θ ||2 +
Lθ
2
||en+1,j+1

θ − en+1,j
θ ||2 −∆t〈pc(θn+1,j)− pc(θn+1), en+1,j

θ 〉

+ τ ||en+1,j+1
θ ||2 ≤ ∆t

2
LΨ||en+1,j

Ψ ||2 +
Lθ
2
||en+1,j

θ ||2

+ ∆t〈pc(θn+1,j)− pc(θn+1), en+1,j+1
θ − en+1,j

θ 〉.
(3.82)

Using the fact that pc is monotone decreasing and Lipschitz continuous

− 〈pc(θn+1,j)− pc(θn+1), en+1,j
θ 〉 ≥ 1

Lpc
||pc(θn+1,j)− pc(θn+1)||2, (3.83)

and applying Young’s inequality with ε = Lpc , gives

∆tLΨ

2
||en+1,j+1

Ψ ||2 +
∆tLΨ

2
||en+1,j+1

Ψ − en+1,j
Ψ ||2 + ∆t2a||en+1,i+1

Ψ ||2

+

(
Lθ
2

+ τ

)
||en+1,j+1

θ ||2 +
∆t

Lpc
||pc(θn+1,j)− pc(θn+1)||2

+
Lθ
2
||en+1,j+1

θ − en+1,j
θ ||2 ≤ ∆tLΨ

2
||en+1,j

Ψ ||2 +
Lθ
2
||en+1,j

θ ||2

+
∆t

2Lpc
||pc(θn+1,j)− pc(θn+1)||2 +

∆tLpc
2
||en+1,j+1

θ − en+1,j
θ ||2,

(3.84)

which in turn becomes

∆tLΨ

2
||en+1,j+1

Ψ ||2 +
∆tLΨ

2
||en+1,j+1

Ψ − en+1,j
Ψ ||2 + ∆t2a||en+1,j+1

Ψ ||2

+

(
Lθ
2

+ τ

)
||en+1,j+1

θ ||2 +
∆t

2Lpc
||pc(θn+1,j)− pc(θn+1)||2

+

(
Lθ
2
− ∆tLpc

2

)
||en+1,j+1

θ − en+1,j
θ ||2 ≤ ∆tLΨ

2
||en+1,j

Ψ ||2 +
Lθ
2
||en+1,j

θ ||2,

(3.85)
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with the condition on Lθ: Lθ ≥ ∆tLpc . Finally, multiplying with 2 and leaving

out two positive terms leads to

(∆tLΨ + 2∆t2a)||en+1,j+1
Ψ ||2 + (Lθ + 2τ)||en+1,j+1

θ ||2 ≤ ∆tLΨ||en+1,j
Ψ ||2 + Lθ||en+1,j

θ ||2.
(3.86)

In order to show the convergence eq. (3.86) will be expressed on the form

γT n+1,j+1 ≤ γ1T
n+1,j, with γ ≥ γ1. (3.87)

By letting

T n+1,j+1 = ∆tLΨ||en+1,j+1
Ψ ||2 + Lθ||en+1,j+1

θ ||2, (3.88)

eq. (3.86) becomes

T n+1,j+1 + 2∆t2a||en+1,j+1
Ψ ||2 + 2τ ||en+1,j+1

θ ||2 ≤ T n+1,j. (3.89)

The next step consists of defining

2∆t2a

∆tLΨ

(∆tLΨ||en+1,j+1
Ψ ||2) +

2τ

Lθ
(Lθ||en+1,j+1

θ ||2) ≥ min

(
2∆ta

LΨ

+
2τ

Lθ

)
T n+1,j+1,

(3.90)

and inserting this into eq. (3.89) which gives(
min

(
2∆ta

LΨ

+
2τ

Lθ

)
+ 1

)
T n+1,j+1 ≤ T n+1,j, (3.91)

and further

T n+1,j+1 ≤ 1(
min

(
2∆ta
LΨ

+ 2τ
Lθ

)
+ 1
)T n+1,j. (3.92)

Equation (3.92) is a contraction, hence the system converges linearly for any

LΨ > 0 and Lθ ≥ ∆tLpc , as ||en+1,j+1
Ψ ||, ||en+1,j+1

θ || −→ 0 when j −→∞.

3.5 Discretisation of the System of Equations in

Space and Time

To this point, the focus of the spatial discretisations has been on the second

order in space ODE, eq. (3.12). However, the main equations to be evaluated in

this thesis, given by the mathematical models (2.50)-(2.52) in section 2.4.2, are
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PDEs that are second order in space and first order in time. This section will

thus present the spatial and temporal discretisation of the convection-diffusion

equation, the Richards equation and the equations including dynamic capillarity.

The two latter being nonlinear equations undergoing additional considerations

with the linearisation schemes presented in section 3.4.

3.5.1 Convection-Diffusion Equation

The convection-diffusion equation from (2.51) is on the form

(θc)t + (−θDccx + q(x, t)c)x = Q(x, t), (3.93)

where q(x, t) is the water flux, Q(x, t) is the source or sink term, and c=c(x,t) the

concentration of the species, see section 2.1.5. Dc is the diffusion coefficient, and

θ is some function

θ = θ(x, t), (3.94)

which models the water content in the porous medium. θ and q are obtained by

solving the flow equation numerically.

In this case F in the Euler implicit method, eq. (3.54), becomes

F (t, c(t)) = Q(x, t) + (θDccx)x − (q(x, t)c)x, (3.95)

and the approximation of the time derivative is given by the backward difference,

eq. (3.4)

(θ(x, t)c)t =
θn+1cn+1 − θncn

∆t
, (3.96)

where θn+1 = θ(x, tn+1). Thus, the implicit scheme for time step n+ 1 is

θn+1cn+1 −∆t
[
(θn+1Dcc

n+1
x )x − (qn+1cn+1)x

]
= ∆tQn+1 + θncn. (3.97)

To ease the notation going into the spatial discretisation, a variable D is denoted

as

D(x, t) = θn+1Dc, (3.98)

and

dn+1 = −Dcn+1
x . (3.99)

Then eq. (3.93) becomes

θn+1cn+1 + ∆t(dn+1
x + (qn+1cn+1)x) = ∆tQn+1 + θncn, (3.100)
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from the linearity of the derivative.

Applying the cell-centred grid, see Figure 3.4, and integrating over each cell,

[xi− 1
2
, xi+ 1

2
], results in∫ x

i+ 1
2

x
i− 1

2

θn+1cn+1 dx+ ∆t(dn+1
i+ 1

2

− dn+1
i− 1

2

+ qn+1
i+ 1

2

cn+1
i+ 1

2

− qn+1
i− 1

2

cn+1
i− 1

2

) =

∆t

∫ x
i+ 1

2

x
i− 1

2

Qn+1 dx+

∫ x
i+ 1

2

x
i− 1

2

θncn dx,

(3.101)

where e.g. di+ 1
2

= d(xi+ 1
2
, tn+1, u(xi+ 1

2
, tn+1)) and qi+ 1

2
= q(xi+ 1

2
, tn+1).

To approximate the integrals, the midpoint rule is applied the same way as in

eq. (3.25). Given that xi is the midpoint in the interval [xi− 1
2
, xi+ 1

2
] and the length

of the interval is denoted by h, the integrals in eq. (3.101) are replaced by

∆t

∫ x
i+ 1

2

x
i− 1

2

Qn+1 dx ≈ ∆thQn+1
i , (3.102)

∫ x
i+ 1

2

x
i− 1

2

θn+1cn+1 dx ≈ hθn+1
i cn+1

i (3.103)

and ∫ x
i+ 1

2

x
i− 1

2

θncn dx ≈ hθni c
n
i , (3.104)

which leads to

hθn+1
i cn+1

i + ∆t(dn+1
i+ 1

2

− dn+1
i− 1

2

+ qn+1
i+ 1

2

cn+1
i+ 1

2

− qn+1
i− 1

2

cn+1
i− 1

2

) = ∆thQn+1
i + hθni c

n
i . (3.105)

Since the applied grid is cell-centred, the function values are defined at the centres

of the cells, leaving the values at the walls of the cells to be determined. These

values are approximated by the mean of the function values of the two neighbouring

cells, yielding

cn+1
i+ 1

2

≈
cn+1
i + cn+1

i+1

2
, (3.106)

for i = 0, . . . , N . Also recalling from eq. (3.21) that

qi+ 1
2

= −ai+1(ui+1 − ui), (3.107)
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where ai is given by eq. (3.24), for i = 0, . . . , N . Inserting eq. (3.106) gives

qn+1
i+ 1

2

cn+1
i+ 1

2

− qn+1
i− 1

2

cn+1
i− 1

2

≈ qn+1
i+ 1

2

cn+1
i + cn+1

i+1

2
− qn+1

i− 1
2

cn+1
i−1 + cn+1

i

2
, (3.108)

for i = 1, . . . , N . Rearranging eq. (3.108) leads to

qn+1
i+ 1

2

cn+1
i+ 1

2

− qn+1
i− 1

2

cn+1
i− 1

2

≈ 1

2
(qn+1
i+ 1

2

cn+1
i+1 + (qn+1

i+ 1
2

− qn+1
i− 1

2

)cn+1
i − qn+1

i− 1
2

cn+1
i−1 ). (3.109)

To find an expression for dn+1
i+ 1

2

, the procedure defined in section 3.2.2 is followed.

Integrating cn+1
x = −dn+1/D for an equidistant grid with h denoting the length of

each cell, leads to

cn+1
i+1 − cn+1

i = −dn+1
i+ 1

2

h

2

(
1

Di

+
1

Di+1

)
, (3.110)

and

dn+1
i+ 1

2

= −
cn+1
i+1 − cn+1

i

h
2

(
1
Di

+ 1
Di+1

) . (3.111)

This means that

dn+1
i+ 1

2

− dn+1
i− 1

2

= −
cn+1
i+1 − cn+1

i

h
2

(
1
Di

+ 1
Di+1

) +
cn+1
i − cn+1

i−1

h
2

(
1
Di

+ 1
Di−1

) , (3.112)

and by further letting

si =
1

h
2

(
1
Di

+ 1
Di−1

) , (3.113)

eq. (3.112) simplifies to

dn+1
i+ 1

2

− dn+1
i− 1

2

= −si+1(cn+1
i+1 − cn+1

i ) + si(c
n+1
i − cn+1

i−1 ). (3.114)

Inserting eqs. (3.109) and (3.114) into eq. (3.105) yields

hθn+1
i cn+1

i + ∆tsi(c
n+1
i − cn+1

i−1 )−∆tsi+1(cn+1
i+1 − cn+1

i )+

∆t

2
(qn+1
i+ 1

2

cn+1
i+1 + (qn+1

i+ 1
2

− qn+1
i− 1

2

)cn+1
i − qn+1

i− 1
2

cn+1
i−1 ) = ∆thQn+1

i + hθni c
n
i .

(3.115)
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Collecting the terms and dividing by h finally leads to

θn+1
i cn+1

i +
∆t

h

(
−si+1 +

qn+1
i+ 1

2

2

)
cn+1
i+1 +

∆t

h

(
si + si+1 +

qn+1
i+ 1

2

− qn+1
i− 1

2

2

)
cn+1
i

− ∆t

h

(
si +

qn+1
i− 1

2

2

)
cn+1
i−1 = ∆tQn+1

i + θni c
n
i .

(3.116)

This is a linear system discretised with respect to both space and time, which is

implemented and solved numerically for cn+1
i , i = 1, . . . , N , n = 0, . . . , T .

3.5.2 Standard Richards’ Equation

The standard Richards equation is given by

(θ(Ψ))t − (K(Ψ)(Ψ(x, t) + x)x)x = f(x, t), (3.117)

where Ψ(x, t) is the pressure head, f(x, t) is the source or sink term divided by

the density ρ, (see eq. (2.35)), and x denotes the height against the reference level

(datum). θ(Ψ) and K(Ψ) are nonlinear functions given by some parameterisa-

tion. Nonlinear equations, as is the case for the Richards equation, need to be

linearised in order to be solved by the means of numerical methods. The lineari-

sation scheme presented in section 3.4 is therefore applied, in order to compute

the linear, discretised system needed for it to be solved numerically.

Starting with the temporal discretisation the backward Euler scheme (eq. (3.55))

is applied, where

F (t,Ψ(t)) = f(x, t) + (K(Ψ)(Ψ(x, t) + x)x)x, (3.118)

which leads to

θ(Ψn+1)− θ(Ψn)−∆t(K(Ψn+1)Ψn+1
x )x −∆t(K(Ψn+1))x = ∆tfn+1, (3.119)

as the implicit scheme for time step n + 1, where Ψn+1 = Ψ(x, tn+1). The stan-

dard approach to solving this system is to apply Newton’s method. However, as

mentioned in section 3.4, this method has several drawbacks. Instead applying
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the robust linearisation method given, yields

LΨ(Ψn+1,j+1 −Ψn+1,j) + θ(Ψn+1,j)− θ(Ψn)−∆t(K(Ψn+1,j)Ψn+1,j+1
x )x

−∆tKx(Ψ
n+1,j) = ∆tfn+1,

(3.120)

for obtaining iteration step j+1, where LΨ is some positive constant. Rearranging

eq. (3.120) so that the known values at previous time and iteration steps are located

on the right hand side of the equation, leads to

LΨΨn+1,j+1 −∆t(K(Ψn+1,j)Ψn+1,j+1
x )x = ∆tfn+1 + LΨΨn+1,j − θ(Ψn+1,j)

+ θ(Ψn) + ∆tKx(Ψ
n+1,j),

(3.121)

concluding the temporal discretisation and the iterative approach.

The first step in the spatial discretisation is to define the flux as

q = −K(Ψn+1,j)Ψn+1,j+1
x , (3.122)

then eq. (3.120) becomes

LΨΨn+1,j+1 + ∆tqx = ∆tfn+1 + LΨΨn+1,j − θ(Ψn+1,j) + θ(Ψn) + ∆tKx(Ψ
n+1,j).

(3.123)

Applying the cell-centred grid, see fig. 3.4, and integrating over each cell, [xi− 1
2
, xi+ 1

2
],

results in

LΨ

∫ x
i+ 1

2

x
i− 1

2

Ψn+1,j+1 dx+ ∆t(qi+ 1
2
− qi− 1

2
) = ∆t

∫ x
i+ 1

2

x
i− 1

2

fn+1 + LΨ

∫ x
i+ 1

2

x
i− 1

2

Ψn+1,j dx

−
∫ x

i+ 1
2

x
i− 1

2

θ(Ψn+1,j) dx+

∫ x
i+ 1

2

x
i− 1

2

θ(Ψn) dx+ ∆t(Ki+ 1
2
(Ψn+1,j)−Ki− 1

2
(Ψn+1,j)).

(3.124)

As in section 3.5.1, eqs. (3.103) to (3.105), the integrals of eq. (3.124) are ap-

proximated by the midpoint rule. Inserting these approximations into eq. (3.124),

recalling that the grid is equidistant with h = ∆xi, gives

LΨhΨn+1,j+1
i + ∆t(qi+ 1

2
− qi− 1

2
) = ∆thfn+1

i + LΨhΨn+1,j
i − hθi(Ψn+1,j) + hθi(Ψ

n)

+ ∆t(Ki+ 1
2
(Ψn+1,j)−Ki− 1

2
(Ψn+1,j)),

(3.125)

where θi(Ψ
n+1,j) = θ(Ψn+1,j

i ).
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To determine the values at the walls of the cells, the mean of the function values

of the two neighbouring cells is computed so that

Ki+ 1
2
(Ψn+1,j) ≈ Ki(Ψ

n+1,j) +Ki+1(Ψn+1,j)

2
(3.126)

for i = 0, . . . , N , and

Ki− 1
2
(Ψn+1,j) ≈ Ki−1(Ψn+1,j) +Ki(Ψ

n+1,j)

2
, (3.127)

for i = 1, . . . , N . This gives

∆t(Ki+ 1
2
(Ψn+1,j)−Ki− 1

2
(Ψn+1,j))

≈ ∆t

(
Ki(Ψ

n+1,j) +Ki+1(Ψn+1,j)

2
− Ki−1(Ψn+1,j) +Ki(Ψ

n+1,j)

2

) (3.128)

for i = 1, . . . , N . Subtracting the common terms yield

∆t(Ki+ 1
2
(Ψn+1,j)−Ki− 1

2
(Ψn+1,j)) ≈ ∆t

2
(Ki+1(Ψn+1,j)−Ki−1(Ψn+1,j)). (3.129)

The expression for qi+ 1
2

is found by applying the TPFA scheme, see section 3.2.2.

Integrating Ψn+1,j+1
x = −q/K(Ψn+1,j) for an equidistant grid with h denoting the

length of each cell, leads to

Ψn+1,j+1
i+1 −Ψn+1,j+1

i = −qi+ 1
2

h

2

(
1

Ki

+
1

Ki+1

)
, (3.130)

and

qi+ 1
2

= −
Ψn+1,j+1
i+1 −Ψn+1,j+1

i

h
2

(
1
Ki

+ 1
Ki+1

) . (3.131)

This means that

qi+ 1
2
− qi− 1

2
= −

Ψn+1,j+1
i+1 −Ψn+1,j+1

i

h
2

(
1
Ki

+ 1
Ki+1

) +
Ψn+1,j+1
i −Ψn+1,j+1

i−1

h
2

(
1
Ki

+ 1
Ki−1

) (3.132)

and by further letting

ai =
1

h
2

(
1
Ki

+ 1
Ki−1

)
from eq. (3.24), eq. (3.132) simplifies to

qi+ 1
2
− qi− 1

2
= −ai+1(Ψn+1,j+1

i+1 −Ψn+1,j+1
i ) + ai(Ψ

n+1,j+1
i −Ψn+1,j+1

i−1 ). (3.133)
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Inserting eqs. (3.129) and (3.133) into eq. (3.125) yields

LΨhΨn+1,j+1
i + ∆tai(Ψ

n+1,j+1
i −Ψn+1,j+1

i−1 )−∆tai+1(Ψn+1,j+1
i+1 −Ψn+1,j+1

i ) = ∆thfn+1
i

+ LΨhΨn+1,j
i − hθi(Ψn+1,j) + hθi(Ψ

n) +
∆t

2
(Ki+1(Ψn+1,j)−Ki−1(Ψn+1,j)).

(3.134)

Collecting the terms and dividing by h finally leads to

LΨΨn+1,j+1
i − ∆t

h
aiΨ

n+1,j+1
i−1 +

∆t

h
(ai + ai+1)Ψn+1,j+1

i − ∆t

h
ai+1Ψn+1,j+1

i+1 = ∆tfn+1
i

+ LΨΨn+1,j
i − θi(Ψn+1,j) + θi(Ψ

n) +
∆t

2h
(Ki+1(Ψn+1,j)−Ki−1(Ψn+1,j)).

(3.135)

The original nonlinear system is now a linear system discretised with respect to

space and time, and is implemented and solved numerically for Ψn+1,j+1
i , i=1,. . . ,N,

n = 1, . . . , T , j = 1, . . . , J .

3.5.3 Richards’ Equation with Dynamic Capillary Pressure

In the case of dynamic capillary pressure, two equations are considered. These are

θt − (K(θ)(Ψ(x, t) + x)x)x = f(x, t), (3.136)

and

Ψ(x, t) = −pc(θ) + τ(θ)
∂θ

∂t
, (3.137)

where the first equation is the Richards equation considered in section 3.5.2, and

the second is the extension accommodating dynamic capillary pressure. pc(θ) is the

capillary pressure and τ(θ) = τ some constant. Both equations are nonlinear and

need to be linearised with the method described in section 3.4. Equations (3.136)

and (3.137) are coupled, meaning one cannot be solved without the other.

The implicit numerical schemes when applying the backward Euler method (eq. (3.55)),

are

θn+1 − θn −∆t(K(θn+1)Ψn+1
x )x −∆t(K(θn+1))x = ∆tfn+1 (3.138)

from eq. (3.119), and

∆tΨn+1 = −∆tpc(θ
n+1) + τ(θn+1 − θn). (3.139)



Chapter 3. Numerical Methods 51

Again, the robust iterative scheme for Richards’ equation is previously given by

eq. (3.120) in section 3.5.2

LΨ(Ψn+1,j+1 −Ψn+1,j) + θn+1,j+1 − θn −∆t(K(θn+1,j)Ψn+1,j+1
x )x

−∆tKx(θ
n+1,j) = ∆tfn+1,

(3.140)

while the iterative scheme for the dynamic capillary pressure becomes

∆tΨn+1,j+1 = −∆tpc(θ
n+1,j) + τθn+1,j+1 − τθn + Lθ(θ

n+1,j+1 − θn+1,j), (3.141)

when applying the linearisation method. LΨ and Lθ are positive constants.

Remark. In the case of a non-constant τ , i.e. τ = τ(θ), the iterative scheme

(3.141) above becomes

∆tΨn+1,j+1 = −∆tpc(θ
n+1,j)+τ(θn+1,j)θn+1,j+1−τ(θn+1,j)θn+Lθ(θ

n+1,j+1−θn+1,j).

(3.142)

This scheme was also implemented and results are presented in section 4.2.

In order to solve the coupled system, eq. (3.141) is first solved with respect to

θn+1,j+1, before being inserted into eq. (3.140). Rearranging eq. (3.141) gives

θn+1,j+1 =
1

(τ + Lθ)
(∆tΨn+1,j+1 + ∆tpc(θ

n+1,j) + τθn + Lθθ
n+1,j), (3.143)

and by inserting the relation in eq. (3.140), it follows that

LΨ(Ψn+1,j+1 −Ψn+1,j)

+
1

(τ + Lθ)
(∆tΨn+1,j+1 + ∆tpc(θ

n+1,j) + τθn + Lθθ
n+1,j)

− θn −∆t(K(θn+1,j)Ψn+1,j+1
x )x −∆tKx(θ

n+1,j) = ∆tfn+1.

(3.144)

Moving the known terms from the previous time and iteration steps to the right

hand side og the equation, leads to

LΨΨn+1,j+1 +
∆t

(τ + Lθ)
Ψn+1,j+1 −∆t(K(θn+1,j)Ψn+1,j+1

x )x

= ∆tfn+1 + LΨΨn+1,j − ∆t

(τ + Lθ)
pc(θ

n+1,j)− τ

(τ + Lθ)
θn

− Lθ
(τ + Lθ)

θn+1,j + θn + ∆tKx(θ
n+1,j).

(3.145)
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Integrating each term over each cell [xi− 1
2
, xi+ 1

2
], inserting eqs. (3.129) and (3.133)

from section 3.5.2 and approximating the remaining integrals using the midpoint

rule, see eqs. (3.102) to (3.104), yields

LΨhΨn+1,j+1
i +

∆th

(τ + Lθ)
Ψn+1,j+1
i + ∆tai(Ψ

n+1,j+1
i −Ψn+1,j+1

i−1 )

−∆tai+1(Ψn+1,j+1
i+1 −Ψn+1,j+1

i ) = ∆thfn+1
i + LΨhΨn+1,j

i

− ∆th

(τ + Lθ)
pci(θ

n+1,j)− τh

(τ + Lθ)
θni −

Lθh

(τ + Lθ)
θn+1,j
i + hθni

+
∆t

2
(Ki+1(θn+1,j)−Ki−1(θn+1,j)).

(3.146)

Finally, collecting the terms and dividing by h, gives(
LΨ +

∆t

(τ + Lθ)

)
Ψn+1,j+1
i − ∆t

h
aiΨ

n+1,j+1
i−1 +

∆t

h
(ai + ai+1)Ψn+1,j+1

i

− ∆t

h
ai+1Ψn+1,j+1

i+1 = ∆tfn+1
i + LΨΨn+1,j

i − ∆t

(τ + Lθ)
pci(θ

n+1,j)

+

(
1− τ

(τ + Lθ)

)
θni −

Lθ
(τ + Lθ)

θn+1,j
i +

∆t

2h
(Ki+1(θn+1,j)−Ki−1(θn+1,j))

(3.147)

Equation (3.147) represents the linear, discretised system for the case with Richards’

equation and dynamic capillary pressure. This system is implemented and solved

numerically for Ψn+1,j+1
i , i=1,. . . ,N, n = 1, . . . , T , j = 1, . . . , J .

3.6 Implementation

The numerical computations based on the discretised system of equations de-

rived in sections 3.5.1 to 3.5.3 are performed using the software MATLAB. The

discretised equations are implemented using functions where values of all known

variables, as well as initial and boundary conditions, are defined. Approximated

solutions of the unknown variables are computed at time step n+1 as time evolves.

The approximations will improve for each time step in the case of convergence of

the system.

As well as being evaluated at each time step, the solutions of the linearised

Richards’ equation, with and without dynamic capillary pressure are evaluated

at each iteration step until some stopping criteria is met. There are two possible

types of stopping criteria [24]. One based on evaluating the residual and the other
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is based on the increment. In both cases a fixed tolerance on the approximated so-

lution, ε, is defined. When considering the residual approach, the iterative process

terminates at the first step i where ||f(Ψn+1,i)|| < ε. While when evaluating the

increment, the iterative process terminates when ||Ψn+1,i+1 −Ψn+1,i|| < ε. The

latter is applied in the numerical schemes constructed for this thesis. In the pos-

sible event that the method does not converge, a security measure to prevent an

indefinite continuation of the iterative process is included. That is, after a maxi-

mum number of iteration steps set high enough to ensure a good approximation

of the solution in the case of convergence, the method is terminated.

The linear system at each time step can be solved by the means of a direct solver

or an iterative one (e.g. Jacobi or Gauss-Seidel, [24, 25]). In this work a direct

solver is utilised. The problem being one dimensional gives rise to relatively small

linear systems, making the use of a direct solver convenient.

Finally, the solutions of Ψ (pressure), θ (water content) and c (concentration) as

well as the convergence history of the linearisation schemes, are presented graph-

ically at certain time and grid steps.





Chapter 4

Numerical Results

This chapter is devoted to presenting the results attained from numerical simula-

tions constructed on the basis of the theoretical framework and discretised models

described in preceding chapters. The first section gives the results of a numerical

convergence test, where a constructed analytical solution was applied to verify

the convergence of the numerical method. Section 4.2 contains the numerical re-

sults produced when the developed numerical schemes are applied to the transport

problem. Comparing the results with and without dynamic capillary pressure is

the main focus. Also, in order to confirm the statements made about the lineari-

sation schemes in section 3.4, the convergence history displaying the number of

iterations for different grid lengths h are presented. From this, it will be shown

that the linearisation schemes are at least linearly convergent, robust and indeed

independent of mesh size.

4.1 Convergence of the Numerical Solution for

an Academical Example

The purpose of this section is to show that the numerical solution of the system

converges. To do so a numerical test is presented, based the approach described

in [38], section 3. The numerical simulations are performed by choosing a simple

analytical solution that satisfies the given initial and boundary conditions and by

adjusting the functions so that this chosen solution corresponds to the exact solu-

tion of the equation. The numerical solutions are then compared to the analytical

solution by computing the L2 error.

55
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The convergence test is performed on (2.50) with gravitation and a source term

∂tθ(Ψ)− ∂x(K(Ψ)∂x(Ψ + x)) = f(x, t) in (0, T )× (0, 1), (4.1)

with final time T = 1. For the numerical test LΨ = 0.1 and the coefficient functions

θ(Ψ), K(Ψ) are set to

θ(Ψ) =
1−Ψ2

2
, (4.2)

K(Ψ) = 1−Ψ2, (4.3)

The initial condition is given by

Ψ|t=0 = 0, (4.4)

and Neumann boundary conditions are applied at both end points of the interval

q = K(x = 0)t, (4.5)

q = −K(x = 1)t. (4.6)

Note that tests with homogeneous Dirichlet boundary conditions (Ψ|x=0 = Ψ|x=1 =

0) were also conducted, giving the same convergence results.

Constructing an analytical solution for Ψ(x, t) that satisfies the given initial and

boundary conditions yields

Ψana(x, t) = −tx(1− x). (4.7)

To find the source term, eqs. (4.2) and (4.3) are inserted into eq. (4.1) and the

partial derivatives are calculated from

f(x, t) =

(
1−Ψ2

ana(x, t)

2

)
t

− ((1−Ψ2
ana(x, t))(Ψanax(x, t) + 1))x, (4.8)

which becomes

f(x, t) = −tx2(1−x)2 +2(t3x(5x3−10x2 +6x−1)−t)+(2t2x(2x2−3x+1)), (4.9)

when Ψana is defined by eq. (4.7). Inserting eq. (4.9) into eq. (4.1) gives the

equation to be solved in the numerical convergence test.

Solving the equation given by eqs. (4.1) and (4.9) numerically, yields numerical

solutions which can be compared to the analytical solution of eq. (4.7). The
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procedure for solving Richards’ equation by the means of a numerical method is

described in section 3.5.2. The Neumann boundary conditions are treated as in

section 3.2.3.

To compare the numerical solutions to the analytical one, the L2 norm is computed

as a measure of the difference between the two. Recalling that the L2 norm

[5, 21, 24, 25] is defined as

||Ψ||2 =

(∫
|Ψ|2 dx

) 1
2

, (4.10)

for a function Ψ. The error is computed as

E = ||Ψana(x, T )−Ψnum(x, T )||2, (4.11)

where Ψana(x, T ) and Ψnum(x, T ) is the analytical and numerical solution respec-

tively. t = T for t ∈ [0, 1] represents the final time, thus T = 1. The squared error

is given by

E2 = ||Ψana(x, T )−Ψnum(x, T )||22 =

∫ 1

0

|Ψana(x, T )−Ψnum(x, T )|2 dx, (4.12)

for x ∈ [0, 1]. To solve the equations numerically a cell-centered grid is ap-

plied to the interval [0, 1], dividing it into subintervals or cells with midpoints

xi, i = 0, . . . , n, see chapter 3. Integrating over each cell [xi− 1
2
, xi+ 1

2
] gives

E2 =
n∑
i=1

∫ x
i+ 1

2

x
i− 1

2

|Ψana(x, T )−Ψnum(x, T )|2 dx, (4.13)

which is becomes

E2 '
n∑
i=1

h|Ψana(xi, T )−Ψnum(xi, T )|2, (4.14)

when the integrals are approximated using the midpoint rule with h representing

the uniform length of each cell.

The computations are performed on a uniform grid with h = ∆t = 0.1 and halving

the grid size (h) and time step (∆t) successively. Figure 4.1 show the solutions

for h = 0.1, 0.05, 0.025, 0.0125, 0.0625. The numerical solutions for pressure Ψ are

compared to the analytical solution marked with blue stars, and it is clear that the

numerical solution converges to the analytical one, due to the decreasing difference

in the solutions for decreasing grid and time steps.
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Solutions of the Pressure

Figure 4.1: Numerical solutions for h = 0.1, 0.05, 0.025, 0.0125, 0.0625 com-
pared to the analytical solution marked by stars.

According to Theorem 1 in [38], E ≤ C(∆t + h) with C constant not depending

on the discretisation parameters ∆t and h. The results are presented in table 4.1.

As predicted in Theorem 1, the reduction of the error E is of factor 2, which means

a convergence of O(∆t+ h) or O(∆t2 + h2) for E2.

Table 4.1: Errors E for different h

Time step (∆t) Step length (h) Error (E) Reduction
0.1 0.1 0.018378609390458 -
0.05 0.05 0.009022002647100 2.037087563520698
0.025 0.025 0.004505633495526 2.002382718447396
0.0125 0.0125 0.002254288598985 1.998694176759216
0.00625 0.00625 0.001127719602277 1.998979705977481

4.2 Numerical Simulations

Having established the convergence of the method, it can be used to perform

numerical simulations for the transport problem with and without including dy-

namic capillary pressure. The numerical results of these simulations are presented

in section 4.2.1. To evaluate the convergence of the linearisation methods, the

convergence history of the schemes are presented in section 4.2.2.
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4.2.1 Numerical Solutions of Flow and Transport

The equations that are considered in the numerical simulations are defined in

(2.50)-(2.52), and are restated below.

(θ(Ψ))t − (K(θ(Ψ))(Ψ + x)x)x = f(x, t),

is again the standard Richards equation, where θ(Ψ), K(θ(Ψ))) are assumed to be

constitutive relations given by the van Genuchten-Mualem parameterisation, see

section 2.2.4,

For Ψ ≤ 0

θ(Ψ) = θR + (θS − θR)

[
1

1 + (−αΨ)n

]n−1
n

,

K(θ(Ψ)) = KS

[
1− (−αΨ)n−1 [1 + (−αΨ)n]

1−n
n

]2

[1 + (−αΨ)n]
n−1
2n

.

For Ψ > 0

θ = θS,

K = KS.

Unless otherwise stated, the van Genuchten-Mualem formula is used to compute

the hydraulic conductivity K. Referred to as non-constant K(θ).

To include dynamic capillarity, recall that the extension

τ(θ)∂tθ(Ψ) = Ψ + pc(θ),

replaces the partial derivative of θ with respect to t in Richards’ equation. For the

first case considered, τ(θ) = τ is some constant not depending on θ. Also recall

that for the case with dynamic capillary pressure θ 6= θ(Ψ) (and K = K(θ)).

To model the transport of the dissolved substance, the convection-diffusion equa-

tion given by

(θc)t + (−θDccx + q(x, t)c)x = Q(x, t),

is coupled to the flow equations.

The spatial domain range from x ∈ [0, 1], where x = 1 corresponds to the ground

surface. On this interval, the initial condition when t = 0 and boundary conditions
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for x = 0 and x = 1 are defined. For the standard and non-standard Richards’

equation, the boundary conditions are set to be Dirichlet for the left boundary

and Neumann for the right boundary, so that

Ψ(0, t) = −1,

q(1, t) = −3× 10−3.

For the transport problem, a homogeneous initial condition,

c(x, 0) = 0,

is given and the boundary conditions are defined as Dirichlet conditions for both

boundaries,

c(0, t) = 0,

c(1, t) = 1.

The known variables in the van Genuchten-Mualem parameterisation are defined

by the residual water content θR = 0.026 and the saturated water content θS =

0.420. Further, α = 0.95, n = 1.9 and the saturated hydraulic conductivity

KS = 2× 10−2. These values are based on realistic values found in the PhD thesis

of E.Schneid [43]. Note that the magnitude of the variables corresponds to values

found in i.e. Hassanizadeh et al. [39] and Fuč́ık et al. [42], when converting from

seconds into days. The latter being the time scale in this thesis. The diffusion

coefficient Dc = 10−1.

In the following, two examples are considered when computing the numerical re-

sults. Boundary conditions, the initial condition for the convection-diffusion equa-

tion and known variables remain the same, while the initial condition for the

Richards equation is adjusted.

Example I

The initial condition for the pressure Ψ is given by

Ψ(x, 0) = −x− 1,

in order to model the water flow in the strictly unsaturated region. This is to

ensure the validity of assumption (A2) in section 3.4.1. For the case when both

the saturated and the unsaturated region is included in the model, the given pc(θ)

is not Lipschitz continuous.
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When computing the standard Richards equation LΨ = 0.07, while in the case with

dynamic capillary pressure LΨ = 0.001, Lθ = 1 and τ = 20. With the parameters

and conditions defined above, simulations are performed with step size h = 0.005

and time step ∆t = 0.01.

The numerical solutions for the pressure Ψ and water content θ with and without

dynamic capillary pressure for constant K = KS, are given in Figure 4.2. In

Figure 4.3 solutions of the same variables but for non-constant K(θ) are presented.

The solutions are shown for t = 0.01 (T1), t = 0.5 (Tim) and t = 1 (Tend).
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Figure 4.2: Pressure and water content profiles for the standard Richards
equation (top), and with the influence of dynamic capillary pressure (bottom).
Computations are done with constant K = KS , τ = 20 at time T1 = 0.01,

Tim = 0.5, Tend = 1.

Nonhomogeneous Neumann boundary conditions, as defined on the right boundary

of the domain (the assumed ground surface), means there is a flow or flux across

the boundary. In other words, the pressure is increased at the boundary which is

the same as water being pumped into the domain. The nonhomogeneous Dirichlet

condition gives the value of the solution at the left boundary. The given value is a
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Figure 4.3: Pressure and water content profiles for the standard Richards
equation (top), and with the influence of dynamic capillary pressure (bottom).
Computations are done with non-constant K(θ) and constant τ = 20 at time

T1 = 0.01, Tim = 0.5, Tend = 1.

result of the chosen initial condition which as mentioned previously, is a measure

to ensure Lipschitz continuous pc(θ).

As time evolves there is an increase in pressure and water content throughout the

domain. The observed increase is larger in the case with constant K = KS than

in the case where the van Genuchten-Mualem parameterisation for the hydraulic

conductivity is applied. This is true for both the pressure and the water content

profiles. As will be evident shortly, this effects the transport of the dissolved

substance. The dynamic effects are obvious in both cases (constant and non-

constant K), and a clear difference between the standard and non-standard profiles

for pressure and water content is seen.

In Figure 4.4 numerical solutions of Richards’ equation with dynamic capillary

pressure for varying values of τ(θ) are presented.
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Figure 4.4: Pressure and water content profiles for different values of τ ,
τ = 0, 20, 1− θ2, 102 × e−7.7θ. Computations are done with constant K = KS

at time T1 = 0.01 (top), Tim = 0.5 (middle), Tend = 1 (bottom).
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Figure 4.5: Pressure and water content profiles for different values of τ ,
τ = 0, 20, 1− θ2, 102 × e−7.7θ. Computations are done with non-constant K(θ)

at time T1 = 0.01 (top), Tim = 0.5 (middle), Tend = 1 (bottom).
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The solutions for pressure and water content for constant K = KS are given at

T1 = 0.01, Tim = 0.5 and Tend = 1 with τ = 0, 20, 1 − θ2 and 102 × e−7.7θ. The

computations are performed with step size h, time step ∆t and values of LΨ and

Lθ as defined previously.

Figure 4.5 presents similar solutions as the ones displayed in Figure 4.4, but for

non-constant K(θ). The different nonlinear functions of the dynamic effect coef-

ficient τ(θ) are based on experimentally determined models found in [42]. Recall

that τ(θ) = 0 corresponds to the standard Richards equation not including any

dynamic effects. By comparing the solutions of τ = 0 in Figures 4.4 and 4.5 to

the solutions in Figures 4.2 and 4.3 at each time, it is evident that this is indeed

the case. For all values of τ , the increase as time evolves in pressure and water

content are larger for constant than for non-constant hydraulic conductivity, K.

As mentioned previously this effects the transport of the dissolved component.

The transport takes place through convection and diffusion of the substance, so

by coupling the convection-diffusion equation to the flow equations, the numerical

results shown in Figure 4.6 are obtained. The left figure displays the transport

both in connection with the standard Richards equation and dynamic capillarity

for constant K = KS, while the figure on the right displays it for non-constant

K(θ). The solutions are also for these given at time T1 = 0.01, Tim = 0.5 and

Tend = 1, τ = 20.
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Figure 4.6: Transport profiles for standard Richards equation (blue solid line)
and with dynamic capillary pressure (green solid line). The computations are
done with constant K = KS (left) and non-constant K(θ) (right) at time T1 =

0.01, Tim = 0.5, Tend = 1, τ = 20.
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For the case with constant K the dynamic effects are clear, portraying different

transport profiles for the standard and non-standard model. In other words show-

ing the effects of including dynamic capillary pressure in the model. However,

when K is non-constant, the dynamic effects are hardly noticeable. This is mainly

caused by the small change in water content, θ, for the non-constant case.

Recall from section 2.4.2 that coupling the convection-diffusion equation to the

flow equations means that water content, θ, and volumetric flux, q, are obtained

from the computations of Richards’ equation. Assuming that the flux undergo

little change during the simulations, the main influence on the transport is clearly

caused by the water content.

The change in θ when comparing the standard and the non-standard model is

small for the case with non-constant K (see figs. 4.3 and 4.5), thus accounting

for the observed similarities in the transport profiles for the standard and non-

standard model for non-constant K(θ). In a similar fashion, the bigger difference

in θ for constant K accounts for the observed dynamic effects in this case.

Example II

The initial condition for the pressure Ψ is given by

Ψ(x, 0) = −1,

and is therefore a more physical example than the previous one, resulting in a

constant pressure and water content profile at the initial time.

As in example I, numerical results are computed by implementing certain values of

τ , defined above, in the scheme modelling dynamic effects. Recall that LΨ = 0.001

and Lθ = 1. Together with the parameters and conditions defined at the start of

the section, simulations are performed with step size h = 0.005 and time step

∆t = 0.01.

Numerical solutions of pressure Ψ and water content θ for the different τ are given

in Figures 4.7 and 4.8. Figure 4.7 show the solutions computed with constant

K = KS and Figure 4.8 show the ones computed with non-constant K(θ). The

solutions are given at T1 = 0.01, Tim = 0.5 and Tend = 1. Again, as time evolves

there is an increase in pressure and water content throughout the domain due to

the flux across the left boundary. This is the case for all values of τ . The observed

increase is higher for the case with constant K than non-constant K. However,

when comparing these results to those in example I (figs. 4.4 and 4.5) the increase

is less for constant K and slightly higher for non-constant K.
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Figure 4.7: Pressure and water content profiles for different values of τ both
constant and non-linear, τ = 0, 20, 1− θ2, 102× e−7.7θ. Computations are done
with constant K = KS at time T1 = 0.01 (top), Tim = 0.5 (middle), Tend = 1

(bottom).
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Figure 4.8: Pressure and water content profiles for different values of τ both
constant and non-linear, τ = 0, 20, 1− θ2, 102× e−7.7θ. Computations are done
with non-constant K(θ) at time T1 = 0.01 (top), Tim = 0.5 (middle), Tend = 1

(bottom).
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In Figure 4.9 the transport profiles for the standard Richards equation as well as

the non-standard equation, including dynamic capillarity, are given. The solutions

for constant K = KS are shown in the figure on the left, while the solutions for

the non-constant K(θ) are given by the figure on the right. As in Figure 4.6 the

solutions are given at T1 = 0.01, Tim = 0.5 and Tend = 1, τ = 20.

Neither profile show a clear effect of including dynamic capillary pressure. This

is manily due to the small change in water content θ (see Figures 4.7 and 4.8) as

suggested previously.
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Figure 4.9: Transport profiles for standard Richards equation (blue solid line)
and with dynamic capillary pressure (green solid line). The computations are
done with constant K = KS (left) and non-constant K(θ) (right) at time T1 =

0.01, Tim = 0.5, Tend = 1, τ = 20.

4.2.2 Convergence History of the Linearisation Schemes

In this section numerical simulations for the academical example, section 4.1,

and example I, section 4.2.1, are performed. However, the focus now lies on the

convergence of the linearisation schemes introduced in section 3.4.

For all simulations a constant time step of 0.1 is used, and a tolerance in residual

error of 10−4 for the non-linear system is given. A one dimensional grid with

varying mesh size h = 0.02, 0.008 and 0.005 is considered.

Figure 4.10 illustrates the convergence of the academical example. It is clear that

the linear error reduction factor is independent of mesh size, with four iterations

needed to reach the tolerance, for any value of h.
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Figure 4.10: Convergence history of relative pressure error at T1 = 0.1 for
various mesh sizes for the academical example. Illustrated by h = 0.02 (green
solid line), h = 0.008 (blue dashed line) and h = 0.005 (red triangles). With

constant ∆t = 0.1.

In Figure 4.11 the convergence for the standard Richards equation for constant

K = KS and non-constant K(θ) is presented. For K constant no more than nine

iterations are needed. This is depicted by the figure on the right. In the case

with non-constant K, see the figure to the left, the negligible difference between

h = 0.02 and h = 0.008, 0.005 results in a total of six iterations. Hence, the

linearisation scheme’s independence of mesh size is obvious when applied to the

standard Richards equation.
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Figure 4.11: Convergence history of relative pressure error at T1 = 0.1 for
various mesh sizes for the standard Richards equation. Illustrated by h = 0.02
(green solid line), h = 0.008 (blue dashed line) and h = 0.005 (red triangles).
Computations are done with constant K = KS (left) and non-constant K(θ)

(right), ∆t = 0.1.
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Remark. In section 3.4.1 the convergence of the linearisation scheme for the

standard Richards equation was given by the contraction

f(·) =
L

L+ α
≤ 1,

where L is some Lipschitz constant and α ∝ ∆ta with a not depending on ∆t

(see (3.66), section 3.4.1). From this relation some restrictions on the choice of

L, α arises, illustrated by taking the limits of the relation as limL→∞ f(L) and

limα→0 f(α):

lim
L→∞

f(L) = lim
L→∞

L

L+ α
= 1,

lim
α→0

f(α) = lim
α→0

L

L+ α
= 1.

In other words, the convergence will be very poor (or nonexisting) for L too big

and/or a, ∆t too small, implying a mild restriction on the time step size.

Figure 4.12 illustrates the rate at which the relations approaches 1. The figure

on the left shows the rate approaching 1 when L increases and α = 0.01, 0.1, 1,

while the one on the right shows the rate approaching 1 when α decreases and

L = 0.1, 1, 10.
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Figure 4.12: Rate of function f = L
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line) and α = 1 (red line) for increasing L. Computed with L = 0.1 (green line),

L = 1 (blue line) and L = 10 (red line) for decreasing α.
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Figure 4.13: Convergence history of relative pressure error (top) and relative
water content error (bottom) with dynamic capillary pressure, at T1 = 0.1
for various mesh sizes. Illustrated by h = 0.02 (green solid line), h = 0.008
(blue dashed line) and h = 0.005 (red triangles). Computations are done with
constant K = KS (left) and non-constant K(θ) (right), ∆t = 0.1 and τ = 20.

As in the case for the academical example and the standard Richards equation,

the convergence of the linearisation scheme for Richards’ equation with dynamic

capillarity, where τ = 20, is independent of h, see Figure 4.13. This is evident with

regards to pressure as well as the water content. An increase in the number of

iterations needed is observed for the pressure solution between constant K = KS

and non-constant K(θ), while a slight decrease is observed for the water content.

In Figure 4.14 the convergence with nonlinear τ = 1 − θ2 is shown. With just

over four iterations needed for the pressure and just over three for the water

content for all values of h, this is also independent of mesh size. The convergence

results presented so far in this section, verifies the robustness and generality of the

iterative schemes as well as the suitability of the finite volume discretisation.
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Figure 4.14: Convergence history of relative pressure error (top) and relative
water content error (bottom) with dynamic capillary pressure, at T1 = 0.1
for various mesh sizes. Illustrated by h = 0.02 (green solid line), h = 0.008
(blue dashed line) and h = 0.005 (red triangles). Computations are done with
constant K = KS (left) and non-constant K(θ) (right), ∆t = 0.1 and τ = 1−θ2.

In order to further explore the robustness and generality of the linearisation

schemes, the convergence history for different values of the dynamic effect co-

efficient τ is computed, see Figure 4.15. The computations were performed with

h = 0.005. Throughout these numerical simulations, the error reduction factor is

independent of grid size and no more than six iterations was needed.
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Figure 4.15: Convergence history of relative pressure error (top) and rel-
ative water content error (bottom), at T1 = 0.1 for various values of τ .
τ = 0, 20, θ2, 1−θ2, 102×e−7.7θ. Computations are done with constant K = KS

(left) and non-constant K(θ) (right), ∆t = 0.1 and h = 0.005.



Chapter 5

Conclusion

In this thesis dynamic capillary effects on numerical simulations of flow and trans-

port in porous media have been considered. To do so, mathematical models to

model flow and transport were constructed, given by the Richards equation and the

convection-diffusion equation. In order to account for dynamic effects related to

phenomena such as saturation overshoot and formation of preferential flow paths,

an extension describing dynamic capillary pressure was included in the standard

model, hence developing what was referred to as a non-standard model. The aim

was thus to evaluate the influence of dynamic effects on the flow and transport of

a dissolved substance.

Richard’s equation admits in general no analytical solutions, hence numerical solu-

tions have to be considered. In this thesis the discretisation in time was performed

by using the backward Euler method and in space the cell-centered finite volume

method TPFA. To solve the nonlinear systems appearing at each time step, robust

linearisation methods were proposed. The scheme for the Richards equation with

dynamic capillarity is new. The schemes were analysed to prove the convergence

of the methods. All simulations were conducted using the Matlab implementation

environment and the numerical simulations supported the evidence put forward

by the theoretical analysis. The linearisation schemes are very robust, shown to be

linearly convergent and independent of mesh diameter, which is an argument for

the efficiency of the schemes. Another advantage of the presented schemes is that

they do not involve the calculations of derivatives. The numerical scheme for the

standard Richards equation, based on the works of Slodicka (2002) and Pop and

Radu (2004) [37, 40], and the new scheme including the dynamic capillarity are

relatively simple to implement and are valuable alternatives to Picard or Newton

methods.
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The numerical simulations of the flow and transport models were performed on

two examples with different initial conditions. Numerical solutions based on the

standard and the non-standard Richards equation were presented. In terms of the

flow, the dynamic effect was evident and a clear difference between the solutions

of the standard and non-standard case was seen. This was true for both the

pressure, Ψ, and water content, θ. As well as computing numerical solutions to

problems matching the theoretical analysis where constantK, τ > 0 were assumed,

numerical simulations were performed on problems containing non-constant K, τ ,

implying that similar characteristics also holds for such problems. This is however

in the need of further exploration and a proper theoretical analysis should be

established. Regarding the transport problem, dynamic effects were observed in

the case with constantK = KS for Example I (see section 4.2.1). For the remaining

transport computations, the chosen values and conditions resulted in a change in

θ not significant enough to portray dynamic effects.

If time had allowed it, the model would be extended to include hysteresis as well

as dynamic capillarity in an effort to obtain saturation overshoot profiles and

further investigating the influence on the transport. Applying the implemented

schemes to more realistic examples over longer time spans would hopefully result

in solutions showing the true dynamic effects and underline the importance of

including non-standard aspects in the model.
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