Show simple item record

dc.contributor.authorEllingsen, Ståle
dc.contributor.authorNarawane, Shailesh
dc.contributor.authorFjose, Anders
dc.contributor.authorVerri, Tiziano
dc.contributor.authorRønnestad, Ivar
dc.date.accessioned2022-04-07T08:52:00Z
dc.date.available2022-04-07T08:52:00Z
dc.date.created2021-11-30T09:09:25Z
dc.date.issued2021
dc.identifier.issn0920-1742
dc.identifier.urihttps://hdl.handle.net/11250/2990426
dc.description.abstractSystem b0,+ absorbs lysine, arginine, ornithine, and cystine, as well as some (large) neutral amino acids in the mammalian kidney and intestine. It is a heteromeric amino acid transporter made of the heavy subunit SLC3A1/rBAT and the light subunit SLC7A9/b0,+AT. Mutations in these two genes can cause cystinuria in mammals. To extend information on this transport system to teleost fish, we focused on the slc3a1 and slc7a9 genes by performing comparative and phylogenetic sequence analysis, investigating gene conservation during evolution (synteny), and defining early expression patterns during zebrafish (Danio rerio) development. Notably, we found that slc3a1 and slc7a9 are non-duplicated in the zebrafish genome. Whole-mount in situ hybridization detected co-localized expression of slc3a1 and slc7a9 in pronephric ducts at 24 h post-fertilization and in the proximal convoluted tubule at 3 days post-fertilization (dpf). Notably, both the genes showed co-localized expression in epithelial cells in the gut primordium at 3 dpf and in the intestine at 5 dpf (onset of exogenous feeding). Taken together, these results highlight the value of slc3a1 and slc7a9 as markers of zebrafish kidney and intestine development and show promise for establishing new zebrafish tools that can aid in the rapid screening(s) of substrates. Importantly, such studies will help clarify the complex interplay between the absorption of dibasic amino acids, cystine, and (large) neutral amino acids and the effect(s) of such nutrients on organismal growth.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe zebrafish cationic amino acid transporter/glycoprotein-associated family: sequence and spatiotemporal distribution during development of the transport system b 0,+ (slc3a1/slc7a9)en_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1007/s10695-021-00984-z
dc.identifier.cristin1961367
dc.source.journalFish Physiology & Biochemistryen_US
dc.source.pagenumber1507-1525en_US
dc.relation.projectNorges forskningsråd: 174979en_US
dc.relation.projectNorges forskningsråd: 311627en_US
dc.identifier.citationFish Physiology & Biochemistry. 2021, 47, 1507-1525.en_US
dc.source.volume47en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal