• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • University of Bergen Library
  • Registrations from Cristin
  • Vis innførsel
  •   Hjem
  • University of Bergen Library
  • Registrations from Cristin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Dasgupta’s Hierarchical Clustering Objective and Its Relation to Other Graph Parameters

Høgemo, Svein; Bergougnoux, Benjamin; Brandes, Ulrik; Paul, Christophe; Telle, Jan Arne
Journal article, Peer reviewed
Accepted version
Åpne
accepted version (Låst)
Permanent lenke
https://hdl.handle.net/11250/2982359
Utgivelsesdato
2021
Metadata
Vis full innførsel
Samlinger
  • Department of Informatics [748]
  • Registrations from Cristin [5600]
Originalversjon
Lecture Notes in Computer Science (LNCS). 2021, 12867, 287-300.   10.1007/978-3-030-86593-1_20
Sammendrag
The minimum height of vertex and edge partition trees are well-studied graph parameters known as, for instance, vertex and edge ranking number. While they are NP-hard to determine in general, linear-time algorithms exist for trees. Motivated by a correspondence with Dasgupta’s objective for hierarchical clustering we consider the total rather than maximum depth of vertices as an alternative objective for minimization. For vertex partition trees this leads to a new parameter with a natural interpretation as a measure of robustness against vertex removal. As tools for the study of this family of parameters we show that they have similar recursive expressions and prove a binary tree rotation lemma. The new parameter is related to trivially perfect graph completion and therefore intractable like the other three are known to be. We give polynomial-time algorithms for both total-depth variants on caterpillars and on trees with a bounded number of leaf neighbors. For general trees, we obtain a 2-approximation algorithm.
Beskrivelse
Postponed access: the file will be available after 2022-09-09
Utgiver
Springer
Tidsskrift
Lecture Notes in Computer Science (LNCS)
Opphavsrett
Copyright the authors 2021

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit