Vis enkel innførsel

dc.contributor.authorStairs, Courtney W.
dc.contributor.authorSharamshi, Jennah E.
dc.contributor.authorTamarit, Daniel
dc.contributor.authorEme, Laura
dc.contributor.authorJørgensen, Steffen Leth
dc.contributor.authorSpang, Anja
dc.contributor.authorEttema, Thijs J.G.
dc.date.accessioned2021-08-05T10:06:57Z
dc.date.available2021-08-05T10:06:57Z
dc.date.created2020-09-25T13:11:04Z
dc.date.issued2020
dc.identifier.issn2375-2548
dc.identifier.urihttps://hdl.handle.net/11250/2766443
dc.description.abstractThe origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H2 exchange. However, there are no strong indications that modern eukaryotic H2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales—a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism.en_US
dc.language.isoengen_US
dc.publisherAAASen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleChlamydial contribution to anaerobic metabolism during eukaryotic evolutionen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020 The Authorsen_US
dc.source.articlenumbereabb7258en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1126/sciadv.abb7258
dc.identifier.cristin1833460
dc.source.journalScience Advancesen_US
dc.identifier.citationScience Advances. 2020, 6(35), eabb7258.en_US
dc.source.volume6en_US
dc.source.issue35en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal