• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • University of Bergen Library
  • Registrations from Cristin
  • Vis innførsel
  •   Hjem
  • University of Bergen Library
  • Registrations from Cristin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative Externalization of Visual Data Analysis Results Using Local Regression Models

Matkovic, Kresimir; Abraham, Hrvoje; Jelovic, Mario; Hauser, Helwig
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
Accepted Version (4.966Mb)
Permanent lenke
https://hdl.handle.net/11250/2722775
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Department of Informatics [544]
  • Registrations from Cristin [660]
Originalversjon
10.1007/978-3-319-66808-6_14
Sammendrag
Both interactive visualization and computational analysis methods are useful for data studies and an integration of both approaches is promising to successfully combine the benefits of both methodologies. In interactive data exploration and analysis workflows, we need successful means to quantitatively externalize results from data studies, amounting to a particular challenge for the usually qualitative visual data analysis. In this paper, we propose a hybrid approach in order to quantitatively externalize valuable findings from interactive visual data exploration and analysis, based on local linear regression models. The models are built on user-selected subsets of the data, and we provide a way of keeping track of these models and comparing them. As an additional benefit, we also provide the user with the numeric model coefficients. Once the models are available, they can be used in subsequent steps of the workflow. A model-based optimization can then be performed, for example, or more complex models can be reconstructed using an inversion of the local models. We study two datasets to exemplify the proposed approach, a meteorological data set for illustration purposes and a simulation ensemble from the automotive industry as an actual case study.
Utgiver
Springer
Tidsskrift
Lecture Notes in Computer Science (LNCS)
Opphavsrett
Copyright IFIP International Federation for Information Processing 2017

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit