• Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action 

      D’Elia, Domenica; Truu, Jaak; Lahti, Leo; Berland, Magali; Papoutsoglou, Georgios; Ceci, Michelangelo; Zomer, Aldert; Lopes, Marta B.; Ibrahimi, Eliana; Gruca, Aleksandra; Nechyporenko, Alina; Frohme, Marcus; Klammsteiner, Thomas; Pau, Enrique Carrillo-de Santa; Marcos-Zambrano, Laura Judith; Hron, Karel; Pio, Gianvito; Simeon, Andrea; Suharoschi, Ramona; Moreno-Indias, Isabel; Temko, Andriy; Nedyalkova, Miroslava; Apostol, Elena-Simona; Truică, Ciprian-Octavian; Shigdel, Rajesh; Telalović, Jasminka Hasić; Bongcam-Rudloff, Erik; Przymus, Piotr; Jordamović, Naida Babić; Falquet, Laurent; Tarazona, Sonia; Sampri, Alexia; Isola, Gaetano; Pérez-Serrano, David; Trajkovik, Vladimir; Klucar, Lubos; Loncar-Turukalo, Tatjana; Havulinna, Aki S.; Jansen, Christian; Bertelsen, Randi Jacobsen; Claesson, Marcus Joakim (Journal article; Peer reviewed, 2023)
      The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which ...
    • Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment 

      Marcos-Zambrano, Laura Judith; Hadziabdic, Kanita Karaduzovic; Turukalo, Tatjana Loncar; Przymus, Piotr; Trajkovik, Vladimir; Aasmets, Oliver; Berland, Magali; Gruca, Aleksandra; Hasic, Jasminka; Hron, Karel; Klammsteiner, Thomas; Kolev, Mikhail; Lahti, Leo; Lopes, Marta B.; Moreno, Victor; Naskinova, Irina; Org, Elin; Paciencia, Ines; Papoutsoglou, Georgios; Shigdel, Rajesh; Stres, Blaz; Vilne, Baiba; Yousef, Malik; Zdravevski, Eftim; Tsamardinos, Ioannis; Carrillo de Santa Pau, Enrique; Claesson, Marcus J.; Moreno-Indias, Isabel; Truu, Jaak (Journal article; Peer reviewed, 2021)
      The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations ...
    • Overview of data preprocessing for machine learning applications in human microbiome research 

      Ibrahimi, Eliana; Lopes, Marta B.; Dhamo, Xhilda; Simeon, Andrea; Shigdel, Rajesh; Hron, Karel; Stres, Blaž; D’Elia, Domenica; Berland, Magali; Marcos-Zambrano, Laura Judith (Journal article; Peer reviewed, 2023)
      Although metagenomic sequencing is now the preferred technique to study microbiome-host interactions, analyzing and interpreting microbiome sequencing data presents challenges primarily attributed to the statistical ...
    • Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions 

      Moreno-Indias, Isabel; Lahti, Leo; Nedyalkova, Miroslava; Elbere, Ilze; Roshchupkin, Gennady V.; Adilovic, Muhamed; Aydemir, Onder; Bakir-Gungor, Burcu; Carrillo-de Santa Pau, Enrique; D’Elia, Domenica; Desai, Mahesh S.; Falquet, Laurent; Gundogdu, Aycan; Hron, Karel; Klammsteiner, Thomas; Lopes, Marta B.; Marcos-Zambrano, Laura Judith; Marques, Cláudia; Mason, Michael; May, Patrick; Pašić, Lejla; Pio, Gianvito; Pongor, Sándor; Promponas, Vasilis J.; Przymus, Piotr; Saez-Rodriguez, Julio; Sampri, Alexia; Shigdel, Rajesh; Stres, Blaz; Suharoschi, Ramona; Truu, Jaak; Truică, Ciprian-Octavian; Vilne, Baiba; Vlachakis, Dimitrios; Yilmaz, Ercument; Zeller, Georg; Zomer, Aldert L.; Gomez-Cabrero, David; Claesson, Marcus J. (Journal article; Peer reviewed, 2021)
      The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many ...