Show simple item record

dc.contributor.authorLosada, David E.
dc.contributor.authorElsweiler, David
dc.contributor.authorHarvey, Morgan
dc.contributor.authorTrattner, Christoph
dc.date.accessioned2022-02-17T07:26:29Z
dc.date.available2022-02-17T07:26:29Z
dc.date.created2022-02-01T15:25:07Z
dc.date.issued2021
dc.identifier.issn0924-669X
dc.identifier.urihttps://hdl.handle.net/11250/2979516
dc.description.abstractTwo major barriers to conducting user studies are the costs involved in recruiting participants and researcher time in performing studies. Typical solutions are to study convenience samples or design studies that can be deployed on crowd-sourcing platforms. Both solutions have benefits but also drawbacks. Even in cases where these approaches make sense, it is still reasonable to ask whether we are using our resources – participants’ and our time – efficiently and whether we can do better. Typically user studies compare randomly-assigned experimental conditions, such that a uniform number of opportunities are assigned to each condition. This sampling approach, as has been demonstrated in clinical trials, is sub-optimal. The goal of many Information Retrieval (IR) user studies is to determine which strategy (e.g., behaviour or system) performs the best. In such a setup, it is not wise to waste participant and researcher time and money on conditions that are obviously inferior. In this work we explore whether Best Arm Identification (BAI) algorithms provide a natural solution to this problem. BAI methods are a class of Multi-armed Bandits (MABs) where the only goal is to output a recommended arm and the algorithms are evaluated by the average payoff of the recommended arm. Using three datasets associated with previously published IR-related user studies and a series of simulations, we test the extent to which the cost required to run user studies can be reduced by employing BAI methods. Our results suggest that some BAI instances (racing algorithms) are promising devices to reduce the cost of user studies. One of the racing algorithms studied, Hoeffding, holds particular promise. This algorithm offered consistent savings across both the real and simulated data sets and only extremely rarely returned a result inconsistent with the result of the full trial. We believe the results can have an important impact on the way research is performed in this field. The results show that the conditions assigned to participants could be dynamically changed, automatically, to make efficient use of participant and experimenter time.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA day at the races: Using best arm identification algorithms to reduce the cost of information retrieval user studiesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright The Author(s) 2021en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1007/s10489-021-02719-2
dc.identifier.cristin1996472
dc.source.journalApplied intelligence (Boston)en_US
dc.identifier.citationApplied Intelligence, 2021.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal