• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Faculty of Science and Technology
  • Department of Informatics
  • Master theses
  • Vis innførsel
  •   Hjem
  • Faculty of Science and Technology
  • Department of Informatics
  • Master theses
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Approaches in Imaging Genetics

Tesaker, Karianne
Master thesis
Thumbnail
Åpne
master thesis (8.474Mb)
Permanent lenke
https://hdl.handle.net/11250/2775027
Utgivelsesdato
2021-06-01
Metadata
Vis full innførsel
Samlinger
  • Master theses [222]
Sammendrag
Established approaches in imaging genetics and genome wide association studies (GWAS) such as univariate, multivariate and voxel-wise approaches, are prone to certain disadvantages such as being computationally expensive, selection of imaging phenotypes (IPs) requiring knowledge of which features are relevant for the task, and/or that relationships between different IPs are lost. In this thesis, uses of Random Forest Classification (RFC) and Convolutional Neural Networks (CNNs) within imaging genetic studies of magnetic resonance imaging (MRI) and genetic data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, have been investigated, with the hope of addressing the issues of the established approaches. CNNs were found to be a possible powerful tool in assessing which brain areas are affected by specific single nucleotide polymorphisms (SNPs).
Utgiver
The University of Bergen
Opphavsrett
Copyright the Author. All rights reserved

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit