
Algorithmica (2014) 68:940–953
DOI 10.1007/s00453-012-9707-6

On Cutwidth Parameterized by Vertex Cover

Marek Cygan · Daniel Lokshtanov ·
Marcin Pilipczuk · Michał Pilipczuk ·
Saket Saurabh

Received: 29 February 2012 / Accepted: 24 October 2012 / Published online: 8 November 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract We study the CUTWIDTH problem, where the input is a graph G, and the
objective is find a linear layout of the vertices that minimizes the maximum number of
edges intersected by any vertical line inserted between two consecutive vertices. We
give an algorithm for CUTWIDTH with running time O(2knO(1)). Here k is the size of
a minimum vertex cover of the input graph G, and n is the number of vertices in G.
Our algorithm gives an O(2n/2nO(1)) time algorithm for CUTWIDTH on bipartite
graphs as a corollary. This is the first non-trivial exact exponential time algorithm for
CUTWIDTH on a graph class where the problem remains NP-complete. Additionally,
we show that CUTWIDTH parameterized by the size of the minimum vertex cover of
the input graph does not admit a polynomial kernel unless NP ⊆ coNP/poly. Our ker-

A preliminary version of this paper appeared at International Symposium on Parameterized and
Exact Computation, IPEC 2011.
M. Cygan and M. Pilipczuk were supported by Polish Ministry of Science grant no. N206 567140
and Foundation for Polish Science. Michał Pilipczuk is supported by ERC grant “Rigorous Theory
of Preprocessing”, reference number 267959.

M. Cygan · M. Pilipczuk (�)
Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
e-mail: malcin@mimuw.edu.pl

M. Cygan
e-mail: cygan@mimuw.edu.pl

D. Lokshtanov
University of California, San Diego, La Jolla, CA 92093-0404, USA
e-mail: dlokshtanov@cs.ucsd.edu

M. Pilipczuk
University of Bergen, Bergen, Norway
e-mail: michal.pilipczuk@ii.uib.no

S. Saurabh
The Institute of Mathematical Sciences, Chennai 600113, India
e-mail: saket@imsc.res.in

mailto:malcin@mimuw.edu.pl
mailto:cygan@mimuw.edu.pl
mailto:dlokshtanov@cs.ucsd.edu
mailto:michal.pilipczuk@ii.uib.no
mailto:saket@imsc.res.in

Algorithmica (2014) 68:940–953 941

nelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP,
Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both TREEWIDTH and
PATHWIDTH parameterized by vertex cover do admit polynomial kernels.

Keywords Cutwidth · Vertex cover parameterization · Parameterized complexity ·
Composition algorithms · Polynomial kernel

1 Introduction

In the CUTWIDTH problem we are given an n-vertex graph G together with an inte-
ger w. The task is to determine whether there exists a linear layout of the vertices of
G such that any vertical line inserted between two consecutive vertices of the layout
intersects with at most w edges (see Sect. 2 for a formal definition). The cutwidth
(cw(G)) of G is the smallest w for which such a layout exists. The problem has
numerous applications [10, 23, 24, 29], ranging from circuit design [1, 27] to pro-
tein engineering [4]. Unfortunately CUTWIDTH is NP-complete [18], and remains
so even when the input is restricted to subcubic planar bipartite graphs [13, 28] or
split graphs where all independent set vertices have degree 2 [20]. On the other hand,
the problem has a factor O(log2(n))-approximation on general graphs [26] and is
polynomial time solvable on trees [12, 32], graphs of constant treewidth and constant
degree [31], threshold graphs [20], proper interval graphs [34] and bipartite permuta-
tion graphs [19].

In this article we study the complexity of computing cutwidth exactly on general
graphs, where the running time is measured in terms of the size of the smallest vertex
cover of the input graph G. A vertex cover of G is a vertex set S such that every
edge of G has at least one endpoint in S. We show that CUTWIDTH can be solved
in time 2knO(1) where k is the size of the smallest vertex cover of G. An immediate
consequence of our algorithm is that CUTWIDTH can be solved in time 2n/2nO(1)

on bipartite graphs. This is the first non-trivial exact exponential time algorithm for
CUTWIDTH on a graph class where the problem is NP-complete. Furthermore, our
algorithm improves considerably over the previous best algorithm for CUTWIDTH

parameterized by vertex cover [15], whose running time is O(22O(k)
nO(1)) (however,

it was not the focus of [15] to optimize the running time dependence on k).
Additionally, we show that CUTWIDTH parameterized by vertex cover does

not admit a polynomial kernel unless NP ⊆ coNP/poly. A polynomial kernel for
CUTWIDTH parameterized by vertex cover is a polynomial time algorithm that takes
as input a CUTWIDTH instance (G,w), where G has a vertex cover of size at most k

and outputs an equivalent instance (G′,w′) of CUTWIDTH such that G′ has at most
kO(1) vertices. We show that unless NP ⊆ coNP/poly such a kernelization algorithm
can not exist. This contrasts with the recent results of Bodlaender et al. [7, 8] that
both TREEWIDTH and PATHWIDTH parameterized by the vertex cover number of the
input graph do admit polynomial size kernels.

Context of Our Work The CUTWIDTH problem is one of many graph layout prob-
lems, where the task is to find a permutation of the vertices of the input graph that

942 Algorithmica (2014) 68:940–953

optimizes a problem specific objective function. Graph layout problems, such as
TREEWIDTH, BANDWIDTH and HAMILTONIAN PATH are not amenable to “branch-
ing” techniques, and hence the design of faster exact exponential time algorithms
for these problems has resulted in several new and useful tools. For example, Karp’s
inclusion-exclusion based algorithm [25] for HAMILTONIAN PATH was the first ap-
plication of inclusion-exclusion in exact algorithms. Another example is the intro-
duction of potential maximal cliques as a tool for the computation of treewidth. Most
graph layout problems (with the exception of BANDWIDTH) admit an O(2nnO(1))

time dynamic programming algorithm [2, 21]. For several of these problems, faster
algorithms with running time below O(2n) have been found [3, 16, 30], a stellar
example is the recent algorithm by Björklund [3] for HAMILTONIAN PATH. The
CUTWIDTH problem is perhaps the best known graph layout problem for which a
O(2nnO(1)) time algorithm is known, yet no better algorithm has been found. Hence,
whether such an improved algorithm exists is a tantalizing open problem. While we
do not resolve this problem in this article, we make considerable progress; hard in-
stances of CUTWIDTH cannot contain any independent set of size cn for any c > 0.

Our choice of the vertex cover number as a relevant parameter for the CUTWIDTH

problem originates in a recent interest in structural parameters (see e.g. [6–8, 22]), in
particular from the study of a very closely related problems of computing treewidth
and pathwidth of the input graph. Note that both these problems can be easily seen to
be AND-compositional when parameterized by the target treewidth or pathwidth of
the graph (see [5] for discussion and relevant definitions) and an AND-composition,
together with existence of a polynomial kernel, is now known to cause a collapse
of the polynomial hierarchy [14]. This situation, together with the importance of the
TREEWIDTH and PATHWIDTH problems, motivated Bodlaender et al. [7, 8] to inves-
tigate their other, stronger parameterizations. Among many other results, they have
proven that both these problems admit a polynomial kernel with respect to the vertex
cover of the graph, while such a kernel is unlikely if we parameterize by the deletion
distance to a clique. We show that, although CUTWIDTH seems very similar to PATH-
WIDTH, these problems behave differently with respect to polynomial kernelization:
CUTWIDTH does not admit a polynomial kernel when parameterized by the vertex
cover number unless NP ⊆ coNP/poly, which is known to imply a collapse of the
polynomial hierarchy to its third level [11, 33].

Organization of the Paper In Sect. 2 we present a dynamic programming algorithm
which computes cutwidth in time O(2knO(1)) for a given vertex cover of size k,
whereas in Sect. 3 we show that CUTWIDTH parameterized by vertex cover does not
admit a polynomial kernel unless NP ⊆ coNP/poly. Section 4 is devoted to conclud-
ing remarks.

Notation All graphs in this paper are undirected and simple. For a vertex v ∈ V

we define its neighbourhood NG(v) = {u : uv ∈ E(G)} and closed neighbourhood
NG[v] = NG(v) ∪ {v}. If G is clear from the context, we might omit the subscript.
For X ⊆ V we denote NG[X] = ⋃

v∈X NG(v) \ X.

Algorithmica (2014) 68:940–953 943

2 Faster Cutwidth Parameterized by Vertex Cover

In this section we show that given a graph G = (C ∪ I,E) such that C is a vertex
cover of G of size k, we can compute the cutwidth of G in time O(2knO(1)), using
a dynamic programming approach. We start by showing that there always exists an
optimal ordering of a specific form.

For an ordering σ = v1 · · ·vn of V = C ∪ I we define Vi = {vj : j ≤ i}. For ver-
tices u and v ∈ V we say that u ≤σ v if u occurs before v in σ . Denote by δ(Vi) the
number of edges between Vi and V \ Vi . The cutwidth of the ordering, cwσ (G), is
defined as the maximum of δ(Vi) for i = 1,2, . . . , |V | − 1, and the cutwidth of the
graph G is the minimum cutwidth over all possible orderings σ of V . The rank of
a vertex vi with respect to an ordering σ is denoted by rankσ (vi) and it is equal to
|N(vi) \ Vi | − |N(vi) ∩ Vi |. Notice that δ(Vi+1) = δ(Vi) + rankσ (vi+1) and hence
δ(Vi) = ∑

j≤i rankσ (vj). Moving a vertex vp backward to position q with q < p

results in the ordering

σ ′ = v1v2 · · ·vq−2vq−1vpvqvq+1 · · ·vp−2vp−1vp+1vp+2 · · ·vn.

Moving vp forward to a position q with q > p results in the ordering

σ ′ = v1v2 · · ·vp−2vp−1vp+1vp+2 · · ·vq−2vq−1vpvqvq+1 · · ·vn.

Notice that any vertex with odd degree must have (nonzero) odd rank. Moreover,
moving a vertex backward cannot decrease its rank, whereas moving a vertex forward
cannot increase its rank.

Lemma 1 If moving vp backward to position q results in an ordering σ ′ such that
rankσ ′(vp) ≤ 0 then cwσ ′(G) ≤ cwσ (G). If moving vp forward to position q results
in an ordering σ ′ such that rankσ ′(vp) ≥ 0 then cwσ ′(G) ≤ cwσ (G).

Proof Suppose moving vp backward to position q results in an ordering σ ′ such
that rankσ ′(vp) ≤ 0. For every non-negative integer i define V ′

i to contain the first i

vertices of σ ′. Then, for every i < q and i ≥ p we have V ′
i = Vi and hence δ(V ′

i) =
δ(Vi). For every i such that q ≤ i < p we have that V ′

i = Vi−1 ∪ {vp}. Observe that
for any other vertex vj , j 	= p, rankσ ′(vj) ≤ rankσ (vj), while rankσ ′(vp) ≤ 0. Thus
δ(V ′

i) = rankσ ′(vp) + ∑
j≤i−1 rankσ ′(vj) ≤ δ(Vi−1) and cwσ ′(G) ≤ cwσ (G). The

proof that if moving vp forward to position q results in an ordering σ ′ such that
rankσ ′(vp) ≥ 0 then cwσ ′(G) ≤ cwσ (G) is analogous. �

Lemma 1 allows us to rearrange optimal orderings. Let σ be an optimal cutwidth
ordering of G, c1c2 · · · ck be the ordering which σ imposes on C and Ci = {c1, . . . , ci}
for every i. Observe that if u and v are both in I then moving u does not affect
the rank of v. In particular, if moving u yields the ordering σ ′, then rankσ ′(v) =
rankσ (v). For every vertex u ∈ I with odd degree and rankσ (u) < 0 we move u

backward to the leftmost position where u has rank −1. For every vertex u ∈ I with
odd degree and rankσ (u) > 0 we move u forward to the rightmost position where u

has rank 1. For every vertex of the set I with even degree we move it (forward or

944 Algorithmica (2014) 68:940–953

Fig. 1 Illustration of the
definition of the sets X(S,v)

and Y (S, v)

backward) to the rightmost position where u has rank 0. This results in an optimal
cutwidth ordering σ ′ with the following properties.

1. For every vertex v ∈ I of even degree rankσ ′(v) = 0 and every vertex v ∈ I of odd
degree rankσ ′(v) ∈ {−1,1}.

2. For every vertex v ∈ I such that rankσ ′(v) ≥ 0 and ci ∈ C we have ci ≤σ ′ v if and
only if |N(v) ∩ Ci | ≤ |N(v) \ Ci |.

3. For every vertex v ∈ I such that rankσ ′(v) < 0 and ci ∈ C we have ci ≤σ ′ v if and
only if |N(v) ∩ Ci−1| < |N(v) \ Ci−1|.

Define I ′
0 and I ′

k to be the set of vertices in I appearing before c1 and after ck in σ ′,
respectively. For i between 1 and k −1 we denote I ′

i the set of vertices in I appearing
between ci and ci+1 in σ ′. For any i, if I ′

i contains any vertices of rank −1, we move
them backward to the position right after ci . This results in an ordering σ ′′ where
for every i, all the vertices of I ′

i with negative rank appear before all the vertices
of I ′

i with non-negative rank. By Lemma 1 and the fact that moving a vertex from
independent set does not affect the rank of another vertex from the independent set
we have that σ ′′ is still an optimal cutwidth ordering. Also, σ ′′ satisfies the properties
1–3. We say that an ordering σ is C-good if it satisfies properties 1–3 and orders the
vertices between vertices of C in such a way that all vertices of negative rank appear
before all vertices of non-negative rank. The construction of σ ′′ from an optimal
ordering σ proves the following lemma.

Lemma 2 Let G = (C ∪ I,E) be a graph and C be a vertex cover of G. There exists
an optimal cutwidth ordering σ of G which is C-good.

In a C-good ordering σ , consider a position i such that ci ∈ C. Because of the
properties of a C-good ordering we can essentially deduce Vi ∩ I from Vi ∩ C and
the vertex ci . We will now formalize this idea. For a set S ⊆ C and vertex v ∈ S we
define the set X(S,v) ⊆ I as follows. A vertex u ∈ I of even degree is in X(S,v)

if |N(u) ∩ S| > |N(u) \ S|. A vertex u ∈ I of odd degree is in X(S,v) if |N(u) ∩
(S \ {v})| > |N(u) \ (S \ {v})|. Now we define the set Y(S, v). A vertex u ∈ I is in
Y(S, v) if uv ∈ E and |(N(u) \ {v}) ∩ S| = |(N(u) \ {v}) \ S|. Note that the vertices
in Y(S, v) have odd degrees and Y(S, v) is disjoint with X(S,v). We refer to Fig. 1
for an illustration. The following observation follows directly from the properties of
a C-good ordering.

Observation 3 In a C-good ordering σ let i be an integer such that ci ∈ C and let
S = Vi ∩ C. Then X(S, ci) ⊆ Vi ∩ I ⊆ X(S, ci) ∪ Y(S, ci).

Algorithmica (2014) 68:940–953 945

A prefix ordering φ is a set Vφ ⊆ C ∪ I together with an ordering of Vφ . The
size of the prefix ordering φ is just |Vφ |. Similarly to normal orderings we define

V
φ
i = {v1 · · ·vi}. Let c1c2 · · · c|Vφ∩C| be the ordering imposed on Vφ ∩ C by φ, and

for every i ≤ |Vφ ∩ C| we set C
φ
i = {c1, . . . , ci}. The rank of a vertex v ∈ Vφ with

respect to φ is defined as rankφ(vi) = |N(vi) \ V
φ
i | − |N(vi) ∩ V

φ
i |. We now extend

the notion of being C-good from orderings of G to prefix orderings of G in such a
way that the restriction of any C-good ordering σ of G to the first t vertices, where
vt ∈ C, must be C-good. We say that a prefix ordering φ = v1 · · ·vt of size t with
vt ∈ C is C-good if the following conditions are satisfied.

1. For every vertex v ∈ Vφ ∩ I of even degree, rankφ(v) = 0 and for every vertex
v ∈ Vφ ∩ I of odd degree, rankφ(v) ∈ {−1,1}.

2. X(Vφ ∩ C,vi) ⊆ Vφ ∩ I ⊆ X(Vφ ∩ C,vi) ∪ Y(Vφ ∩ C,vi)

3. For every vertex v ∈ X(Vφ ∩ C,ci) such that rankφ(v) ≥ 0 and ci ∈ Vφ ∩ C we

have ci ≤φ v if and only if |N(v) ∩ C
φ
i | ≤ |N(v) \ C

φ
i |.

4. For every vertex v ∈ X(Vφ ∩ C,ci) such that rankφ(v) < 0 and ci ∈ Vφ ∩ C we

have ci ≤φ v if and only if |N(v) ∩ C
φ
i−1| < |N(v) \ C

φ
i−1|.

5. Between two vertices ci, ci+1 ∈ C ∩ Vφ , all vertices with rankφ(v) < 0 come be-
fore all vertices with rankφ(v) ≥ 0.

Comparing the properties of C-good orderings and C-good prefix orderings it is
easy to see that the following lemma holds.

Lemma 4 Let σ = v1 · · ·vn be a C-good ordering and let φ be the restriction of σ

to the first t vertices, such that vt ∈ C. Then φ is a C-good prefix ordering.

For a prefix ordering φ define the cutwidth of G with respect to φ to be cwφ(G) =
maxi≤|Vφ | δ(V φ

i). For a subset S of C and vertex v ∈ S, define T (S, v) to be the
minimum value of cwφ(G) where the minimum is taken over all C-good prefix or-
derings φ with Vφ ∩ C = S and v being the last vertex of φ. Notice that property 5
of C-good prefix orderings implies that in a C-good prefix ordering φ there must be
some i with vi ∈ C ∩ Vφ such that cwφ(G) = δ(Vi) or cwφ(G) = δ(Vi−1). Also, no-
tice that for any set S ⊆ C and vertices u,v ∈ S we have that X(S \ {v}, u) ⊆ X(S,v)

and Y(S \ {v}, u) ⊆ X(S,v). Finally, observe that for any set S ⊆ C and vertex
v ∈ S, every vertex u ∈ Y(S, v) is adjacent to v and satisfies |(N(u) \ {v}) ∩ S| =
|(N(u) \ {v}) \ S|. Thus, for any set I ′ ⊆ I with X(S,v) ⊆ I ′ ⊆ X(S,v) ∪ Y(S, v)

the value of δ(S ∪ I ′) depends only on |Y(S, v) ∩ I ′| and not on Y(S, v) ∩ I ′ in gen-
eral. We let Yi(S, v) be an arbitrary subset of Y(S, v) of size i. The discussion above
yields that the following recurrence holds for T (S, v), where S ⊆ C and v ∈ S.

T (S, v) = min
u∈S

min
0≤i≤|Y(S,v)| max

⎧
⎨

⎩

δ(S ∪ X(S,v) ∪ Yi(S, v))

δ((S \ {v}) ∪ X(S,v) ∪ Yi(S, v))

T (S \ {v}, u)

⎫
⎬

⎭
.

Observe that cw(G) = minv∈C T (S, v) because in any ordering σ all vertices of I

appearing after the last vertex of C must have negative rank. Thus the recurrence

946 Algorithmica (2014) 68:940–953

above naturally leads to a dynamic programming algorithm for CUTWIDTH running
in time O(2knO(1)). This proves the main theorem of this section.

Theorem 5 There is an algorithm that given a graph G = (C ∪ I,E) such that C

is a vertex cover of G, computes the cutwidth of G in running time O(2|C|(|C| +
|I |)O(1)). Thus, MINIMUM CUTWIDTH on bipartite graphs can be solved in time
O(2n/2nO(1)), where n is the number of vertices of the input graph.

3 Kernelization Lower Bound

In this section we show that CUTWIDTH parameterized by vertex cover does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

3.1 The Auxiliary Problem

We begin by introducing an auxiliary problem, namely HYPERGRAPH MINIMUM

BISECTION. Let H = (V ,E) be a multihypergraph with |V | = n, where n is even.
A bisection of V is a colouring B : V → {0,1} such that |B−1(0)| = |B−1(1)| =
n/2. For a hyperedge e let us define the cost of e with respect to a bisection B as
cost(e, B) = min(|e ∩ B−1(0)|, |e ∩ B−1(1)|). The cost of a bisection is defined as
the sum of the contributions of the hyperedges, i.e., cost(B) = ∑

e∈E cost(e, B).

HYPERGRAPH MINIMUM BISECTION Parameter: n

Input: Multihypergraph H with n vertices, where n is even; an integer k

Question: Does there exist a bisection of H with cost at most k?

In the case when all the hyperedges are in fact edges (have cardinalities 2) and
there are no multiedges, the problem is equivalent to the classical MINIMUM BI-
SECTION problem. As MINIMUM BISECTION is NP-hard, HYPERGRAPH MINIMUM

BISECTION is also NP-hard, so NP-complete as well.
The goal now is to prove that CUTWIDTH parameterized by the size of vertex cover

does not admit a polynomial kernel, unless NP ⊆ coNP/poly. We do it in two steps.
First, using the OR-distillation technique of Bodlaender et al. [5] (with the back-
bone theorem proven by Fortnow and Santhanam [17]) we prove that HYPERGRAPH

MINIMUM BISECTION does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
Second, we present a parameterized reduction from HYPERGRAPH MINIMUM BI-
SECTION to CUTWIDTH parameterized by vertex cover.

3.2 No Polynomial Kernel for HYPERGRAPH MINIMUM BISECTION

We use the OR-distillation technique (first introduced by Bodlaender et al. [5]) put
into the framework called cross-composition [6]. Let us recall the crucial definitions.

Definition 6 (Polynomial Equivalence Relation [6]) An equivalence relation R on
Σ∗ is called a polynomial equivalence relation if (1) there is an algorithm that given

Algorithmica (2014) 68:940–953 947

two strings x, y ∈ Σ∗ decides whether R(x, y) in (|x| + |y|)O(1) time; (2) for any
finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes.

Definition 7 (Cross-Composition [6]) Let L ⊆ Σ∗ and let Q ⊆ Σ∗ × N be a pa-
rameterized problem. We say that L cross-composes into Q if there is a polynomial
equivalence relation R and an algorithm which, given t strings x1, x2, . . . , xt belong-
ing to the same equivalence class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in
time polynomial in

∑t
i=1 |xi | such that (1) (x∗, k∗) ∈ Q iff xi ∈ L for some 1 ≤ i ≤ t ;

(2) k∗ is bounded polynomially in maxt
i=1 |xi | + log t .

Theorem 8 [6, Theorem 9] If L ⊆ Σ∗ is NP-hard under Karp reductions and L

cross-composes into the parameterized problem Q that has a polynomial kernel, then
NP ⊆ coNP/poly.

Lemma 9 HYPERGRAPH MINIMUM BISECTION, parameterized by the size of the
universe, does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Proof As MINIMUM BISECTION is NP-hard under Karp reductions, it suffices to
prove that it cross-composes into the HYPERGRAPH MINIMUM BISECTION problem,
parameterized by n—the size of the universe. Let R be an equivalence relation on Σ∗
defined as follows:

– all words that do not correspond to instances of MINIMUM BISECTION form one
equivalence class;

– all the well-formed instances are partitioned into equivalence classes having the
same number of vertices, the same number of edges and the same demanded cost
of the bisection.

It is straightforward that R is a polynomial equivalence relation. Therefore, we
can assume that the composition algorithm is given a sequence of instances
(G0, k), (G1, k), . . . , (Gt−1, k) of MINIMUM BISECTION with |V (Gi)| = n and
|E(Gi)| = m for all i = 0,1, . . . , t − 1 (n is even). Moreover, by copying some
instances if necessary we can assume without losing generality that t = 2l for some
integer l. Note that in this manner we do not increase the order of log t .

We now proceed to the construction of the composed HYPERGRAPH MINIMUM

BISECTION instance (H,K). Let N = 2m · ((l + 2)2l−1 − 1) + 2k + 1 and M =
N(l2 − l) + N . We begin by creating two sets of vertices A0 and A1, each of size
2nl. We introduce each set A0,A1 as a hyperedge of the constructed hypergraph M

times.
Then, we introduce 2l vertices s0

i , s1
i for i = 0,1, . . . , l − 1 and denote the set

of all these vertices by S. For every i < j we put N times each hyperedge {s0
i , s0

j },
{s0

i , s1
j }, {s1

i , s0
j }, {s1

i , s1
j }. Thus, the hypergraph induced by S is a clique without a

matching, repeated N times. Furthermore, for every p = 0,1 and i = 0,1, . . . , l − 1
we construct a set S

p
i of n − 1 vertices and put S

p
i ∪ {sp

i } as a hyperedge of the
constructed hypergraph M times.

948 Algorithmica (2014) 68:940–953

Fig. 2 The constructed
hypergraph H for l = 3;
encircled vertices indicate the
hyperedge e0 constructed for

e = v5
1v5

2 ∈ E(G5)

Now, we construct a set of n vertices v1, v2, . . . , vn and denote it by W . For ev-
ery instance Ga we arbitrarily choose an ordering of its vertices and denote it by
va

1 , va
2 , . . . , va

n . Let bl−1bl−2 · · ·b1b0 be the binary representation of a, with trailing
zeroes added so that its length is equal to l. For every edge e = va

gva
h ∈ E(Ga) we

create two hyperedges:

– e0, consisting of vertices vg , vh, s
bi

i for all i = 0,1, . . . , l − 1 and l vertices
from A1, chosen arbitrarily;

– e1, consisting of vertices vg , vh, s
1−bi

i for all i = 0,1, . . . , l − 1 and l vertices
from A0, chosen arbitrarily.

Finally, we set the expected cost of the bisection to K = M − 1 = N(l2 − l) + 2m ·
((l + 2)2l−1 − 1) + 2k. We refer to Fig. 2 for an illustration.

Assume that some graph Ga has a bisection B having cost at most k. Let
bl−1bl−2 · · ·b1b0 be the binary representation of a, as in the previous paragraph. We
now construct a bisection B′ of H as follows:

– for each u ∈ A0 we set B′(u) = 0, for each u ∈ A1 we set B′(u) = 1;
– for each u ∈ S

p
i ∪ {sp

i } for p = 0,1, i = 0,1, . . . , l − 1 we set B′(u) = p + bi

(mod 2);
– for each vj ∈ W we set B′(vj) = B(va

j).

Observe that B′ bisects each of the sets A0 ∪ A1, S and W , so it is a bisection. We
now prove that its cost is at most K . Let us count the contribution to the cost from
every hyperedge of H .

Each copy of the hyperedges A0,A1 and S
p
i ∪{sp

i } for p = 0,1, i = 0,1, . . . , l −1
has zero contribution, as it is monochromatic. The edges of H [S] have contribution
0 or 1, depending on whether the endpoints are coloured in the same or in a different
way in B′. There are l vertices s

p
i that map to 0 in B′ and l that map to 1, so there

are l2 pairs of vertices coloured in a different way. Between every pair of vertices

Algorithmica (2014) 68:940–953 949

there are N edges, apart from the pairs (s0
i , s1

i). Note that all these pairs are coloured
differently; therefore, there are exactly N(l2 − l) edges in H [S] contributing 1 to the
cost.

Take c ∈ {0,1, . . . , t − 1} such that c 	= a. Let dl−1dl−2 · · ·d0 be the binary repre-
sentation of c. For e ∈ E(Gc) let us count the contribution to cost(B′) of the hyper-
edges e0 and e1. Suppose that q = |{i : bi 	= di}| > 0. Among vertices of e0, l from
A1 are coloured 1, q from S are coloured 1 as well and l − q from S are coloured 0.
In total, we have l + q vertices coloured 1 and l − q coloured 0, so regardless of
the colouring of the remaining two vertices from W , the contribution is equal to the
number of vertices coloured 0 in e0, namely l − q + |e0 ∩ W ∩ B′−1(0)|. Analo-
gously, the contribution of the hyperedge e1 is equal to the number of vertices of e1

coloured 1, namely l − q + |e1 ∩ W ∩ B′−1(1)|. As there are exactly two vertices in
e0 ∩ W = e1 ∩ W , cost(e0, B′) + cost(e1, B′) = 2(l − q) + 2. Thus, the total contri-
bution of hyperedges e0, e1 for e ∈ E(Gc) is equal to 2m(l − q) + 2m.

Now we count the contribution of the edges e0 and e1 for e ∈ E(Ga). Analogously
as in the previous paragraph, both edges e0, e1 contain l vertices coloured 0, l vertices
coloured 1 plus two vertices from W . If both these vertices are coloured in the same
way, the sum of the contributions of e0 and e1 is equal to 2l; however, if the vertices
are coloured differently, the sum is equal to 2l + 2. As the cost of bisection B was at
most k, the total contribution of edges e0, e1 for e ∈ E(Ga) is at most 2ml + 2k.

Finally, we sum up the contributions:

cost
(

B′) ≤ N
(
l2 − l

) + 2m

l∑

q=1

(l − q + 1)

(
l

q

)

+ 2ml + 2k

= N
(
l2 − l

) + 2m · (2l − 1
) + 2m

l∑

q=0

(l − q)

(
l

q

)

+ 2k

= N
(
l2 − l

) + 2m · (2l − 1
) + 2ml2l−1 + 2k

= N
(
l2 − l

) + N − 1 = K.

We proceed to the second direction. Assume that we have a bisection B′ of H such
that cost(B′) ≤ K . Observe that as M > K , both the sets A0,A1 are monochromatic
with respect to B′. Moreover, they have to be coloured differently, as they contain
more than half of the vertices of the graph in total. Without losing generality we can
assume that A0 is coloured in colour 0, while A1 is coloured in colour 1, by flipping
the colours if necessary.

Now consider the set Si
p ∪ {si

p} for p = 0,1, i = 0,1, . . . , l − 1. Analogously as
in the previous paragraph, Si

p ∪ {si
p} has to be monochromatic. Furthermore, observe

that exactly l such sets have to be coloured 0 in B′ and the same number have to be
coloured 1, as every set Si

p ∪ {sp
i } contains the same number of vertices as the set W

and B′ is a bisection. Therefore, B′ has to bisect each of the sets A0 ∪ A1, S and W .
Exactly l vertices s

p
i are coloured 0 in B′ and exactly l are coloured 1. Let r

be the number of indices i, such that s0
i and s1

i are coloured differently. Observe
that analogously to our previous arguments, the contribution of the edges of H [S]
to cost(B′) is equal to N(l2 − r) = N(l2 − l) + N(l − r). If r < l, then cost(B′) ≥

950 Algorithmica (2014) 68:940–953

N(l2 − l) + N > K , a contradiction. Therefore, all the pairs (s0
i , s1

i) are coloured
differently.

Let a be a number with binary representation B′(s0
l−1)B′(s1

l−2) · · · B′(s1
0). Consider

a bisection B of Ga defined as follows: B(va
i) = B′(vi). We claim that the cost of B

is at most k. Indeed, the same computations as in the previous part of the proof show
that

cost
(

B′) = N
(
l2 − l

) + 2m
(
(l + 2)2l−1 − 1

) + 2cost(B)

Therefore, as cost(B′) ≤ K , then cost(B) ≤ k. �

3.3 From HYPERGRAPH MINIMUM BISECTION to CUTWIDTH

Let us briefly recall the notion of polynomial parameter transformations.

Definition 10 [9] Let P and Q be parameterized problems. We say that P is polyno-
mial parameter reducible to Q, written P ≤p Q, if there exists a polynomial time
computable function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that for
all (x, k) ∈ Σ∗ × N the following holds: (x, k) ∈ P iff (x′, k′) = f (x, k) ∈ Q and
k′ ≤ p(k). The function f is called a polynomial parameter transformation.

Theorem 11 [9] Let P and Q be parameterized problems and P̃ and Q̃ be the
unparameterized versions of P and Q respectively. Suppose that P̃ is NP-hard and
Q̃ is in NP. Assume there is a polynomial parameter transformation from P to Q.
Then if Q admits a polynomial kernel, so does P .

We apply this notion to our case.

Lemma 12 There exists a polynomial-time algorithm that, given an instance of the
HYPERGRAPH MINIMUM BISECTION problem with n vertices, outputs an equivalent
instance of the CUTWIDTH problem along with its vertex cover of size n.

Proof Let (H = (V ,E), k) be an instance of HYPERGRAPH MINIMUM BISECTION

given in the input, where |V | = n (n is even) and |E| = m. We construct a graph G

as follows.
Let us denote N = mn + 1. We begin by taking the whole set V to be the set

of vertices of G. For every distinct u,v ∈ V we introduce N new vertices xi
u,v for

i = 1,2, . . . ,N , each connected only to u and v. Then, for every e ∈ E we introduce
a new vertex ye connected to all v ∈ e. Denote the set of all vertices xi

u,v by X and
the set of all vertices ye by Y . This concludes the construction. Observe that V is a
vertex cover of G of size n. We now prove that H has a bisection with cost at most k

if and only if G has cutwidth at most n2N/4 + k.
Assume that H has a bisection B with cost at most k. Let us order the vertices of

the graph G as follows. First, we order the vertices from V : we place B−1(0) first,
in any order, and then B−1(1), in any order. Then, we place every xi

u,v anywhere
between u and v. At the end, for every e ∈ E we place ye at the beginning if at least
half of the vertices of e are in B−1(0), and in the end otherwise. Vertices ye at the
beginning and at the end are arranged in any order.

Algorithmica (2014) 68:940–953 951

Now, we prove that the cutwidth of the constructed ordering is at most n2N/4+ k.
Consider any cut C, dividing the order on V (G) into a first part V1 and a second
part V2. Suppose that |V1 ∩ V | = n/2 − l for some −n/2 ≤ l ≤ n/2, thus |V2 ∩ V | =
n/2 + l. Observe that C cuts exactly N(n/2 − l)(n/2 + l) = n2N/4 − l2N edges
between V and X. Note that there are not more than nm < N edges between V

and Y . Therefore, if l 	= 0, then C can cut at most n2N/4 − N + nm < n2N/4 + k

edges.
We are left with the case when l = 0. Observe that V1 ∩V = B−1(0) and V2 ∩V =

B−1(1). Moreover, the cut C cuts exactly n2N/4 edges between sets V and X. As
far as edges between V and Y are concerned, for every hyperedge e ∈ E, the cut C

cuts exactly cost(e, B) edges incident on ye . As cost(B) ≤ k, the cut C cuts at most
n2N/4 + k edges.

Now assume that there is an ordering of vertices of G that has cutwidth at most
n2N/4 + k. We construct a bisection B of H as follows. Let B(v) = 0 for every v

among the first n/2 vertices from V with respect to the ordering, and B(v) = 1 for
v among the second n/2 vertices. We now prove that the cost of this bisection is at
most k.

Let C be any cut dividing the order into the first part V1 and the second part V2,
such that V1 ∩ V = B−1(0) and V2 ∩ V = B−1(1). As the cutwidth of the ordering is
at most n2N/4 + k, C cuts at most n2N/4 + k edges. Observe that C needs to cut at
least n2N/4 edges between sets V and X, therefore it cuts at most k edges between
sets V and Y . For every hyperedge e ∈ E, C cuts at least cost(e, B) edges incident
to ye, thus cost(B) ≤ k. �

From Lemmas 9, 12 and Theorem 11 we conclude the following.

Theorem 13 CUTWIDTH parameterized by the size of vertex cover does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

4 Conclusions

In this paper we studied the complexity of computing the cutwidth of a graph parame-
terized by the size of a given vertex cover. We have shown an algorithm with running
time O(2knO(1)), where k is the cardinality of the vertex cover and n is the number
of vertices of the graph. Moreover, we have proven that polynomial kernelization of
the problem is unlikely, thus counterpoising the recent result of Bodlaender et al. [7].

The thrilling and natural question is whether the insight we have given into the
problem can be a starting point to breaking the 2n barrier for an exact algorithm
computing cutwidth. Our result implies that one can assume that in any hard instance
all the independent sets are small, i.e., of size not larger than cn for an arbitrarily
small constant c > 0.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

952 Algorithmica (2014) 68:940–953

References

1. Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25, 403–423 (1973)
2. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–

63 (1962)
3. Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp. 173–182. IEEE Comput.

Soc., Los Alamitos (2010)
4. Blin, G., Fertin, G., Hermelin, D., Vialette, S.: Fixed-parameter algorithms for protein similarity

search under mRNA structure constraints. J. Discrete Algorithms 6, 618–626 (2008)
5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial

kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)
6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: a new technique for kernelization

lower bounds. In: Schwentick, T., Dürr, C. (eds.) STACS, LIPIcs, vol. 9, pp. 165–176 (2011). Schloss
Dagstuhl—Leibniz-Zentrum fuer Informatik

7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: a combinatorial analysis
through kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP (1). Lecture Notes in
Computer Science, vol. 6755, pp. 437–448. Springer, Berlin (2011)

8. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for structural parameterizations of path-
width. In: Fomin, F.V., Kaski, P. (eds.) SWAT. Lecture Notes in Computer Science, vol. 7357, pp. 352–
363. Springer, Berlin (2012)

9. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor.
Comput. Sci. 412(35), 4570–4578 (2011)

10. Botafogo, R.A.: Cluster analysis for hypertext systems. In: Korfhage, R., Rasmussen, E.M., Willett,
P. (eds.) SIGIR, pp. 116–125. ACM, New York (1993)

11. Cai, J., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Competing provers yield improved
Karp-Lipton collapse results. Inf. Comput. 198(1), 1–23 (2005)

12. Chung, M., Makedon, F., Sudborough, I., Turner, J.: Polynomial time algorithms for the min cut
problem on degree restricted trees. SIAM J. Comput. 14, 158–177 (1985)

13. Diaz, J., Penrose, M., Petit, J., Serna, M.: Approximating layout problems on random geometric
graphs. J. Algorithms 39, 78–117 (2001)

14. Drucker, A.: New limits to classical and quantum instance compression. In: FOCS. IEEE Comput.
Soc., Los Alamitos (2012, to appear)

15. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems pa-
rameterized by vertex cover. In: Hong, S.H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC. Lecture
Notes in Computer Science, vol. 5369, pp. 294–305. Springer, Berlin (2008)

16. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum
fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)

17. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Com-
put. Syst. Sci. 77(1), 91–106 (2011)

18. Gavril, F.: Some NP-complete problems on graphs. In: 11th Conference on Information Sciences and
Systems, pp. 91–95 (1977)

19. Heggernes, P., van’t Hof, P., Lokshtanov, D., Nederlof, J.: Computing the cutwidth of bipartite per-
mutation graphs in linear time. In: Thilikos, D.M. (ed.) WG. Lecture Notes in Computer Science,
vol. 6410, pp. 75–87 (2010)

20. Heggernes, P., Lokshtanov, D., Mihai, R., Papadopoulos, C.: Cutwidth of split graphs and threshold
graphs. SIAM J. Discrete Math. 25(3), 1418–1437 (2011)

21. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl.
Math. 10(1), 196–210 (1962)

22. Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. In: Owe, O., Steffen, M.,
Telle, J.A. (eds.) FCT. Lecture Notes in Computer Science, vol. 6914, pp. 90–101. Springer, Berlin
(2011)

23. Junguer, M., Reinelt, G., Rinaldi, G.: The travelling salesman problem. In: Handbook on Operations
Research and Management Sciences, vol. 7, pp. 225–330 (1995)

24. Karger, D.R.: A randomized fully polynomial time approximation scheme for the all-terminal network
reliability problem. SIAM J. Comput. 29(2), 492–514 (1999)

25. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett.
1, 49–51 (1982)

26. Leighton, F., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approx-
imation algorithms. J. ACM 46, 787–832 (1999)

Algorithmica (2014) 68:940–953 953

27. Makedon, F., Sudborough, I.H.: On minimizing width in linear layouts. Discrete Appl. Math. 23,
243–265 (1989)

28. Monien, B., Sudborough, I.H.: Min cut is NP-complete for edge weighted trees. Theor. Comput. Sci.
58, 209–229 (1988)

29. Mutzel, P.: A polyhedral approach to planar augmentation and related problems. In: Spirakis, P.G.
(ed.) ESA. Lecture Notes in Computer Science, vol. 979, pp. 494–507. Springer, Berlin (1995)

30. Suchan, K., Villanger, Y.: Computing pathwidth faster than 2n . In: Chen, J., Fomin, F.V. (eds.) IW-
PEC. Lecture Notes in Computer Science, vol. 5917, pp. 324–335. Springer, Berlin (2009)

31. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth II: Algorithms for partial w-trees of bounded
degree. J. Algorithms 56, 24–49 (2005)

32. Yannakakis, M.: A polynomial algorithm for the min cut linear arrangement of trees. J. ACM 32,
950–988 (1985)

33. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci.
26, 287–300 (1983)

34. Yuan, J., Zhou, S.: Optimal labelling of unit interval graphs. Appl. Math. J. Chin. Univ. Ser. A 10,
337–344 (1995)

	On Cutwidth Parameterized by Vertex Cover
	Abstract
	Introduction
	Context of Our Work
	Organization of the Paper
	Notation

	Faster Cutwidth Parameterized by Vertex Cover
	Kernelization Lower Bound
	The Auxiliary Problem
	No Polynomial Kernel for Hypergraph Minimum Bisection
	From Hypergraph Minimum Bisection to Cutwidth

	Conclusions
	References

