Vis enkel innførsel

dc.contributor.authorFaleide, Thea Sveva
dc.contributor.authorBraathen, Alvar
dc.contributor.authorLecomte, Isabelle Christine
dc.contributor.authorMulrooney, Mark Joseph
dc.contributor.authorMidtkandal, Ivar
dc.contributor.authorBugge, Aina J.
dc.contributor.authorPlanke, Sverre
dc.date.accessioned2022-01-18T09:38:39Z
dc.date.available2022-01-18T09:38:39Z
dc.date.created2021-08-18T09:00:48Z
dc.date.issued2021
dc.identifier.issn0040-1951
dc.identifier.urihttps://hdl.handle.net/11250/2837849
dc.description.abstractSeismic mapping of subsurface faults is hampered by factors such as seismic resolution, velocity control for depth conversion and human bias. Here, we explore the challenges and pitfalls related to interpreting normal faults by comparing objective and subjective uncertainties. A panel of 20 interpreters, with different geoscientific backgrounds, interpreted faults in modern conventional (dominant frequency 40 Hz) and high-resolution P-Cable (dominant frequency 150 Hz) 3D seismic data from the Hoop area, SW Barents Sea. The interpretations created by the test-panel were sorted into 10 scenarios characterized by different fault geometries. These scenarios were explored with 2(3)D point-spread function based convolution seismic modelling to investigate the potential of seismic data to image detailed fault architectures. The results reveal that: (1) Statistical analysis shows considerable variations between manually picked faults. (2) Identifying the location of fault tips is challenging and smaller antithetic faults are rarely recognizable. (3) Uncertainties arise from masking of closely spaced fault segments even where displacement values are large, showing distorted reflection signatures of apparent extensional fault tip monoclines. The distortion is larger for conventional versus high-resolution data. (4) In the conventional and high-resolution seismic data the vertical resolution of closely spaced reflections and small offset faults is 20 m and 5 m, respectively. (5) The utilisation of high-resolution seismic data, combined with seismic modelling, add confidence to interpretation of conventional seismic data in the same area. We conclude that subsurface fault mapping with seismic data requires insight in objective uncertainties associated with the data. Automatic machine-learning fault interpretation is void of subjective bias but still hampered by objective limitations. Further, a risking workflow requires acknowledgement of uncertainties that are transferred to seismic based fault analysis techniques such as juxtaposition analysis, quantitative fault seal analysis, and fault stability analysis.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.urihttps://doi.org/10.1016/j.tecto.2021.229008
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleImpacts of seismic resolution on fault interpretation: Insights from seismic modellingen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 The Authorsen_US
dc.source.articlenumber229008en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1016/j.tecto.2021.229008
dc.identifier.cristin1926820
dc.source.journalTectonophysicsen_US
dc.identifier.citationTectonophysics. 2021, 816, 229008.en_US
dc.source.volume816en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal