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Abstract 

Aim: Short-time models (STM) to study the cardiotoxicity (acute or chronic) of doxorubicin 

in rats are of interest to assess protective interventions and pathways. STM promotes more 

ethical animal treatment with less stress, and at a lower cost compared to established long-

time models (LTM). We wanted to investigate if a STM of 9 days yields the same information 

regarding cardiotoxicity as a LTM of 9 weeks. 

Methods: Male Wistar rats received identical drug administration protocols in STM and LTM. 

The two intervention groups (n = 6) received intraperitoneal (i.p.) injections of 2mg/kg 

doxorubicin every day on 5 consecutive days, with a total cumulative dose of 10mg/kg. The 

two control groups (n = 6), received an equivalent volume of saline injected every day on 5 

consecutive days. Hearts from STM and LTM were excised and Langendorff-perfused after 9 

days or 9 weeks, respectively, after the first drug injection. Cardiotoxicity was assessed in 

paced Langendorff hearts by release of hydrogenperoxide (H2O2) and troponin T (TnT) in 

effluent, by myocardial accumulation of doxorubicin and its metabolite doxorubicinol, and by 

physiological parameters recorded during pressure, or volume regulated perfusion. 

Results: In STM, hearts exposed to doxorubicin demonstrated a 15% reduction in left 

ventricular developed pressure (LVDP) irrespective of flow mode, and a 13% increase in 

aortic pressure (AoP), during volume regulated perfusion, an index of coronary resistance, 

compared to controls. Left ventricular end-diastolic pressure (LVEDP) was increased 72% 

during pressure regulated perfusion and 100% during volume regulated perfusion in STM. In 

LTM, hearts exposed to doxorubicin demonstrated a 40% reduction in LVDP during pressure 

regulated perfusion and a 20% reduction during volume regulated perfusion. LVEDP was 

70% higher in doxorubicin treated hearts during pressure regulated perfusion and 80% higher 

during volume regulated perfusion. In addition, aortic pressure was increased 30% during 

volume regulated perfusion. In both STM and LTM, hearts exposed to doxorubicin 
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demonstrated a higher H2O2 and TnT release, compared to respective controls. The difference 

was most pronounced in STM. Myocardial content of doxorubicin was detectable in both 

STM and LTM. However, doxorubicinol was only detectable in STM.  

Conclusion: STM is comparable to LTM to study relevant indices of cardiotoxicity of 

doxorubicin in rat hearts. Biochemical differences are more pronounced in STM, while 

contractile differences are more pronounced in LTM. STM could be a preferred model for 

preliminary studies of protective interventions.  
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Introduction 

The anthracycline doxorubicin is one of the most frequently prescribed anticancer drugs 

because of its activity in solid tumours as well as haematological malignancies. However, its 

pronounced cardiotoxicity limits long term use and prevents effective anticancer therapy.(1)  

A common approach to evaluating cardiac function is monitoring left ventricular ejection 

fraction. A weakness in this method is that cardiac damage is usually detected only when a 

functional impairment has already occurred, which leaves little room for early, preventive 

strategies.(2) Therefore, measurement of cardiospecific biomarkers can be a valid diagnostic 

tool for early identification, assessment, and monitoring of cardiotoxicity.(2) Cardiac 

troponins have been suggested as valuable biomarkers of anthracycline cardiotoxicity, both in 

animal and clinical studies.(3, 4) Furthermore, accumulation of reactive oxygen species 

(ROS), like hydrogenperoxide (H2O2) is associated with oxidative stress during myocardial 

injury. Thus, release of biomarkers like TnT and H2O2 are of relevance to study reduced 

cardiac function associated with doxorubicin, and should be supplemented by measurement of 

myocardial accumulation of the anthracycline and its metabolite doxorubicinol in 

experimental studies.  

Previous cardiotoxicity models include long term exposure to doxorubicin for 5-12 

weeks.(5-7) LTMs are time consuming, and represent long-time stress for the animals, and 

high mortality rates have been reported.(8, 9) Therefore, it is of interest to develop and test 

short-time models (STM) when studying cardiotoxicity of anthracyclines. A combination of 

in vivo and ex vivo animal models has the advantage that it includes relevant pharmacokinetic 

phases after administration of drugs in vivo. In addition, such a model allows controlled 

evaluation of relevant end points (cardiotoxicity) ex vivo, without interference of systemic 

effects. In this methodological study in rats we wanted to investigate if a STM model of 9 

days is comparable to a LTM of 9 weeks to study relevant indices of cardiotoxicity of 
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doxorubicin in hearts. Both models involved repetitive intraperitoneal injections of 

doxorubicin or saline in vivo, prior to evaluation of cardiotoxicity in ex vivo isolated 

Langendorff hearts. Previously described STMs have not studied the generation of free 

radicals and release of TnT, however, they have addressed physiological parameters 

describing reduction of cardiac function, and accumulation of doxorubicin in the 

myocard.(10, 11) Our STM model includes these important biomarkers, supplemented by 

measurement of doxorubicinol, and as such, is of interest to study protective interventions. 

Furthermore, the model allows switching between pressure and volume regulated flow, and 

the latter adds measurement of the resistance in the coronary vasculature induced by drug 

treatment.  
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Methods 

Materials  

Doxorubicin was purchased from Meda AS (Slemmestad, Norway), pentobarbital from 

Haukeland Hospital Pharmacy (Bergen, Norway), heparin from Leo Pharma A/S (Oslo, 

Norway), and ingredients for the Krebs-Henseleit bicarbonate buffer from Merck KGaA 

(Darmstadt, Germany). This study conforms to the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication No. 85-23, 

revised 1996) and was approved by the Animal Care and User Committee in Norway. 

 

Animals  

Male Wistar rats (200 ± 2g) were purchased from Taconic (Ejby, Denmark). The animals 

were housed in grid-bottom metal wire cages in a room maintained at a 12 hour light/dark 

cycle at a temperature of 20-22ºC. They were acclimatised for 2 weeks, housed 3 per cage and 

allowed free access to food pellets (Pellets rodent, Special Diets Service, UK) and tap water 

until injection of doxorubicin or saline. The animals were separated in individual cages based 

on their respective treatments protocols.  

 

Langendorff perfusion model 

The perfusion medium was a modified, oxygenated (95% O2 and 5% CO2) Henseleit 

bicarbonate buffer (KHBB) (pH 7.4) containing in mM: 118.5 NaCl, 25.0 NaHCO3, 1.2 

MgS4, 4.7 KCl, 1.2 KH2PO4, 1.2 D-glucose and 1.25 CaCl2. Hearts were excised after 

anaesthesia of the rats with an i.p. injection of pentobarbital 50mg/kg (0.1ml/100g 

bodyweight) and heparinised i.p. (0.1ml 500IU/100g bodyweight). Anaesthesia was evaluated 

by the pedal-withdrawal reflex. The heart was rapidly excised and immediately placed in cold 

(4ºC) KHBB to temporarily stop its beating and preserve it from ischemic injury prior to 
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perfusion. The heart was mounted on a steel cannula placed in the aorta and perfused 

retrogradely in a Langendorff system with the use of thermostated (37ºC) Lauda reservoirs 

(Lauda-Königshofen, Germany), perfusion lines, and heart chamber. Pressure regulated flow 

was performed at 100cmH2O (73mmHg), while volume regulated flow (12.5ml/min) was 

performed by use of an Alitea peristaltic pump (Stockholm, Sweden). A water-filled latex 

balloon was placed in the left ventricle and connected to a SensoNor 840 pressure transducer 

(Memscap AS, Skoppum, Norway) for the recording of left ventricular developed pressure 

(LVDP) and secondarily derived contractility indices. Left ventricular end-diastolic pressure 

(LVEDP) was adjusted between 4 and 8mmHg. A second pressure transducer was connected 

to a side arm on the aortic cannula for the recording of aortic pressure (AoP), an index of 

coronary vascular resistance during volume-regulated perfusion. Pressure signals were 

amplified (Quadbridge, AD Instruments, London, UK) and recorded using a PowerLab data 

acquisition system (AD Instruments, East Sussex, England). AoP, LVDP, LVEDP and LVDP 

first derivatives maximum (dp/dtmax) and minimum (dp/dtmin) were continuously displayed 

and recorded. Pacing (300 beats per minute by electric stimulation of 5V amplitude of 3ms 

duration) was obtained by placing one electrode on the right auricle and one on the steel 

cannula. Coronary flow rate was measured by timed collection of the coronary perfusate that 

dripped from the heart. At the end of the perfusion protocol hearts were removed from the 

Langendorff system and myocardial tissue from the left ventricle was dissected free and 

immediately frozen in liquid helium and stored at -80ºC until analysis of doxorubicin and 

doxorubicinol, within 14 days of termination of the Langendorff protocol. Effluent samples of 

1mL were collected in 1.5mL polypropylene Eppendorf micro test tubes (Eppendorf Vertrieb, 

Wesseling-Berzdorf, Germany) from each heart, at the end of the perfusion protocol, and 

stored at 0ºC, until analysis for TnT within 4 days of termination of the Langendorff protocol. 

Effluent samples of 1mL were collected in Eppendorf tubes from each heart, at the end of the 
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perfusion protocol, and immediately analysed for H2O2, the samples were placed in a 

thermostated (37ºC) Eppendorf rack heated by a Lauda reservoir (Lauda-Königshofen, 

Germany). All experiments and analysis were carried out between 7am and 7pm. 

 

Experimental groups, drug treatments and Langendorff protocols (Figure I) 

Two protocols were tested: STM and LTM. Each protocol had an intervention group 

demarcated dox (doxorubicin) and a control group demarcated sal (saline). 

The intervention groups STMdox (n = 6) and LTMdox (n = 6) received an i.p. injection of 

2mg/kg doxorubicin every day on 5 consecutive days up to a total cumulative dose of 

10mg/kg doxorubicin.  

The control groups STMsal (n = 6) and LTMsal (n = 6): received an i.p. injection of 

equivalent volume 0.9% saline every day on 5 consecutive days.  

STM: On day 10, hearts from STMdox and STMsal were excised for the ex vivo experiments 

and Langendorff-perfused.  

LTM: After 9 weeks, hearts from LTMdox and LTMsal were excised for the ex vivo 

experiments and Langendorff-perfused.  

All hearts were subjected to the following perfusion protocol: A 15 minute stabilization 

period with pressure regulated flow, followed by 5 minutes with pressure regulated flow, and 

5 minutes with volume regulated flow. During the latter 10 minutes physiological data were 

recorded, and cardiac effluent samples collected for evaluation of biochemical and 

pharmacological parameters. The perfusion protocol is illustrated in Figure I. 

 

Determination of doxorubicin and doxorubicinol  

Doxorubicin and doxorubicinol were quantified by high performance liquid chromatography 

(HPLC-MS/MS) (1200 series RRLC, Agilent Technologies, USA) coupled to an Agilent 
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6410 triple quadrupole mass spectrometer using positive electrospray ionisation (Agilent 

Technologies, USA). Frozen left ventricular tissue was minced and weighted out in a glass 

tube with a screw cap and homogenized in physiological saline (2ml/100mg tissue) with a 

tissue homogenizer (Ultra Turrax, Sigma Aldrich, Germany). 1000µl of sample was added 

100µl of daunorubicin as internal standard (IS), and 200µl of buffer (1M TRIZMA, pH 11.1) 

and mixed well before extraction with 4ml ethylacetate/heptane (80/20 vol/vol). The samples 

were mixed using a rotary blender for 15 minutes and then centrifuged at 3500rpm for 10 

minutes at 10ºC. The organic phase was evaporated to dryness at 50ºC under nitrogen then 

dissolved in 100µl of methanol followed by 100µl of distilled water. The extract was mixed 

thoroughly and transferred to silanized vials before analysis. 25µl of extract was injected and 

separated on a Zorbax SB-Aq (2.1 x 50mm, 1.8µm particles, Agilent Technologies, USA) 

column using gradient elution with acetonitrile and 0.1% formic acid in water. Quantification 

were performed using multiple reaction monitoring (MRM) mode at m/z 546.1 → 363.1 for 

doxorubicinol, m/z 544.1 → 361.1 for doxorubicin and m/z 528.1 → 321.1 for daunorubicin 

(IS). 

 

Effluent content of TnT 

TnT in cardiac effluent was measured using an Elecsys 2010 immunoassay analyzer (Roche 

Diagnostics Norway AS, Oslo, Norway), based on the sandwich principle. Total duration of 

assay: 9 minutes. 1st incubation: 50µL of sample, a biotinylated monoclonal cardiac TnT-

specific antibody, and a monoclonal cardiac TnT-specific antibody labeled with a ruthenium 

complex (Tris(2,2-bipyridyl)ruthenium(II)-complex (Ru(bpy) )) reacted to form a sandwich 

complex. 2nd incubation: After addition of streptavidin-coated microparticles, the complex 

became bound to the solid phase via interaction of biotin and streptavidin. The reaction 

mixture was aspirated into the measuring cell where the microparticles were magnetically 
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captured onto the surface of the electrode. Unbound substances were then removed with 

ProCell. Application of a voltage to the electrode then induced chemiluminescent emission 

which was measured by a photomultiplier. Results were determined via a calibration curve 

which was instrument-specifically generated by 2-point calibration and a master curve (5-

point calibration) provided via the reagent barcode. Detection limit was 5.0ng/L   

 

Effluent content of H2O2 

H2O2 in cardiac effluent was measured using an Apollo 4000 electrochemical detection 

system (World Precision Instruments, Sarasota, Florida, USA). The electrode was calibrated 

using 9 serial dilutions of H2O2 in phosphate buffered saline with added aniline. The current 

recorded from the effluent was then calculated as µM H2O2. Samples were kept at 37°C 

during measurement. The electrode was allowed 3 minutes of stabilisation and 1 minute of 

recording.  

 

Statistics  

All results are reported as mean values ± standard deviation (SD) in tables. Groups were 

compared with regards to parameters with a student t-test. Only groups within similar 

protocols (STMdox with STMsal, and LTMdox with LTMsal) were compared. Differences 

between models were only described. SPSS for Windows version 17.0 was used, and p < 0.05 

was considered statistically significant.  
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Results 

H2O2 release in STMdox (77.4 ± 2.8µM) was significantly higher compared to H2O2 release 

in STMsal (12.8 ± 1.7µM). Similarly, H2O2 release in LTMdox (22.8 ± 5.3µM) was 

significantly higher compared to H2O2 release in LTMsal (9.9 ± 2.7µM). Myocardial content 

of doxorubicin and doxorubicinol in STMdox was 1.2 ± 0.18nmol/g and 0.45 ± 0.14nmol/g 

respectively. In LTMdox we found a doxorubicin content of 0.19 ± 0.02nmol/g. 

Doxorubicinol was undetectable after 9 weeks in LTMdox. TnT release was significantly 

higher in STMdox (345.3 ± 37.3ng/L) compared to STMsal (63.5 ± 9.7ng/L). Similarly, TnT 

release was significantly higher in LTMdox (152.2 ± 22.1ng/L) compared to LTMsal (48.0 ± 

14.8ng/L). In STM, hearts exposed to doxorubicin demonstrated a 15% reduction in left 

ventricular developed pressure (LVDP) irrespective of flow mode, and a 13% increase in 

aortic pressure (AoP), during volume regulated perfusion, an index of coronary resistance, 

compared to controls. Left ventricular end-diastolic pressure (LVEDP) was increased 72% 

during pressure regulated perfusion and 100% during volume regulated perfusion in STM. In 

LTM, hearts exposed to doxorubicin demonstrated a 40% reduction in LVDP during pressure 

regulated perfusion, and a 20% reduction during volume regulated perfusion. LVEDP was 

70% higher in doxorubicin treated hearts during pressure regulated perfusion and 80% higher 

during volume regulated perfusion. In addition, aortic pressure was increased 30% during 

volume regulated perfusion. In both STM and LTM, hearts exposed to doxorubicin 

demonstrated a higher H2O2 and TnT release, compared to respective controls. dp/dtmax was 

lower and dp/dtmin higher in STMdox and LTMdox compared to their respective controls, 

irrespective of perfusion mode. Coronary flow was decreased during pressure regulated 

perfusion, in the doxorubicin treated groups in both models, compared to controls.  All 

physiological results are presented in Table I and II and biochemical and pharmacological 

results in Table III and IV.  
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Discussion 

Our study shows that a 9 day STM is sufficient time to demonstrate relevant indices of 

cardiotoxicity of doxorubicin in isolated Langendorff-perfused rat hearts, irrespective of flow 

mode. Our model allows parallel assessment of ROS and TnT release, myocardial content of 

anthracyclines and measurement of cardiac function. Biochemical differences are more 

pronounced in STM, while contractile differences are more pronounced in LTM. The latter 

reflects the accumulated myocardial contractile damage associated with doxorubicin in the 

tissue. However, STM represents a preferred model for preliminary preclinical studies of 

protective interventions with less stress for the animals, and at a lower cost.  

HPLC-MS/MS measurements of doxorubicin and its metabolite doxorubicinol showed 

significant accumulation of anthracyclines in the myocardial tissue. The results from the 

LTM, demonstrate the slow elimination of doxorubicin from myocardial tissue. Disposition of 

doxorubicinol in patients is formation rate limited, with the terminal half-life of the metabolite 

being similar to doxorubicin. The relative exposure of doxorubicinol, i.e., the ratio between 

area under the curve (AUC) for doxorubicinol compared to AUC for doxorubicin ranges 

between 0.3 and 0.6.(12, 13) Thus, doxorubicinol is present in a much lower concentration 

than doxorubicin, though it is proposed to be more toxic compared with doxorubicin, and it 

has been established that doxorubicinol is nearly 30 times more potent than doxorubicin at 

inhibiting calcium-handling proteins and at depressing contractility and systolic myocardial 

function.(14, 15)  

We used a 3rd generation troponin T test, Elecsys 2010 immunoassay analyser. This 

test uses the same monoclonal antibodies (M11.7 and M7) as the 2nd generation ES 300 test, 

but is standardized with human recombinant cardiac TnT instead of bovine cardiac TnT, 

which has been used previously. However, previous studies(16) have concluded that there 
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were no differences in coronary TnT concentrations in isolated rat heart effluent between 2nd 

and 3rd generation cardiac TnT assays, ES 300 and Elecsys 2010, respectively.  

In our STM, a significant reduction in contractile parameters due to anthracyclines 

could be studied in Langendorff hearts irrespective of flow mode. Reduction of cardiac 

function can be directly related to measurements of myocardial release of relevant biomarkers 

and content of doxorubicin and doxorubicinol. With volume regulated flow, the effects on 

coronary vascular resistance of the anthracycline can be studied in parallel with effects on 

myocardial contractility. Thus, reduced contractility as a result of reduced coronary flow 

during pressure regulated perfusion could be assessed. Our results demonstrate that flow 

mode is of minor importance when studying myocardial effects of doxorubicin in this model.  

In our STM, LVDP in doxorubicin treated rats were significantly reduced compared to 

controls both during pressure regulated and volume regulated perfusion. A similar short term 

model found comparable results (17), they studied cardiac performances of ex vivo perfused 

hearts from rats that had been treated with various anthracyclines within 12 days, 

administrated by repetitive injections. One group received 3mg/kg doxorubicin every other 

day for 12 days, up to a total cumulative dose of 18mg/kg. Even though they used a higher 

total cumulative dose compared to our study, they found that their model was able to predict 

correctly what was already known concerning the cardiotoxicity of anthracyclines. These 

findings support our STM.  

Different laboratories use different doses of doxorubicin to induce cardiotoxicity. In 

general, i.p. injections of 2.0-4.0mg/kg are used, up to total cumulative doses of 10-20mg/kg, 

but higher doses have been reported. In our study, we used 2mg/kg doxorubicin, up to a total 

cumulative dose of 10mg/kg, to induce cardiotoxicity. Selection of dose and concentration of 

doxorubicin was done to give the rats a total cumulative dose high enough to induce 

myocardial damage, but at the same time low enough to keep them alive. Choice of dose is 
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particularly important to reduce the possibility of masking beneficial effects of protective 

interventions. In our results, a reduction of 15% of LVDP compared to controls in STM 

provides frame for evaluating such effects, and an increase in dose is possible. The dosage 

and concentration frame of doxorubicin used in this study has been applied in previous 

studies, and has yielded comparable results.(11, 17, 18)  

  Reduction of the cardiotoxicity of doxorubicin and its main metabolite doxorubicinol, 

while retaining their anticancer effect, is desirable. Thus, interventions that reduce 

accumulation of anthracyclines and improve the drug’s effect on cardiac function can be 

measured directly in our STM. Interestingly, diastolic dysfunction, reflecting poor ventricular 

compliance, is reported to be an early sign of anthracycline cardiotoxicity in the clinic.(19, 

20) Diastolic dysfunction and increased coronary vascular resistance was observed both in 

STM and LTM in the present results, and flow mode did not influence the results. 

Interestingly, an increase of LVEDP between 70-100% was apparent already in our 9 day 

model and was still present after 9 weeks. However, the increase in coronary vascular 

resistance was doubled in the same period from 13-30%. Thus, long time effects of 

doxorubicin in the heart, affect both cardiomyocytes and the coronary arteries. 

Finally, use of pacing gave us the opportunity to study contractile indices without 

interference of arrhythmias associated with anthracyclines.(21) Thus, our STM seems robust 

and reproducible, and it should be possible to add new indices of cardiotoxicity into this 

model in future studies.  

 

Limitations 

The present STM is suitable for preclinical evaluation of new protective interventions to 

reduce anthracycline cardiotoxicity. However, protection in compressed doxorubicin 

regimens is not necessarily equiprotective when tested in a more clinically relevant chronic 
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regimens. Such studies should be reserved for interventions proven effective and safe in STM. 

Furthermore, the model allows the possibility to elucidate important pathways associated with 

cardioprotective principles.    

Repeated i.p. injections could give development of scar tissue and thickened skin with 

reduced and unpredictable absorption of drugs. Furthermore, doxorubicin could give local 

tissue damage and inflammation. We were careful to alternate injection sites, using correct 

injection techniques including a suitable needle to reduce this problem. The compartmental 

distribution of doxorubicin in the myocardium or within cardiomyocytes is not known due to 

the fact that heart tissue was minced and homogenized. Precise cellular and subcellular 

distribution of the anthracycline is of relevance to understand mechanisms of cardiotoxicity.  

Assessment of effect on cardiomyopathy is important in studies of anthracyclines. In our 

study, the condition of the heart at the two time points would be of interest. However, our 

model did not allow for cardiac pathology due to the tissue being used to detect doxorubicin 

and doxorubicinol.   

 We used cardiac pacing, which excludes the possibility of evaluating heart rate and 

electrocardiograms. This would have been valuable and interesting information considering 

the well-known association between arrhythmias and anthracyclines. However, assessment of 

cardiac function (recording of left ventricular developed pressure (LVDP) and secondarily 

derived contractility indices) was of particular importance in this study, and pacing was used 

to obtain optimal recordings not influenced by arrhythmias. 

An experimental STM with a combination of in vivo doxorubicin administration and 

subsequent ex vivo evaluation of cardiotoxicity in the rat must make some compromises in 

comparison to the clinical administration of the drug. The development of cardiotoxicity in 

animal models with weekly injections is previously described in the literature.(17) Repetitive 

low doses are preferred compared to a single high dose in the rat, and every-other-day 
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administration has been proposed.(22) In our STM we used daily i.p. injections to reduce 

duration of the experiments. 

Non-invasive transthoracic echocardiography is suitable for studying development and 

course of anthracyclines cardiomyopathy, and development of heart failure in animal 

models.(23)  Our global isovolumetric STM cannot reflect in vivo heart function, and 

reduction of contractile indices represents only indirect measures of heart failure. However, 

our STM is ideal to study contractile function in parallel with release of relevant biochemical 

parameters in real time specific to the heart. Release of biomarkers in blood associated with in 

vivo models could be subject to several systemic effects and be less specific to the organ of 

interest.  

Our STM does not allow measurement of intracellular production and compartmental 

distribution and release of H2O2. Thus, release in effluate represents a sum of venous drain 

(majority) and exudate from the surface of the heart (minority) from the organ. After nine 

weeks, pathological changes in the heart could allow for a different distribution and release of 

H2O2. However, release is specific to the organ compared to in vivo models where 

development of heart failure would affect potential release from other organs.  

 

Conclusion 

STM is comparable to LTM to study relevant indices of cardiotoxicity of doxorubicin in rat 

hearts. Thus, STM could be a preferred model for further studies of protective interventions.  

STM is a better alternative than previously described LTMs, because it submits the animals to 

less stress and discomfort. In addition a STM is less time consuming, more cost effective and 

more in accordance with the idea of refinement for use of laboratory animals. This study 

shows that our STM is a promising alternative for future preclinical studies of cardiotoxic 

mechanisms of doxorubicin and doxorubicinol, and for studies of protective interventions.  
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Table I  

Physiological results from hearts in the short-time model during pressure and volume 

regulated perfusion 

STM Pressure regulated perfusion Volume regulated perfusion 

 STMdox  n = 6 
2mg/kg doxorubicin 

STMsal  n = 6 
Saline injection 

STMdox  n = 6 
2mg/kg doxorubicin 

STMsal  n = 6 
Saline injection 

LVDP (mmHg)  112.1 ± 7.6 * 130.9 ± 4.4 130.3 ± 6.9 * 150.4 ± 2.4 

LVEDP (mmHg) 14.8 ± 3.1 *   8.6 ± 0.7 21.9 ± 2.3 *  10.7 ± 2.9 

AoP (mmHg) 73.0 ± 0 73.0 ± 0 144.8 ± 0.5 * 127.5 ± 10.5 

Heart rate (beats per minute) 300 ± 0  300 ± 0 300 ± 0 300 ± 0 

dp/dt max (mmHg/s) 3490.2 ± 448.9 *   4064.8 ± 201.3 2955.9 ± 362.2 * 4184.6 ± 202.8 

dp/dt min (mmHg/s) -1870.8 ± 153.8 * -2362.5 ± 190.8 -1266.1 ± 503.2 * -2514.9 ± 65.5 

Coronary flow (ml/min) 8.1 ± 0.5 * 11.1 ± 0.6 12.5 ± 0 12.5 ± 0 

Table I Values presented as mean ± standard deviation (SD). * = significantly different from control hearts, 
p<0.05. Short time model doxorubicin treated hearts (STMdox). Short time model saline treated hearts 
(STMsal). Left ventricular developed pressure (LVDP). Left ventricular end diastolic pressure (LVEDP). Aortic 
pressure (AoP).  
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Table II  

Physiological results from hearts in the long-time model during pressure and volume 

regulated perfusion 

LTM Pressure regulated perfusion Volume regulated perfusion 

 LTMdox  n = 6 
2mg/kg doxorubicin 

LTMsal  n = 6 
Saline injection 

LTMdox  n = 6 
2mg/kg doxorubicin 

LTMsal  n = 6 
Saline injection 

LVDP (mmHg) 64.1 ± 3.9 *  106.9 ± 7.5 95.8 ± 17.3 *  119.2 ± 8.1 

LVEDP (mmHg) 11.4 ± 1.7 *  6.7 ± 1.5 12.9 ± 0.8 *  7.1 ± 0.8 

AoP (mmHg) 73.0 ± 0 73.0 ± 0 130.6 ± 4.7 *  97.2 ± 8.8 

Heart rate (beats per minute) 300 ± 0 300 ± 0 300 ± 0 300 ± 0 

dp/dt max (mmHg/s) 1667.2 ± 299.6 *  3099.2 ± 202.6 2707.6 ± 298.7 *  4413.9 ± 488.2 

dp/dt min (mmHg/s) -834.2 ± 98.9 *  -2137 ± 285.7 -1235.1 ± 320.1 * -2568.0 ± 186.2 

Coronary flow (ml/min) 6.3 ± 0.9 * 11.9 ± 0.6 12.5 ± 0 12.5 ± 0 

Table II Values presented as mean ± standard deviation (SD). * = significantly different from control hearts, 
p<0.05. Long time model doxorubicin treated hearts (LTMdox). Long time model saline treated hearts 
(LTMsal). Left ventricular developed pressure (LVDP). Left ventricular end diastolic pressure (LVEDP). Aortic 
pressure (AoP).  
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Table III  

Biochemical and pharmacological results from hearts in the short-time model  

 
STM STMdox 

2mg/kg doxorubicin 
STMsal 
Saline injection 

Doxorubicin  
tissue concentration (nmol/g) 

1.2 ± 0.18  0 ± 0 

Doxorubicinol  
tissue concentration (nmol/g) 

0.45 ± 0.14  0 ± 0 

Troponin -T effluate 
concentration (ng/L) 

345.3 ± 37.3 * 63.5 ± 9.7 

H2O2 effluate concentration 
(µM) 

77.4 ± 2.8 *  12.8 ± 1.7 

Table III Values presented as mean ± standard deviation (SD). * = significantly different from controls, p<0.05. 
Short time model doxorubicin treated hearts (STMdox). Short time model saline treated hearts (STMsal). 
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Table IV  

Biochemical and pharmacological results from hearts in the long-time model  

 
LTM LTMdox  

2mg/kg doxorubicin 
LTMsal  
Saline injection 

Doxorubicin  
tissue concentration (nmol/g) 

0.19 ±  0.02  0 ± 0  

Doxorubicinol  
tissue concentration (nmol/g) 

0 ± 0 0 ± 0 

Troponin -T effluate 
concentration (ng/L) 

152.2 ± 22.1 * 48.0 ± 14.8  

H2O2 effluate concentration 
(µM) 

22.8 ± 5.3 * 9.9 ± 2.7 

Table IV Values presented as mean ± standard deviation (SD). * = significantly different from controls, p<0.05. 
Long time model doxorubicin treated hearts (LTMdox). Long time model saline treated hearts (LTMsal). 
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Figure I Perfusion protocols 
 

 
Figure 1. Short time model doxorubicin treated hearts (STMdox). Short time model saline treated hearts 
(STMsal). Long time model doxorubicin treated hearts (LTMdox). Long time model saline treated hearts 
(LTMsal). 
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