Vis enkel innførsel

dc.contributor.authorVan Der Bilt, Willem
dc.contributor.authorCederstrøm, Jan Magne
dc.contributor.authorStøren, Eivind Wilhelm Nagel
dc.contributor.authorBerben, Sarah Miche Patricia
dc.contributor.authorRutledal, Sunniva
dc.date.accessioned2022-03-11T12:07:42Z
dc.date.available2022-03-11T12:07:42Z
dc.date.created2021-01-28T15:13:50Z
dc.date.issued2021
dc.identifier.issn2296-6463
dc.identifier.urihttps://hdl.handle.net/11250/2984632
dc.description.abstractVolcanic ash (tephra) horizons represent powerful chronological and stratigraphic markers: rapid and widespread deposition allows for correlation of geological records in time and space. Recent analytical advances enable identification of invisible ash (cryptotephra) up to thousands of kilometers from its volcanic source. This momentum has greatly expanded the reach and potential of tephrochronology: some deposits can now be traced across continents and oceans. However, the laborious laboratory procedures required to identify tephra horizons in geological archives hold back the pace of progress. By allowing the rapid visualization of ash at micrometer (µm) scales, computed tomography (CT) holds great promise to overcome these restrictions. In this study, we further demonstrate the potential of this tool for the tephra community with experimental results and applications on conventionally analyzed archives. A custom-made scanner helps us strike a balance between the convenience of whole-core medical scanners and the µm-resolution of micro-CT systems. Using basic image processing tools that can be readily mastered by tephrochronologists, we identified invisible horizons down to ∼500 shards in synthetic cores. In addition, procedures for the removal of image artifacts can be used to visualize other paleoenvironmental indicators such as bioturbation burrows, ice rafted debris or mineral dust. When applied on segments of manually counted natural archives, our approach captures cryptic glass shard maxima down to ∼300 shards/cm3. We also highlight the value of CT to help optimize sampling strategies by identifying micrometer-scale ash horizons that were not detected in shard count profiles. In conclusion, this work helps broaden the applicability of CT as a promising frontier in tephrochronology that can advance the field by optimizing the efficiency and accuracy of isochron detection.en_US
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.relation.urihttps://www.frontiersin.org/articles/10.3389/feart.2020.622386/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Fronti
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleRapid Tephra Identification in Geological Archives With Computed Tomography: Experimental Results and Natural Applicationsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 van der Bilt, Cederstrøm, Støren, Berben and Rutledalen_US
dc.source.articlenumber622386en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3389/feart.2020.622386
dc.identifier.cristin1881410
dc.source.journalFrontiers in Earth Scienceen_US
dc.relation.projectNorges forskningsråd: 267719en_US
dc.identifier.citationFrontiers in Earth Science. 2021, 8, 622386.en_US
dc.source.volume8en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal