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Abstract

Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through
modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic
differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of
individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic
method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a
heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire
metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate
niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into
niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of
the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages
allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore,
coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This
could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest
that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche
and how cancer may arise as a result of a failure of such communication.
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Introduction

Stem cells offer exciting potential for regenerative therapy, with

ultimate possibilities being the ability to regenerate limbs and heal

genetic diseases [1,2]. Although studies have begun to address

these issues, much work remains to be done [3,4]. Indeed, much of

our knowledge of stem cells is derived from in vitro experiments,

where the stem cells have been relocated from their native

environment. For instance, in haematopoietic (blood-producing)

stem cell experiments the stem cells are often isolated from a

donor, expanded in vitro, and transplanted into a lethally

irradiated host, with the question of interest being how the stem

cells respond to this new environment (e.g., [5]). However, it is

difficult to draw conclusions about the role and behaviour of stem

cells in vivo, when experimentally we must investigate them in

foreign environments [6,7]. Thus, theoretical models of stem cell

systems are valuable tools, allowing us to think about stem cells in

their native environments when this cannot yet be done

experimentally.

In vivo, stem cells are generally found in special microenviron-

ments, or niches, which are defined by a complex set of

biochemical and physical conditions that feed back on each other

[2,8]. Niches play a critical role in the function and behaviour of

stem cells [2,9]. For instance, experimentally changing certain

niche attributes affects the dynamics of the stem cells inside them

[10]. In addition, stem cells are often not single entities that exist

independently of each other, but instead form an interacting

population that includes stem cells and their more differentiated

products, both within and outside the niche [11,12]. Moreover,

even separate niches can affect each other, for instance through

the effects of their daughter cells or migration (e.g., [13]).

We focus on modelling the haematopoietic stem cell (HSC)

system, for two reasons. Firstly, it is probably the most well-

characterised stem cell system; secondly, it is representative of stem

cell systems in general, incorporating their essential properties

such as self-renewal, differentiation, multiple lineage choices and

feedbacks to regulate cell populations [9,14]. This allows us to start

thinking about heterogeneity and the introduction of population

interactions in a comparatively simple setting [15]. It seems that

there are a minimum of two distinct niche types in bone marrow,

although their relationship to each other is not fully clear, nor has

their connection to the different primitive cell types been

unambiguously elucidated [16–20]. Spatially, the HSCs them-

selves are spread throughout the bone marrow (as well as certain
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other organs, such as the liver and spleen), each in its own

individual ‘facultative niche’ [17,21–24]. To be precise in our

definition, henceforth we refer only to these facultative niches as

‘niches’. Bone marrow thus contains an entire population of

niches, with each niche containing small numbers of HSCs, and

these HSCs can differentiate into blood cells, which eventually join

the bloodstream.

The HSC system operates by demand control [25]: there is a

target level of differentiated blood cells, the homeostatic level,

which is set by natural selection [15,26,27], and which the

organism attains by differentiation of the HSCs and blood

progenitor cells into appropriate differentiated blood cell types

[27,28]. This seems to be achieved by feedback from the

differentiated progeny of the HSCs in the bloodstream [28–30].

In addition, there is also feedback from differentiated progeny that

have not entered the bloodstream, but remain localised to the

niche [12]. The HSC system must respond rapidly to perturba-

tions such as wounding or infection, and even under normal

conditions the blood cell turnover of an average human being is

around one trillion cells per day [31]. Such enormous numbers

mean that it is important to have a robust feedback mechanism for

proper functioning of the system.

The complex nature of the HSC system, with different blood

cell types and feedbacks, as well as many spatially separate niches,

means that it is difficult to model. In general, current models of

stem cell dynamics involve either only one focal stem cell, or a

homogeneous population of each cell type, and are modelled using

ordinary differential equations (ODEs) [15]. Although such models

can give useful results, it is important to include heterogeneity in

the picture [32]. For example, there is considerable heterogeneity

between individual stem cell clones [33,34]; this heterogeneity is

also present within clonal cell lines [35,36], and was even observed

many years ago by Till et al. [5], as well as by Suda et al. [37].

However, in the intervening decades the deterministic view of

stem cell differentiation has taken hold with great success and has

led towards understanding the feedback between differentiated

and primitive cells [28,38]. More recently there has been a shift in

emphasis, with stochastic models being used to examine the

dynamics and the evolution of mutations in a stem cell population

[39], phenotypic equilibrium in a cancer cell population [40], and

the effects of different control mechanisms on stem cell populations

[41,42].

Two of us have already proposed a population biology

framework for stem cell dynamics, with the theme ‘‘stem cell

biology is population biology’’ [15,27]. We used an ODE model of

one niche lineage to show how evolution affects the decision of

whether to differentiate into myeloid or lymphoid cells. In this

paper, we expand on this framework by considering the stochastic

dynamics of a heterogeneous metapopulation of niche lineages,

comprised of stem, progenitor and differentiated blood cells. For

simplicity, we restrict our study to intrinsic heterogeneity only (that

is heterogeneity arising in a clonal cell population in an identical

environment). We take into account the further consideration that

while the niches (containing the primitive cells) may be distinct, the

blood cells are mixed in the bloodstream, and the niche lineages

could be controlled by feedback from the entire bloodstream

rather than just their own, possibly localised, descendants. Thus

we couple together separate niche lineages, allowing them to

interact with each other through their differentiated progeny. Our

main aims in this paper are to 1) establish the stochastic

framework, 2) investigate the dynamics of the stochastic system,

3) explore how coupling niche lineages together into niche groups

affects the system dynamics, and 4) whether it has any effect on the

response of the entire system to a perturbation.

We first develop the stochastic modelling framework. Since

stochastic simulations can be slow, we introduce a fast, approx-

imate method for simulating an entire metapopulation of HSC

niche lineages. We then describe how to take into account the

interactions (feedbacks) from the differentiated blood cells on to

the primitive cells in the niche (stem and progenitor cells) in our

simulations. We simulate a metapopulation of lineages through

time, which first settles to homeostasis and is then perturbed by

reducing blood cell numbers. After the perturbation, there is a

peak in blood cell numbers as the stem and progenitor cells

replenish them. We investigate the effects of coupling niche

lineages together: that is, what happens when the feedbacks are

averaged across many niche lineages (the number of niches

averaged over is called the ‘niche group size’). We find that 1)

coupling niche lineages shifts the mean cell populations at steady

state, and changes the shape of the cells’ distributions; 2) as more

lineages are coupled together, the total blood cells in each coupled

niche group approach the target steady state of the system; 3)

different perturbation types elicit a different response from the

system, and when blood cells are perturbed randomly, niche

lineages coupled into larger groups respond better than smaller

groups and uncoupled lineages. Taken together, these results

imply that for the organism, connecting the individual niche

lineages into larger niche groups is advantageous, both for optimal

regulation of the overall system and for responding to random

perturbations.

Methods

HSC Model
We begin with the model of the HSC system as developed by

Mangel and Bonsall [27], which characterises the stem cell niche

and its products as a control system driven ultimately by demand

from the organism (Fig. 1). The system consists of a HSC niche,

containing stem and progenitor cells, and its fully differentiated

progeny cells in the bloodstream. The demand from the organism

occurs via changes in the levels of differentiated blood cells, which

feed back this demand to the primitive (stem and progenitor) cells.

Specifically, the model is comprised of the populations of stem

cells (S), multipotent progenitor cells (MPP), common lymphoid

and common myeloid progenitor cells (CLP and CMP, respec-

tively) and their fully differentiated products, lymphoid and

myeloid blood cells (L and M, respectively). Although there are

many differentiated blood cell types (see, for example, [14]), here

Author Summary

Stem cells portend great potential for advances in
medicine. However, these advances require detailed
understanding of the dynamics of stem cells. In vitro
studies are now routine and challenge our preconceptions
about stem cell biology, but the dynamics of stem cells in
vivo remain poorly understood. Thus, there is a real need
for novel computational frameworks for general under-
standing and predictions about experiments on stem cells
in their native environments. By implementing a stochastic
model of stem cell dynamics, generically based on the
bone marrow system, in a novel, fast and computationally
efficient way, we show how different couplings of stem
cell niche lineages lead to different predictions about
homeostatic control. Understanding the demand control
of stem cell systems is essential to both predicting in vivo
stem cell dynamics and also how its breakdown may lead
to the development of cancers of the blood system.
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we classify them as myeloid and lymphoid types for the sake of

simplicity. Thus our model has six state variables, to correspond to

the population of each cell type, with certain transitions allowed

between the states: S self-renewal via either symmetric or

asymmetric division; S (symmetric) differentiation; MPP multi-

plication or differentiation into CLP or CMP, i.e. either the

lymphoid or myeloid route, with relative probabilities r and

(1{r), respectively (see below); CLP and CMP differentiation

into L or M, respectively; in addition, all cell types can die. In

[27], these transitions are written down as a set of ODEs (also

given in Supporting Text S1, Section 1), which give the rate of

change of each state in time as a function of the current state.

Here, we use the stochastic version of this model, given by

formulae for each transition between the states, which occur

probabilistically (Table 1).

The model also incorporates four different feedbacks from the

blood cells L and M on to the S and MPP cells. Three of these,

WS,WSD
and WP, take the form

WS(L(t),M(t))~
1

(1zbL SL(t)zbM SM(t))
, ð1Þ

where their respective parameters b are defined in Table 2. These

inhibit the activity of S and MPP when blood cell levels are high.

Specifically, WS inhibits all S activity (both self-renewal and

differentiation), WSD
inhibits S symmetric differentiation only and

WP inhibits all MPP activity. The form of Eq. (1) is based on

earlier studies [28,38], and conforms to the assumptions that: 1)

numbers of both blood cell types have an effect on S and MPP
activity, 2) their effects are additive, 3) the strength is different for

L and M cells, and 4) when numbers of either fall, the activity of S
and MPP increases again. Note that feedbacks W always take

values on (0,1�.
The last feedback is perhaps the most interesting, and is one

aspect that differentiates this model from previous work. We refer

to it as the Multipotent Progenitor Commitment Response, or

MPCR [27]. This feedback determines the probability of an MPP
cell differentiating into either the lymphoid or myeloid routes. The

idea behind this is that when blood cell numbers are not at their

homeostatic levels (defined as a specific target value of r), the

MPCR aims to shift the production of new blood cells to the

appropriate type. We model the MPCR as

r(L(t),M(t))~

a
M(t)

L(t)

� �c

1za
M(t)

L(t)

� �c , ð2Þ

where a and c are positive parameters. When either L(t)~0 or

M(t)~0 (states that are not reached in practice by the

deterministic model, but do occur in the stochastic model) this

causes a problem in Eq. (2), so in this event we simply treat

L(t)~1 or M(t)~1, respectively, for the purposes of evaluating r;

this has the advantage of affecting the value of r by only a small

amount whilst keeping the MPCR pressure towards the correct

cell type.

We set the MPCR parameters c and a to give a target

homeostatic blood cell ratio, which here is 1L : 1000M to loosely

correspond to that in humans. To do this, we note that r is defined

as the probability of an MPP differentiating to a CLP, i.e. at

homeostasis we have on average rh~
CLP

CLPzCMP
. From this, we

can also specify steady states using the blood cell numbers, i.e. as

rh~
L

LzM
, provided that the differentiation and death rates are

identical for both CLP and CMP, as well as L and M (however,

we examine the general case and use a parameter setup where the

death rates of L and M are not equal, but the only consequence is

that the homeostatic state will not be exactly equal to rh for the

chosen c,a; we explain this issue further in Supporting

Text S1, Section 2). Now, at homeostasis we have rh~
1

1z1000
~9:99|10{4. We then substitute these values into Eq.

(2), choose a value for c and so calculate the corresponding a. We

can do this for different combinations of c and a, thus varying the

strength of the response whilst retaining the same target cell ratio

rh.

Although many combinations of c and a can give the same

homeostatic ratio of L : M, they strongly affect the sensitivity of

the MPCR to changes in cell numbers and its response to

perturbations. In [27], we used this model to examine the

behaviour of the haematopoietic system from an evolutionary

perspective. Treating it as a demand control system, where the

demand comes from the entire organism, we showed that there is

varying selection on organisms with different MPCR parameters c
and a. Different organisms can thus evolve a range of parameters

as their environments vary, and this affects the dynamics of their

Figure 1. One niche lineage of the stochastic system, with all
state transitions and feedbacks shown. Functions WS , WSD

and WP

are feedbacks on to the activity of S, differentiation rate of S and
activity of MPP, respectively, and r is the so-called MPCR, which
determines the probability of an MPP transitioning to either the
lymphoid or myeloid lineages, and is defined in Eq. (2).
doi:10.1371/journal.pcbi.1003794.g001
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haematopoietic system as well as its response to perturbations.

This implies that it is important to take into account the

evolutionary background of an organism when examining the

dynamics of the haematopoietic system, and stem cell systems in

general. This is consistent with the idea that stem cells are units of

evolution [43,44].

Stochastic HSC Model
The system of ODEs for the deterministic HSC model

(Supporting Text S1, Section 1 and Ref. [27]) can be considered

the continuously-conditioned average of the stochastic system [45].

If these ODEs were linear, we could say that they represent the

mean of the stochastic system (that is, the initially-conditioned

average: see [45]); however, as they are non-linear due to the

feedback functions, we cannot tell a priori the relationship between

the deterministic and stochastic solutions (although having said

this, initial explorations of a much simpler stem cell system found

the ODE solution to be reasonably close to the stochastic mean in

the case of a single lineage with feedbacks [15]). In general, ODE

models are not able to account for the full range of dynamics of

highly stochastic systems, and in extreme cases can even give

results that are unrepresentative of the full behaviour of the system

[46,47]. The stochastic formulation of the ODE model also has six

states and fourteen transitions between the states. However, rather

than occurring at deterministic rates, these transitions now occur

with particular propensities at each step of the simulation.

The stochastic simulation algorithm (SSA), developed by

Gillespie [48], allows us to simulate such a system in a statistically

exact way. We first describe it in general terms and then discuss its

application to the HSC system. In general, we consider a set of M

types of transitions between N kinds of cells. We track cell

populations through time with the state vector X(t)~

½X1(t),X2(t), . . . ,XN (t)�T , where Xi(t) represents the number of

cells of type i at time t and T denotes the matrix transpose. We let

i~1, . . . ,N denote the cell type index and j~1, . . . ,M denote the

transition index; boldface font represents a vector of size N|1.

The SSA is a simple and powerful method, and essentially

consists of finding, at each step, the time until the next transition

and which transition occurs. To do this, we define the M|1
vector of propensity functions aj(X(t)), where aj(X(t))dtzo(dt) is

the probability of transition j occurring in an infinitesimal time

dt, and where o(dt) represents terms of higher order in dt (for

further details about the importance of this term, see [49]). In

addition, we have a stoichiometric matrix n~½n1,n2, . . . ,nM � of

size N|M, which represents how each transition affects the

numbers of cells. Knowledge of X(t),aj(X(t)) and n is all that we

need in order to simulate the time dependence of the HSC

system.

The time until the next transition, t, is sampled from an

exponential random variable with parameter a0(X(t)), where

a0(X(t))~
XM
j~1

aj(X(t)):

This implies that the probability of no transition in the next dt is

e{a0(X(t))d t, which can be expanded as a Taylor series to

1{a0(X(t))dtzo(dt). Given that a transition occurs, the proba-

bility that it has index j is

aj(X(t))

a0(X(t))
:

Once these two have been chosen, the state vector is updated as

X(tzt)~X(t)z
XM
j’~1

vj’Kj’, ð3Þ

Table 1. Transitions in the stochastic model.

# Transition Transition propensity Process

1 S?2S
rSS

ln(
K

S(t)
):WS(L(t),M(t)):S(t)

S symmetric division (self-renewal)

2 S?SzMPP rSA
WS(L(t),M(t)):S(t) S asymmetric division (self-renewal)

3 S?2MPP rSD
WSD

(L(t),M(t)):WS(L(t),M(t)):S(t) S symmetric differentiation

4 S? 6 0 mSS(t) S death

5 MPP?2MPP lPWP(L(t),M(t)):MPP(t) MPP renewal

6 MPP?CLP rPWP(L(t),M(t)):r:MPP(t) MPP differentiation to CLP

7 MPP?CMP rPWP(L(t),M(t)):(1{r):MPP(t) MPP differentiation to CMP

8 MPP? 6 0 mPMPP(t) MPP death

9 CLP?L rCLPCLP(t) CLP differentiation

10 CLP? 6 0 mCLPCLP(t) CLP death

11 CMP?M rCMPCMP(t) CMP differentiation

12 CMP? 6 0 mCMPCMP(t) CMP death

13 L? 6 0 mLL(t) L death

14 M? 6 0 mM M(t) M death

The time-dependence of the state variables has been explicitly stated in the transition propensities to differentiate the state variables from parameters.
doi:10.1371/journal.pcbi.1003794.t001

Stochastic Dynamics of Stem Cell Lineages

PLOS Computational Biology | www.ploscompbiol.org 4 September 2014 | Volume 10 | Issue 9 | e1003794



where j is the index of the transition that occurred and

Kj’~
1 if j’~j,

0 otherwise:

�

The SSA was initially developed to simulate the interactions of

different chemical species in a dilute gas, and has since been

extended to dilute solutions [50]. Both of these scenarios assume

that the system is macroscopically well-stirred and homogeneous.

The usual mass-action form of its propensity functions are directly

based on these assumptions. In order to use the SSA with the HSC

system, which does not necessarily obey either assumption, we

adopt instead a phenomenological approach to definining the

propensity functions, as is the custom when constructing ODE

population models. In effect, we simply convert the transition rates

of the ODE system into transition propensities. The form of the

propensities depends on our assumptions regarding the processes

involved: thus here, the propensities are dependent upon a rate

constant, the population of the transitioning cell type, and in the

case of stem and progenitor cells, also the feedbacks that we have

assumed exist (Table 1). Note that the propensities give the

probability of a reaction occurring per unit time, and therefore

are not required to remain on ½0,1�. For our HSC model

simulations, we define the state vector as X(t)~

½S(t), MPP(t), CLP(t), CMP(t), L(t), M(t)�T .

Fast Stochastic Simulations
The SSA framework of the previous section is both simple and

statistically exact, meaning that a histogram built up of an infinite

number of simulations is identical to the true histogram of the

system. However, especially for systems with larger populations

(generally, hundreds or thousands of cells, or more), faster

transitions or those whose transition rates have a complicated

form, it can become slow. For such systems, if computational time

is an issue, it is more appropriate to use an approximate method. A

common example of such a method is the t-leap method [51],

which evaluates many transitions in one (larger) step, thereby

speeding up computation.

The t-leap update formula also takes the form in Eq. (3), but

rather than a single transition, now the number of transitions

Table 2. Constants and parameters in the stochastic model.

Parameter Value Description

sng varied Niche group size

K 10 Niche carrying capacity of stem cells

r Eq. (2) MPCR

c varied MPCR parameter (exponent)

a varied MPCR parameter (multiplier)

WS Eq. (1) Feedback from L, M on S activity

WSD
Eq. (1) Feedback from L, M on S differentiation

WP Eq. (1) Feedback from L, M on MPP activity

rSS
2.5 S symmetric division (self-renewal) rate

rSA
1 S asymmetric division (self-renewal) rate

rSD
0.001 S (symmetric) differentiation rate

rP 0.1 MPP differentiation rate

rCLP 0.1 CLP differentiation rate

rCMP 0.1 CMP differentiation rate

lP 0.25 MPP multiplication rate

mS 0.004 S death rate

mP 0.02 MPP death rate

mCLP 0.001 CLP death rate

mCMP 0.001 CMP death rate

mL 0.028 L death rate

mM 0.01 M death rate

bLS 2=sng
� Feedback parameter of L in WS

bLD 4=sng
� Feedback parameter of L in WSD

bLP 0:2=sng
� Feedback parameter of L in WP

bMS 0:02=sng
� Feedback parameter of M in WS

bMD 0:04=sng
� Feedback parameter of M in WSD

bMP 0:0002=sng
� Feedback parameter of M in WP

*Note: these parameters change depending on the niche group size, in order to maintain the same stable state at homeostasis, thus allowing equal comparison
between them.
doi:10.1371/journal.pcbi.1003794.t002
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occurring in each channel j over each step t, represented by Kj , is

given by

Kj~P(aj(X(t))t), ð4Þ

i.e. it is a Poisson random number with mean aj(X(t))t. This

approach can greatly speed up computation, although it incurs a

loss in accuracy. The stepsize can be varied, and is commonly

chosen to be sufficiently small to achieve reasonable accuracy but

sufficiently large to increase the computational speed. A simple

way of doing this is to bound the change in each cell population

over one step, DXi, by a small fraction E%1 of Xi(t). Since DX is a

random variable, in practice this means bounding its mean and

standard deviation. t can then be chosen to be consistent with

these bounds. For the simulations in this paper, we have used a

simple version of this scheme (set out in detail in [52], specifically,

Eqs.(32) and (33)), without any consideration of reaction criticality.

Several similar methods have been proposed with higher efficiency

or accuracy (for example, [53–55]). Since we introduce additional

complexity by simulating an entire metapopulation of lineages and

coupling them, here we have chosen to use a simple stepsize-

adapting scheme.

Simulating a Metapopulation of Niche Lineages:
Vectorised t-Leap

In order to simulate a large number of niche lineages, we

expand the Gillespie SSA/t-leap approach from just one sub-

simulation (i.e., lineage) to many. By including interaction terms

between each individual niche lineage, we can easily simulate an

entire interacting heterogeneous metapopulation of niche

lineages. The heterogeneity results only from intrinsic noise,

that is, noise arising from random thermal fluctuations, which is

present even in genetically identical populations in the same

environment [35]. Our method almost resembles a compart-

ment-based model, which consists of many discrete spatial

compartments, each of which is assumed to be homogeneous

inside. However, as details of the spatial aspects of stem cell

niches are still emerging, we chose not to explicitly equate each

sub-simulation with a discrete spatial compartment; rather, each

sub-simulation represents a niche lineage whose physical

locations are not taken into account.

We take advantage of the native matrix structures of the Matlab

programming language, with the state vector of each niche lineage

forming one column of the overall state matrix. Thus, if there are

F separate niche lineages, instead of an N|1 state vector, we now

manipulate an N|F state matrix. This approach is conceptually

simple, easily allows for the introduction of coupling and

interactions, and is especially fast (as Matlab is optimised for

matrix calculations, calculating each step of the SSA scheme on a

matrix rather than a vector has little effect on the speed, whereas

doing the same for each niche lineage in turn would be very much

slower). This state matrix approach could easily be implemented in

other programming languages, and although it would not

necessarily result in a large computational speedup (for instance,

this is likely to be the case in the popular programming language

C), we argue that it is favourable even for its inherent simplicity

alone.

Since each sub-simulation of the SSA chooses timesteps

randomly, the metapopulation of niche lineages would not be

simulated in time synchronously, akin to a running race where

some runners are ahead and some lag behind. Since we want to

simulate an interacting, coupled metapopulation, all lineages must

stay in step otherwise the interactions would effectively be

averaging over time. The solution is to switch to the t-leap

method from the previous section, use it to choose a suitable

timestep and evolve every niche lineage over this timestep. It is

important to note that this does not bias our results in any way: we

are only selecting a common timestep for all the lineages, but the

reactions that occur in each lineage are then chosen according to

the true Markov process.

To explain this, let us go back to basics: the evolution of each

lineage is governed by a Markov jump process [56], which is

approximated by the t-leap method. If we wanted to simulate a

population of F niche lineages using a standard t-leap, we would

run F repeat simulations of a single lineage. This could be done

with either a fixed or an adaptive timestep, and we would sample

the Markov process (carry out the t-leap update) at the time points

given by those timesteps. However, the process itself is independent
of the times at which we sample it (although, of course, the same

cannot be said for the solution of our approximate t-leap method,

which approaches the true Markov process as the timesteps

decrease). Thus we are free to sample the Markov process at

whatever time points we choose, provided we remember the

condition on our approximate solution. Now, a reasonable part of

the computational time of a leaping method is taken up with the

overhead of calculating the timestep adaptively. By simulating the

metapopulation simultaneously, our method allows us to choose

just one timestep for all F niche lineages, reducing the total

overhead. The only disadvantage is that if one lineage contains

unusually large populations, this would pose as a bottleneck on the

common stepsize.

We must thus find the common limiting timestep from the

whole metapopulation. First, the propensities of each transition in

each niche lineage are calculated. Then, we find the lineage with

the largest a0(X(t)), that is the sum of the propensities. Now, we

simply continue with the stepsize selection as if we were only

simulating a single lineage, and its propensities were those of the

selected one. Once the stepsize has been chosen, the entire

metapopulation is evolved over that step using Eqs. (3) and (4). We

describe this more precisely in Algorithm 1.

Algorithm 1. Vectorised t-leap

At time t~0, with a metapopulation of niche lineages of size F ,

each taking initial states of Xf (0), f ~1, . . . ,F :

0. Initialise state matrix containing F niche lineages, each with

N distinct cell types: this is an N|F matrix containing the initial

state vectors X (0)~ X1(0), . . . ,XF (0)
� �

.

With the system in state X (tn)~ X1(tn), . . . ,XF (tn)
� �

at time tn:

1. Calculate propensities of each niche lineage to get an M|F

matrix of propensities, a(X (tn))~ aj(X
1(tn)), . . . ,aj(X

F (tn))
� �

,

j~1, . . . ,M.

2. Find a0(X (tn))~
PM

j~1 aj(X
1(tn)), . . . ,

PM
j~1 aj(X

F (tn))
h i

.

3. Find maxf (a0(Xf (tn))), f ~1, . . . ,F , the niche lineage with

highest total propensity, and assign its lineage index to f ’.
4. Calculate t using the stepsize-adapting procedure in [52], with

the propensities aj(X
f ’(tn))), j~1, . . . ,M.

5. Upda te s ta te mat r ix a s X (tnz1)~X (tn)z
PM

j~1 vjP
(aj(X (tn))t), and tnz1~tnzt. If any cell type in any niche

lineage goes negative, redo step using t~
t

2
. Otherwise, return

to Step 1.

We select the lineage index of the highest total propensity, as

this is the niche lineage with the most frequent transitions, and

thus the limiting factor on the stepsize. Of course, the actual

number of transitions at each step is probabilistic, so if by chance
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too many transitions occur for any cell type in any niche and its

population goes negative, the step should be redone with t~
t

2
(standard procedure in t-leap methods). For even tighter control of

the stepsize, instead of selecting a single niche lineage f ’ and taking

its total propensity as the limiting factor, we could instead find the

lineage index of the maximum propensity of each transition. This

would set a tighter bound on t, as each transition would partake in

the stepsize-selection process. However we found the current

method to be satisfactory.

Although in this paper we have used a procedure from Ref.

[52] to find the timestep, we are not restricted to this particular

method. The matrix scheme we have described above is flexible,

in that it can easily be fitted into any procedure for adapting t,

including advanced and efficient methods such as the Stochastic

Bulirsch-Stoer method [55] or the Theta-trapezoidal t-leap

method [53]. As long as we find the niche lineage with the most

frequent reactions, we can choose a timestep based on this

lineage for the entire metapopulation using any t-adapting

scheme.

Coupling Niche Lineages
Each HSC niche does not exist in isolation in the bone marrow;

in fact HSCs often circulate around the bone marrow and

bloodstream [57,58]. Differentiated blood cells are also, in general,

ejected from the niche and enter the bloodstream, although

certain differentiated cell types can remain localised to the niche

[12]. Thus, cells from each niche lineage are mixed to various

degrees after they have fully differentiated and leave the niche. To

investigate the dynamics of coupling together separate niche

lineages, we introduce the implementation of the coupling.

We assume that there is no interaction between cells that are not

fully differentiated (that is, any cell type except for L and M). The

coupling comes into effect only through the feedback functions of

the L and M cells on to S and MPP cells (although it should be

noted that our computational method can handle any form of

coupling). To capture this, we create ‘niche groups’, where the

feedbacks on the stem and progenitor cells in each niche lineage

depend on the total levels of L,M in the entire niche group of that

lineage. In practice, this means that the blood cells L,M in each

lineage of a niche group are replaced in the feedback equations by

the total L,M in that niche group (whilst normalising the

parameters by the niche group size). The propensities for each

niche lineage are then calculated as described in the previous

section and the populations of each niche lineage updated

separately (Algorithm 2).

To aid in visualising this, we give an example using a population

of four niche lineages coupled into niche groups of size two, i.e.

F~4,G~2 (Fig. 2). When the lineages are coupled, the feedbacks

are taken over the total L, M in the respective niche group. Then,

denoting by Lf the population of L from niche lineage f , and

similarly for M, the feedbacks of the first two niche lineages would

be W(
L1(t)zL2(t)

2
,
M

1

(t)zM2(t)

2
), and the last two would be

W(
L3(t)zL4(t)

2
,
M

3

(t)zM4(t)

2
). This is the case for all feedback

functions, including the MPCR. The factor of one half is necessary

to normalise the steady states to be directly comparable, regardless

of niche group size.

Algorithm 2. Coupled vectorised t-leap

With the system in state X (tn)~ X1(tn), . . . ,XF (tn)
� �

at time tn,
and F niche lineages coupled into G niche groups, i.e. niche group
size sng~F=G:

1. Find total L, M for each niche group, L̂Lg~
Pgsng

g’~1z(g{1)sng

Lg’=sng,

g~1, . . . ,G; i.e. take the sum of all L over each niche group

and normalise by niche group size, and similarly for M̂Mg.

2. Calculate MPCR values r̂r~r(L̂Lg,M̂Mg), g~1, . . . ,G, and

similarly for feedbacks W to find ŴWS,ŴWSD
,ŴWP. This gives a

vector with length G of values for each feedback function.

3. From these, formulate individual feedback functions for each

niche lineage (r, WS , WSD
and WP) by taking r1,...,sng

~r̂r1,

rsngz1,...,2sng
~r̂r2,. . . , r(G{1)sngz1,...,Gsng

~r̂rG , and similarly for

WS , WSD
and WP (i.e. assign to each individual niche lineage’s

feedbacks the value of its niche group’s feedbacks). These are

vectors of length F .

4. Now proceed with Steps 1 to 5 of Algorithm 1.

This method allows us to evolve an entire metapopulation of

niche lineages in time, and to take into account the interactions

between the blood cells of different lineages in the feedbacks.

Results

Fast Stochastic Simulations
We begin by evaluating the performance of our computational

method. Although it is not exact, the t-leap is in general a much

faster simulation method than the SSA. The error parameter E
(introduced in the Fast Stochastic Simulation section) indicates the

amount of error we allow into the leaping approximation.

Common values for E are of the order of 0.01, meaning roughly

that the timestep selected allows at most a 1% change in the

population of the rarest cell type; a value of 0:01 typically

corresponds to high accuracy and 0:05 to low accuracy, but this

can vary.

We ran simulations of a metapopulation of 10000 uncoupled

niche lineages with the vectorised t-leap method described in

Algorithm 1 for a wide range of values of E, as well as with a

vectorised SSA, and recorded the average runtimes on a standard

desktop computer. The SSA can be regarded as finding the exact

solution (for uncoupled niche lineages only — it loses this

exactness when the lineages are coupled, see Vectorised t-leap

section). Therefore we compared the probability density functions

(PDFs) returned by the t-leap to the exact PDF given by the SSA

to get an idea of how the errors of the t-leap simulations changed

as the error parameter was varied.

The simulation runtimes are listed in Table 3, as are the total

errors of the t-leap results. We calculated these by taking the L1-

distance between the weight of each bin (that is, probability density

multiplied by bin width) of the t-leap PDFs and that of the SSA.

The runtimes decrease as the error parameters increase, with the

SSA taking the longest, as expected. The self-distance of two

different SSA simulations is relatively large (Table 3, top row),

indicating that the differences in errors between the t-leap with

Ev0:05 may be due to Monte Carlo error. This means that the

vectorised t-leap with these error parameters is about as accurate

as the SSA. With E§0:05, however, the t-leap does become

substantially less accurate. Accordingly, in the rest of our

simulations, we used E~0:01: Table 3 shows that the vectorised

t-leap is indeed faster than the SSA, significantly so when

Ew0:001. However, even with E~0:1, the t-leap finds remarkably

accurate solutions. This is compounded with the fact that the SSA

should not be used to simulate coupled niche lineages, as each

lineage proceeds at its own pace. These factors mean that

approximate, fast methods that can sample the state matrix

synchronously are most ideal for simulating larger, interacting

systems such as our HSC system.
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Stochastic Model Dynamics
We then ran simulations of the HSC system on metapopulations

of 20000 uncoupled and 20000 coupled niche lineages for each set

of parameters, using our vectorised t-leap method from above

with E~0:01. In order to investigate the coupling between

different lineages, this was grouped into sub-populations (for

example, 200 sub-populations of niche groups of size 100). The

model is not parametrised using any specific data: the parameters

in Table 2 are a canonical parameter set, chosen to elucidate

general principles rather than make specific biological predictions.

Due to the number of parameters, a thorough parameter sweep or

sensitivity analysis was beyond the scope of this paper; however,

manual experimentation using several parameter sets showed

relative robustness in the system dynamics (for instance, see

Supporting Text S1, Section 3). In one or two cases, we observed

consistent oscillations in cell populations, qualitatively similar to

Ref. [59]; here, we have used parameters that settle down to

homeostatic cell populations. Between t~3000 and t~4000
seconds, transitions do not occur faster, as it may seem from some

of the plots; not all transitions are recorded, and we have sampled

the ones in this time period more often to give an accurate picture

of the system dynamics after a perturbation.

We elucidate the basic dynamics of the model in Fig. 3, which

shows a stochastic simulation of a single niche lineage along with

the ODE model for comparison. We started all our simulations in

the state ½1,0,0,0,0,0�T , i.e. with one S and no other cells. All cell

populations experience an initial surge, which then dies down to a

steady state. At t~3000 seconds, we perturbed the M cells by

removing 75% of them (indicated by yellow dashed line; ODE

model not perturbed). The MPP and CMP surge just after the M

are depleted, but there seems to be little response from the CLP
and L cells. Significantly, there is also little response from S cells.

After around 1000 seconds the M cells return to their

pre-perturbation numbers, and all three cell types then settle back

to their steady states. We set the MPCR parameters to reach

homeostasis at the ratio 1L : 1000M (corresponding to

rh~9:99|10{4). However, as the death rates of L and M were

not equal, we did not expect to observe this exact homeostatic

ratio; indeed, Fig. 3 shows that the homeostatic state of the model

using this particular parameter space is around 0:7L : 1000M,

corresponding to r~2|10{3 from Eq. (2) (see HSC Model

section and Supporting Text S1, Section 2). The ODE model

roughly follows the stochastic simulations, with both indicating

similar homeostatic states.

In Fig. 4A,B,C we show the time evolution of six separate

simulations each, of both uncoupled and coupled (niche group size

100) niche lineages. The first thing we notice is that the S cells in

some lineages die out (Figs. 4A and S1), but the rest of the lineage

keeps functioning (Fig. S1). Over one quarter of all lineages had

lost their S by t~3000 seconds, and this number went up to over

one half by the end of the simulations. Only in a handful of these

cases did the entire lineage die out; the rest were maintained by the

MPP cells. Next, the total M numbers per niche group (M̂M,

normalised by niche group size; Fig. 4D) are close but not identical

for uncoupled and coupled niche lineages. This is supported by

Fig. 4F, where colour indicates M̂M numbers and which shows 100

trajectories each of uncoupled and coupled niche groups. The M̂M
numbers are consistent for all niche groups, and there is also little

difference between uncoupled and coupled M̂M numbers. In

contrast, Fig. 4E highlights the differences between M per

individual lineage seen in Fig. 4C: uncoupled lineage M numbers

fluctuate in an uncorrelated way over time and all lineages behave

in a similar way, whereas those of coupled lineages show a distinct

correlation over their own trajectories, as well as considerable

variation between individual niche lineages. Fig. S1 demonstrates

that this also happens, to varying degrees, for the other cell types.

It is difficult to tell whether this is also the case for L, where

stochastic fluctuations are large compared to cell numbers, but Fig.

S2 helps to clarify the issue: the steady states of the uncoupled and

coupled L̂L are also fairly close but not identical (Fig. S2A,C), and

in Fig. S2B we can make out the distinct lines made by the coupled

lineage L levels, implying their fluctuations are correlated

compared to the uncoupled lineages. To sum up so far, Figs. 4,

S1 and S2 tell us that 1) although there is a large surge in MPP
numbers, there is a smaller relative response in numbers of S; 2)

there is also a large surge in CMP numbers to replenish the lost

M, which corresponds to a modest drop in CLP and L numbers

followed by a small surge to return to their steady states; 3) cell

populations in individual uncoupled niche lineages fluctuate

considerably with time, whereas those of coupled niche lineages

Figure 2. A population of four coupled niche lineages with a niche group size of two. The MPCR from the total L and M cells in the niche
group is fed back to both lineages. This is also the case for the feedbacks W, which are not shown.
doi:10.1371/journal.pcbi.1003794.g002
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less so; 4) however, cell numbers between individual coupled

lineages are much more varied than those of uncoupled lineages,

which are all roughly similar.

HSC Steady State Distributions
Varying MPCR parameters. In [27], we investigated the

dynamics of MPCRs with different parameters c and a and

showed that different values give a different response following a

perturbation; thus they are linked to the evolutionary background

of the organism. In this paper, their values were always chosen to

give rh~9:99|10{4~1L : 1000M, to approximately corre-

spond to the ratio of blood cells in humans. As the choice of

values is constrained to the curve given by rh, we henceforth refer

only to c, with the implication that a is also varied according to this

curve. c can take on any positive value; zero implies a non-

responsive MPCR, that is it does not react to changes in L, M; as c
increases, so does the strength of the response to non-homeostatic

ratios of L, M. Once c goes into the tens, the MPCR is extremely

reactive, even creating extra fast-scale fluctuations in the post-

perturbation cell numbers on top of the normal fluctuations

involved in relaxing back to homeostatic levels. Above this, it

becomes impossible to evaluate in practice, as a is too small.

Therefore, reasonable values for c most likely lie somewhere in the

range from 0.1 to 5.

Now, we examine the distribution of each cell type at

homeostasis and how the choice of c and a affects the steady-

state behaviour of the HSC system. As c is increased, so the mean

values of the cell distributions change. For some cell types the

means increase (S, CLP, L), and for others they decrease (MPP,

CMP, M ), following the dynamics of the ODE model. Associated

with these changes in the mean are corresponding changes in the

variance of the distribution of each cell type: increasing mean also

implies increasing variance, and decreasing mean decreasing

variance. As examples, we highlight M (Fig. 5), S (Fig. S3) and L

cells (Fig. S4), and summarise for all cell types in Fig. S5.

The distribution mean of the MPCR also increases with

increasing c, as does its variance (Fig. 6). Although the mean

MPCR remains reasonably close for both coupled and uncoupled

lineages, the uncoupled MPCRs have a particularly high variance,

with the bulk of the distribution away from the mean as well as a

long tail. The mean values of the W feedbacks also increase with c
(very little in the case of WP; Fig. S6) but their variance does not

seem to change consistently. However, it is possible that we

observed this because the variances are very low (between 10{4

Table 3. Runtimes and errors of the vectorised t-leap method compared to the SSA.

Simulation method Runtime (hours) Total error

SSA 67.4 0.201

t-leap, E~0:001 44.6 0.173

t-leap, E~0:005 6.7 0.175

t-leap, E~0:01 2.9 0.189

t-leap, E~0:05 0.9 0.214

t-leap, E~0:1 0.7 0.312

The errors are calculated by subtracting the weight of each point of the PDF (that is, value multiplied by bin width) from the corresponding point of the SSA PDF. The
error in the SSA row is the SSA self-distance, i.e. the error between two different SSA simulations. These simulations are of uncoupled niche lineages only, hence the SSA
can be regarded as the true solution.
doi:10.1371/journal.pcbi.1003794.t003

Figure 3. Single stochastic trajectories of all cell types over time. Shown are levels of A) S, CLP, L, and B) MPP, CMP, M in a single niche
lineage over the full simulation time. For comparison, ODE trajectories (with no perturbation) have been included. Yellow dashes show time at which
the lineage is perturbed by removing 75% of its M cells.
doi:10.1371/journal.pcbi.1003794.g003
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and 10{11). The W feedbacks take values consistent with the L, M
cell populations.

Thus different c (and a) parameters change the MPCR

dynamics, which affects the homeostatic cell populations, which

then affects all four feedbacks, which in turn affects the cell

populations, and so on. We find that both coupled and uncoupled

niche lineages behave in a similar way as the MPCR parameters

are altered, albeit to varying degrees. We explore more fully why

the cell populations are affected by MPCR parameters in

Supporting Text S1, Section 2.

Coupling niche lineages. We now fix the MPCR

parameters at c~2 and a~10{9, to again correspond to

rh~9:99|10{4~1 L : 1000M. These values represent a reac-

tive but not hyperactive MPCR intended to highlight any

dynamics arising from coupling niche lineages, to which we now

turn our attention. When taken individually, it is the uncoupled

niche lineages that are regulated more tightly, with the M

numbers of the coupled lineages having a much wider distribution

(Fig. 7A). In contrast, from a systemic view the situation is the

opposite: when looking at total cell numbers per niche group

(normalised by niche group size), the coupled niche groups M̂M
have narrower distributions compared to the uncoupled ones

(Figs. 7B and S5). This comes about because when niche lineages

are coupled, blood cell numbers are regulated only at the niche

group level, allowing the blood cell numbers in individual lineages

to vary widely.

A key difference between the distributions of the coupled and

uncoupled niche group cell numbers is their mean (Figs. 7A,B,

S7A,B and S5). Of course, this is also true for individual lineage

cell populations, but is harder to notice visually; when the cell

numbers are summed over niche groups, the distributions of the

coupled and uncoupled niche lineages are separated (Figs. 7B and

S7B). In all cases, the coupled and uncoupled lineage cell numbers

are centred around different values. However, as the MPCR

Figure 4. Trajectories of stochastic simulations of uncoupled and coupled niche lineages. Shown are six individual lineage A) S, B) L and
C) M cell levels over time, with means superimposed; D) total M (normalised by niche group size) for six uncoupled and six coupled entire niche
groups (sn g~100) over time; E) trajectories of 100 simulations of uncoupled (top half) and coupled (bottom half), where colour represents the
populations of M in each lineage, and similarly for F), where colour now represents total niche group M , normalised by niche group size.
doi:10.1371/journal.pcbi.1003794.g004
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parameters affect cell steady state populations, it is not trivial to

pin down which distribution is more closely centred around the

target cell ratio rh. Using a different model parameter setup (with

equal death rates, thus allowing the system to reach exactly

rh~9:99|10{4), we found that it was indeed the coupled niche

lineages that regulated their cell populations to be closer to rh

(Supporting Text S1, Section 3).

The corresponding homeostatic distributions of two of the

feedback functions are shown in Fig. 7C,D. In contrast to the cell

populations, it is the feedbacks of coupled individual niche lineages

that are more tightly distributed, and this effect becomes stronger

as niche group size is increased. This suggests that it may be due to

the niche lineage grouping, because within each niche group the

feedbacks are identical. To check this, we next calculated the

mean feedbacks in each niche group. It turns out that the

distribution of the feedbacks is indeed controlled by the coupling,

and the mean feedbacks per niche group have similar distribu-

tions, whether they are coupled or uncoupled (Fig. S8). The figure

also shows that the niche group size changes the feedbacks’

distribution means. This is again a case of the coupled MPCRs

affecting the mean cell numbers in each niche group, which then

affect the W feedbacks, which in turn affect the cell numbers.

We find that coupling individual niche lineages together into

niche groups, by pooling the blood cells of the group in the

feedbacks, has an effect on the distributions of the cells as well as of

the feedbacks. This effect is positive, in that it allows the blood cell

numbers to be regulated more closely to the target homeostatic

levels dictated by the model.

Perturbation Analysis
Next, we look more closely at the response of the system to

perturbations. We examine three types of perturbation: even

perturbations (37.5% reduction of M from every niche lineage),

uneven perturbations (75% reduction of M from every second
lineage only), and random, or more precisely, probabilistic, where

each lineage has a 50% chance that its M are reduced by 75%.

The perturbations were chosen to cause, on average, an identical

change in cell numbers across the entire population of niche

lineages, that is the removal of 37.5% of the entire population of

M. The actual values of 37.5% and 75% are illustrative in nature,

rather than realistic examples of blood loss from injury.

The response of the system to perturbations is given by two

main indicators: return time to homeostatic levels, and overshoot/

oscillation size, defined as the difference between the maximum of

the post-perturbation spike in cell numbers (and feedbacks) and

their steady states. Return time, much like the homeostatic levels

of the system, is dictated by the model parameters. Moreover, it is

difficult to accurately measure, as even in homeostasis, there is a

continuous turnover of cells, leading to fluctuations in the cell

numbers. We did not find a substantial difference in return time

Figure 5. PDFs of both uncoupled and coupled total niche group M, for five different MPCR parameter sets. The parameters c and a
were always set to give cell steady state ratios of 1 L : 1000M . The plot consists of ten PDFs, five each of uncoupled and coupled niche lineages. The
axes for each PDF are identical, and quantified on the left and top. MPCR parameters are varied on the bottom axis. The inset shows the variance of
each PDF as a function of c (note the broken y-axis).
doi:10.1371/journal.pcbi.1003794.g005
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between uncoupled and coupled niche lineages for any type of

perturbation, and the ODE model and the mean of the stochastic

system closely matched in this respect.

Coupling niche lineages. In the interest of brevity, we first

restrict ourselves to a random-type perturbation only and again fix

c~2 and a~10{9, and focus on coupling niche lineages. We have

already seen that the distribution means of both coupled L and M

more closely approached the target rh as niche group size was

increased; this is supported by Fig. 8A,B, which show the mean L

and M over time. It is important to realise that this is not a result

of the averaging process to calculate total niche group L and M.

As a control, we also plot the distribution means of the uncoupled

niche lineages, each of which were summed over niche groups as

with their coupled counterparts; their mean numbers are so similar

that they are almost indistinguishable from each other in the

figures. In Supporting Text S1 (Section 3) we show that the ODE

model does give a good indication of the target mean cell

populations for a given parameter set; the mean L and M

approach the ODE solution as niche group size is increased

(Fig. 8A,B).

We examine the distributions of L and M at various times

throughout a random-type perturbation and its aftermath

(Fig. 8C,D; the distribution peaks move in the directions specified

by the arrows). We begin at t~2950 seconds, with the system in its

homeostatic state. At t~3000 seconds, the perturbation is applied,

reducing the M cells of roughly half the niche lineages by 75%.

This results in a bimodal distribution of M (from unperturbed and

perturbed lineages) for both uncoupled and coupled niche lineages

(Fig. 8C(ii)); when sng~2 the distribution of total niche group M is

trimodal, since the possibilities are either zero, one or two

perturbed niches per niche group (Fig. 8D(ii)). By t~3175
seconds, the individual coupled lineages’ M cells had resumed

their previous unimodal shape, but the uncoupled niches retained

their bimodality (Fig. 8C(iii)). By t~3560 seconds, the individual

uncoupled lineages’ M cells were also starting to coalesce into a

unimodal distribution again (Fig. 8C(v)). Throughout, except for

very close to the perturbation time, the distributions of the total

niche group M̂M with sng~100 kept their shape, with the coupled

lineages remaining centred closer to the target homeostatic state

(Fig. 8D).

Repeating this for the MPCR and WS feedbacks, we see that the

response of the feedbacks after the perturbation is approximately

similar, albeit again with small differences in steady state (Fig. 9).

Similarly to M, the uncoupled lineage WS take a long time to recover,

and even after over 200 seconds they have not returned to their initial

unimodal distribution. In contrast, the coupled WS was already re-

forming its unimodal distribution 5 seconds after the perturbation.

Different perturbation types. Finally, we investigate how

the overshoots of the mean cell and feedback levels vary for all

three different perturbation types: even, uneven and random

(Fig. 10). The overshoot response of the cell populations is

different for each perturbation type (Fig. 10A,B): even perturba-

tions affect all lineages equally, with the overshoots of uncoupled

lineages slightly lower than coupled ones. Uneven perturbations,

Figure 6. PDFs of both uncoupled and coupled MPCR values in each individual niche lineage, for five different MPCR parameter
sets. The axes for each histogram are identical, and quantified on the left and top. MPCR parameters are varied on the bottom axis.
doi:10.1371/journal.pcbi.1003794.g006
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where the M of every second niche lineage are perturbed, result in

a smaller overshoot for coupled lineages than uncoupled ones, but

this does not vary with niche grouping size. In contrast, random

perturbations result in both a difference in overshoot between

coupled and uncoupled lineages, with coupled ones having smaller

overshoot, as well as a further decrease in the overshoot of the

coupled lineages as more and more lineages are coupled together.

The feedbacks also respond in a very similar way (Fig. 10C,D).

Thus, we see that the response of the system is strongly dependent

on perturbation type, with niche group size having no effect in the

case of even and uneven perturbations, but random perturbations

eliciting a more ideal response when the niche lineages are coupled

in larger groups.

Discussion

Most of the results above were concerned with linking together

separate niche lineages into groups. A large niche group size

indicates that the feedback from the blood cells (L,M) to the

primitive cells (S, MPP) is regulated by a large fraction of the

overall blood cell numbers in the organism. We found that as

niche group size was increased, the mean levels of L, M moved

closer to the ODE model solutions. This is not a huge surprise:

summing the blood cells in each niche group and normalising is

equivalent to averaging over niche groups; the larger the niche

group, therefore, the less the noise in total cell numbers per niche

group, and the closer the system is to the ODE model. This is also

a possible explanation for the lower variance of cell distributions in

coupled niche groups. This reduction in noise can be useful for

biological systems, for which noise is often detrimental. However,

the question remained of whether it was the uncoupled lineages or

the coupled ones (and the ODEs) that better achieved the target

cell populations. From the control system perspective that we have

taken, good control is defined as regulation of the cell populations

to the target ratio 1L : 1000M. Given the interactions of the

MPCR parameters and this ratio in setting the cell steady states

(see Supporting Text S1, Section 3), it was the ODE solutions, and

therefore the coupled niche lineages, that followed the target cell

levels more closely than the uncoupled ones. Thus, it seems that on

a systemic level, it is advantageous to connect together niche

lineages. This hints at some intriguing possibilities for understand-

ing the emergence of tissues, which are interacting populations of

single cells.

The difference between the overshoots for the three perturba-

tion types can be understood as follows. The even perturbation

should result in a similar overshoot from both uncoupled and

coupled niche lineages, since it affects all niches equally. This is

roughly consistent with our results for M, but it is unclear why the

overshoot of the uncoupled L is considerably lower. The uneven

perturbation affects uncoupled and coupled lineages differently,

with coupled niches having smaller overshoot, but there is no

variation with niche group size. Because it is a regular

perturbation, coupling lineages (into even-sized groups) reduces

the niche group overshoot, and it does not change with niche

group size as in every case 37.5% of the cells in each niche group

are lost. However, random perturbations elicited yet another

Figure 7. Steady-state PDFs of M cell levels and MPCR and WS feedbacks for various niche group sizes. Shown are A) individual niche
lineage M ; B) total niche group M normalised by niche group size (inset shows the variance of the PDFs as niche group size is changed); C) individual
niche MPCR values; D) individual niche WS at steady state, i.e. t~8000 seconds.
doi:10.1371/journal.pcbi.1003794.g007
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response. With smaller groups or individual lineages, it is more

likely that the entire niche group is perturbed, resulting in a larger

overshoot. At the extreme ends of the scale, one could conceivably

have one niche group with all niche lineages perturbed, and

another with none. As niche group size is increased the chances of

this decrease and the percentage of total niche group M that is lost

tends asymptotically to 37.5%, with the overshoot declining to the

same levels as for an uneven perturbation. This shows that in

environments with even perturbations, it may be advantageous

to not couple niche lineages – however such environments are

unlikely to occur in nature. In contrast, in natural environments

with random perturbations, coupling niche lineages results in a

more favourable response. This overshoot of blood cells

following a perturbation is an important aspect of our model.

There has been little work on this, although experimental

studies have found that some types of T-cells are reconstituted

very quickly and exceed normal levels, possibly supporting our

results [60,61]. We do not know of similar results for other

blood cell types.

An interesting result from our simulations is the large variation

we see in cell populations of coupled lineages between different

lineages in the same niche group, and the relatively low variation

over time of the populations in each lineage. This indicates that

the activity of the primitive cells of each lineage varies, with some

inactive/less active and others continuously differentiating to

produce more cells, in order to achieve the correct homeostatic

cell levels, somewhat akin to the HSC subsets found by Sieburg et

al. [62]. Although we have not explicitly considered it here, our

model also naturally captures the cycling behaviour of HSCs, with

periods of quiescence and activity in each lineage [63]. In addition,

after a perturbation, our model finds a response from both stem

and progenitor cells. This is in agreement with studies finding stem

cell activation after injury (e.g., [29]), but also supports the

suggestion that at least part of the response is from progenitor cells

[64].

Our results indicate that, in order to regulate blood cell

populations tightly and for a less severe response following random

perturbations, it is advantageous to the organism to couple

Figure 8. Evolution of population means and distributions of cell levels around the perturbation. Population means of A) L; B) M for
various niche group sizes during and after the perturbation. In addition, we plot PDFs of C) individual lineage M and D) total niche group M at the
time points labelled with blue arrows in B). Arrows indicate which direction the peaks are moving with time.
doi:10.1371/journal.pcbi.1003794.g008
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haematopoietic lineages together via the feedbacks from blood

cells on to primitive cells. There are three biologically-viable

possibilities for the nature of this feedback mechanism: lineage-

dependent feedback, where the primitive cells in one lineage can

only sense numbers of their own differentiated progeny; local

feedback, where the primitive cells can sense blood cells of any

lineage in proximity to them; global feedback, where all primitive

cells can sense all blood cells in the organism. Lineage-dependent

feedback would require a biochemical mechanism in which niche

lineages (or niche groups) can identify signals from their

descendants and respond to the demand control from those cells,

but not others in the blood; this could imply an epigenetic process.

Indeed, studies have found that stem cell daughters of HSCs have

a similar lifetime to their parents [34], and such an epigenetic

mechanism could also exist in non-primitive progeny to regulate

their feedback. Local feedback implies a spatial constraint on the

feedbacks; although this has already been found to exist in the case

of certain HSC progeny as well as other niche cells [12], it may not

be a universal mechanism for the haematopoietic system because

most blood cells enter the bloodstream rather than localising

Figure 9. Evolution of population means and distributions of feedbacks around the perturbation. Population means of A) MPCR values
and B) WS for various niche group sizes during and after the perturbation. In addition, C) shows PDFs of individual MPCR and WS values at t~3005,
and D) at t~3275 seconds.
doi:10.1371/journal.pcbi.1003794.g009
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around the niche. However, in other stem cell systems, it is quite a

plausible mode of feedback [65]. Finally, global feedback would

require the HSCs to sense every blood cell in the bloodstream.

Since it is likely that the feedbacks from the blood cells occur via

growth factors [28], which naturally have a limit on their range of

action, it does not seem likely that the HSC system incorporates

global feedbacks from all blood cells. More likely is some

combination of the above mechanisms. Looking for groups of

epigenetic markers shared by HSCs, progenitor cells and

differentiated blood cells could be a useful avenue for further

experimental work. Finally, as evidenced by the dynamics of our

model, the feedbacks are essential for achieving homeostatic cell

rates [28]. Although we have not explored this issue further,

our results also support the idea that cancers may be a failure of

the signalling mechanism and the associated feedback control

[66].

In ODE models, we can only account for a single, or at best an

identical set of deterministic niche lineages, so that the

interactions between a heterogeneous metapopulation of lineages

is underexplored theoretically. This is important for two reasons:

first, the dynamics of the entire system cannot be determined just

by looking at its parts, and second, we can take a much broader

point of view by looking at an entire population [26]. Indeed,

Huang [32] suggests that this is one of three as-yet-neglected

perspectives that should be adopted in stem cell modelling. For

example, maintaining homeostasis at the population level can be

achieved by several possible strategies [64]; only looking at a

single stem cell restricts consideration to just one strategy,

asymmetric division, which does not reveal the full picture. A

stochastic treatment is needed to be able to incorporate

population-level strategies such as a combination of both

asymmetric and symmetric division and differentiation. Our

work also links with the idea of a potential landscape of cell states

[67] (although here, the axes of the landscape represent not, say,

expression levels of a protein, but numbers of cells in each sub-

population): one simulation represents a niche lineage moving

along the landscape and falling into a stable state (the

homeostatic state for that lineage), and many simulations, as we

have done, could allow us to reconstruct the potential landscape

by randomly generating trajectories until we can see its full shape.

Thus Monte Carlo simulations offer a computational way to

explore the potential landscape.

Figure 10. Overshoots of mean cell levels and feedbacks for various niche group sizes and perturbation types. Overshoots of mean A)
L; B) M ; C) MPCR; D) WS for various niche group sizes and three perturbation types. An even perturbation signifies a 37:5% reduction of M in every
niche lineage, uneven means a 75% reduction of M in every second lineage and random means a 50% chance of each lineage losing 75% of its M .
doi:10.1371/journal.pcbi.1003794.g010
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In this paper, we first introduced a fast method of simulating an

entire metapopulation of interacting niche lineages (or cells or

biochemical species) synchronously through time. This is based on a

version of the t-leap method [51] and then generalised to the

metapopulation level. It compares favourably with the popular

stochastic simulation algorithm method [48], both in terms of speed

and accuracy – when interactions are to be included, the stochastic

simulation algorithm averages them over time, as each member of

the population proceeds through time at a different pace. The

computational method we have proposed here can be combined

with many stochastic simulation schemes in order to allow one to

quickly and easily simulate whole metapopulations. Naturally, it is

not limited to cell metapopulations, and can be used in any context

where we would otherwise use Gillespie’s standard SSA to simulate

biochemical populations without tracking individual particles. For

instance, with no interactions specified, it can be used to

simultaneously run many repeat simulations of the same chemical

reaction system (by regarding each sub-simulation as an indepen-

dent repeat simulation), in order to find the full distribution of

possible states, arising from intrinsic noise, at some time. However,

it is especially useful when we are interested in interacting

populations/metapopulations; for instance, this is often the case in

ecological systems. It could also be used in condensed matter and

chemical physics and in any biochemical context with spatial

homogeneity. Finally, it is a very short logical step away from a

spatial stochastic model made up of separate compartments (e.g.,

[68,69]), and this is one obvious extension.

We used this method to build upon the haematopoietic stem cell

model introduced in [27], to simulate a heterogeneous metapop-

ulation of haematopoietic stem cell lineages in time. Using this

model, we considered the coupling of individual niche lineages

into niche groups. We found that the more niche lineages are

coupled, the more closely the mean blood cell numbers

approached the target cell ratio. Moreover, when perturbations

affected each lineage randomly, as would be the case in a natural

environment, a larger number of niche lineages being coupled

leads to a smaller overshoot in cell numbers, implying a more ideal

response. This suggests that it is advantageous for an organism to

couple haematopoietic lineages in order to better regulate

homeostasis in the haematopoietic system, as well as respond

better to natural perturbations.

Our work leads naturally on to questions about linking cells into

whole tissues [65]; for instance, an obvious question is whether

these are evolutionarily favourable compared to single niche

lineages (or cells). One advantage might be the ability of larger

systems to ‘average out’ excessive noise, as is the case with our

coupled niche groups. So far, there are few studies investigating

whole populations of stem cells, and even fewer on the

consequences of linking them into tissues. It is well-known that

HSCs routinely leave the niche and migrate in the bloodstream

[19,57,70]. Using our current model, an easy modification is to

allow for this migration into and out of the niches (which might

mitigate the instances of all stem cells in one lineage dying out, as

we observed). Another extension of our work would be to

introduce environmental or even genetic heterogeneity into the

picture. Then it becomes possible to investigate the effects of

mutations, for instance by introducing niche lineages with different

parameters, in a similar way to evolutionary invasion analysis.

Supporting Information

Figure S1 Trajectories of stochastic simulations of all cell
species, with six uncoupled and six coupled niche lineages.

(PDF)

Figure S2 Trajectories of stochastic simulations of
uncoupled and coupled niche lineages. Shown are six

individual lineage A) total L (normalised by niche group size) for

six uncoupled and six coupled entire niche groups (sng~100) over

time; B) trajectories of 100 simulations of uncoupled (top half)

and coupled (bottom half), where colour represents the

populations of L in each niche lineage, and similarly for C),

where colour now represents total niche group L, normalised by

niche group size.

(PDF)

Figure S3 PDFs of both uncoupled and coupled individ-
ual niche lineage S, for five different MPCR parameter
sets. The axes for each histogram are identical, and quantified

on the left and top. MPCR parameters are varied on the bottom

axis.

(PDF)

Figure S4 PDFs of both uncoupled and coupled total
niche group L, for five different MPCR parameter sets.
The axes for each histogram are identical, and quantified on the

left and top. MPCR parameters are varied on the bottom axis.

(PDF)

Figure S5 Means and variances of total niche group cell
distributions for various MPCR parameter sets. Distri-

bution means of A) cell types with low numbers; B) cell types with

high numbers. Variances of C) cell types with low numbers; D) cell

types with high numbers. ODE solutions have been added to A)

and B) to show how closely they follow the means of the stochastic

distributions.

(PDF)

Figure S6 Means and variances of feedback distribu-
tions for various MPCR parameter sets. A) Feedback

distribution means, B) individual niche lineage variances, and C)

total niche group variances for different MPCR parameter sets.

(PDF)

Figure S7 Steady-state distributions of L cell numbers
for various niche group sizes. PDFs of A) individual niche

lineage L and B) niche group total L, normalised by niche group

size, at t~8000 seconds for various niche group sizes. Inset shows

the variance of niche group total L PDFs as a function of niche

group size.

(PDF)

Figure S8 Steady-state distributions of feedbacks for
various niche group sizes. PDFs of A) niche group mean

MPCR and B) niche group mean WS at t~8000 seconds for

various niche group sizes.

(PDF)

Text S1 Supporting information text. Section 1: Determin-

istic model of the HSC system, with the differential equations listed

for each species. Section 2: System parameters and steady states,

where the effects of the MPCR and other parameters on the

homeostatic cell levels of the system are explored. Section 3:

Investigating the target homeostatic cell levels, where we examine

whether it is the coupled or uncoupled niche lineages that better

find the target cell levels using a different parameter set for the

HSC model.

(PDF)
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