Show simple item record

dc.contributor.authorRebowski, Grzegorz
dc.contributor.authorBoczkowska, Malgorzata
dc.contributor.authorDrazic, Adrian
dc.contributor.authorRee, Rasmus Moen
dc.contributor.authorGoris, Marianne
dc.contributor.authorArnesen, Thomas
dc.contributor.authorDominguez, Roberto
dc.date.accessioned2021-02-16T14:49:38Z
dc.date.available2021-02-16T14:49:38Z
dc.date.created2020-09-17T13:49:13Z
dc.date.issued2020
dc.PublishedScience Advances. 2020, 6 (15), 1-14.
dc.identifier.issn2375-2548
dc.identifier.urihttps://hdl.handle.net/11250/2728489
dc.description.abstractAbout 80% of human proteins are amino-terminally acetylated (Nt-acetylated) by one of seven Nt-acetyltransferases (NATs). Actin, the most abundant protein in the cytoplasm, has its own dedicated NAT, NAA80, which acts posttranslationally and affects cytoskeleton assembly and cell motility. Here, we show that NAA80 does not associate with filamentous actin in cells, and its natural substrate is the monomeric actin-profilin complex, consistent with Nt-acetylation preceding polymerization. NAA80 Nt-acetylates actin-profilin much more efficiently than actin alone, suggesting that profilin acts as a chaperone for actin Nt-acetylation. We determined crystal structures of the NAA80-actin-profilin ternary complex, representing different actin isoforms and different states of the catalytic reaction and revealing the first structure of NAT-substrate complex at atomic resolution. The structural, biochemical, and cellular analysis of mutants shows how NAA80 has evolved to specifically recognize actin among all cellular proteins while targeting all six actin isoforms, which differ the most at the amino terminus.en_US
dc.language.isoengen_US
dc.publisherAAASen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleMechanism of actin N-terminal acetylationen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020 The Authors.en_US
dc.source.articlenumbereaay8793en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1126/sciadv.aay8793
dc.identifier.cristin1830864
dc.source.journalScience Advancesen_US
dc.source.406
dc.source.1415
dc.identifier.citationScience Advances. 2020, 6 (15), eaay8793en_US
dc.source.volume6en_US
dc.source.issue15en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse-Ikkekommersiell 4.0 Internasjonal