
Domain-Specific Languages for
Composable Editor Plugins

Lennart C. L. Kats∗,1,2 Karl T. Kalleberg+,3 Eelco Visser∗,1,4

∗ Department of Software Technology
Delft University of Technology

Delft, The Netherlands

+ Faculty of Medicine
University of Bergen

Bergen, Norway

Abstract

Modern IDEs increase developer productivity by incorporating many different kinds of editor services.
These can be purely syntactic, such as syntax highlighting, code folding, and an outline for navigation; or
they can be based on the language semantics, such as in-line type error reporting and resolving identifier
declarations. Building all these services from scratch requires both the extensive knowledge of the sometimes
complicated and highly interdependent APIs and extension mechanisms of an IDE framework, and an
in-depth understanding of the structure and semantics of the targeted language. This paper describes
Spoofax/IMP, a meta-tooling suite that provides high-level domain-specific languages for describing editor
services, relieving editor developers from much of the framework-specific programming. Editor services are
defined as composable modules of rules coupled to a modular SDF grammar. The composability provided by
the SGLR parser and the declaratively defined services allows embedded languages and language extensions
to be easily formulated as additional rules extending an existing language definition. The service definitions
are used to generate Eclipse editor plugins. We discuss two examples: an editor plugin for WebDSL,
a domain-specific language for web applications, and the embedding of WebDSL in Stratego, used for
expressing the (static) semantic rules of WebDSL.

Keywords: Domain specific language, integrated development environment, editor plugin

1 Introduction

Integrated development environments (IDEs) increase developer productivity by pro-
viding a rich user interface and tool support specialized for editing code in a partic-
ular software language. IDEs enhance readability through syntax highlighting and
code folding, and navigability through cross-references and an outline view. Rather
than providing an extensive programming environment for only one specific lan-
guage, modern IDEs such as Eclipse provide an extensible platform for integrating

1 This research was supported by NWO projects 612.063.512, TFA: Transformations for Abstractions, and
638.001.610, MoDSE: Model-Driven Software Evolution.
2 Email: l.c.l.kats@tudelft.nl
3 Email: karltk@ii.uib.no
4 Email: visser@acm.org

Electronic Notes in Theoretical Computer Science 253 (2010) 149–163

1571-0661/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2010.08.038

mailto:l.c.l.kats@tudelft.nl
mailto:karltk@ii.uib.no
mailto:visser@acm.org
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2010.08.038

language processing tools for multiple languages using a plugin architecture. The
flexibility of these platforms supports the integration of tools for specific languages
such as editors and compilers, as well as language-independent tools, such as version
control and build management systems.

Despite the extensibility of IDE platforms, implementing state-of-the-art sup-
port for a new language is a daunting undertaking, requiring extensive knowledge of
the sometimes complicated and highly interdependent APIs and extension mecha-
nisms of an IDE framework, and an in-depth understanding of the structure and se-
mantics of the subject language. The popular Eclipse IDE provides a cross-platform,
highly extensible software platform, offering support for various languages as well as
language-independent utilities. Eclipse is primarily written in Java and offers top-
notch Java development tools (JDT) for the Java language. Unfortunately, Eclipse
offers little opportunity for reuse of the JDT components to support other languages.
Furthermore, because of its scale and broad applicability, the standard extension
interface and framework are rather complex.

Key to the efficient development of IDE components are abstraction, to eliminate
the accidental complexity of IDE frameworks, modularity, to reuse definitions of ed-
itor components, and extensibility, to customize editor components. In the design
of abstractions to increase expressiveness, care must be taken to avoid a prohibitive
loss of coverage, i.e. the flexibility to customize aspects of a component. Reuse is
particularly important when considering language extension and embedding, as oc-
curs for example in scenarios such as domain-specific language embedding [3,1], and
meta-programming with concrete object syntax [3]. Ideally, language combinations
are defined modularly, and likewise their IDE support should be composed from
IDE support for the constituent languages.

Language development environments facilitate efficient development of language
processing tools. While in recent years a considerable number of language devel-
opment environments have been developed [5,7,12,14,15,17,18], they offer limited
support for modular and reusable editor definitions, with the exception of Monti-
Core [14,15] and the Meta-Environment [17,18].

MontiCore offers a certain degree of support for language extensions by merging
productions of constituent grammars. However, since MontiCore’s parser is based
on the LL(k) formalism, extensions share the same scanner. Thus, adding exten-
sions with a different lexical syntax is not possible. Other extensions may cause
incompatibilities with existing sources (just as the introduction of the enum key-
word in Java 1.5 excluded programs using enum as identifiers, which used to be valid
Java). MontiCore also provides an alternative approach, dynamically switching to
different scanners and parsers for blocks of code, but this is restricted to embed-
ded languages. In contrast, the Meta-Environment uses Scannerless Generalized
LR (SGLR) parsing, which is closed under composition and supports fine grained
extensions and embeddings. SGLR has been applied to Java, C, PHP, as well as
embeddings and extensions based on these languages [3]. The Meta-Environment
has extensive tool support for creating, debugging and visualizing grammars parsed
by SGLR. However, it only offers very limited support for the “standard” editor

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163150

services programmers expect, such as interactive syntax highlighting, reference re-
solving, and integration of utilities such as version control.

In this paper, we describe Spoofax/IMP, a system that integrates a Java-based
implementation of SGLR into the Eclipse environment. To adequately cope with the
complexity involved in IDE development and evolution, Spoofax/IMP uses com-
positional editor service descriptors, defined in domain-specific languages (DSLs),
for the specification of IDE components. The DSLs provide a concise notation
for specific types of syntactic and semantic editor services. Due to their declara-
tive nature, descriptors can be composed, supporting a modular definition of both
stand-alone and composite subject languages. From the descriptors, Spoofax/IMP

generates an Eclipse plugin, which can be dynamically loaded into the same work-
space as the descriptors are developed in — ensuring a shorter development cycle
than the customary approach of starting a secondary Eclipse instance.

To further assist in efficient IDE development, Spoofax/IMP automatically
derives syntactic editor service descriptors for a language by heuristically analyzing
the grammar. Using the compositional nature of the descriptors, generated service
descriptors can be composed with handwritten specifications, customizing the de-
fault behavior. This technique allows for rapid prototyping of editors, and helps in
maintaining an editor as a language evolves. When a language definition evolves,
the generated components of an editor can simply be re-generated. We have ap-
plied these techniques to WebDSL, a mature domain-specific language [22,9] for web
application development, which serves as running example in this paper.

The implementation of Spoofax/IMP is based on the IMP framework [5], which
is designed to be interoperable with different parsers and other tooling, making it
usable for our system. Furthermore, Spoofax/IMP uses the Stratego language [2]
for describing the (static) semantic rules of a language, used for editor services
such as cross-referencing and error reporting. For interoperability with the IMP
framework, we applied a variation of the program object model adapter (POM)
technique, previously used to integrate Stratego and an open compiler [10]. To
support IDE feedback in combination with tree transformations, we apply a form of
origin tracking [21] by adapting Stratego’s generic tree traversal operators to track
origins during rewrites.

This paper is organized as follows. First, we describe the definition of editor
services, discussing services that handle the presentation of a language in Section 2
and those based on the language semantics in Section 3. In Section 4 we discuss
composition of editor services. Section 5 provides an overview of the Eclipse and
IMP architecture, and how our implementation augments it. Finally, in Section 6
we discuss related work, and offer concluding remarks and directions for future work
in Section 7.

2 Syntactic Editor Services

An editor dedicated to a particular language offers a presentation of source code
specifically tailored to that language. For the most part, the presentation is directed

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163 151

Fig. 1. Editor services for the WebDSL language.

by syntactic editor services. These include syntax highlighting, code folding, and the
outline view. Figure 1 illustrates these and other services for WebDSL, a domain-
specific language for web applications [22,9].

The grammar of a language forms the basis for the specification of syntactic
editor services. For example, syntax highlighting can be specified as rules matching
against grammar productions and keywords. At run-time, the grammar is used to
parse the file and apply the editor service according to its grammatical structure.
We employ an SGLR parser and use the modular syntax definition formalism SDF
to specify the grammar of a language. Figure 2 shows part of the SDF definition
for the WebDSL language. Basic SDF productions take the form

p1 . . . pn -> s

which specifies that a sequence of strings matching the symbols p1 to pn matches
the symbol s . Productions can optionally be labeled with custom names using the
{cons(name)} annotation. SDF supports lexical and context-free productions in a
single specification. The specification may be organized into modules. Languages
can be composed by means of imports. In our example, WebDSL imports a separate
definition for access control and reuses the Hibernate Query Language (HQL) for
embedded queries. To avoid any conflicts in symbol naming, the HQL language
symbols (defined by others) are renamed in the context of this grammar using the
suffix [[HQL]]. We use this in the last two productions in Figure 2 to combine the
two languages: HQL expressions can be used directly as WebDSL expressions, while
WebDSL expressions in HQL are prefixed with a tilde.

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163152

module WebDSL

imports MixHQL[HQL] AccessControl ...

exports
context-free start-symbols
Start

lexical syntax
[a-zA-Z][a-zA-Z0-9_]* -> Id
...

context-free syntax
"module" Id Section* -> Start {cons("Module")}
"section" SectionName Def* -> Section {cons("Section")}
"define" Mod* Id "{" Element* "}" -> Def {cons("SimpleDef")}
...
Exp[[HQL]] -> Exp {cons("ToHQL")}
"~" Exp -> Exp[[HQL]] {cons("FromHQL")}

Fig. 2. SDF syntax rules for the WebDSL language.

module WebDSL

imports
WebDSL-Syntax WebDSL-Colorer WebDSL-Folding WebDSL-Outliner
WebDSL-Analysis WebDSL-References WebDSL-Occurrences

language description and parsing
name : WebDSL
id : org.strategoxt.imp.generated.webdsl
description : "Spoofax/IMP-generated editor for the WebDSL language"
extensions : app
table : include/WebDSL.tbl
start symbols : Start
url : http://www.webdsl.org/

Fig. 3. The default main editor service descriptor for WebDSL.

2.1 Editor Services Composition

The main editor service descriptor module imports all service descriptors for a given
language. Figure 3 shows the main module for the WebDSL language. This module
can be automatically generated by specifying a language name, the SDF grammar
and start production, and the file extensions of the language. Once generated, it
may be customized by the developer (in our example, we added the address of the
WebDSL website). Similarly, default files for the other services are generated and
imported into the main module.

Each type of service, e.g. outline, folding, coloring, is defined by its own declar-
ative description language. All editor service descriptor languages share the notion
of section headings for structuring the module, such as the language section in this
example. These specify the kind of editor service described and can optionally
contain human-readable text describing the part of the file.

Since the grammar is declaratively specified using SDF, we can programmati-
cally analyze its structure. Using a set of heuristics, our system can derive default
syntactic editor service descriptors for any given grammar. For example, based on
the tree structure of the grammar of Figure 2, any Module node will be displayed
in the outline, as it contains both a lexical string and a list of subnodes. Derived
rules are placed in files clearly marked “generated” (e.g., WebDSL-Colorer.generated), so
as to avoid confusion with handwritten code. Of course, deriving editor services
based on a set of heuristic rules is never perfect, and may not suit a particular lan-
guage or one’s taste. Still, derived services form a good starting point for creating

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163 153

module WebDSL-Colorer.generated

// ...documentation...

colorer default highlighting rules
keyword : "Keywords" = magenta bold
string : "Strings" = blue
number : "Numbers" = darkgreen
...

colorer system colors
darkred = 128 0 0

Fig. 4. The default WebDSL colorer.

module WebDSL-Folding

imports WebDSL-Folding.generated

folding additions
Section._
Def.SimpleDef
Def.Imports (folded)

Fig. 5. Folding rules for WebDSL.

a new editor. Firstly, they can form the basis for a customized editor service. In
particular, using editor service composition, generated editor services can be reused
and customized as desired. Secondly, they quickly explain the syntax of the editor
service descriptors, by means of generated, inline documentation, and by showing
relevant examples that apply to the target language.

2.2 Syntax Highlighting

The most basic and perhaps one of the most essential editor services provided by an
IDE is syntax highlighting. In Spoofax/IMP, syntax highlighting is based on the
grammar of the language, rather than just a list of keywords. Thus, we correctly
highlight tokens that are only considered keywords in parts of a composed grammar
(such as from, which is a keyword in HQL but not in WebDSL). Using the grammar
also enables us to report syntax errors inline.

Spoofax/IMP derives a default syntax highlighting service, based on the lex-
ical patterns of a grammar. Figure 4 shows (fragments from) the default color-
ing specification for WebDSL. Each rule matches based on a lexical token kind,
such as “keyword” for literals in the grammar, and “string” for lexical patterns
with spaces. However, since SDF is scannerless, lexical tokens and productions
are treated uniformly—they are just symbols. Therefore, rules can also match on
productions or production types. Each rule specifies an (optional) human-readable
description for display in the IDE’s preference menus, together with the default
color and formatting that should be applied to matching nodes.

For WebDSL, we were mostly satisfied with the default coloring rules, but wanted
to emphasize sections and WebDSL expressions in HQL fragments. Therefore, we
added the following rules to the WebDSL-Colorer module:
coloring customization of the default colorer
Section._ : _ bold italic
environment _.FromHQL : _ italic

The first rule specifies that terminal symbols for any production of type Section
should be bold and italic, and use the default color (_) specified elsewhere in the
descriptor. The second rule is an environment rule, and specifies that all nodes
below a FromHQL node must be displayed in italics (such as ~auhtor [sic] in Figure 1).

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163154

module WebDSL-Syntax.generated

// ...documentation...

language default syntax properties
line comment : "//"
block comment : "/*" * "*/"
fences : [] () { } |[]|

Fig. 6. WebDSL syntax properties.

[Application -- V[H ["application"] _1] _2],
Section -- V is=2 [H ["section" _1]] _2],
SimpleDef -- V [V is=2 [H ["define" _1 _2

"{"] _3]
"}"],

...
]

Fig. 7. Pretty printing rules for WebDSL.

2.3 Code Folding and Outline Display

The outline view provides a structural overview of a program and allows for quick
navigation. Similarly, code folding uses the structure of a program to selectively
hide code fragments for readability. Figure 5 shows an example folding definition.
The specification imports the generated folding file, adding three new rules. The
last rule specifies that all import declarations should be folded by default.

2.4 Braces, Comments, and Source Code Formatting

Brace matching and selection commenting is supported through the syntax prop-
erties service, shown in Figure 6. Following the IMP framework, these features are
implemented at the character level, since they must operate regardless of malformed
or unclosed comments and parentheses. Thus, the descriptor specifies which pairs
of strings make up parentheses, and which form comments.

Code fragments can be formatted using the Box formatting language [20]. Box
allows for very flexible formatting specifications based on nested layout boxes. It
supports indentation and table-based formatting. We provide this as an editor
service to format code in a subject language. Figure 7 illustrates some example
formatting rules, including vertical (V) and horizontal (H) boxes. These rules format
WebDSL code similar to the code in Figure 1. Using the generic pretty printer
package [6], part of the Stratego/XT toolset [2], we can automatically derive pretty
printers from grammars.

3 Semantic Editor Services

Semantic editor services include highlighting of semantic errors, providing type in-
formation for a selected expression, and looking up the declaration of an identifier.
Since these services rely on semantic analysis, our approach aims at maximal reuse
of any analysis components provided by a compiler for the targeted language.

WebDSL has been implemented using Stratego/XT [2], a program transfor-
mation language and toolset that uses SDF grammars for syntax definition. The
Stratego transformation language combines term-based rewriting with strategies for
specifying traversals on abstract syntax trees (ASTs). Trees in Stratego are rep-
resented as first-order terms. For example, represented as a term, the AST of the
program in Figure 1 is Module("author", [Imports(. . .), Section(. . . ,. . .)]).

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163 155

module WebDSL-Analysis

analysis providers and observer
provider webdsl-front.ctree
provider WebDSL-pretty.pp.af
observer: editor-analyze

Fig. 8. Semantic analysis bindings.

module WebDSL-References

references tree nodes with resolvable references
reference Call: function-resolve function-info
reference FieldAccess: field-resolve field-info
...

Fig. 9. The reference resolving descriptor.

3.1 Errors, Warnings, and Info Markers

We use Stratego specifications for expressing semantic editor services. Descriptors
are used to bind the IDE to the Stratego specifications. The descriptor of Figure 8
describes the interface with the type checker. It specifies all external components
used to provide the semantic services: Stratego modules compiled to the Stratego
core language (.ctree files), and a WebDSL pretty printer (.af files). It also
specifies the observer function, which is notified if there are any changes to WebDSL
files. This function is implemented by a Stratego rule of the following form:

editor-analyze:
(ast, path, fullpath) -> (errors, warnings, infos)
where ...

This rewrite rule is given a tuple with the abstract syntax tree of the modified file,
its project-relative path, and an absolute file system path; as a result it can produce
lists of errors, warnings and info markers. For example, for our example of Figure 1,
it returned a tuple of the form:

([(Var("auhtor"), "Variable auhtor not defined"), ...], [], [])

As the first element, the errors list contains a tuple with an error message for the
misspelled “auhtor” variable, which is included in the form of a copy of the original
node in the tree. This simple, but effective interface allows Stratego functions
to return data and reference nodes of the abstract syntax tree. We discuss the
implementation of this in Section 3.3.

3.2 Declarations and References

Reference resolving is a feature where an IDE can find the declaration site for an
identifier, accessible in Eclipse as hyperlinks for identifiers when holding the control
key (see Figure 1). Similarly, occurrence highlighting highlights all occurrences of
an identifier when the cursor is over one of them. Figure 9 shows the reference
resolving descriptor. For Call or FieldAccess nodes, it specifies the Stratego rules that
retrieve their declaration site and a description for use in tooltips (see Figure 1).
These rules can be implemented using a lookup table of identifiers to declarations
(using dynamic rules [2]), similar to the typing rules in [9].

3.3 Implementation and Tool Integration

The main challenge of integrating IMP, Stratego and SGLR is having all tools
working on the same set of data – AST nodes and tokens – at the same time.
IMP defines standard interfaces for abstract syntax trees and lexical tokens. SGLR
and Stratego represent trees as terms, using their own term interfaces. SGLR is

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163156

scannerless: it parses individual characters and uses no tokenizer. Tokens in the
traditional sense are not present. Reconciling these differences is done in several
ways. First, we use JSGLR, our own Java implementation of SGLR, and Stratego/J,
a Stratego interpreter written in Java. The parse trees built by JSGLR are converted
to new objects that implement the IMP interfaces. This conversion creates an IMP
AST from the JSGLR parse tree, and maps literals and terminals in the parse tree
to IMP tokens. The IMP AST nodes maintain links to tokens, which in turn know
their exact source location. This is essential for editor services such as reference
resolving or error markers that use the source locations of nodes in the tree. For
integrating IMP ASTs with Stratego, we employ a variant of the program object
model (POM) adapter approach [10]; our implementation of the IMP AST interface
also implements the term interface necessary for Stratego rewriting.

Program analyses are implemented as Stratego transformations, and some trans-
formations require the ability to construct AST nodes as part of an analysis. This is
provided by the POM adapter, which supports node construction through an AST
node factory. When Stratego programs transform trees, care must be taken that no
position information is lost. For example, in the WebDSL typechecker, identifiers
are given new, unique names. This means that each identifier tree node is replaced
by a new value, and its parent node is transformed to one with a new set of chil-
dren. Normally, tree nodes replaced in this fashion lose their associated position
information. To avoid this, we made some extensions to the POM factory design for
dealing with origin tracking [21] throughout the rewriting process. The factory now
has added methods for supporting the primitive term traversal operators one, some,
and all. Origin information for a term visited by a primitive traversal operator is
propagated to the result after rewriting, similar to what is described in [21]: when
a rewrite rule is applied to all children of a node (e.g., using the all operator), the
origins for the old children are propagated to the new children. For the WebDSL
typechecker example, this origin tracking scheme ensures that although the type-
checker replaces several nodes in the tree, the new nodes maintain references to
the original locations, providing proper position information for the editor services.
Together with annotation support, origin tracking has proven sufficient for correct
propagation of origin information during term rewriting.

4 Composition of Editor Services

The need for composing editor services arises directly from the composition required
for language embedding and language extension. Consider the WebDSL generator,
which is implemented in Stratego and includes embedded fragments of WebDSL,
Java, and XML used for pattern matching and code generation [9]. The bottom pane
of Figure 10 shows part of this generator, with WebDSL code fragments enclosed
by |[]| in the Stratego code. WebDSL identifiers are italicized, and the remaining
WebDSL code has a dark background.

SDF offers a uniform mechanism for composing grammars from modules. This
mechanism forms the basis for both language extension and embedding. When a

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163 157

module Stratego-WebDSL

imports Stratego[Stratego] WebDSL[WebDSL] ...

colorer add a background color to quoted code fragments
environment Term[[Stratego]].ToMetaExpr: _ metabg

Term[[Stratego]].ToMetaExpr: _ white bold
environment Term[[Stratego]].FromMetaExpr: _ white
environment var: darkcyan white italic
metabg = 210 230 220

Fig. 10. A colorer specification (top) and composed editor instance (bottom) for the embedding of WebDSL
in Stratego.

given SDF module imports another module, it essentially adds all grammar produc-
tions of the imported module to its own set of productions. Multiple productions for
the same non-terminal are allowed; all are kept (this may give rise to ambiguities,
discussed later). In the case of language embedding, suffixing (cf. Figure 2) is used
to distinguish productions for the embedded language from the host language.

Spoofax/IMP mirrors the SDF composition mechanism – modules and im-
ports with suffixing – but the mechanism for resolving “overlapping” definitions is
different. Figure 10 defines the composition of WebDSL editor services with those
of Stratego. Stratego grammar symbols are suffixed with [[Stratego]], the WebDSL
symbols with [[WebDSL]]. The first colorer rule gives WebDSL code fragments the
dark background color, i.e. the text corresponding to all nodes under a ToMetaExpr

node should be colored. The second rule sets a white background only for nodes
directly beneath the ToMetaExpr node. Because this rule is more specific (i.e., applies
to fewer nodes), the |[]| parentheses in the screenshot of the bottom pane have a
white background, while the enclosed code has a dark background. The last two
rules apply a white background to Stratego inside WebDSL fragments.

The rules for coloring, folding and outlining are all purely declarative, and share
the same composition mechanics: we give priority to rules with more specific pat-
terns, and rules defined later in the specification. New definitions can use the
_ operator to set a property to the default as specified in other rules. Finally,
definitions can be disabled using a disable annotation.

Not all aspects of the editor services are equally composable at present. Some
pretty-printer formalisms are closed under composition [6], including the one we
employ. However, our present DSLs do not expose this. The most difficult services
to compose are those relating to language semantics: type checking and reference
resolution. A good composition formalism for language semantics is still an open
research topic. The solutions offered by Spoofax/IMP include the use of Stratego
for specifying type checking and name resolution rules in a relatively declarative
style, and the use of Java for exploiting existing language infrastructure.

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163158

5 Integration with Eclipse and IMP

The Eclipse architecture is based around the OSGi component model, where each
plugin is (usually) a JAR containing Java classes, a plugin manifest, optional de-
scriptor files, and auxiliary resources, such as images. The descriptors specify which
parts of the Eclipse framework a given plugin extends, and which parts of the plugin
may be extended by other plugins.

IMP [5] extends Eclipse with a high-level framework and specialized tooling
for developing IDE support for new languages. Developed by IBM, it is currently
being used for IBM-built DSLs, such as the X10 concurrent programming language.
IMP provides wizards for quickly generating initial implementations of services in
terms of the IMP framework. The usual caveat applies: any user-customizations
are overwritten if the wizard is run again.

Spoofax/IMP uses the IMP framework for implementing editor services. As
an alternative to the IMP wizards, we offer DSLs which better handle language
evolution and compositionality of services. By clearly separating generated code
from user-written code, we avoid any risk of overwriting existing customizations as
changes are made to an evolving language, or when new services are derived. While
IMP makes use of uncomposable visitors for many editor services, Spoofax/IMP

abstracts over these with DSLs. As language extensions and embeddings are com-
posed with the subject language, the necessary visitors are automatically provided.

The OSGi model implies distributing plugins as static JARs. During develop-
ment, changes made to a plugin are, in general, not reflected in the active Eclipse
instance. To avoid launching a new Eclipse instance to use a new or updated editor,
we use interpretation of editor services to allow dynamic loading of services into the
current instance of Eclipse. For example, for the syntax highlighting specification,
Spoofax/IMP maintains hash tables that specify which formatting style to apply
to which kind of token. This approach leads to a shorter development cycle than
would be possible using code generation alone. For deployment, all required files
for plugin distribution are still generated.

The implementation of dynamic loading relies on the IMP notion of language
inheritance. Languages may inherit services from another language. If a partic-
ular service is not available for a language, IMP tries to use the service for the
parent language. We defined a new, top-level language DynamicRoot, from which
all Spoofax/IMP languages inherit. Our root language implements the standard
IMP extension points by providing proxy stubs. These proxies dynamically load or
update the actual editor services as required. For instance, the syntax highlighting
service is implemented by a class DynamicColorer, which initializes and updates
the proper concrete Colorer class on demand.

Wizards and DSLs may act synergistically. Using language inheritance, editor
services provided by Spoofax/IMP can be overridden by custom-built, Java-based
services. E.g., using a handwritten outliner service only requires the use of the IMP
outliner wizard to create a class overriding the standard DynamicRoot service.

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163 159

6 Related Work and Discussion

A large body of research on editor construction and generation exists, a significant
portion of which is dedicated to structured, or syntax-directed, editors. Notable
early examples include the Program Synthesizer (PG), a structured program editor,
and the Synthesizer Generator [16] (SG), a generator for program editors (program
synthesizers). Both SG and Spoofax/IMP provide composable language specifi-
cations, and therefore support language extensions and language families. In SG,
languages are defined as abstract syntax with attribute grammars describing the
type rules. SG is agnostic about obtaining ASTs, and provides no solution for com-
posing concrete language syntaxes. PG imposes a strictly (classical) syntax-directed
editing style: programs are built from templates filled in by the user. This style
ensures syntactically valid programs, but never gained widespread acceptance.

The Meta-Environment is a framework for language development, source code
analysis, and source code transformation [17,18]. It includes SDF, the ASF term re-
writing language, and provides an IDE framework written in Java. Basic syntax
highlighting is derived from SDF grammars. Coloring may be customized similar
to the environment construct in Figure 10. ASF tree-traversal may also be used to
annotate the AST with coloring directives. ASF is also used to specify the language
type rules, and may include custom error messages, presented in a window similar to
Figure 1. The IDE framework provides outlining but no folding or crossreferences.
The Meta-Environment is presently being integrated into Eclipse.

MontiCore [14] and openArchitectureWare [7] (oAW) are tools for generating
Eclipse-based editor plugins for DSLs. Both provide EBNF-like grammar for-
malisms which may be composed using inheritance (MontiCore) or module imports
(oAW). ANTLR parsers are generated from the grammars. In MontiCore, basic ed-
itor presentation are included as grammar properties. Syntax coloring is specified
as lists of keywords to highlight. Pre-defined (Java-style) comments are supported.
Folding is specified by a list of non-terminals. For semantic editor services, Monti-
Core grammars specify events, which may be specialized with user-defined Java
classes. Embedded languages are supported in MontiCore through “external” sym-
bols in the grammar. An inheriting grammar module can implement these external
symbols. The composed grammar is parsed by dynamically switching to the respec-
tive parser and lexer of one of the constituent grammars, depending on the current
state of the parser. In oAW, an EMF [4] meta-model is generated in addition to
the parser. Language semantics is expressed as constraints upon this model, either
using an OCL-like language, or, optionally, using Java. oAW does not support em-
bedded languages. For Spoofax/IMP, we provide an interface to Stratego, based
on the POM adapter approach of [10] and origin tracking [21] techniques to handle
semantics. Spoofax/IMP supports embedded languages.

Although the abstract syntax formalisms in MontiCore and oAW are both mod-
ular, the concrete syntax is limited by ANTLR grammar composition ability —
LL(k) in the case of MontiCore, LL(*) for oAW, owing to the different versions
of ANTLR employed. GLR parsing is closed under composition and allows gram-
mars to be composed freely. Multiple, possibly conflicting, definitions of the same

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163160

non-terminal are allowed. This leads to the common criticism of GLR parsing that
the resulting parse tree may contain ambiguities. This criticism is warranted, as
ambiguities in grammars are by their nature undesirable, and not always trivial to
discover, especially in composed grammars. Using explicit, declarative restrictions
and priority orderings on the grammar, these can be resolved [19]. Other meth-
ods, including PEGs [8], language inheritance in MontiCore, and the composite
grammars of ANTLR, avoid this by forcing an ordering on the alternatives of a
production – the first (or last) definition overrides the others. The implicit ordering
may not be the intention of the grammar engineer, and can be hard to debug as
discarded alternatives cannot be inspected. In contrast, the GLR approach read-
ily displays these alternatives. Using parser unit tests, ambiguities following from
design mistakes, omissions, or regressions, can be avoided. The few remaining –
intended – ambiguities are then handled immediately after parse time, when addi-
tional context information is available. Spoofax/IMP deals with ambiguous parse
trees using a fixed pruning strategy (pick leftmost alternative from any ambiguous
subtrees), which allows it to work with grammars under development.

Until recently, a drawback of SGLR was its lack of error recovery: in addition
to reporting parsing errors, the parser should also try to parse the remainder of a
file to ensure (partial) functionality of editor services. We recently addressed this
issue and made a prototype implementation of JSGLR with error recovery [11].

7 Conclusion and Future Work

Providing high-quality IDE support has become paramount to the success of a new
programming language. The implementation effort required for a solid, custom-
built IDE is often prohibitive, in particular for domain-specific languages, language
extensions, and embedded languages, with relatively small userbases. We have pre-
sented a partial solution to this, Spoofax/IMP, a meta-tooling suite for rapidly
implementing editors for Eclipse. We have shown several techniques that contribute
towards efficient development of IDE support. First, we provide high-level, declar-
ative DSLs for defining editor services that abstract over the IMP meta-tooling
framework, and allow reuse of previously defined services through composition.
Second, Spoofax/IMP uses heuristics to automatically derive common editor ser-
vices from the grammar, services which may be adapted and co-evolved with the
grammar without any trouble related to modifying generated code. Third, we use
the Stratego programming language for a high-level specification of both semantic
analysis and compilation. Finally, we support dynamic loading of services into the
active Eclipse environment, leading to a shorter development cycle.

Some open problems remain. We intend to replace the Stratego interpreter with
a compiler (targeting the JVM) to address performance concerns, while maintain-
ing the flexible interface of primitive operations as defined by the extended term
factory. Similarly, we want to optimize the JSGLR parser for use in an interactive
environment. The current prototype performs poorly, and, ideally, it would support
incremental parsing. However, as it runs in a background thread, this has relatively

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163 161

little impact on the user experience.
We previously reported on a predecessor of Spoofax/IMP [12]. We signifi-

cantly expanded its support for language composition since, and added support for
semantic analysis and dynamic loading of editor services at runtime. In part, these
changes were driven by experience from the WebDSL case studies briefly reported
on in this paper. In other previous work, we have applied strategic programming
in the field of attribute grammars, allowing high-level, declarative specifications of
semantic analyses [13]. In the future, we want to use these as a basis for defin-
ing semantic editor services. In particular, we want to investigate the feasibility of
using such specifications for achieving full compositionality of complete syntactic,
semantic, and tooling descriptions of language extensions.

References

[1] M. Bravenboer, E. Dolstra, and E. Visser. Preventing injection attacks with syntax embeddings. A
host and guest language independent approach. In J. Lawall, editor, Generative Programming and
Component Engineering (GPCE 2007), pages 3–12. ACM, October 2007.

[2] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.17. A language and toolset
for program transformation. Science of Computer Programming, 72(1-2):52–70, June 2008. Special
issue on experimental software and toolkits.

[3] M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific language embedding and
assimilation without restrictions. In D. C. Schmidt, editor, OOPSLA 2004, pages 365–383. ACM Press,
October 2004.

[4] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose. Eclipse Modeling Framework.
Addison-Wesley, 2004.

[5] P. Charles, R. M. Fuhrer, and S. M. Sutton, Jr. IMP: a meta-tooling platform for creating language-
specific IDEs in Eclipse. In R. E. K. Stirewalt, A. Egyed, and B. Fischer, editors, ASE 2007, pages
485–488. ACM, 2007.

[6] M. de Jonge. A pretty-printer for every occasion. In I. Ferguson, J. Gray, and L. Scott, editors, The
International Symposium on Constructing Software Engineering Tools (CoSET2000), pages 68–77.
University of Wollongong, Australia, 2000.

[7] S. Efftinge et al. openArchitectureWare User Guide. Version 4.3. Available from http://www.eclipse.
org/gmt/oaw/doc/4.3/html/contents/, April 2008.

[8] B. Ford. Packrat parsing: Simple, powerful, lazy, linear time. In ICFP 2002, volume 37 of SIGPLAN
Notices, pages 36–47. ACM, October 2002.

[9] Z. Hemel, L. C. L. Kats, and E. Visser. Code generation by model transformation. A case study in
transformation modularity. In J. Gray, A. Pierantonio, and A. Vallecillo, editors, Theory and Practice
of Model Transformations. First International Conference on Model Transformation (ICMT 2008),
volume 5063 of LNCS, pages 183–198. Springer, July 2008.

[10] K. T. Kalleberg and E. Visser. Fusing a transformation language with an open compiler. In A. Sloane
and A. Johnstone, editors, Seventh Workshop on Language Descriptions, Tools, and Applications
(LDTA 2007), volume 203 of ENTCS, pages 21–36. Elsevier, April 2008.

[11] L. C. L. Kats, M. de Jonge, E. Nilsson-Nyman, and E. Visser. Providing rapid feedback in generated
modular language environments. Adding error recovery to scannerless generalized-LR parsing. In G. T.
Leavens, editor, OOPSLA 2009, ACM SIGPLAN Notices, New York, NY, USA, October 2009. ACM
Press.

[12] L. C. L. Kats, K. T. Kalleberg, and E. Visser. Generating editors for embedded languages. integrating
SGLR into IMP. In A. Johnstone and J. Vinju, editors, Proceedings of the Eighth Workshop on
Language Descriptions, Tools, and Applications (LDTA 2008), April 2008.

[13] L. C. L. Kats, A. M. Sloane, and E. Visser. Decorated attribute grammars. Attribute evaluation meets
strategic programming. In Compiler Construction (CC 2009), volume 5501 of LNCS, pages 142–157.
Springer-Verlag, March 2009.

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163162

http://www.eclipse.org/gmt/oaw/doc/4.3/html/contents/
http://www.eclipse.org/gmt/oaw/doc/4.3/html/contents/

[14] H. Krahn, B. Rumpe, and S. Völkel. Efficient editor generation for compositional DSLs in Eclipse.
In Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling, technical report TR-38,
pages 218–228. University of Jyväskylä, 2007.

[15] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: Modular development of textual domain specific
languages. In R. Paige and B. Meyer, editors, TOOLS EUROPE 2008, volume 11 of LNCS, pages
297–315. Springer-Verlag, June 2008.

[16] T. Reps and T. Teitelbaum. The synthesizer generator. SIGSOFT Softw. Eng. Notes, 9(3):42–48,
1984.

[17] M. G. J. van den Brand. Applications of the Asf+Sdf Meta-Environment. In R. Lämmel, J. Saraiva,
and J. Visser, editors, GTTSE, volume 4143 of Lecture Notes in Computer Science, pages 278–296.
Springer, 2006.

[18] M. G. J. van den Brand, M. Bruntink, G. R. Economopoulos, H. A. de Jong, P. Klint, T. Kooiker,
T. van der Storm, and J. J. Vinju. Using the Meta-Environment for maintenance and renovation. In
The European Conference on Software Maintenance and Reengineering (CSMR’07), pages 331–332.
IEEE Computer Society, 2007.

[19] M. G. J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation filters for scannerless
generalized LR parsers. In N. Horspool, editor, Compiler Construction (CC 2002), volume 2304 of
LNCS, pages 143–158. Springer-Verlag, April 2002.

[20] M. G. J. van den Brand and E. Visser. Generation of formatters for context-free languages. ACM
Trans. on Softw. Eng. and Methodology, 5(1):1–41, January 1996.

[21] A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of Symbolic Computation, 15(5/6):523–
545, 1993.

[22] E. Visser. WebDSL: A case study in domain-specific language engineering. In R. Lämmel, J. Visser,
and J. Saraiva, editors, International Summer School on Generative and Transformational Techniques
in Software Engineering (GTTSE 2007), volume 5235 of LNCS, pages 291–373. Springer, October 2008.

L.C.L. Kats et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 149–163 163

	Introduction
	Syntactic Editor Services
	Editor Services Composition
	Syntax Highlighting
	Code Folding and Outline Display
	Braces, Comments, and Source Code Formatting

	Semantic Editor Services
	Errors, Warnings, and Info Markers
	Declarations and References
	Implementation and Tool Integration

	Composition of Editor Services
	Integration with Eclipse and IMP
	Related Work and Discussion
	Conclusion and Future Work
	References

