Vis enkel innførsel

dc.contributor.authorMarisaldi, Martino
dc.contributor.authorGalli, M.
dc.contributor.authorLabanti, C.
dc.contributor.authorØstgaard, Nikolai
dc.contributor.authorSarria, David
dc.contributor.authorCummer, S. A.
dc.contributor.authorLyu, F.
dc.contributor.authorLindanger, Anders
dc.contributor.authorCampana, R.
dc.contributor.authorUrsi, A.
dc.contributor.authorTavana, M
dc.contributor.authorFuschino, F.
dc.contributor.authorArgan, A.
dc.contributor.authorTrois, A.
dc.contributor.authorPittori, C.
dc.contributor.authorVerrecchia, F
dc.date.accessioned2021-01-04T13:00:32Z
dc.date.available2021-01-04T13:00:32Z
dc.date.created2020-02-25T13:33:34Z
dc.date.issued2019
dc.PublishedMarisaldi, M., Galli, M., Labanti, C., Østgaard, N., Sarria, D., Cummer, S. A., et al., On the high-energy spectral component and fine time structure of terrestrial gamma ray flashes. Journal of Geophysical Research: Atmospheres, 2019, 124, 7484–7497en_US
dc.identifier.issn2169-897X
dc.identifier.urihttps://hdl.handle.net/11250/2721284
dc.description.abstractTerrestrial gamma ray flashes (TGFs) are very short bursts of gamma radiation associated to thunderstorm activity and are the manifestation of the highest‐energy natural particle acceleration phenomena occurring on Earth. Photon energies up to several tens of megaelectronvolts are expected, but the actual upper limit and high‐energy spectral shape are still open questions. Results published in 2011 by the AGILE team proposed a high‐energy component in TGF spectra extended up to ≈100 MeV, which is difficult to reconcile with the predictions from the Relativistic Runaway Electron Avalanche (RREA) mechanism at the basis of many TGF production models. Here we present a new set of TGFs detected by the AGILE satellite and associated to lightning measurements capable to solve this controversy. Detailed end‐to‐end Monte Carlo simulations and an improved understanding of the instrument performance under high‐flux conditions show that it is possible to explain the observed high‐energy counts by a standard RREA spectrum at the source, provided that the TGF is sufficiently bright and short. We investigate the possibility that single high‐energy counts may be the signature of a fine‐pulsed time structure of TGFs on time scales ≈4 μs, but we find no clear evidence for this. The presented data set and modeling results allow also for explaining the observed TGF distribution in the (Fluence × duration) parameter space and suggest that the AGILE TGF detection rate can almost be doubled.en_US
dc.language.isoengen_US
dc.publisherAGUen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleOn the High‐Energy Spectral Component and Fine Time Structure of Terrestrial Gamma Ray Flashesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2019 The Authorsen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.doi10.1029/2019JD030554
dc.identifier.cristin1797353
dc.source.journalJournal of Geophysical Research (JGR): Atmospheresen_US
dc.source.40124en_US
dc.source.1414en_US
dc.source.pagenumber7484-7497en_US
dc.relation.projectNotur/NorStore: NN9526Ken_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal