dc.contributor.author | Roberts, David M. | |
dc.contributor.author | Schmeding, Alexander | |
dc.date.accessioned | 2022-01-18T14:13:47Z | |
dc.date.available | 2022-01-18T14:13:47Z | |
dc.date.created | 2021-06-28T13:14:39Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0373-0956 | |
dc.identifier.uri | https://hdl.handle.net/11250/2838025 | |
dc.description.abstract | We consider a global, nonlinear version of the Whitney extension problem for manifold-valued smooth functions on closed domains , with non-smooth boundary, in possibly non-compact manifolds. Assuming is a submanifold with corners, or is compact and locally convex with rough boundary, we prove that the restriction map from everywhere-defined functions is a submersion of locally convex manifolds and so admits local linear splittings on charts. This is achieved by considering the corresponding restriction map for locally convex spaces of compactly-supported sections of vector bundles, allowing the even more general case where only has mild restrictions on inward and outward cusps, and proving the existence of an extension operator. | en_US |
dc.language.iso | eng | en_US |
dc.relation.uri | https://aif.centre-mersenne.org/item/10.5802/aif.3424.pdf | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.no | * |
dc.title | Extending Whitney's extension theorem: nonlinear function spaces | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | Copyright Association des Annales de l’institut Fourier, 2021 | en_US |
cristin.ispublished | true | |
cristin.fulltext | original | |
cristin.qualitycode | 2 | |
dc.identifier.doi | 10.5802/aif.3424 | |
dc.identifier.cristin | 1918906 | |
dc.source.journal | Annales de l'Institut Fourier | en_US |
dc.identifier.citation | Annales de l'Institut Fourier. 2021. | en_US |