Show simple item record

dc.contributor.authorRoberts, David M.
dc.contributor.authorSchmeding, Alexander
dc.date.accessioned2022-01-18T14:13:47Z
dc.date.available2022-01-18T14:13:47Z
dc.date.created2021-06-28T13:14:39Z
dc.date.issued2021
dc.identifier.issn0373-0956
dc.identifier.urihttps://hdl.handle.net/11250/2838025
dc.description.abstractWe consider a global, nonlinear version of the Whitney extension problem for manifold-valued smooth functions on closed domains , with non-smooth boundary, in possibly non-compact manifolds. Assuming is a submanifold with corners, or is compact and locally convex with rough boundary, we prove that the restriction map from everywhere-defined functions is a submersion of locally convex manifolds and so admits local linear splittings on charts. This is achieved by considering the corresponding restriction map for locally convex spaces of compactly-supported sections of vector bundles, allowing the even more general case where only has mild restrictions on inward and outward cusps, and proving the existence of an extension operator.en_US
dc.language.isoengen_US
dc.relation.urihttps://aif.centre-mersenne.org/item/10.5802/aif.3424.pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleExtending Whitney's extension theorem: nonlinear function spacesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright Association des Annales de l’institut Fourier, 2021en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.5802/aif.3424
dc.identifier.cristin1918906
dc.source.journalAnnales de l'Institut Fourieren_US
dc.identifier.citationAnnales de l'Institut Fourier. 2021.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal