Vis enkel innførsel

dc.contributor.authorBarreyre, Thibaut
dc.contributor.authorOlive, Jean-Arthur
dc.contributor.authorCrone, Timothy
dc.contributor.authorSohn, Robert
dc.date.accessioned2021-02-16T13:22:04Z
dc.date.available2021-02-16T13:22:04Z
dc.date.created2019-01-29T20:47:22Z
dc.date.issued2018
dc.PublishedGeochemistry Geophysics Geosystems. 2018, 19 1259-1281.
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/11250/2728423
dc.description.abstractThe permeability of the oceanic crust exerts a primary influence on the vigor of hydrothermal circulation at mid‐ocean ridges, but it is a difficult to measure parameter that varies with time, space, and geological setting. Here we develop an analytical model for the poroelastic response of hydrothermal exit‐fluid velocities and temperatures to ocean tidal loading in a two‐layered medium to constrain the discharge zone permeability of each layer. The top layer, corresponding to extrusive lithologies (e.g., seismic layer 2A) overlies a lower permeability layer, corresponding to intrusive lithologies (e.g., layer 2B). We apply the model to three basalt‐hosted hydrothermal fields (i.e., Lucky Strike, Main Endeavour and 9°46′N L‐vent) for which the seismic stratigraphy is well‐established, and for which robust exit‐fluid temperature data are available. We find that the poroelastic response to tidal loading is primarily controlled by layer 2A permeability, which is about 3 orders of magnitude higher for the Lucky Strike site (∼10−10 m2) than the 9°46′N L‐vent site (∼10−13 m2). By contrast, layer 2B permeability does not exert a strong control on the poroelastic response to tidal loading, yet strongly modulates the heat output of hydrothermal discharge zones. Taking these constraints into account, we estimate a plausible range of layer 2B permeability between ∼10−15 m2 and an upper‐bound value of ∼10−14 (9°46′N L‐vent) to ∼10−12 m2 (Lucky Strike). These permeability structures reconcile the short‐term response and long‐term thermal output of hydrothermal sites, and provide new insights into the links between permeability and tectono‐magmatic processes along the global mid‐ocean ridge.en_US
dc.language.isoengen_US
dc.publisherAGUen_US
dc.relation.urihttps://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GC007152
dc.titleDepth‐dependent permeability and heat output at basalt‐hosted hydrothermal systems across mid‐ocean ridge spreading ratesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2018 American Geophysical Unionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1002/2017GC007152
dc.identifier.cristin1668068
dc.source.journalGeochemistry Geophysics Geosystemsen_US
dc.source.4019
dc.source.pagenumber1259-1281en_US
dc.identifier.citationGeochemistry Geophysics Geosystems. 2018, 19 (4), 1259-1281en_US
dc.source.volume19en_US
dc.source.issue4en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel