dc.contributor.author | Fomin, Fedor | |
dc.contributor.author | Golovach, Petr | |
dc.contributor.author | Jaffke, Lars | |
dc.contributor.author | Philip, Geevarghese | |
dc.contributor.author | Sagunov, Danil | |
dc.date.accessioned | 2021-05-19T12:59:21Z | |
dc.date.available | 2021-05-19T12:59:21Z | |
dc.date.created | 2021-01-04T12:54:39Z | |
dc.date.issued | 2020 | |
dc.Published | Leibniz International Proceedings in Informatics. 2020, 181 26:1-26:12. | |
dc.identifier.issn | 1868-8969 | |
dc.identifier.uri | https://hdl.handle.net/11250/2755713 | |
dc.description.abstract | We initiate the study of the Diverse Pair of (Maximum/ Perfect) Matchings problems which given a graph G and an integer k, ask whether G has two (maximum/perfect) matchings whose symmetric difference is at least k. Diverse Pair of Matchings (asking for two not necessarily maximum or perfect matchings) is NP-complete on general graphs if k is part of the input, and we consider two restricted variants. First, we show that on bipartite graphs, the problem is polynomial-time solvable, and second we show that Diverse Pair of Maximum Matchings is FPT parameterized by k. We round off the work by showing that Diverse Pair of Matchings has a kernel on 𝒪(k²) vertices. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Dagstuhl Publishing | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.title | Diverse Pairs of Matchings | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | Copyright 2020 The Authors | en_US |
cristin.ispublished | true | |
cristin.fulltext | original | |
cristin.qualitycode | 1 | |
dc.identifier.doi | 10.4230/LIPIcs.ISAAC.2020.26 | |
dc.identifier.cristin | 1864770 | |
dc.source.journal | Leibniz International Proceedings in Informatics | en_US |
dc.source.40 | 181 | |
dc.source.pagenumber | 26:1-26:12 | en_US |
dc.relation.project | Norges forskningsråd: 263317 | en_US |
dc.identifier.citation | Leibniz International Proceedings in Informatics. 2020, 181, 26:1-26:12 | en_US |
dc.source.volume | 181 | en_US |