Vis enkel innførsel

dc.contributor.authorPlach, Andreas
dc.contributor.authorVinther, Bo M.
dc.contributor.authorNisancioglu, Kerim Hestnes
dc.contributor.authorVudayagiri, Sindhu
dc.contributor.authorBlunier, Thomas
dc.date.accessioned2021-06-30T09:06:35Z
dc.date.available2021-06-30T09:06:35Z
dc.date.created2021-02-02T12:34:37Z
dc.date.issued2021
dc.PublishedClimate of the Past. 2021, 17 (1), 317-330.
dc.identifier.issn1814-9324
dc.identifier.urihttps://hdl.handle.net/11250/2762505
dc.description.abstractThis study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr−1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.en_US
dc.language.isoengen_US
dc.publisherCopernicus Publicationsen_US
dc.relation.urihttps://cp.copernicus.org/articles/17/317/2021/
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleGreenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice coresen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 The Authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.5194/cp-17-317-2021
dc.identifier.cristin1885842
dc.source.journalClimate of the Pasten_US
dc.source.4017
dc.source.141
dc.source.pagenumber317-330en_US
dc.relation.projectNorges forskningsråd: 246929en_US
dc.relation.projectNotur/NorStore: NN4659Ken_US
dc.relation.projectEC/FP7/610055en_US
dc.identifier.citationClimate of the Past. 2021, 17, 317–330en_US
dc.source.volume17en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal