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Abstract This work evaluates and improves upon existing effective medium methods for
permeability upscaling in fractured media. Specifically, we are concerned with the asymmet-
ric self-consistent, symmetric self-consistent and differential methods. In effective medium
theory, inhomogeneity is modeled as ellipsoidal inclusions embedded in the rock matrix.
Fractured media correspond to the limiting case of flat ellipsoids, for which we derive a
novel set of simplified formulas. The new formulas have improved numerical stability prop-
erties, and require a smaller number of input parameters. To assess their accuracy, we com-
pare the analytical permeability predictions with accurate, three-dimensional finite-element
simulations. We also compare the results with a semi-analytical method based on percola-
tion theory and curve fitting, which represents an alternative upscaling approach. A large
number of cases is considered, with varying fracture aperture, density, matrix/fracture per-
meability contrast, orientation, shape and number of fracture sets. The differential method is
seen to be the best choice for sealed fractures and thin open fractures. For high-permeable,
connected fractures, the semi-analytical method provide the best fit to the numerical data,
whereas the differential method breaks down. The two self-consistent methods can be used
for both unconnected and connected fractures, although the asymmetric method is some-
what unreliable for sealed fractures. For open fractures, the symmetric method is generally
the more accurate for moderate fracture densities, but only the asymmetric method is seen
to have correct asymptotic behaviour. The asymmetric method is also surprisingly accurate
at predicting percolation thresholds.
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1 Introduction

Fluid flow in fractured rocks is of great importance in many industrial and environmental
applications, such as hydrology, petroleum engineering, nuclear waste disposal, geothermal
energy and subsurface CO2 storage. The presence of fractures can increase the permeability
by several orders of magnitude, and create large anisotropy effects in the medium. Geologi-
cal formations may also contain planar discontinuities that obstruct fluid flow, such as defor-
mation bands (Fossen et al, 2007). In this paper, a fracture is defined as any kind of planar
feature representing a permeability discontinuity. We consider both permeability-enhancing
and permeability-reducing fractures, which are referred to as open and sealed, respectively.

Fractures occur in geological formations at different scales. Large structures, such as
major faults, are usually visible on seismic data and can be accounted for explicitly in the
geological model. In this work, we are concerned with fractures on a smaller scale which
are characterized by statistical parameters. The presence of small-scale fractures (sometimes
called diffuse fractures) can often be inferred from the rock type, the stress history of the
rock, and surrounding geological structures. For instance, small fractures with specific pri-
mary orientations are expected to be present in the vicinity of faults and folds (Singhal and
Gupta, 1999). In addition, borehole data may provide specific information on the average
aperture, size and spacing of the fractures.

From a macroscopic perspective, a rock containing large numbers of evenly distributed
fractures will behave as a homogeneous material with respect to properties like single-phase
permeability, thermal conductivity and electrical conductivity. These properties are mathe-
matically analogous, due to the similarity between their respective constitutive relations. Al-
though we focus on fluid permeability in this work, the methods we describe can be applied
to all the aforementioned physical properties. This feature makes the methods attractive for
joint inversion applications (Jakobsen et al, 2007).

Homogenization, or upscaling, is the process of finding the effective physical properties
of a heterogeneous rock/fracture system. A straightforward approach is numerical upscaling,
in which a model of the fracture geometry is generated and meshed. Thereafter, a standard
numerical simulation algorithm (such as the finite element or finite volume method) is used
to calculate the average flux through the medium, from which the effective permeability
is found. Since the method is computationally expensive, numerical upscaling is usually
performed with a coarse mesh and simplified geometry, adding a significant uncertainty to
the permeability estimate.

An alternative is to use analytical homogenization methods to estimate the effective per-
meability. In this paper, we are concerned with effective medium theory, which has been
suggested as a promising upscaling technique for fractured media (Fokker, 2001; Pozd-
niakov and Tsang, 2004; Barthélémy, 2008; Berryman and Hoversten, 2013). The most
popular variants of effective medium methods used in the literature are the asymmetric self-
consistent method, the symmetric self-consistent method and the differential method. In
all of these, fractures are represented as ellipsoidal-shaped inclusions within an otherwise
homogeneous matrix. Originally due to Bruggeman (1935), effective medium approxima-
tions are known to be accurate for near-homogeneous materials containing only a few non-
intersecting inclusions (Torquato, 2002). Strongly fractured media, on the other hand, are
characterized by a large number of intersecting, flat inclusions of very high or very low
intrinsic permeability. To determine if the methods can be used for this type of geometry,
comparisons with accurate numerical experiments are needed.
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Some numerical tests of effective medium theory have been conducted, with encourag-
ing results (Zimmerman and Yeo, 2000; Pozdniakov and Tsang, 2004; Barthélémy, 2008;
Tawerghi and Yi, 2009). These works are limited to spherical/near-spherical inclusions, or
isotropic/transversely isotropic media, or two-dimensional geometries. To our knowledge,
a systematic evaluation of effective medium theory for three-dimensional, fully anisotropic
fractured media has not yet been performed. The present work seeks to fill this gap by com-
paring effective medium predictions with accurate numerical simulations. Similar studies
have already been performed for a different class of analytical upscaling methods Bogdanov
et al (2007); Mourzenko et al (2011), whose predictions are included in this paper for com-
parison.

In order to present a complete and unified description of the assessed methods, Section 2
of this paper contains an overview of effective medium theory and its variants. The theory is
based on the analytical solution of the single-ellipsoid inclusion problem (Section 2.1) and
the dilute limit approximation (Section 2.2). These relations are used to derive the asymmet-
ric self-consistent method (Section 2.3), the symmetric self-consistent method (Section 2.4)
and the differential method (Section 2.5).

In Section 3, we develop a novel set of formulas in the limiting case where the inclusion
thickness is much less than the inclusion radius (i.e., flat inclusions). This is precisely the
case of interest when considering fractured media, since the aperture of a fracture by def-
inition is much smaller than its lateral extent. The new formulas have improved numerical
stability properties, and require fewer parameters than the original formulations.

In Section 4, we briefly discuss the semi-analytical upscaling method of Mourzenko et al
(2011), which is based on curve-fitting and percolation theory. The method is is applicable
when either the matrix permeability is neglible, or when the fracture density is large, and is
included for comparison with the effective medium methods.

The numerical results are presented in Section 5. First, details on the computational
procedure are outlined, and technical difficulties regarding meshing are addressed (Section
5.1), as well as numerical convergence issues (Section 5.2). The results for open and sealed
fractures are discussed in Section 5.3 and 5.4, respectively. To identify the range of appli-
cability of the methods, a large number of cases is considered, with varying fracture aper-
ture, matrix/fracture permeability contrast, fracture density, orientation, shape and number
of fracture sets.

2 Review of effective medium theory

In effective medium theory, fractures are modeled as thin, ellipsoidal inclusions, scattered
randomly within a matrix of homogeneous permeability. It is commonly assumed that all
the fractures are spheroidal, so that the radius r and aspect ratio ω is sufficient to describe
their size and shape. In this work, we allow the eccentricity η to vary, to cover a wider
specter of applications. An overview of additional parameters for characterizing ellipsoidal
fractures, and their relation to each other, is given in Tab. 1. For simplicity, we assume that
the fractures can be divided into N distinct sets, according to their shape, size, orientation
and permeability. Each fracture set, as well as the rock matrix, is referred to as a separate
material phase, and we use subscripts to denote which phase is associated with a certain
property. The theory is easily extended to continuous distributions of fracture parameters,
by replacing fracture set summations with integrals when appropriate.
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Symbol Description

N Number of fractures per volume

l1, l2, l3 Length of semi-axes, decreasing order

e1, e2, e3 Direction of semi-axes

H = ∑ l2
k /l2

1 ekek Fracture shape and orientation (tensor)

r = l1 Length of largest semi-axis

η = l2/l1 Eccentricity

ω = l3/l1 Thickness ratio

ε = N r3 Fracture density

a = 4
3 ωr Mean fracture aperture

φ = 4
3 πεηω Porosity (volume fraction)

S = πN r2η Fracture surface per volume

s = 1/πN r2η Fracture spacing

K = a2/12 Permeability of open fracture

cosβ = e3 ·Z Dip angle (Z is a unit vector pointing upwards)

cosα = cscβ e3 ·N Dip direction (N is a unit vector pointing north)

Tab. 1: Parameters for characterizing ellipsoidal fractures

Effective medium theory requires that the fractures are regarded as Darcy media, i.e., the
average flow velocity within a fracture is assumed to be linearly dependent on the pressure
gradient. For a fracture with aperture a, a simple estimate for the tangential permeability is
given by Kt = a2/12. This relation, known as the cubic law, is derived by assuming Darcy
flow in the rock matrix and Stokes flow inside the fracture. More accurate approximations
can be found by accounting for fracture wall roughness (Zimmerman and Yeo, 2000) and
viscous forces at the fracture-matrix interface (Vernerey, 2012). In the normal direction, the
fluid experiences no flow resistance within the fracture. The equivalent permeability in the
normal direction is therefore larger than the tangential component, but in this paper we set
them to be equal. Earlier work by Barthélémy (2008) shows that this simplification has no
effect on the upscaled rock permeability.

2.1 The single-inclusion problem

Effective medium methods depend on the solution of an auxiliary problem that involves only
a single matrix inclusion. The problem can be formulated as finding the average pressure
gradient Ji within a single ellipsoidal inclusion of family i with intrinsic permeability Ki,
embedded in a matrix of homogeneous permeability M, subject to an externally applied
pressure gradient J f ar. By solving the Laplace equation in spherical coordinates (Eshelby,
1957; Landau and Lifshitz, 1960), the solution to the single-inclusion problem is found to
be

Ji = Ri (M)J f ar, (1)
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Ri (M) =
(

I+M−
1
2 AiM−

1
2 (Ki−M)

)−1
, (2)

where Ri is the field concentration tensor, Ai is the depolarization tensor and M
1
2 is the

positive definite square root of M. Ai is a nonlinear function of the permeability, shape and
orientation of the inclusion, which are all properties of the inclusion family i.

If the background permeability M is isotropic, the expression for Ai is found in many
sources (see, for instance, Eshelby (1957); Landau and Lifshitz (1960); Torquato (2002)).
In effective medium theory, M is substituted with the effective permeability of the medium,
which may be anisotropic even though the intrinsic permeability of the matrix is isotropic.
Thus, we require the solution of the single-inclusion problem with an anisotropic back-
ground permeability, which is slightly more complicated. Here, we only describe the result-
ing formula, and refer to Barthélémy (2008) for a complete derivation. To avoid cluttering
the formulas, we ignore the inclusion family subscript i for the remainder of this section.

First, let us introduce the shape tensor, which describes the shape of the ellipsoidal
inclusion. In dyadic notation, the tensor is written as

H =
3

∑
k=1

hkeke>k , (3)

where e1, e2, e3 are unit vectors directed along the axes of the ellipsoid and 1 = h1 ≥ η2 =
h2 ≥ω2 = h3 are the squared semi-axis lengths, scaled by the square of the largest axis. The
tensor has the property that

x>H−1x≤ 1 (4)

defines an ellipsoid with the same shape and orientation as the inclusion. We further define
a transformed ellipsoid, given by the tensor

H̃ =
3√detM M−

1
2 HM−

1
2 . (5)

Observe that the ellipsoids defined by H and H̃ have the same volume, since detH̃= detH=
η2ω2. The two shape tensors are equal if the background permeability M is isotropic.

The next step is to diagonalize H̃ using an eigenvalue decomposition,

H̃ =
3

∑
k=1

h̃kẽkẽ>k . (6)

We assume that the eigenvalues h̃1, h̃2, h̃3, which are the squared semi-axes of the trans-
formed ellipsoid, are ordered such that h̃1 ≥ h̃2 ≥ h̃3. Finally, the depolarization tensor is
given by

A = ηω
3

∑
k=1

Λkẽkẽ>k , (7)

where
Λk =

1
2

ˆ ∞

0

dt
(
t + h̃k

)√(
t + h̃1

)(
t + h̃2

)(
t + h̃3

) . (8)

If M is isotropic, there are some special cases in which the above elliptic integral can be
evaluated analytically (Carlson and Gustafson, 1993). In general, however, the integral has
to be solved numerically. It is common to express (8) using Legendre elliptic integrals, but
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a direct evaluation using duplication (Carlson, 1995) or half- and double-argument trans-
formations (Fukushima, 2011a) is preferred to avoid cancellation errors in the commonly
occurring situation where h̃1 ≈ h̃2. Fast and efficient implementations of these algorithms
are widely available. Furthermore, it can be shown that the sum of the eigenvalues of A is
equal to 1 (Eshelby, 1957). Thus, if the first elliptic integrals Λ1 and Λ2 are found, the third
is easily calculated as

Λ3 =
1

ηω
−Λ1−Λ2. (9)

In the limiting case where one of the ellipsoid axes approaches zero, Λ1 and Λ2 re-
duce to complete elliptic integrals, which are efficiently evaluated using a series expansion
(Fukushima, 2011b). This case is of particular interest for fractured media, since fractures
are modeled as flat ellipsoids. In Section 3, we further investigate how the expression for Ri
should be formulated when i is a family of flat inclusions.

2.2 Dilute limit approximation

To show how the single-inclusion problem is used to derive permeability approximations,
we start by considering a dilute dispersion of ellipsoidal inclusions within a homogeneous
matrix. On the macroscopic scale, the composite behaves as a homogeneous material with
permeability Ke, according to the definition

KeJe =
N

∑
i=0

φiKiJi, (10)

Je =
N

∑
i=0

φiJi, (11)

where N is the number of inclusion families, and φi, Ki and Ji are the volume fraction,
permeability and average pressure gradient of phase i, respectively. By convention, we let
the subscript 0 denote the matrix phase. Since the inclusions are well-separated, the pressure
gradient within each of them can be approximated by the solution of the single-inclusion
problem. Setting J f ar = Je and M = K0 in (1), we have the expression

Ji = Ri (K0)Je, i 6= 0. (12)

We insert (12) into (10), and use (11) to eliminate J0, arriving at

Ke = K0 +
N

∑
i=1

φi (Ki−K0)Ri (K0) . (13)

This is the dilute limit approximation for the effective permeability, which is valid only when
the number of inclusions per volume is small (Torquato, 2002).
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True composite Dilute limit Self-consistent

Fig. 1: The self-consistent assumption

2.3 The asymmetric self-consistent method

In equation (13), we assumed that the pressure gradient within each inclusion is unaffected
by neighboring inclusions. One way of compensating for this, is to substitute K0 in (12)
with Ke (Pozdniakov and Tsang, 2004),

Ji = Ri (Ke)Je, i 6= 0. (14)

In other words, we approximate the hydraulic response by assuming that the neighborhood
of each inclusion is a homogeneous material with permeability Ke (see Fig. 1). Combining
again with (10) and (11), we have

Ke = K0 +
N

∑
i=1

φi (Ki−K0)Ri (Ke) . (15)

This is the asymmetric self-consistent approximation, also known as the average field ap-
proximation (Milton, 2002). Since (15) defines Ke implicitly, one must use numerical tech-
niques to calculate the effective permeability. The simple fixed point iteration scheme

Ke,n+1 = K0 +
N

∑
i=1

φi (Ki−K0)Ri (Ke,n) (16)

seems to converge reasonably fast if ‖Ke‖ ≥ ‖K0‖. When ‖Ke‖ ≤ ‖K0‖, our experience is
that the modified scheme

K−1
e,n+1 = K−1

0 +
N

∑
i=1

φiK−1
0 (K0−Ki)Ri (Ke,n)K−1

e,n (17)

has better convergence properties.

2.4 The symmetric self-consistent method

A possible drawback of (15) is that its permeability estimates may not be physically real-
izable (Milton, 2002). That is, given the input data (inclusion shapes, orientations, perme-
abilities and volume fractions), it may not exist a consistent microstructural configuration
such that the permeability estimate is attained. We can obtain a realizable self-consistent
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scheme by treating both the matrix and the fractures as ellipsoidal inclusions (Torquato,
2002; Barthélémy, 2008). In other words, we set

Ji = Ri (Ke)J f ar, i ∈ {0, 1, . . . , N}, (18)

and calculate Ri (Ke) using (2) for all i, including the matrix phase. To calculate R0, we
must construct an ellipsoidal shape (with shape tensor H0) that somehow resemble the ge-
ometry of the space between the inclusions. For fractured media, Barthélémy (2008) sug-
gested using a weighted average of the inclusion shape tensors {H1, . . . , HN}, but the given
expression is ill-conditioned if there are less than three non-parallel fracture sets. Since it
is not obvious how to choose an optimal value for H0, we have simply set H0 = I in the
present work.

The permeability is found by inserting (18) into (10), and using (11) to eliminate Je,

Ke

N

∑
i=0

φiRi (Ke) =
N

∑
i=0

φiKiRi (Ke) . (19)

This relation is called the symmetric self-consistent approximation, also known as the co-
herent potential approximation. By rearranging, we obtain

Ke = K0 +
N

∑
i=1

φi

φ0
(Ki−Ke)Ri (Ke)R−1

0 (Ke) , (20)

which can be evaluated using the same numerical techniques as for (15).
In the literature, the distinction between the symmetric and asymmetric self-consistent

methods is not always made clear. Usually, only one of them are used, while the other is not
mentioned. For instance, the method used by Fokker (2001); Torquato (2002); Barthélémy
(2008) is the symmetric one, while Pozdniakov and Tsang (2004) use the asymmetric method.
Two literature references that mentions both methods are Willis (1977) and Milton (2002).

It is well-known that both self-consistent methods described in this paper may predict a
sudden permeability increase when the inclusion volume fractions reach a critical level, if
the contrast between the inclusion and matrix permeabilities is large. Within the context of
fracture upscaling, it has been suggested that this behaviour can be identified with percola-
tion, which is the transition from unconnected to connected fracture networks (Pozdniakov
and Tsang, 2004; Barthélémy, 2008; Pouya and Ghabezloo, 2010). Unfortunately, there is
no theoretical result justifying this conjecture, and many authors regard the self-consistent
percolation estimates as spurious(Guéguen et al, 1997; Torquato, 2002). Numerical simula-
tions are therefore valuable in order to assess the feasibility of the methods in this regime.

2.5 The differential method

Another popular effective medium technique, which is also physically realizable, is the dif-
ferential effective medium method. To derive the method, let A be a material composed of
ellipsoids, embedded in a host matrix. Let material B be identical to A, except that a few
more inclusions have been added. To preserve the ratio between the inclusion families, we
require that

φ A
i

1−φ A
0

=
φ B

i

1−φ B
0

(21)
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Fig. 2: The differential effective medium approximation

for all i 6= 0, where the superscripts denote the material. There are other variants of the
differential method where the ratio is not preserved, but these are not considered here (Norris
et al, 1985).

We approximate KB
e by assuming that all of B, except for the extra inclusions, behaves

like a homogeneous material with permeability KA
e (see Fig. 2 ). With this assumption, we

can use the dilute limit approximation (13) to obtain

KB
e = KA

e +
N

∑
i=1

∆φi
(
Ki−KA

e
)

Ri
(
KA

e
)
, (22)

where

∆φi = φ B
i −φ A

i . (23)

We can rewrite this expression using (21) and some algebraic manipulation,

φ B
i −φ A

i =
(
1−φ B

0
) φ B

i −φ A
i

1−φ B
0

(24)

=
(
1−φ B

0
)( φ A

i

1−φ A
0
− φ A

i

1−φ B
0

)
(25)

=
φ A

i

1−φ A
0

(
φ A

0 −φ B
0
)
. (26)

Inserting into (22) and rearranging, we get

KB
e −KA

e

φ B
0 −φ A

0
=−

N

∑
i=1

φ A
i

1−φ A
0

(
Ki−KA

e
)

Ri
(
KA

e
)
. (27)

In the limit as ∆φ0→ 0, we obtain the differential equation

dKe

dφ0
=−

N

∑
i=1

φi

1−φ0
(Ki−Ke)Ri (Ke) . (28)

To obtain a permeability estimate from (28), an initial value for Ke is required. A natural
choice is to set Ke = K0 at φ0 = 1, both because the permeability is known exactly at this
point, and because the method is based on the dilute limit approximation (13) which is more
accurate when φ0 is close to 1. In general, it is not possible to integrate (28) analytically, but
the equation can be solved numerically using a standard explicit Runge-Kutta or multistep
method.
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3 Effective medium approximations for flat inclusions

In the previous derivation of the effective medium methods, we have used volume fractions
to describe the amount of inclusions present in the matrix. This is the standard parameter
choice when effective medium methods are discussed in the literature. However, fractures
normally occupy a very small part of the overall volume, and it may be more appropriate
to describe the fracture amount by another measure. Several different measures of fracture
density are used in the literature, like fracture surface area per volume, or fracture spacing.
We have chosen to use the following dimensionless definition of fracture density,

εi = Nir3
i , (29)

where Ni is the number per volume of inclusions belonging to phase i, and ri is the length
of the largest inclusion semi-axis.

In the following, we derive a novel set of effective-medium formulas in the limiting case
where the ratio ωi of the shortest to the longest semi-axis approaches zero. Although ωi > 0
in practice, the ratio is usually so small that the differences between the exact and limiting
expressions are negligible.

The effective medium methods derived in Section 2 are the asymmetric self-consistent
method (15), the symmetric self-consistent method (20) and the differential method (28).
Using definition (29), these expressions become

Ke = K0 +
N

∑
i=1

εi

φ0
Ke
(
RB

i −RC
i
)

R−1
0 , (Symmetric self-consistent) (30)

Ke = K0 +
N

∑
i=1

εi
(
KeRB

i −K0RC
i
)
, (Asymmetric self-consistent) (31)

dKe

dεsum
=

N

∑
i=1

εi

εsum
Ke
(
RB

i −RC
i
)
, (Differential method) (32)

where

RB
i =

4
3

πηiωiK−1
e KiRi, (33)

RC
i =

4
3

πηiωiRi, (34)

εsum =
N

∑
i=1

εi. (35)

The tensors R0, . . . , RN are all evaluated using Ke as the background medium. Alternatively,
Equations (30)-(32) can be expressed using inverse permeabilities,

K−1
e = K−1

0 +
N

∑
i=1

εi

φ0

(
RC

i −RB
i
)

R−1
0 K−1

0 , (Symmetric self-consistent) (36)

K−1
e = K−1

0 +
N

∑
i=1

εi
(
RC

i −K−1
0 KeRB

i
)

K−1
e , (Asymmetric self-consistent) (37)

dK−1
e

dεsum
=

N

∑
i=1

εi

εsum

(
RC

i −RB
i
)

K−1
e , (Differential method) (38)
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which is often more appropriate when sealed fractures dominate the system. Note that the
role of RB

i and RC
i is very different for open and sealed fractures. If the fractures are open

(Ki � Ke), RB
i is much larger than RC

i , and the latter can be set to zero since it does not
contribute significantly to the computed effective permeability. For sealed fractures, we have
the opposite situation, as RC

i is much larger than RB
i in this case.

We now introduce alternative expressions for RB
i and RC

i that are suitable for studying
the behavior of effective medium methods for small values of ωi. To avoid cluttering the for-
mulas, we ignore the fracture family subscript i in the remainder of the section. By inserting
(2) into (33), (34) and rearranging, we get

RB =
4
3

πK−1
e
(
λBII + I

)−1 BI, (39)

RC =
4
3

π
(
κCII + I

)−1 CIKe, (40)

where

BI = ηωK
1
2
e A−1K

1
2
e , (41)

BII = ηωK
1
2
e
(
A−1− I

)
K

1
2
e , (42)

CI = ηωKe
− 1

2 (I−A)−1 Ke
− 1

2 , (43)

CII = ηωKe
− 1

2
(
A−1− I

)−1 Ke
− 1

2 , (44)

λ =
1

ηωK
, κ =

K
ηω

. (45)

Observe that the expressions (41)-(44) are independent of the intrinsic fracture perme-
ability K. They only depend on Ke and the geometry of the fractures, through the depolar-
ization tensor A as defined by (7). Since fractures are modeled as flat ellipsoids, ω is very
small, and (41)-(44) can be approximated by their limits as ω → 0. To evaluate the limits,
we need the following relations, which are found from the definition of A (Eq. (7)) and the
fact that TrA = 1 (Eq. (9)),

ηωA−1 =
2

∑
i=1

1
Λi

ẽiẽ>i +
ηω

1−ηω(Λ1 +Λ2)
ẽ3ẽ>3 (46)

ηω
(
A−1− I

)
=

2

∑
i=1

1−ηωΛi

Λi
ẽiẽ>i +

η2ω2 (Λ1 +Λ2)

1−ηω(Λ1 +Λ2)
ẽ3ẽ>3 (47)

ηω (I−A)−1 =
2

∑
i=1

ηω
1−ηωΛi

ẽiẽ>i +
1

Λ1 +Λ2
ẽ3ẽ>3 (48)

ηω
(
A−1− I

)−1
=

2

∑
i=1

η2ω2Λi

1−ηωΛi
ẽiẽ>i +

1−ηω (Λ1 +Λ2)

Λ1 +Λ2
ẽ3ẽ>3 . (49)
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The vectors ẽ1, ẽ2, ẽ3 are given by (6), and Λ1, Λ2 are positive scalars given by (8). Taking
the limit of Equations (46)-(49), we obtain

lim
ω→0

ηωA−1 = lim
ω→0

ηω
(
A−1− I

)
=

2

∑
i=1

1
Λi

ẽiẽ>i , (50)

lim
ω→0

ηω (I−A)−1 = lim
ω→0

ηω
(
A−1− I

)−1
=

1
Λ1 +Λ2

ẽ3ẽ>3 . (51)

It follows that

lim
ω→0

BI = lim
ω→0

BII = B =Ke
1
2

(
1

Λ1
ẽ1ẽ>1 +

1
Λ2

ẽ2ẽ>2

)
Ke

1
2 , (52)

lim
ω→0

CI = lim
ω→0

CII = C =Ke
− 1

2

(
1

Λ1 +Λ2
ẽ3ẽ>3

)
Ke
− 1

2 . (53)

Since we have let ω → 0, the expressions for Λ1 and Λ2 (given by (8)) are reduced to
complete elliptic integrals, which are efficiently evaluated using a series expansion (Fukushima,
2011b). In the special case where η = 1 and Ke is known to be isotropic (for instance,
when considering randomly oriented penny-shaped inclusions), we have Λ1 = Λ2 = π/4,
and ẽ1, ẽ2, ẽ3 are given by the fracture principal directions e1, e2, e3.

We conclude this section by giving the effective medium approximations in the case
where all fractures are either open or closed. Recall that, for open fractures, the tensor RC

do not contribute significantly to the effective permeability. By removing RC from (30)-(32),
and using the definition of RB (Eq. (33)), we have

Ke = K0 +
4
3

π
N

∑
i=1

εi

φ0
(λiBi + I)−1 BiR−1

0 , (Symmetric self-consistent) (54)

Ke = K0 +
4
3

π
N

∑
i=1

εi (λiBi + I)−1 Bi, (Asymmetric self-consistent) (55)

dKe

dεsum
=

4
3

π
N

∑
i=1

εi

εsum
(λiBi + I)−1 Bi, (Differential method) (56)

where Bi is given by (52). Likewise, if all the fractures are sealed, we can remove RB from
(36)-(38), and use the definition of RC (Eq. (34)) to get

K−1
e = K−1

0 +
4
3

π
N

∑
i=1

εi

φ0
(κiCi + I)−1 CiKeR−1

0 K−1
0 , (Symmetric self-consistent) (57)

K−1
e = K−1

0 +
4
3

π
N

∑
i=1

εi (κiCi + I)−1 Ci, (Asymmetric self-consistent) (58)

dK−1
e

dεsum
=

4
3

π
N

∑
i=1

εi

εsum
(κiCi + I)−1 Ci, (Differential method) (59)

where Ci is given by (53).
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For randomly oriented fractures with η = 1, the above equations reduce to simple scalar
equations. Due to the remark following Eq. (53), the Bi and Ci tensors can be found ex-
plicitly in this case, and the sum over all fracture orientations becomes a simple uniform
average. For open fractures, the resulting expressions are

(Ke−K0)
(

4λ
π Ke +1

)
= 32

9 ε
( 2

3 Ke +
1
3 K0
)
, (Symmetric self-consistent) (60)

(Ke−K0)
(

4λ
π Ke +1

)
= 32

9 εKe, (Asymmetric self-consistent) (61)

4λ
π (Ke−K0)+ ln(Ke/K0) =

32
9 ε, (Differential method) (62)

where we have integrated the differential method using separation of variables. For sealed
fractures, the expressions are very similar,

(
K−1

e −K−1
0
)( 2κ

π K−1
e +1

)
= 8

9 ε
( 2

3 K−1
e + 1

3 K−1
0
)
, (Symmetric self-consistent) (63)

(
K−1

e −K−1
0
)( 2κ

π K−1
e +1

)
= 8

9 εK−1
e , (Asymmetric self-consistent) (64)

2κ
π
(
K−1

e −K−1
0
)
+ ln(K0/Ke) =

8
9 ε. (Differential method) (65)

Eq. (60)-(61) and (63)-(64) are second-degree polynominal equations, which are easily
solved analytically. Eq. (62) and (65) are trancendental equations, which can be solved ef-
fectively with Newton’s method, or with the Lambert W-function (Corless et al, 1996).

Compared with the original effective medium formulas presented in Section (2), Equa-
tions (54)-(59) have several advantages. First of all, the original formulations depend on Ri
as defined by (2), which becomes near-singular when ωi is small and Ki� K0 or Ki� K0.
This limitation is not present in the above expressions, as they are numerically stable re-
gardless of ωi. Secondly, the new formulations require fewer parameters, since we have
substituted φi, Ki, ωi with εi, λi for open fractures and εi, κi for closed fractures. Finally,
Equations (54)-(59) reveal that the effective permeability depends on ωi and Ki only through
their product if fractures are open, and their quotient if the fractures are sealed. This insight
is useful if effective medium methods are used in history matching, model calibration or
data assimilation problems. Specifically, if Ki and ωi are regarded as two independent pa-
rameters, a parameter estimation algorithm would have problems determining their values,
since the effective permeability is only sensitive to their product or quotient. Instead, effec-
tive medium methods should be inverted with respect to λi for open fractures, and κi for
sealed fractures.

4 Semi-analytical methods

Apart from effective medium theory, there is also a different approach to fracture permeabil-
ity upscaling which is widely used. This approach is based on constructing an expression for
the upscaled permeability that contains undetermined parameters, and subsequently fit these
parameters to numerical simulations. A particularly successful class of these methods is
based on the permeability tensor derived by Snow (1969) for infinitely extending open frac-
tures embedded in an impermeable matrix. Oda (1985) extended the Snow model to account
for finite-sized fractures, by introducing an empirical connectivity parameter f ∈ [0, 1] rep-
resenting the proportion of fractures participating in the connected network. In our notation,
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the method of Oda takes the form

Ke =
4
3

π f
N

∑
i=1

εi

λi

(
I−nin>i

)
, (66)

where n is the normal vector of the fractures.
There have been several attempts to estimate the value of f a priori from statistical

fracture parameters (Gueguen and Dienes, 1989; Hestir and Long, 1990; Mourzenko et al,
2004). Recently, Mourzenko et al (2011) presented a very successful model for f as a func-
tion of ρ ′ , the mean number of intersections per fracture. The value of ρ ′ can be calculated
a priori for fractures of any convex shape, using the concept of excluded volume (Balberg
et al, 1984). In particular, for monodisperse disc-shaped fractures with a finite number of
orientations, the mean number of intersections per fracture is given by ρ ′ =V

′
ex ·εsum, where

V
′
ex = 4π

n

∑
i=0

n

∑
j=0

εi

εsum

ε j

εsum
sinθi j, (67)

and θi j is the intersection angle between fracture sets i and j. Thus, V
′
ex only depends on the

orientation distribution of the fractures. When ρ ′ is smaller than the percolation threshold
ρ ′c, the fracture network is disconnected and f = 0. For ρ ′ ≥ ρ ′c, Mourzenko et al (2011)

proposed to set f = g
(

ρ ′
)

, where

g
(

ρ
′)

=

(
ρ ′ −ρ ′c

)2

ρ ′
(
1/β +ρ ′ −ρ ′c

) . (68)

Both ρ ′c and β are numerically fitted parameters. For ρ ′c, we use the proposed value for
for disc-shaped fractures, which is ρ ′c = 2.41. The value of β for circular fractures is not
reported by Mourzenko et al (2011), but it is asserted that β is fairly robust to changes in
fracture shape. In this paper, we choose β = 0.180, which is the value reported for hexagons.
An even better match to our numerical results would probably be obtained if the values of
β and ρ ′c were fitted to the specific fracture geometries we have studied.

Mourzenko et al (2011) also proposed an extension to (66) for fractures embedded in a
permeable matrix. In our notation, the extended model is given by

Ke = K0 +h
(

ρ
′
, λ
)
· 4

3
π

N

∑
i=1

εi

λi

(
I−nin>i

)
, (69)

where

h
(

ρ
′
, λ
)
= 1−

1−g
(

ρ ′
)

1+ 7
3

( 3
4 λK0

)
0.7

, ρ
′
> 4, (70)

and g
(

ρ ′
)

is given by (68). When applicable, we will compare the numerical results with
the prediction of this model as well.
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Fig. 3: Sample distribution of fractures
from the simulations: Case 5, εsum = 0.4,
second mesh refinement.

Fig. 4: Euler angles used to describe
fracture orientation. Adapted from Brits
(2012).

5 Numerical comparisons

In the present computational study, we have selected 10 different test cases (Tab. 2), all
corresponding to random, unclustered distributions of equisized, flat ellipsoids. Two of the
cases are isotropic, with three orthogonally oriented fracture sets (Case 5 and 6). In the
remaining 8 cases, anisotropy is introduced in different ways: Elongated fracture shapes
(Cases 1 and 2), fracture sets with unequal densities (Cases 3 and 4) or permeabilities (Cases
7 and 8), and fractures with an oblique intersection angle (Cases 9 and 10). The background
permeability was set to be isotropic in all cases. To compute the effective permeability, we
generated finite-sized realizations of the fracture geometry, each consisting of 102 fractures
within a unit cube.

An example of a typical fracture distribution is shown in Fig. 3. We applied unit pressure
difference on two opposing sides, and used a commercial finite-element solver (Comsol
Multiphysics®, v. 4.2) to calculate the mean flux, from which the effective permeability was
found. This process was repeated for varying fracture radii (up to 1/5 of the cell size) and
different matrix/fracture permeability contrasts. Since the result depends on the generated
geometry realization, each set of parameters was tested with 20 independent realizations,
and the median and interquartile range was computed. Finally, results were compared with
analytical predictions.

For the numerical computations, we used flat cylinders (discs) of constant aperture in-
stead of flat ellipsoids, since this is easier to handle numerically. Although thin discs are
conceptually different from thin ellipsoids (Pouya and Vu, 2012), our preliminary numeri-
cal tests showed that the computed average permeability was not significally affected if thin
ellipsoids were substituted with discs of equal radius and volume. Specifically, Case 5 and
6 were computed with both kinds of fracture shapes, for high and low matrix/fracture per-
meability contrasts. For fracture densities below the percolation threshold, the results were
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α β γ η κ
κsum

λ
λsum

ε
εsum

Type

Case 1 Fracture set 1 0° 0° 0° 1/2 - 1 1 Open

Case 2 Fracture set 1 0° 0° 0° 1/2 1 - 1 Sealed

Case 3 Fracture set 1 0° 0° - 1 - 1/2 2/3 Open
Fracture set 2 0° 90° - 1 - 1/2 1/3 Open

Case 4 Fracture set 1 0° 0° - 1 1/2 - 2/3 Sealed
Fracture set 2 0° 90° - 1 1/2 - 1/3 Sealed

Case 5 Fracture set 1 0° 0° - 1 - 1/3 1/3 Open
Fracture set 2 0° 90° - 1 - 1/3 1/3 Open
Fracture set 3 90° 90° - 1 - 1/3 1/3 Open

Case 6 Fracture set 1 0° 0° - 1 1/3 - 1/3 Sealed
Fracture set 2 0° 90° - 1 1/3 - 1/3 Sealed
Fracture set 3 90° 90° - 1 1/3 - 1/3 Sealed

Case 7 Fracture set 1 0° 0° - 1 - 1/10 1/3 Open
Fracture set 2 0° 90° - 1 - 3/10 1/3 Open
Fracture set 3 90° 90° - 1 - 6/10 1/3 Open

Case 8 Fracture set 1 0° 0° - 1 1/10 - 1/3 Sealed
Fracture set 2 0° 90° - 1 3/10 - 1/3 Sealed
Fracture set 3 90° 90° - 1 6/10 - 1/3 Sealed

Case 9 Fracture set 1 0° -22.5° - 1 - 1/2 1/2 Open
Fracture set 2 0° 22.5° - 1 - 1/2 1/2 Open

Case 10 Fracture set 1 0° -22.5° - 1 1/2 - 1/2 Sealed
Fracture set 2 0° 22.5° - 1 1/2 - 1/2 Sealed

α = dip direction, β = dip angle, γ = rotation, as shown in Fig. 4.
κsum = ∑κi and λsum = ∑λi, where κi and λi are given by (45).
εsum = ∑εi, where εi is the fracture density, given by (29).

Tab. 2: The test cases used to assess the performance of the analytical approximations

essentially equal, differing by less than a percent. For large densities, the discrepancy was
of the same magnitude as the discretization error, i.e., at most 3%.

Depending on the boundary conditions, calculating the effective permeability of a fi-
nite domain amounts to studying a periodic (Fig. 5a) or symmetric (Fig. 5b) array of frac-
tures. None of these configurations are equivalent to an infinite random distribution devoid
of long-range correlations, but they are good approximations if there is a large number of
fractures within the unit of repetition. Whether periodic or symmetric (isolated) boundary
conditions should be used, depends to some degree on the fracture geometry. For instance,
if the fracture orientations are not symmetric with the respect to the main axes, symmetric
boundary conditions will lead to incorrect results: The equivalent infinite extension is an
array of alternating mirror copies of the computational domain, and the mirrored units will
have a fracture orientation different from the original ones. On the other hand, if the fracture
orientations are indeed mirror symmetric, the effective permeability tensor is known to be
diagonal with respect to the main axes. In this case, periodic boundary conditions will give
spurious off-diagonal permeability values, while symmetric boundary conditions enforce
the correct orientation of the tensor. To obtain more reliable numerical results, we have
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(a) Periodic extension: Peri-
odic boundary conditions

(b) Symmetric extension:
Isolated boundary conditions

Fig. 5: Extending a finite domain

chosen to focus on symmetric fracture geometries in this study, with symmetric boundary
conditions.

5.1 Mesh considerations

Although conceptually straightforward, numerical experiments are challenging because of
the complex geometry of fracture networks. Standard finite-element solvers require the com-
putational mesh to conform with the matrix-fracture interfaces. This is not easy to achieve
without compromising standard mesh generation guidelines that ensure well-behaved con-
vergence properties. For instance, if the distribution of fractures is completely random, it
may easily happen that two parallel fractures are placed at almost the exact same location,
such that the gap between them is much smaller than the fractures themselves. Since the
gap must be resolved by the mesh, this leads to either extremely small mesh elements, or
elements that are very skewed. The first situation is computationally demanding, the other
results in bad numerical properties.

To avoid meshing problems, we created distributions of fractures that were as random as
possible while avoiding situations that typically cause the meshing algorithm to fail. Specif-
ically, the realizations were generated by sequentially adding fractures at random locations
inside a unit cube. For each addition, we checked whether the edge of the new fracture was
barely touching an existing one, in which case the fracture location was slightly changed.
The realizations generated by this method were meshable by the software in most cases.

5.2 Numerical errors

In order to use numerical simulations as a benchmark for assessing effective medium ap-
proximations, one must be confident that the numerical error can be controlled to a sufficient
degree. The main error sources can be divided into two categories:

– Finite-size effects
– Discretization errors
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Since the simulations are performed on a finite volume, the calculated permeability de-
pends on the generated realization of the fracture geometry. To get a robust result, each set
of parameters was tested with 20 independent realizations, and the sample median and in-
terquartile range (IQR) was computed. The median is a good estimator for the hypothetical
“infinite-volume” effective permeability, but it might be biased if the representative vol-
ume element (REV) is too small. This is especially true for high-permeable, intersecting
fractures close to the percolation threshold, which form fractal patterns that are difficult to
resolve within a small volume. To assess the importance of the REV size, we performed a
comparison study based on Case 3, 5, 7 and 9. We set the matrix to be impermeable, which
allowed us to use 1002 fine-meshed discs per volume since the matrix did not have to be
meshed. The computed permeabilities were compared to the original results obtained using
102 discs, and plotted in Fig. 6. Since the matrix permeability is zero, the computed flux
scales linearly with the fracture parameter λ , defined by (45). The results are therefore re-
ported using the dimensionless quantity Ke ·λ1, where λ1 refers to the first fracture set in
each case, as given in Tab. 2. It is seen that the computed permeability is very robust to
changes in the REV size for the cases with three orthogonal fracture sets (Case 5 and 7,
Fig. 6b and 6c). In the cases with two sets (Case 3 and 9, Fig. 6a and 6d), it is somewhat
more sensitive, especially near the percolation threshold. This dependence is taken into ac-
count when the numerical results are interpreted. Ideally, we would like to have used a larger
number of discs for the simulations with a permeable matrix as well. But with our current
software, it is difficult to increase the number of fractures beyond 100 when the matrix is
meshed.

The other potential error source is the discretization error, which is associated with the
size and quality of the computational mesh. To estimate this error, each simulation was
performed using three different mesh sizes, doubling the number of elements each time.
The finest refinement level generated meshes with a typical element size of 0.005 times
the domain width. For every refinement, the magnitude of the computed permeability was
reduced, which is consistent with the observations of Koudina et al (1998). Our final results
were calculated using the finest mesh level, with an applied discretization error correction
(typically of magniture 2-3%). The correction was calculated by a Richardson extrapolation
scheme, using the results of the coarser meshes (Blum et al, 1986).

The slow numerical convergence, and the difficulties of obtaining a representative finite-
sized distribution of fractures, are precisely the reasons why analytical upscaling methods
are attractive. For most practical applications, it is infeasible to use as fine meshes and many
samples in numerical upscaling routines because of the computational cost. Consequently,
a regular coarse-grid numerical upscaling of diffuse fracture networks must be viewed as
an approximation with significant inherent uncertainties. In light of this, analytical meth-
ods may be an appealing alternative even in situations where their accuracy seems to be
moderate.

5.3 Results for open fractures

The general behavior of the analytical methods for open fractures is illustrated by their
performance on Case 5, as seen in Fig. 7. This fracture model consists of three fracture
families with equal permeability and density, and mutually orthogonal orientations. Thus,
the effective permeability of the medium is isotropic.
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Fig. 6: Sensitivity of the REV size

If the contrast between the fracture and matrix permeability is modest (Fig. 7a), the dif-
ferential method does an excellent job, while the symmetric and asymmetric self-consistent
methods slightly underpredicts and overpredicts the permeability, respectively. Since there
is significant flow both within the matrix and the fracture network, we see no dramatic
change in the effective permeability when the fracture network percolates. The method of
Mourzenko et al (2011) also provides a good fit to the numerical data, but it is only applica-
ble for high fracture densities.

For larger matrix-fracture permeability contrasts (Fig. 7b-7c), the differential method
gives an increasingly worse estimate of the effective permeability. The self-consistent meth-
ods, on the other hand, predict the correct order of magnitude even for large contrasts. In
particular, the estimates of the symmetric method agree well with the numerical data. For
high fracture densities, the best fit is obtained by the method of Mourzenko et al (2011).
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Fig. 7: Effective permeability, Case 5 (three orthogonal sets, isotropic case)

The most extreme permeability contrast is obtained by setting K0 = 0 (Fig. 7d). Since
the matrix is not meshed in this case, we are able to use 1002 fine-meshed discs per re-
alization, giving very accurate numerical data. As in Fig. 6, results are reported using the
dimensionless quantity Ke ·λ1, since the permeability scales linearly with the λ parameter
when K0 = 0. Both self-consistent methods are seen to predict a distinct percolation thresh-
old, followed by a linear permeability/fracture density relationship. In fact, the asymmet-
ric method predicts the correct percolation threshold with remarkable accuracy. However,
the numerically computed effective permeability increases quadratically past the percola-
tion point, which cause the asymmetric self-consistent approximation to deviate from the
numerical. The symmetric self-consistent method is very close to the numerical data even
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Fig. 8: Effective permeability, Case 1 (single oval fracture set)
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Fig. 9: Effective permeability, Case 3 (two orthogonal sets, different densities)

though the wrong percolation point is predicted, but the best fit is once again provided by
the curve-fitting method.

The performance of the methods is similar in the anisotropic cases, as seen in Fig. 8-11.
When interpreting the results, one should also take the REV dependence into account. Fig.
6 shows the REV dependence for Case 3, 5, 7 and 9 when the matrix permeability is zero.
Simulations with a permeable matrix are likely to be less sensitive to the REV size, since the
impact of each fracture is more local in this case. Thus, Fig. 6 provides a maximal bound
on the numerical uncertainty associated with the REV dependence. From the figure, we



22 P. N. Sævik et al.

0 0.5 1
1

1.5

2

2.5

3

Fracture density (ε
sum

)

R
e

la
ti
v
e

 e
ff

e
c
ti
v
e

 p
e

rm
e

a
b

ili
ty

 (
K

e
 /

 K
0
)

 

 

X dir

Z dir

Self−consistent, symmetric

Self−consistent, asymmetric

Differential

Numerical (median and IQR)

(a) 6λ−1
3 = 3λ−1

2 = λ−1
1 = 1K0

0 0.5 1

10

20

30

40

50

60

70

80

90

100

Fracture density (ε
sum

)

R
e

la
ti
v
e

 e
ff

e
c
ti
v
e

 p
e

rm
e

a
b

ili
ty

 (
K

e
 /

 K
0
)

 

 

X dir

Z dir

Self−consistent, symmetric

Self−consistent, asymmetric

Numerical (median and IQR)

(b) 6λ−1
3 = 3λ−1

2 = λ−1
1 = 100K0

Fig. 10: Effective permeability, Case 7 (three orthogonal sets, different permeabilities)
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Fig. 11: Effective permeability, Case 9 (two sets, 45º intersection angle)

can also deduce whether the finite REV size cause the permeability to be underpredicted or
overpredicted. For instance, comparing Fig. 6d and Fig. 11b, we can infer that increasing the
REV size would probably bring the numerical solution in Fig. 11b closer to the symmetric
self-consistent estimate. Unfortunately, our current software is not able to mesh a geometry
with more than 100 fractures when both the matrix and fractures must be meshed.

The results in Fig. 8-11 show that the differential approximation is very good when
λ−1 ≈ K0 or less. For intersecting fractures with higher permeability contrasts, the differ-
ential method quickly becomes useless, and the symmetric self-consistent method seems to
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Fig. 12: Effective permeability, K0 = 0

be the best choice. Furthermore, the onset of percolation predicted by the asymmetric self-
consistent method seems to agree with the numerical data, although the method overpredicts
the effective permeability by up to 90 % past the threshold. The method of Mourzenko et al
(2011) is not applicable to Case 1 and 7, since Case 1 only contains disconnected fractures,
and Case 7 has fractures of different permeabilities. But whenever it can be applied, the
method provides a good fit to the data.

To investigate the accuracy of the methods for very high fracture densities and perme-
ability contrasts, we performed a series of numerical simulations with zero matrix perme-
ability and fracture densities up to εsum = 3. The results are shown in Fig. 12. We used 1002
discs per numerical realization, thus the interquartile range is very small and is omitted from
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Fig. 13: Numerical and analytical percolation thresholds

α β γ η ε
εsum

Fracture set 1 0° 90° - 1 0.25-0.8
Fracture set 2 30°-90° 90° - 1 0.2-0.5
Fracture set 3 - 0° - 1 0-0.5

α = dip direction, β = dip angle, γ = rotation,
as shown in Fig. 4.

Tab. 3: Fracture geometry used for assessing percolation thresholds

the plot. Compared with previous simulations, the symmetric self-consistent approximation
is seen to be less accurate for high densities, especially in the anisotropic cases. This might
be partially because we have set the matrix shape tensor H0 to be spherical, despite that
the space between the fractures is more elongated at high fracture densities. Our experience
with H0 suggests that other choices for the matrix shape may give more accurate approxi-
mations, but we have not been able to find a systematic way of determining the optimal H0
value. Regarding the asymmetric self-consistent method, Fig. 12 reveals that its estimates
are actually better when the fracture density is large. At εsum = 3, the method overpredicts
the permeability by up to 45 %, whereas at εsum = 1, the overprediction is up to 90 %. Fi-
nally, the method of Mourzenko et al (2011) is seen to give a very good fit to the numerical
values, and also captures the quadratic increase of permeability with fracture density past
the percolation threshold.

The asymmetric self-consistent method is seen to predict percolation thresholds that
agree very well with our numerical results, for all the cases we have tested. To further in-
vestigate this relationship, we selected an extended number of fracture geometries (see Tab.
3), and calculated the self-consistent percolation thresholds for each of them. These esti-
mates were compared with the true values, obtained using the algorithm of Yi and Tawerghi
(2009). The results (Fig. 13) confirm that the symmetric method overpredicts the percola-
tion threshold, while the asymmetric method is surprisingly accurate, especially when there
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Fig. 14: Effective permeability, Case 6 (three orthogonal sets, isotropic case)

are only two intersecting fracture sets (Fig. 13a). For three sets (Fig. 13b), it overpredicts
the threshold slightly, but it is still very close. The threshold’s dependence on orientation is
captured very well by both self-consistent methods.

Although the fractures were monodisperse in the numerical computation, it was shown
by Mourzenko et al (2005) that the size distribution of equishaped fractures has little impact
on the percolation threshold, as long as the fracture density is measured by εsum as defined by
(35). Thus, the accuracy of the predicted percolation thresholds, as well as the self-consistent
permeability estimates in this section, are likely to be very similar for polydisperse fractures.

5.4 Results for sealed fractures

Finally, we turn to discuss fractures that obstruct the fluid flow. The general behavior of the
effective medium methods is illustrated by the isotropic fracture configuration, Case 6, as
shown in Fig. 14. The method of Mourzenko et al (2011) is not shown in the plots, since
it is only applicable to open fractures. Both the differential and symmetric self-consistent
methods perform well on this case, for both modest and large matrix/fracture permeability
contrasts. Since fluid flow occurs mainly in the rock matrix, the connectivity of the fracture
network (occurring at εsum ≈ 0.25) has no impact on the effective permeability. For very
large fracture densities (typically εsum > 5 (Yi and Esmail, 2012)), the connectivity of the
matrix itself is affected, as fractures divide the matrix into disconnected fragments. This
happens at a specific fracture density value, called the void percolation threshold, where
the effective permeability drops to the magnitude of the fracture permeability. The reason
of why the asymmetric self-consistent method grossly underpredict the permeability in Fig.
14b, is that it predicts a void percolation threshold at εsum = 1.125. This is much smaller
than the true percolation threshold, which is not visible on the figure.
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(a) Case 2, Z direction
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(b) Case 4, Z direction
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(c) Case 8, X direction
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Fig. 15: Effective permeability, impermeable fractures

In Fig. 15, results for the anisotropic configurations are reported. To reduce the num-
ber of plots, only the most significant direction and permeability contrast is shown in each
case. The other results are very similar, only that all the analytical approximations are more
accurate for smaller permeability contrasts. In general, the differential method is very ac-
curate for all cases that were tested, whereas the asymmetric and symmetric self-consistent
methods tend to underpredict and overpredict the permeability, respectively.
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6 Summary

In this paper, we have developed a novel set of simplified formulas for three different ef-
fective medium methods, in the special case where the matrix inclusions are modeled as
flat ellipsoids. Compared to the traditional way of formulating effective medium approx-
imations, the new formulas require fewer input parameters and have improved numerical
stability properties.

The accuracy of the methods has been assessed by comparing the analytical predictions
with three-dimensional numerical simulations of unclustered random distributions of equi-
sized fractures. A large number of fracture parameters is covered, including different frac-
ture permeabilities, orientations, shapes, intersection angles and number of fracture sets.
It is shown that the estimates of the differential method are very accurate for sealed and
low-permeable open fractures, at least when the fracture density is less than 1. For high-
permeable fractures, the differential method can not be used, unless the fracture density is
very low (< 0.1). The semi-analytical method of Mourzenko et al (2011) is usually the most
accurate in the high-permeable case, whenever it is applicable.

The self-consistent methods are seen to be applicable to both small and large fracture
densities. In particular, the symmetric self-consistent method agrees well with the numer-
ical results for fracture densities less than 1, but is less accurate for larger densities. Only
the asymmetric method has the correct asymptotical behaviour for large fracture densities,
although it slightly overpredicts the permeability. In general, the asymmetric self-consistent
method is seen to consistently overpredict and underpredict the permeability for open and
sealed fractures, respectively. The symmetric self-consistent method, on the other hand,
mostly underpredicts the permeability of open fractures, and overpredicts the permeability
of sealed fractures.

For cases with intersecting, high-permeable fractures, the self-consistent methods pre-
dict percolation thresholds at specific fracture densities. Our numerical studies show that the
percolation thresholds estimated by the asymmetric self-consistent method are surprisingly
accurate, despite the lack of theoretical evidence to support this relationship. It is also very
interesting to note that the asymmetric method has the correct physical behaviour for both
small and large fracture densities, even though the scheme is not known to be physically
realizable.
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